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Dissipative dynamics of a system passing through a conical intersection:
Ultrafast pump-probe observables
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The dynamics of a system incorporating a conical intersection, in the presence of a dissipative
environment, is studied with the purpose of identifying observable ultrafast spectroscopic
signatures. A model system consisting of two vibronically coupled electronic states with two nuclear
degrees of freedom is constructed. Dissipation is treated by two different methods, Lindblad
semigroup formalism and the surrogate Hamiltonian approach. Pump-probe experimental
expectation values such as transient emission and transient absorption are calculated and compared
to the adiabatic and diabatic population transfer. The ultrafast population transfer reflecting the
conical intersection is not mirrored in transient absorption measurements such as the recovery of the
bleach. Emission from the excited state can be suppressed on the ultrafast time scale, but the
existence of a conical intersection is only one of the possible mechanisms that can provide ultrafast
damping of emission. © 2005 American Institute of Physics. �DOI: 10.1063/1.2032968�
I. INTRODUCTION

The Born–Oppenheimer1 separation of nuclear and elec-
tronic motions is the enabler of nearly all our knowledge of
molecular structure and dynamics. The adiabatic separation
on which this principle is based, however, is never exactly
correct, and there are instances where it fails substantially.
The simplest example is probably nonradiative decay,2

brought on by vibronic coupling.3 In the standard Landau–
Zener approach4–7 motion along one coordinate modulates
the nonadiabatic transition among electronic states. While
the coupling is most easily envisaged along one coordinate,
generalizing the Landau–Zener approach to multiple coordi-
nates lies at the heart of contemporary models for electron
transfer8 and for nonradiative decay.2

Within the Landau–Zener picture, the nonadiabatic mix-
ing is generally treated as a constant, invariant in the vibra-
tional coordinates. More physically, this constant is some-
times modulated by a contour function �generally Gaussian�,
which limits the mixing to the region in which the different
electronic potential energy surfaces come close to one an-
other. More complicated nonadiabatic processes involve
conical intersections.9,10 These can exist in any dimensional-
ity greater than one, so the simplest is the two-dimensional
conical structure. Here the symmetry is such that the diabatic
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curves cross in an �n−1� dimensional seam. In the adiabatic
representation, the curves actually cross at a single point,
because of the symmetry �odd in one of the coordinates� of
the vibronic coupling. More complicated structures �higher-
dimensional conical intersections, asymmetric conical inter-
sections, pairs or clusters of conical intersections� can also
occur. They are common for larger organic molecules,11–13

and they offer complex higher-order mixing patterns in the
dynamics.

Because of the different geometry of curve crossing be-
tween isolated Landau–Zener-avoided crossings and higher-
dimensional conical intersections, population transfer can be
very rapid in the conical case. This is what led to the original
interest in conical intersections, and it has been extensively
discussed, particularly using density operator methods.14–18

The organic literature12,19 broadly uses conical intersections
to discuss subpicosecond transitions. There is extensive and
elegant analyses, including simulations, more formal analy-
ses, and careful experimental comparisons.

In this paper, we focus on decay of photoexcited states,
and on the experimental observables of luminescence, pump-
probe spectra, and recovery of the bleach. All of these are
governed not only by the population dynamics, but also by
the value of the transition dipole moment and by energy
redistribution. Hence it is necessary to deal not only with the
electronic state population, but also with the energy distribu-
tion. In nearly all cases, then, we have in addition to the

curve crossing problem an intramolecular vibrational relax-
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ation �IVR� issue—the system must return to the starting
configuration for bleach recovery to be observed, and back
transfer �recrossing� can occur in the excited state unless
either IVR or effective dephasing make such recurrences im-
possible.

Most theoretical analyses of conical intersections uses
either two or three nuclear modes.14 Electron populations can
then indeed describe ultrafast behavior returning to the
ground electronic state, and some aspects of IVR and phase
loss can also be understood. But the fundamental behavior of
conical intersections in molecules larger than triatomic arises
from the presence of multiple modes, and explicit treatment
of multiple modes remains difficult. There is an exemplary
analysis of a 24-mode dynamics model for pyrazine,20 as
well as calculations utilizing a Redfield21,22 approach to deal
with the rest of the vibrational modes as comprising a har-
monic bath.23,24

In this paper, we use a direct propagation scheme to
examine a two-mode model for conical intersections. The
aim is to investigate both population dynamics and bleach
recovery, in order to relate them to experimental observa-
tions. Since the direct propagation of such a system scales
exponentially with the number of modes, we use a system-
bath approach, with two active vibrational modes and two
electronic states chosen as the system, and a representation
of the bath. We use two different treatments of this bath: first,
a reduced description based on a density operator treatment
where the dynamics is generated by the Lindblad formalism
of semigroup dynamics;25–27 alternatively, we use a wave-
function propagation scheme with the so-called surrogate
Hamiltonian28 method, corresponding to an Ohmic distribu-
tion of spin modes in the bath. The focus is on photochemi-
cal dynamics, and the photochemical excitation is treated
nonperturbatively—a system-electromagnetic field determi-
nation is included in the time-dependent Hamiltonian. For
clarity, all the calculations are carried out in the diabatic
representation.

Using this bath model, while the population transfer is
indeed in the subpicosecond regime, the bleach recovery is
dominated by subsequent dephasing and IVR, and therefore
can proceed far more slowly. While the two-dimensional
coupling scheme can mix states very rapidly, it cannot by
itself �in the absence of ultrafast IVR or dephasing� lead to
the fast bleach recovery. These observations have several im-
plications: they suggest, for example, that the occurrences of
100 fs time-scale bleach recovery in transition metal com-
plexes in solution29–31 might be better explained by simple
avoided crossings with strong outer sphere reorganization
coupling terms than by invoking a conical intersection. They
also suggest that conical mixing symmetry is not itself suf-
ficient to generate femtosecond bleach recovery or relax-
ation.

