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Electron transfer mechanism and the locality of the system-bath
interaction: A comparison of local, semilocal, and pure
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We simulate the effects of two types of dephasing processes, a nonlocal dephasing of system
eigenstates and a dephasing of semilocal eigenstates, on the rate and mechanism of electron transfer
�eT� through a series of donor-bridge-acceptor systems, D-BN-A, where N is the number of identical
bridge units. Our analytical and numerical results show that pure dephasing, defined as the
perturbation of system eigenstates through the system-bath interaction, does not disrupt coherent eT
because it induces no localization; electron transfer may proceed through superexchange in a system
undergoing only pure dephasing. A more physically reasonable description may be obtained via a
system-bath interaction that reflects the perturbation of more local electronic structure by local
nuclear distortions and dipole interactions. The degree of locality of this interaction is guided by the
structure of the system Hamiltonian and by the nature of the measurement performed on the system
�i.e., the nature of the environment�. We compare our result from this “semilocal” model with an
even more local phenomenological dephasing model. We calculate electron transfer rate by
obtaining nonequilibrium steady-state solutions for the elements of a reduced density matrix; a
semigroup formalism is used to write down the dissipative part of the equation of motion. © 2006
American Institute of Physics. �DOI: 10.1063/1.2168457�
I. INTRODUCTION

Electron transfer �eT� is perhaps the most well-studied
example of a quantum process where the components of the
relevant microscopic system are embedded in a macroscopic
environment with which the system exchanges both energy
and phase.1–5 Electron transfer involves both spatial redistri-
bution of charge and coupling of electron density with sur-
rounding nuclear modes. A proper description of the interac-
tion between the electron and its environment is therefore
crucial for predicting eT rate and mechanism. Reduced dy-
namics approaches are a popular way of introducing dissipa-
tion into quantum evolution. In these treatments, the nuclear
degrees of freedom that are strongly coupled to the quantum
process are collected in the reaction coordinate and are
treated explicitly and quantum mechanically. The huge num-
ber of weakly coupled nuclear degrees of freedom compose
the thermal bath or continuum, and are treated implicitly.6–9

The interaction with the environment induces dissipation:
evolution of the quantum system that cannot be described by
unitary Hamiltonian dynamics.10
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There are two major types of dissipative processes. The
first is energy exchange between the system and bath result-
ing in population relaxation with characteristic time T1. The
second is pure dephasing, a quasielastic interaction with the
bath that destroys phase coherence between quantum levels
and pushes the system toward a classically observable state.
Pure dephasing, with characteristic time T2

*, is equivalent to
making a measurement of energy on the system: information
is acquired by the bath through system-bath correlations and
information is lost by the system because it is perturbed by
the measurement. Both processes contribute to the total
dephasing time6,11,12 T2 �1/T2=1/ �2T1�+1/T2

* for the two
level system�.

Typically for electron transfer, decoherence occurs on
the time scale of the quantum dynamics;9,13 therefore one
must explicitly consider its effects on the evolution. If the
isolated system’s evolution is relatively slow on the time
scale of bath fluctuations,3,5 then interaction with a bath re-
sults in a stochastic fluctuation of system energies and a ran-
dom walk-type evolution of system dynamics. This leads to
the Markovian limit, for which we may write the total
Hamiltonian as a sum of system, bath, and system-bath in-

3,5,9,14
teraction Hamiltonians,
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H = HS + HB + HSB. �1�

On the coarse-grained kinetics time scale, details of the
system-bath correlations �the information gained by the en-
vironment via decoherence of quantum states� are lost.2,15

The nature of the system-bath interaction depends on the
environment in which the experiment is conducted and on
the observable measured, both of which must be specified in
modeling the effects of dissipation. Many of the methods for
describing quantum dissipation using the reduced dynamics
approach �e.g., Redfield,16 semigroups,17,18 and phenomeno-
logical models19� incorporate significant flexibility in the
choice of dissipative operators used and therefore rely to
different degrees on an a priori knowledge of the channels
through which the system and bath interact. There are two
major, although not entirely independent, aspects of the
system-bath interaction that must be considered when mod-
eling the dissipative dynamics: the locality of the system-
bath interaction �does the environment perturb different sys-
tem sites or site combinations differently or act on nonlocal
system eigenstates?� and the physical quantities of the sys-
tem perturbed by the bath �the dipole moments of the system
components, as in coupling to a laser field, for example�.