The article is organized as follows. Section II A outlines
the formal structure of the model, Sec. II B reviews the sur-
rogate Hamiltonian approach, while the semigroup method is
described in Sec. II C. The connection to observables is dis-
cussed in Sec. II D. Actual results are presented in Sec. III,

and some remarks are made in the concluding section.
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II. THEORY

A. The model

The study of dissipative effects on nonadiabatic dynam-
ics of multidimensional systems is not a trivial task. The
main obstacle in modeling such systems is rooted in the ex-
ponential growth in complexity with the number of degrees
of freedom. Significant simplifications can be achieved by
partitioning the total system into a primary part and a bath
describing the environment.32 The Hamiltonian of such a
combined system is given by

Ĥ = ĤS � 1B + 1S � ĤB + ĤSB + ĤSF�t� , �1�

where ĤS is the Hamiltonian of the primary system, ĤB is

the bath Hamiltonian, and ĤSB describes the interaction be-
tween the system and the bath. The time-dependent interac-
tion of the system with the external electromagnetic field is

represented by ĤSF�t�.
The primary system usually consists of a few physically

relevant degrees of freedom, which are treated explicitly. The
bath, on the other hand, consists of an infinite number de-
grees of freedom and enters the model implicitly, i.e., only its
influence on the primary system is important. In the context
of conical intersections, the bath may describe a condensed-
phase environment, as well as the molecule’s inactive modes.

Let us consider the simplest model of a symmetry-
allowed conical intersection.9,10,33 It includes two electronic
states g and e, and two vibrational modes: the totally sym-
metric Q0 �also called the tuning mode�, and the symmetry-
breaking �coupling� mode Qc, which is responsible for vi-
bronic coupling.15 Employing a diabatic electronic
representation, the system Hamiltonian can be written as

ĤS = � Ĥg Vd�Q̂c�

Vd�Q̂c� Ĥe

� � 1B, �2�

with Ĥg/e= T̂+Vg/e�Q̂ ,Q̂c�. T̂ is the kinetic energy operator,
Vg and Ve are the potential energy operators on the ground
and excited electronic states, respectively, and Vd is the di-

abatic coupling. The Q̂c, Q̂0 are chosen to be dimensionless.
It is customary to choose a linear form for the diabatic

coupling term:

Vd�Q̂0,Q̂c� = �Q̂c, �3�

which is appropriate in the vicinity of the conical intersec-
tion. Since diabatic coupling functions obtained from ab ini-
tio calculations turn out to be localized,34,35 the more physi-
cally motivated choice is a coupling term modulated by a
damping Gaussian:

Vd�Q̂0,Q̂c� = �Q̂ce
−�Q̂0 − QCI�

2/�2−Q̂c
2/�2

, �4�

where QCI is the point at which the conical intersection oc-
curs along the symmetric mode Q0. Thus the diabatic cou-
pling is damped out as one moves away from the conical
intersection point.36,37 Complications will arise if the conical
intersection is close to the Franck–Condon region, which

will lead to interferences with the light induced excitation
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dynamics. This possibility will be excluded in the present
study.

The coupling with the radiation is described by the semi-
classical time-dependent Hamiltonian

ĤSF = � 0 − ��t��̂tr

− �*�t��̂tr 0
� � 1B, �5�

where �̂tr= �̂tr�Q̂0 ,Q̂c� is the electronic transition dipole op-
erator, which is a function of the nuclear configuration. ��t�
is the time-dependent electric field. In the large wavelength
limit the spatial dependence of ��t� is ignored.

B. The surrogate Hamiltonian

The surrogate Hamiltonian method28 is based on the idea
that for sufficiently short times the system is not able to
resolve the full density of the bath states. Therefore it is
possible to replace an infinite number of the bath modes by a
finite set of representative modes. This new “surrogate”
Hamiltonian faithfully represents the dynamics of the pri-
mary system under the influence of an infinite bath for a
finite time.

The starting point is to decompose the bath into a sum of

single mode Hamiltonians ĥi:

ĤB = �
i

N

ĥi �6�

For the surrogate Hamiltonian a bath of two-level systems
�TLS� is employed:

ĥi = ��i�̂i
†�̂i, �7�

where �̂i
†, �̂i are the standard spin creation and annihilation

operators of mode i with gap �i.
The interaction between system and bath is described by

the Hamiltonian ĤSB, which can be decomposed into a sum
of products of system and bath operators without loss of

generality. The system-bath interaction ĤSB can be parti-
tioned into terms describing different physical processes. The
most general bilinear form for vibrational relaxation is given
by the operator

ĤSB
vr = � fg�Q̂0,Q̂c� 0

0 fe�Q̂0,Q̂c�
� � �

�=0,c
�

i

N

�i
���̂i

�† + �̂i
�� ,

�8�

where f�Q̂0 ,Q̂c� is a function of the system coordinate�s�
operator. The system-bath coupling can vary between the
ground and the excited potentials.

In the weak system-bath coupling regime the influence
of the bath on the primary system is fully characterized by
the spectral density function J���:32

J��� = �
i

��i�2��� − �i� . �9�

Use of the density of states 	��i�= ��i+1−�i�−1 in place of
the delta function in Eq. �9� determines the coupling

38,39
constants:
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�i = 	J��i�/	��i� . �10�

The sampling density in energy of this set is determined
by the inverse of the time interval. The finite bath of N spins
is constructed with a system-bath coupling term, which in
the limit N→
 converges to the given spectral density of the
full bath. The surrogate Hamiltonian, consists of a finite
number of bath modes, and it is therefore limited to repre-
senting the dynamics of the investigated system for a finite
time �shorter than the Poincaré period at which recurrences
appear40�. These recurrences are caused by the finite size of
the bath so that after some time the energy flow into the bath
partly is reversed.

Within the surrogate Hamiltonian method, it is straight-
forward to introduce into the model different system-bath
interaction mechanisms, such as electronic and vibrational
pure dephasing. The process of dephasing corresponds physi-
cally to fluctuations in the values of the system energies—
electronic dephasing is then the fluctuation in the electronic
energy levels, while vibrational dephasing describes changes
in the vibrational energies. A qualitative picture of pure
dephasing is based on an almost elastic exchange of energy
between bath modes, which alters the accumulated phase of
the system. For electronic dephasing, the bath modulates the
electronic excitation:

ĤSB
ed = �V�Q̂0,Q̂c�

1

2
�− 1 0

0 1
� � �

ij

cij
ed��̂i

†�̂ j + �̂ j
†�̂i� .

�11�

�V�Q̂0 ,Q̂c� is the difference potential describing the depen-
dence of the modulation on the nuclear displacement. The
coefficients cij are biased to represent almost elastic encoun-
ters,

cij = c̄ee
−��i − �j�

2/2��
2
, �12�

with c̄e a global dephasing parameter, and �� determines the
inelastic width. The dephasing rate is proportional to the
square of the band width of cij.

36

For vibrational dephasing, the bath modulates the vibra-
tional Hamiltonian:

ĤSB
vd = �Ĥg 0

0 Ĥe

� � �
ij

cij
vd��̂i

†�̂ j + �̂ j
†�̂i� . �13�

In order to activate a pure dephasing process, the bath modes
must be initially populated. The detailed algorithm of apply-
ing Eqs. �11�–�13� has been described in Ref. 36.

The full surrogate Hamiltonian contains all possible cor-
relations between the primary system and the environment.
The combined system-bath state is described by a
2N-dimensional spinor with N being the number of bath
modes. The spinor is bit ordered, i.e., the jth bit set in the
spinor index corresponds to the jth TLS mode, which is ex-
cited if the counting of bits starts at j=0. The dimension 2N

results from the total number of possibilities to combine two

states N times.
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In the weak coupling limit considering all 2N possibili-
ties of combining the bath modes might not be necessary.
Thus for short time dynamics, it is possible to restrict the
number of simultaneous bath excitations.41,42

The spin bath employed by the surrogate Hamiltonian
has its origin in a tight binding model of condensed phase. It
represents in general a different physical model than the
widely used model bath of noninteracting harmonic oscilla-
tors. However, a recently performed comparison42 has shown
that the dynamics induced by two baths �even in the strong
coupling limit� are very similar.

Observables associated with operators of the primary
system are determined from the reduced system density op-
erator: �̂S�Q ,Q��=trB
������
, where trB
 
 is a partial trace
over the bath degrees of freedom. The system density opera-
tor is constructed from the total system-bath wave function
and only this function is propagated. A grid representation is
used to represent each spinor component of the wave func-
tion. The kinetic energy operator is applied in Fourier space
employing fast Fourier transform,43 and the Chebychev
method44,45 is used to compute the evolution operator. Nu-
merical details for applying the bath operators have been
described in Refs. 28 and 36.

C. Reduced dynamics in the density operator
representation

The reduced dynamics approach is constructed to avoid
the size scaling of a full treatment, allowing a computational
scheme able to simulate a dynamical encounter from first
principles. The equations of motion are solved explicitly for
a primary system, while the bath is treated implicitly. The
approach requires equations of motion for the subsystem
which are based on Lindblad formalism of semigroup
dynamics.25–27 One advantage of the semigroup approach is
that the computational cost scales linearly with the propaga-
tion time, unlike the exponential scaling of the surrogate
Hamiltonian. A disadvantage is that it is formulated in Liou-
ville space, which squares the number of required represen-
tation points in comparison to a wave function description of
the surrogate Hamiltonian method. In addition, there is a
hidden assumption46 of an uncorrelated initial state of the
system and the bath. One starting point is to formulate the
time evolution equations as an integrodifferential
equation:47,48

d

dt
�̂S = LS��̂S� + �t

K�t,
��̂S�
�d
 , �14�

where LS is the system’s free Liouville operator and K is a
memory kernel which includes implicitly the bath dynamics.
A key ingredient in the formulation is that the combined
system-bath dynamics is generated by a unitary evolution

�̂�t�=tr
Û�t��̂S�0� � �̂B�0�Û†�t�
. Such a construction leads
to formal restriction on the subsystem equation of motion
known as complete positivity,49 meaning physically, that no
populations �of the combined system and bath� should be
negative. In the Markovian limit, under the conditions of the
complete positivity, the reduced equation of motion can be

diagonalized to the Lindblad form:
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d

dt
�̂S = −

i

�
�ĤS,�̂S� + �

j
�F̂ j�̂SF̂ j

† −
1

2

F̂ jF̂ j

†,�̂S
� , �15�

where F̂ j are the Lindblad operators, representing the influ-

ence of the environment. 
Â , B̂
= ÂB̂+ B̂Â is the anticom-
mutator.

The nature of the bath is implied in the formulation of a
specific Lindblad operator. Such operators can be con-
structed to display vibrational and electronic dissipation50,51

of the system in baths of different physical natures. The rate
of dissipation is derived from the nature of the bath and the
system-bath coupling.

The choice F̂vd= �	�vd� /��Ĥ dictates pure vibrational
dephasing of the system ��vd is the rate and � is the phase

shift in time�. F̂ed=	�ed��e��e�− �g��g�� represents electronic
dephasing.50,52 For physical reasons we chose the electronic
dephasing operator to be in the diabatic representation. The
reason is that the major interaction with the environment is
induced by the transition dipole of the molecule, proportional
to ��e��e�− �g��g�� in the Condon approximation and the di-
abatic representation.

Quantum intramolecular vibrational relaxation is
achieved using equations of motion,53,54 which are consistent
with complete positivity:

d

dt
�̂S = −

i

�
�Ĥ,�̂S� −

i

2�
��q̂,
p̂,�̂S
� −

1

�2Dpp�q̂,�q̂,�̂S��

−
1

�2Dqq�p̂,�p̂,�̂S�� −
2

�2Dpq�q̂,�p̂,�̂S�� , �16�

where thermal equilibrium imposes Dpp=�mkbT and Dqq

=����2 /16mkbT�. p and q are momentum and space vari-
ables of the system. The � is a parameter larger than 1 �for
�=4/3 the model is Gaussian, and if � is larger, the model is
Poisson-like�. A cross diffusion term can be added: Dpq

=���2 /12�kbT, where � is the frequency cutoff parameter.
It should be noticed that Dij terms are independent of the

field.

D. Stimulation of pump-probe experiment and time-
dependent observables

From the experimental point of view, the detection of
ultrafast nonadiabatic processes becomes possible using fem-
tosecond pump-probe techniques.29,30,55–59 These experi-
ments provide information on the time scales of the pro-
cesses under investigation. Nevertheless, the interpretation of
the results remains a nontrivial task. A direct signature of the
ultrafast dynamics in such experiments are transient modula-
tions of optical observables, reflecting the promotion of
ground and excited state vibrational modes. However, it is
generally not possible to define the exact number of elec-
tronic states and vibrational modes involved in the nonadia-
batic dynamics.