Consider the process of electron transfer in organic mol-
ecules. One may think of the most local model for decoher-
ence as a dephasing of atomic sites and the most nonlocal
model as a dephasing of system eigenstates. For organic sys-
tems, neither of these is �in general� an optimal description.
Over the course of an eT process, the electron will encounter
several types of environments dictated by local nuclear
modes �both intramolecular and solvent� and local dipole
moments. These nuclear modes and dipole moments consti-
tute a kind of local bath. Therefore, assuming the eT process
is not significantly faster than the time scale of dephasing,
some sort of local dephasing must be incorporated into the
evolution of the system’s dynamics �in addition to any com-
pletely nonlocal dephasing�. Some important questions are as
follows: Which nuclear modes and dipole moments interact
with the electron? Which electronic states are dephased �i.e.,
how local is the dephasing�? What sorts of behaviors are
induced by local dephasing that are not seen when the sys-
tem undergoes completely nonlocal dephasing �“pure”
dephasing�?

Here, we show that the modulation of nonlocal system
eigenstates through interaction with the bath leads to signifi-
cantly different electron transfer dynamics than the modula-
tion of more local eigenstates �eigenstates of sites or groups
of sites on the molecule�. We give two examples of dephas-
ing of an electron transfer process using a semigroup method
to incorporate the influence of dissipation on system dynam-
ics. The first is defined formally as a pure dephasing—that is,
a completely nonlocal dephasing of the system eigenstates.
Pure dephasing is accomplished by using the Hamiltonian,
HS, as a coupling operator. The second is a semilocal dephas-
ing obtained by selecting a system operator that defines the
energies of more localized states. The strategy behind the
design of this operator is as follows: The degree of locality
of the system-bath interaction depends not only on the nature

of the relevant bath modes but also on the region that an
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electron occupies at any given time during the eT
process—an effective conjugation length or degree of delo-
calization. This particular facet of the system-bath interaction
is, in part, defined by the system Hamiltonian, which �when
written in a local basis� gives the energy gaps and electronic
couplings among different atomic or molecular sites and
therefore divides the system into what might be called coher-
ent subunits. Therefore, the system operator chosen for de-
scribing dephasing should reflect the partitioning of the sys-
tem indicated by the system Hamiltonian. The scheme for
semilocal dephasing used here avoids two unphysical as-
sumptions: �1� that regions in a molecule with weak or neg-
ligible long-range inter-region coupling interact with the bath
as a coherent unit and �2� that regions in a molecule with
substantial interaction amongst themselves interact with the
bath as isolated units. This operator can be seen as the set of
energies and intersite hopping integrals through which local
distortions and dipole moments modulate the local electronic
structure.

In the following sections, we provide a compact intro-
duction to dissipation in open quantum systems. We focus on
the semigroup method; comprehensive discussions of this
topic can be found in several texts.5,7 We then provide a
physical and mathematical outline of “pure dephasing.”
Next, we describe our system and discuss our choice of a
local �or site� basis to analyze the eT rate as a function of
system parameters and dissipation. Finally, we use the semi-
group formalism to compute the effect of pure dephasing
�dephasing of system eigenstates� and semilocal dephasing
on electron transfer rate within a donor-bridge-acceptor sys-
tem, and compare these results with those obtained using a
previous �even more local� phenomenological model.

We show, based on analytical and numerical results, that
dephasing of system eigenstates cannot induce incoherent
transport, while dephasing of more localized states does dis-
rupt coherent transport. Our Lindblad operator incorporates
elements of the system Hamiltonian that dictate which pieces
of the system couple to the bath as coherent subunits and
therefore introduces a degree of locality to the system-bath
interaction that reflects the system’s electronic structure. This
methodology, utilized within a convenient semigroup formal-
ism, allows us to achieve a physically reasonable description
of the modulation of electron transfer dynamics �specifically
the switch in mechanism from coherent, strongly distance-
dependent superexchange to incoherent, relatively distance-
independent transfer� by bath modes.

II. THEORETICAL BACKGROUND

The key quantity for the study of open, dissipative quan-
tum dynamics in the Markovian limit is the reduced density
matrix, �S,7,20,21 obtained from the complete density matrix
by performing a partial trace over the environment degrees
of freedom, thereby projecting out the system subspace.2,3

The time dependence of �S is given by the Liouville-von
Neumann equation �where L is a time-independent superop-

erator�,
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��S

�t
= L�S�t� L�S = −

i

�
�HS,�S� + LD�S. �2�

The dissipative Liouvillian operator, LD, describes the influ-
ence of the environment on the system dynamics,11,22 and the
set ��S�t�� constitute a semigroup with infinitesimal
generator23

L. A fundamental property of the maps of a Mar-
kovian dynamical semigroup is that they are completely
positive. This means that all members of the group, �S, are
represented by positive definite matrices. Density matrices
must be non-negative semidefinite if the probabilistic inter-
pretation of their diagonal elements is to hold.2,24

There are various ways to include the contribution of
non-Hamiltonian interactions to the time dependence of �S.9

Nearly all practical applications use models or approxima-
tions for the dissipation term, LD�S. Lindblad derived the
most general completely positive Markovian master equation
for the dynamics of a density matrix:5,14,17,25