The present study aims to construct a simplified quantum
dynamical model, including a conical intersection, and to
apply the previously developed tools36,60,61 to simulate the

pump-probe experiments.
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The surrogate Hamiltonian simulations start with a fully
correlated ground state, determined by propagating an initial
guess function in imaginary time44 with the total system-bath
Hamiltonian:

��Q̂;
� = e−Ĥ
��Q̂;0� . �17�

This initial state is the starting point for launching the pump-
probe simulations. The use of the surrogate Hamiltonian has
the advantage of a consistent treatment of initial correlations
between the system and the bath, as well as explicit descrip-
tion of the pulse field and its influence on the system-bath
interactions. Commonly in most computational studies of
nonadiabatic processes, the initial state is prepared by a
Franck–Condon transition from the ground state.14 This
choice, however, ignores the system-bath correlations and
the dynamical aspects of the pump pulse.

Upon applying the pump pulse, a significant fraction of
the population is transferred to the excited state. Since the
pump pulse is strong, a nonperturbative treatment is needed.
Our model enables us to include explicitly the interaction
between the system and the radiation �5�. In this study the
pump pulse has a Gaussian envelope in time:

��t� = �0e−�t − tmax�2/2�L
2
ei�Lt, �18�

and the carrier frequency �L is chosen to match the differ-
ence between the ground and excited electronic potentials at
the minimum of the ground state.

The probe pulse can be applied at any stage in the cycle
of events. Typically, the probe pulse is short and weak. It can
promote both, excitation, leading to the energy absorption,
and deexcitation, resulting in stimulated emission. In this
case a perturbative picture is justified and can save a signifi-
cant computational effort. The total absorption from the
probe pulse by an observable is thus represented by a win-

dow operator Ŵ. This operator describes a finite resolution
position measurement:60,62

�E � − ��LtrS
�̂S�tp� · Ŵ
 . �19�

The observation process is completed in a time duration pro-
portional to the probe pulse duration 
p. Equation �19� col-
lapses the observation to a single instant of time tp. By em-
ploying time-dependent perturbation theory the window
operator for a Gaussian-shaped probe pulse becomes60,62

Ŵ�Q̂,Q̂�� =
��
p

2�0
2�

�2 e−2��Q̂�2
p
2/�2

· �̂2�Q̂�

���Q̂ − Q̂����k���k� , �20�

where ��k���k� is the electronic projection operator, which
selects the ground electronic state for transient absorption.
For emission, the projection operator selects the excited elec-
tronic state. The window operator, Eq. �20�, is a function of
the probe central frequency �L:

2��Q̂� = Ve�Q̂� − Vg�Q̂� − ��L, �21�

i.e., 2��Q̂� is the difference potential relative to the probe
frequency. The employment of the window operator assumes

a random phase between the pump and probe pulses, elimi-
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nating interference effects. An interference between pump
and probe excitations is also eliminated once the electronic
dephasing is complete. The memory of the pump phase is
stored in the transition dipole phase. This is erased once the
relative phase between the ground and excited wave packets
is lost by the electronic dephasing.63

The present modeling of the pump-probe experiment en-
ables us to investigate the population dynamics, as well as
the energy distribution during the nonadiabatic dynamics.
The dynamics of the excited electronic state is reflected in
the stimulated-emission signal. The vibrational relaxation of
the hot ground state population, on the other hand, cannot be
monitored by the time evolution of the vibrational population
or the stimulated emission. The transient absorption, how-
ever, reflects the energy redistribution, since it shows the
returning of the system to its initial configuration. The
ground-state absorption bleaching, induced by the pump
probe, will exhibit the recovery, reflecting the curve crossing
dynamics as well as the subsequent vibrational cooling.

Most studies of nonadiabatic processes involving conical
intersections consider the overall electronic populations of
the excited and the ground electronic states.14,15,64,65 In the
case of open-system dynamics, the time-dependent popula-
tion probabilities of the diabatic electronic states are defined
as

Pn
di�t� = tr
N̂n

di�̂S�t�
 , �22�

with N̂n
di being the projection operator of the nth electronic

state in the diabatic representation. The reduced system den-
sity operator is defined as a partial trace over the bath de-
grees of freedom. The adiabatic electronic population is de-
fined in a similar way by using diabatic-to-adiabatic
transformation.15

A question that naturally arises is how the population
dynamics is monitored experimentally. This has been the
leading argument in studies modeling femtosecond time-
resolved experiments in systems incorporating conical
intersections.66,67

III. RESULTS AND DISCUSSION

A. General

The diabatic potential energy surfaces are approximated
by quadratic functions with linear intrastate couplings.15 Us-
ing dimensionless normal coordinates,

Vg�Q̂0,Q̂c� = − �0 +
��0

2
Q̂0

2 + �gQ̂0 +
��c

2
Q̂c

2, �23�

Ve�Q̂0,Q̂c� = �0 +
��0

2
Q̂0

2 + �eQ̂0 +
��c

2
Q̂c

2, �24�

where �0 and �c are the vibrational frequencies of the totally
symmetric mode Q0 and the coupling mode Qc respectively.
The 2�0 denotes the vertical excitation energy and �g/e are

the first-order intrastate electron-vibrational couplings.
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The system parameters are chosen as follows �all in eV�:
�0=0.074, �c=0.0936, �g=−0.0964, �e=0.1194, �=0.4617
and the coordinates are dimensionless. The interstate cou-
pling is described as

Vd�Q̂0,Q̂c� = �Q̂ce
−�Q̂0 − QCI�

2/2�2
, �25�

with QCI being the point where the conical intersection oc-
curs along the tuning mode, and � is the breadth of the
coupling function. The coupling strength is �=0.18 eV. The
above geometry corresponds roughly to potential energy sur-
faces of the S1�n�*� and S2���*� excited states of
pyrazine20,68 along the two normal modes �6a �the tuning
mode� and �10a �the coupling mode�. The ground electronic
state S0 of pyrazine lies about 3.94 eV lower than S1. Here
we use a simplified model with the ground state assumed to
be S1 to introduce the effect of the bleach recovery in a
general way.

Figure 1 shows diabatic �a� and adiabatic �b� potential
surfaces and Fig. 2 shows a close view of the conical inter-
section in the adiabatic representation, as well as the diabatic
coupling, given by Eq. �25�. The diabatic surfaces cross
along the line ��n−1�-dimensional seam�, while in an adia-
batic representation, the potentials touch at a single point
�QCI,0�.

The influence of the bath on the primary system is char-
acterized by the spectral density function J����. For an

FIG. 1. Schematic view of the potential energy surfaces in a diabatic �uppe
are used in the calculations �all in eV�: �=0.074, �c=0.0936, �g=−0.0964,
FIG. 2. �Color�. �Left� A close view of the conical intersection within the adiab
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Ohmic bath the damping rate is frequency independent and
the spectral density in the continuum limit is given by

J���� = ���e−�/�cut
�

�26�

for all frequencies � up to the cutoff frequency �cut. The
coupling strength �� for the specific mode is given by the
ratio of the damping rate � and the vibrational frequency of
this mode �0/c. A finite bath with equally spaced sampling of
the energy range is used in all calculations. The cutoff fre-
quency is set to 2.5�0/c, which defines the shortest time scale
of the bath �about 
bath=20 fs�. The time scale corresponding
to the frequency spacing �� defines the Poincaré period
�
rec�. It should be larger than any other time scale of interest.
With �cut fixed, this time becomes


rec =
2�

��
=

2�N

�cut
. �27�

Thus, with an increasing number of bath modes, the conver-
gence progresses in time. In the present modeling the num-
ber of TLS is chosen to be N=30–40 �for different coupling
strengths�, which ensures that 
rec is greater than the overall
simulation time. The calculations were performed in differ-
ent interaction regimes identified by considering the relevant
time scales: the weak coupling referring to �−1=750 fs
�
osc ,
bath; and the intermediate situation characterized by
�−1=75 fs�
osc�
bath. The temperature of the bath has been

el� and an adiabatic �lower panel� representation. The following parameters
0.1194, �=0.18 �=0.4617 and the coordinates are dimensionless.
r pan
� =
atic representation. �Right� The diabatic coupling Vd, giving by Eq. �25�.
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neglected in these calculations and chosen to be zero.
The pump pulse envelope is modeled as a Gaussian

function of Eq. �18� with the intensity �0 adjusted such that
approximately 10% of the ground state population was trans-
ferred to the excited state.60 The width �full width at half-
maximum� of the pulse which is connected to �L is chosen as
20 fs which is typical for charge transfer experiments.30 tmax

is fixed by starting the propagation at t0= tmax−3�L. The
probe pulse has the same profile as the pump pulse, but with
only 10% of the pump intensity.

B. Simulation of pump-probe experiment

A direct signature of the ultrafast dynamics is provided
by transient modulations of optical observables. In the case
of the system with two electronic states, the absorption of the
probe pulse reflects the dynamics of the ground state, while
the stimulated emission signal reveals the dynamics of the
excited state. The transient absorption and emission signals
and their spectra are displayed in Figs. 3 and 4. The emission
and absorption signals are plotted as a function of the time
delay between the pump and probe pulses. The central fre-
quency of the probe pulse is chosen to be the same as of the
pump pulse �L. The dynamics of the isolated system ��
=0� are compared to those with weak vibrational relaxation �
�0=�c=0.01, �−1=750 fs� and medium electronic dephasing
�c̄e=0.25�. It was found that pure nuclear dephasing does not
affect noticeably the system dynamics on this time scale.

FIG. 3. Transient stimulated-emission signal �left� and its spectrum �right� fo
frequencies are chosen to correspond to vertical excitation from the bottom
vibrational relaxation with weak system-bath coupling ��0=�c=0.01, �−1=7
dephasing �c̄e=0.25�. The number of bath modes is N=30 with two simultan
system �left ordinate in right panel�.

FIG. 4. Transient absorption signal �left� and its spectrum �right� for the tw
are chosen to correspond to the bottom of the ground electronic potential.
system-bath coupling ��0=�c=0.01, �−1=750 fs�; dotted lines: vibrationa

number of bath modes is N=30 and two simultaneous excitations are allowed in
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1. Transient emission

The excited state dynamics are reflected by the transient
emission of the probe pulse �see the left panel of Fig. 3�.
After applying the pump pulse of 20 fs duration, about
�10% of the ground state population has been transferred to
the electronic excited state. The excited wave packet starts to
evolve and eventually reaches the vicinity of the conical in-
tersection. A nonadiabatic population transfer to the ground
state takes place within one vibrational period, which is seen
as an initial ultrafast decay of the emission signal ��50 fs�.
The signal for the isolated system �full line� also shows qua-
siperiodic revivals caused by the nonadiabatic transfer back
�recrossings� to the excited potential state. The coherent mo-
tions of the excited wave packet are reflected in the periodic
oscillations of the signal.

In the presence of vibrational relaxation �dashed line in
Fig. 3�, the amplitude of the revivals drops down signifi-
cantly already after 100 fs. However, the initial peak of the
emission signal is almost unaffected by the dissipation. In the
medium or strong coupling regimes �not shown�, the ampli-
tude of the first peak decreases, while the time of its decay
��50 fs� remains unchanged. The influence of electronic
dephasing �the dotted line in Fig. 3� is even more pro-
nounced. Hence the emission signal does not show any qua-
siperiodic recurrences, caused by the population transfer
back to the excited state. The periodic oscillations are almost
damped down after 300 fs.

two-mode system, incorporating a conical intersection. The pump and probe
e ground electronic potential. Solid lines: the isolated system; dashed lines:
�; dotted lines: vibrational relaxation ��0=�c=0.01� with medium electronic
excitations allowed. Note the different scale for the spectrum of the isolated

de system, involving conical intersection. The pump and probe frequencies
lines: the isolated system; dashed lines: vibrational relaxation with weak

xation ��0=�c=0.01� with medium electronic dephasing �c̄e=0.25�. The
r the
of th
50 fs
eous
o-mo
Solid
l rela
the surrogate bath.
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Following the dynamics, it is found that the vibrational
relaxation and the electronic dephasing effectively obstruct
the recrossings of the population to the excited state. As a
result the emission signal turns off. The dissipation also
damps the coherent motion of the excited wave packet, seen
as an increase in the width of the spectrum of the signal.

The spectrum of the emission signal �Fig. 3, right� was
obtained by using a filter-diagonalization method69–71 with a
data window between 100 and 450 fs. For the isolated sys-
tem �full line� it shows the first and second harmonics of the
tuning mode Q0 as well as the fundamental of the coupling
mode Qc. The latter indicates that during the internal-
conversion process the coupling mode becomes highly ex-
cited. These phenomena reflect the strong mixing induced by
the conical intersection. Vibrational relaxation and electronic
dephasing reduce the emission signal significantly �note the
different scale in Fig. 3, right panel�, by suppressing the
recrossing process. Furthermore, vibrational relaxation leads
to a finite width of the peaks, which increases with increas-
ing system-bath coupling. The bath also red shifts the spec-
trum. Electronic dephasing causes a further broadening of
the peaks and an additional red shift. It also diminishes com-
pletely the amplitude of the fundamental frequency of the
coupling mode.

2. Transient absorption

The absorption of the probe �Fig. 4, left� reflects the
dynamics of the ground electronic state. The transient ab-
sorption signal is calculated as the absorption of the probe
without the pump pulse subtracted from the absorption of the
probe with the pump. The initial decay of the absorption
transient �bleach� reveals the loss of ground state population
due to the pump pulse. Since the pump pulse excites �10%
of the ground state population to the excited state, the ground
state wave packet is only weakly perturbed by the excitation
process. However, the “hole” left on the ground electronic
state creates a nonstationary density which oscillates periodi-
cally with the ground state vibrational frequency.61,72 These
dynamics can be measured experimentally via impulsive
resonance Raman scattering. The absorption signal for the
isolated system �full line� shows primarily the coherent mo-

FIG. 5. Time evolution of diabatic �left� and adiabatic �right� population pro
and �L=1.25 eV frequency is applied �the envelope of the pulse is shown�. F
coupling strength ��0=�c=0.01, �−1=750 fs�; dotted line: weak vibration
number of bath modes is N=30 and two simultaneous excitations are allow
tion of the remaining ground state wavepacket.
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The power spectrum of the absorption signal is given in
the right panel of Fig. 4. It shows the first, the second, and
higher harmonics of the symmetric mode Q0 as well as the
weak fundamental of the coupling mode Qc. Since the pump
frequency corresponds to the center of the ground electronic
potential, the dynamical hole in coordinate space is produced
with reflection symmetry with respect to the minimum point
of the potential well. A momentum kick induced by the pump
will break this symmetry leading to the appearance of a first
harmonic component in the signal.60 In the presence of dis-
sipation, the fundamental of the coupling mode vanishes,
while the harmonics of the symmetric mode are diminished
significantly. The vibrational relaxation suppresses the higher
harmonics faster. Electronic dephasing diffuses the localiza-
tion of the hole, causing the peak broadening.

After the excited state wave packet has reached the coni-
cal intersection, population is nonadiabatically transferred
back to the ground state. Therefore the transient absorption
of the probe pulse from the ground state should reflect the
increase in population, known experimentally as the “recov-
ery of the bleach.”30 The newly created population on the
ground electronic surface is vibrationally excited and its ap-
pearance in the observation window of the probe is delayed
by the time scale of vibrational relaxation. The “recovery of
the bleach” phenomenon is governed not only by the popu-
lation dynamics, which indeed happens on subpicosecond
time scale, but also by the energy redistribution. The system
must return to the starting configuration for bleach recovery
to be observed. The present model shows that even for mod-
erate vibrational relaxation, no “recovery of the bleach” is
observed on the time scale shorter than 500 fs.

3. Population probabilities

It is interesting to compare the pump-probe signals to the
time evolution of the population probabilities of electronic
states. These probabilities have been widely considered as an
appropriate measure of nonadiabatic dynamics in systems
involving conical intersections.14,15,64–67

The time evolution of the diabatic population of the ex-
cited state is shown in Fig. 5 �left panel�. The full lines refer
to the dynamics of the isolated system. It exhibits ultrafast
decay on a time scale of about 20 fs after the pump pulse has

ity of the excited electronic state. Gaussian laser pulse of 
p=20 fs duration
ne: the isolated system ��=0�; dashed line: vibrational relaxation with weak
axation ��0=�c=0.01� and medium electronic dephasing �c̄e=0.25�. The
babil
ull li
al rel
been completed. The population has dropped below 0.02
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�note that only �10% of the ground state population has
been transferred by the pump pulse�. This initial decay is
followed by pronounced quasiperiodic revivals and the popu-
lation does not decrease any longer.

Similar behaviors have been obtained for a large
variety of multidimensional systems involving conical
intersections,15,23,73–75 including the model with an explicit
treatment of the intramolecular environment.20 All these
studies use a Franck–Condon excitation initial state, while
the present study starts from an equilibrium initial state and
the excitation is caused by the ultrafast pulse. For this reason
direct comparison is not possible, nevertheless the time scale
of population dynamics is of the same order.

The addition of weak ��0=�c=0.01� vibrational relax-
ation �dashed line in Fig. 5� lowers the amplitude of the
revivals and reduces the population in the excited electronic
state. In the presence of pure electronic dephasing �dotted
lines in Fig. 5� the amplitude of the revivals drops down
even more significantly. Neither vibrational relaxation nor
pure electronic dephasing changes the rate of the initial in-
terstate crossing, meaning that the ultrafast time scale of the
electronic population decay is a feature of the system topol-
ogy, and is only slightly perturbed by the dissipative
environment.23
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The time evolution of the adiabatic population of the
excited state is shown in Fig. 5 �right panel�. While the dif-
ferences from the adiabatic picture are minor, in the long-
time limit the population decays to a value slightly lower
than in the diabatic picture.

The additional decay in the population probability of the
excited state �after 100 fs�, caused by the coupling to the
environment, indeed reflects the fact that high vibrational
levels of the electronic ground state are populated in the
initial internal-conversion process.23,76 Vibrational relaxation
cools down this population, and together with electronic
dephasing prevents an efficient transfer of the population
back to the excited state. However, further energy relaxation
to lower vibrational levels of the ground state continues on a
much longer time scale. The system’s returning to its initial
configuration, which can be seen experimentally as recovery
of the bleach, is not reflected in the early time evolution of
the population probabilities.

Figure 6 displays the diagonal elements �Qn=Qn�� of the
reduced density matrix in the vibrational coordinate repre-
sentation �̂S�Q0 ,Qc ;Q0� ,Qc�� �in the diabatic electronic repre-
sentation�. It shows the fast disappearance of the excited
wave packet via the conical intersection, and its reappear-
ance in high vibrational levels of the lower surface.

FIG. 6. �Color�. The diagonal ele-
ments �Qn=Qn�� of the reduced density
matrices in the vibrational coordinate
representation �̂S�Q0 ,Qc ;Q0� ,Qc�� in
the adiabatic excited �left panel� and
ground �right panel� states. Snapshots
are shown at 20 fs �top�, 100 fs
�middle�, and 300 fs �bottom�. The red
contour lines refer to the adiabatic
ground state, while the green contour
lines represent the excited state.

FIG. 7. The stimulated emission �left�
and the transient absorption �right�
signals for the two-mode system, con-
taining a conical intersection, are cal-
culated using the surrogate Hamil-
tonian �dashed lines� and the
semigroup approaches �solid lines�.
The vibrational relaxation parameters
are in the weak system-bath coupling
range ��0=�c=0.01, �−1=750 fs�.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The time evolution of the diabatic state population as
well as transient modulations of optical observables are in-
deed affected by the conical intersection. The population
probabilities, however, do not reflect the energy redistribu-
tion process and the experimentally measured recovery of
the bleach.

C. The surrogate Hamiltonian method versus the
semigroup approach

The qualitative features of semigroup dynamics compare
well to the surrogate Hamiltonian approach, as can be seen in
Fig. 7. For short time dynamics in the weak coupling limit,
the two approaches should converge.42 The difference be-
tween the two methods lies in the initial correlation and the
influence of the excitation pulse on the system-bath coupling.

The construction of the surrogate Hamiltonian approach
is non-Markovian and therefore it is preferable for treatment
of ultrashort dynamics at conical intersections. However, in
the present study the non-Markovian character of the system-
bath interactions hardly affects the dynamics of any of the
system’s observables. Since the results produced by two
methods are qualitatively the same, the Lindblad dynamics
proves to be a good approximation.

In the surrogate Hamiltonian calculations the tempera-
ture of the bath has been taken to zero, while in the semi-
group approach it is set to a finite �low� value to avoid sin-
gularities in the relaxation terms Dij. The temperature effects
are negligible in the studied system, due to the large excess
of energy coming from the electronic excitation.

For short simulation times the surrogate Hamiltonian
method is advantageous. For example for simulations up to
500 fsec 40 bath modes were sufficient to obtain the con-
verged results. The wavepacket calculation was faster than
the equivalent density operator propagation. In addition the
surrogate Hamiltonian method treats the excitation process
more realistically since it includes implicitly the influence of
the external field on the system-bath coupling. For longer
times the computational effort of the surrogate Hamiltonian
can become prohibitively expensive due to exponential scal-
ing. The semigroup approach is able to simulate long time
dynamics with linear scaling with time. This suggest com-
bining the two methods. In this case the simulation starts
using the surrogate Hamiltonian with a fully correlated
system-bath initial state. The surrogate Hamiltonian is also
used for the pump step, therefore the influence of the field is
included. After the pump a reduced system density operator
is calculated. This is done by tracing over the bath degrees of
freedom from the projection defined by the surrogate Hamil-
tonian wavefunction �̂S=trB
������
. This density operator
is used as an initial state for a Liouville dynamics simulation,
which can be carried out to longer times.

The above procedure was employed to calculate the re-
covery of the bleach. The time scale, required to propagate
the system to achieve full bleach recovery is in the order of a
few picoseconds. Figure 8 shows a monotonic recovery of
the bleach on the picosecond time scale obtained from the

combined approach.
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D. Diabatic coupling geometry

It is well documented that nonadiabatic transfer events
are extremely sensitive to the landscape of the potentials in-
volved as well as to the nonadiabatic coupling functions.77

Influence of the dimensionality on nonadiabatic dynamics
has been widely discussed.6,12,14,16 In the context of conical
intersections, the issue of the topology also includes a com-
parison of a true crossing case versus an avoided one, as well
as the influence of the form of the diabatic coupling. Studies
carried out with slightly anharmonic potentials show the
same qualitative behavior.78

In many calculations the interstate coupling amplitude is
chosen as a constant. A better choice is to localize it near the
region of the conical intersection point according to Eq. �25�.
Figure 9 shows a short-time evolution of the excited state

population for the global diabatic coupling Vd�Q̂c�=�Q̂c and
the localized one �cf. Eq. �25��. With the global coupling, the
excited state is already populated before the excitation. Fur-
thermore, the coupling immediately induces population
transfer between the excited and the ground states. This is

FIG. 8. The recovery of the bleach: a long time simulation of the transient
absorption for the two-mode system with a conical intersection. The surro-
gate Hamiltonian is employed to simulate the system’s interaction with the
pump pulse used to initiate the dynamics. The system reduced density op-
erator was calculated at the end of the pump pulse and then used as an initial
state for the rest of the simulation using the semigroup approach. The pa-
rameters of the vibrational relaxation are in the range of medium system-
bath coupling ��−1=500 fs�.

FIG. 9. The population of the excited state for global �Vd=�Qc� and local

�Vd=�Qce
−�Q0 − QCI�

2/�2−Qc
2
/�2

� diabatic couplings. Short time dynamics is
shown in the presence of weak vibrational coupling ��0=�c=0.01, �−1
=750 fs�.
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seen as fast oscillations with a frequency proportional to the
electronic excitation energy 2�. As the diabatic coupling be-
comes more localized, one can observe a turnover effect.79

First, the initial decay of the excited state population be-
comes more pronounced and then for very localized coupling
the population is trapped in the excited state. This behavior is
similar to the turnover effect as a function of the coupling
constant �. The effect of the damping is less profound for
the systems with a conical intersection compared with the
one-dimensional nonadiabatic systems.36

Next we compare the nonadiabatic dynamics of the two-
dimensional �2D� system, involving a conical intersection,
and those of the 1D system with a local diabatic coupling.
The parameters of the 1D system are chosen to be the same
as the tuning mode’s geometry in the 2D model ��0=0.074,
�g=−0.0964, �e=0.1194, �=0.4617, all in eV�. The diabatic
coupling potential has a form of a damped Gaussian:

Vd�Q̂� = �e−�Q̂ − Q*�2/2�2
, �28�

with Q* being the position of the maximum coupling �refer-
ring to the point where the conical intersection occurs along
the tuning mode in the 2D model�. The same strength of the
coupling ��=0.18 eV� has been chosen for the both systems.

Figure 10 displays the transient stimulated emission as a
function of the time delay �left� and the time evolution of the
diabatic population probability of the excited state �right� for
two systems. The nonadiabatic dynamics are shown in the

FIG. 10. The nonadiabatic dissipative dynamics of a two-dimensional syste
with a local ��=0.95� nonadiabatic coupling �dashed lines�. Dashed-dotte
transient stimulated-emission signal �left� and the population probability of
=0.18 eV for all cases. The calculations are made for the system with w
=0.25�.

FIG. 11. The nonadiabatic dissipative dynamics of a system with �a� a co
symmetric coupling �dashed-dotted lines�. The transient stimulated-emission
system in presence of weak vibrational relaxation ��0=�c=0.01� and electro

all cases.

Downloaded 07 Oct 2005 to 132.64.1.37. Redistribution subject to A
presence of dissipation �both vibrational relaxation and elec-
tronic dephasing are included�. An initial fast decay of the
excited state’s population, typical for the system incorporat-
ing a conical intersection, does not occur in the 1D system.
There, the population, as well as the stimulated emission
signal, exhibit much slower decay. The dynamics can be ac-
celerated by further localizing of the diabatic coupling, but
the turnover will eventually stop an additional increase in the
decay rate.

Next we compare the nonadiabatic dynamics for the
two-state two-mode system with different forms of the diaba-
tic couplings. Figure 11 shows the stimulated-emission sig-
nal �left� and the dynamics of the population probabilities
�right� for three models. The dynamics of the system with a
conical intersection �a true crossing� is compared to the sys-
tem which involves an avoided surface crossing. In the
avoided crossing model the diabatic coupling does not de-
pend on the Qc coordinate and is represented by a damped
Gaussian according to Eq. �28�. The third model has a sym-
metric diabatic coupling:

Vd�Q̂0,Q̂c� = ��Q̂c�e�Q̂0 − QCI�
2/2�2

. �29�

The dynamics of the population in the system with the
avoided crossing are qualitatively similar to the dynamics in
the 1D model �Fig. 10�. The decay is slower than in the
crossing model. The oscillations of the stimulated-emission

volving a conical intersection �full lines� versus a one-dimensional system
s: a one-dimensional system with more localized coupling ��=0.1�. The

excited state �right� are shown. The strength of the diabatic coupling is �
ibrational relaxation ��0=�c=0.01� and medium electronic dephasing �c̄e

intersection �full lines�, �b� an avoided crossing �dashed lines�, and �c� a
and the population probability of the excited state �right� are shown for the

ephasing �c̄e=0.25�. The strength of the diabatic coupling is �=0.18 eV for
m, in
d line

the
eak v
nical
�left�
nic d
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signal, indicating the coherent motion of the excited wave
packet, persist for quite a long time �more than 500 fs�. If the
diabatic coupling is symmetric, the adiabatic surfaces exhibit
a true crossing. The coupling, however, does not change a
sign at the crossing point �QCI,0�. In this case the stimulated-
emission exhibits a fast decay, which is nevertheless slower
than one for the system with a conical intersection. Only for
the true conical intersection does the highly localized diaba-
tic coupling cause the fastest initial decay of the observables
associated with the excited state population.

IV. CONCLUSIONS

The present study elucidates the dynamics of a system
incorporating a conical intersection in the presence of a dis-
sipative environment. The system was described by a model
consisting of two vibronically coupled electronic states and
two nuclear degrees of freedom. Dissipation is treated by
using the surrogate Hamiltonian approach and a reduced
density operator dynamics based on the Lindblad formalism.
The use of the surrogate Hamiltonian has the advantage of a
consistent treatment of initial correlations, non-Markovian
dynamics, and an explicit description of the pulse field. The
latter is of a special importance, since our study is aimed at
time-dependent observables, which can be directly related to
experiments.

Widely discussed adiabatic electronic state populations
can only be partially connected to experimental pump-probe
signals. Therefore the present study emphasizes the transient
modulations of optical observables, which are a direct signa-
ture of the ultrafast dynamics, measured in the pump-probe
experiments. The nonperturbative approach has been em-
ployed for describing the dynamics induced by the pump
pulse, while the weak probe has been treated within a per-
turbative picture. This allows us to associate a quantum me-
chanical window operator to the absorption of the probe
pulse centered at time t. The stimulated emission and absorp-
tion have been calculated as expectation values of this win-
dow operator.

The stimulated emission signals show a rapid initial de-
cay on a time scale of tens of femtoseconds, which can be
associated with an ultrafast nonadiabatic transition via a
conical intersection. This initial decay is almost unaffected
by vibrational relaxation and the electronic dephasing. The
dissipation becomes important in the following stage: it pre-
vents a back transfer �recrossing� leading to a subpicosecond
relaxation of the excited state population.

At the same time, it is clear that the pump-probe spectra
are governed not only by the population dynamics, but also
by the energy redistribution. After the initial curve crossing,
the system may return close to its initial prepump configura-
tion. Experimentally this is associated with the recovery of
the bleach observed in the transient absorption signal. The
ground state recovery dynamics, i.e., the bleach recovery and
the cooling of the hot vibrational population, are not re-
flected in the electronic population probabilities. In our
model the absorption signal shows coherent oscillations of
the slightly perturbed ground state wave packet and appar-

ently no fast recovery of the bleach up to 500 fsec. We can
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conclude that the energy relaxation, dominated by an in-
tramolecular vibrational relaxation, proceeds much more
slowly. The origin of the fast bleach recovery, measured in
charge-transfer experiments29–31 remains unclear, but might
well arise from simple avoided crossing with a sufficiently
strong local diabatic coupling and efficient IVR.
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