LD�S = −
1

2�
m

�m��Fm�S,Fm
+ � + �Fm,�SFm

+ �� , �3�

where HSB=��m�mFm � Bm, Bm are the bath operators, and
�m are real, positive scalar interaction strengths. Both Fm and
Bm are dimensionless, and �m has dimension of frequency.
Lindblad operators can be used to treat a variety of dissipa-
tive processes: dephasing,26 collisions,27 bond breaking,28

electron transfer,14 etc. Constraints can be applied such that
the system will approach thermal equilibrium.14

System-environment interactions lead to correlations be-
tween their respective states. Over �often a very short� time,
these correlations lead to destruction of the coherences be-
tween system states, selecting out a set of states that contrib-
ute to a measured observable �so-called pointer states29�. If,
in the development of system-bath correlations, the system
affects the environment but certain system states display a
high degree of stability �and remain essentially unchanged�,
the energy of the system is conserved while the phase of the
wave-function relaxes. As a consequence, if the density ma-
trix is constructed in the basis of system eigenstates ��n	�, the
populations of the system’s reduced density matrix remain
constant while the coherences decay. This is often called
pure dephasing, and it has a characteristic decay rate of
1 /T2

*.5,8 We may write the total Hamiltonian as a sum of
system, bath, and interaction terms �Eq. �1��, and use the
form

HSB = ��
n

�n�n	
n� � Bn = ��
n

�nAn � Bn, �4�

where Bn are dimensionless, arbitrary bath operators, An are
dimensionless system operators �diagonal in this representa-
tion�, and �n are scalar interaction strengths with dimension
of frequency. Pure dephasing is the case where5,30

�HS,An� = 0. �5�

Under the influence of pure dephasing, system energy is con-
served. If constructed in the basis where An is diagonal, com-
plete decoherence in the form of pure dephasing leaves the

density-matrix diagonal. The states that emerge are com-
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pletely incoherent—i.e., they do not interfere with each
other.

Pure dephasing �in the Markov limit� may be incorpo-
rated into the dynamics of a quantum system plus environ-
ment within the Lindblad formalism via the Liouville-von
Neumann equation,1,2,5,15,21,25–27,31,32 where the dissipative
superoperator, LD�S, is defined in Eq. �3� and

HSB = ��
n

�nFn � Bn, F = �n	
n� , �6a�

�HS,Fn� = 0. �6b�

As written in Eq. �6a�, the system operators Fn are simply
projections.

A. The site basis and donor-bridge-acceptor system

A local or site basis is a physically intuitive choice to
study the effects of dephasing on electron transfer rate and
mechanism.14,19,32–35 We will consider a molecule separated
into a donor, an acceptor, and a series of bridge units. Each
basis function corresponds to an orbital localized on one of
these �generally multiatomic� sites, and diagonal elements of
the system density matrix correspond to electronic popula-
tions on these sites. It is traditional to propagate the density
matrix in the energy eigenbasis because it seems physically
most reasonable that the energy eigenstates must come to
thermal equilibrium with the bath.36 However, the methodol-
ogy used in this work �described in the next section� drives
the system into a nonequilibrium steady state such that this
consideration is no longer relevant. It is intuitive, and has
been shown formally, that the site basis and the energy
eigenstate basis become equivalent in the high temperature
and small intersite coupling limits.14

Our system is given by the Hamiltonian,33,37

HS = �D	�D
D� + �A	�A
A� + �
i=1

N

�i	�i
i�

+ ��D	VD1
1� + �N	VNA
A� + �
i=1

N−1

�i	Vi,i+1
i + 1� + c.c.� ,

�7�

written in the basis of sites �D	, �A	, and �i	, where i
=1, . . . ,N. The donor and acceptor �D and A� are assumed
degenerate with energy �D=�A=0 and bridge units �Bi� are
degenerate and separated by an energy �i=� from the donor/

FIG. 1. Donor-bridge-acceptor system with notation explained in the text.
acceptor. This scheme is shown in Fig. 1.
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III. RESULTS AND DISCUSSION

A. Electron transfer rate with dephasing of system
eigenstates „pure dephasing…

In this section we will choose the system Hamiltonian as
the Lindblad operator to apply pure dephasing to the electron
transfer process. In most treatments, the Lindblad operator,
F, is taken to be unitless such that � �Eq. �6a�� has units of
frequency, and can therefore be interpreted as a dephasing
rate.15,26,27 Note that this is a standard, but not a required or
inherent ingredient in the semigroup treatment. In our case of
pure dephasing, the coupling operator, HS, has units of fre-
quency; in order to compare our results easily with those of
other methods, we will use as our Lindblad operator a scaled
�unitless� system Hamiltonian,

F = H̃S,

�8�
HS = �0F ,

where �0
100 cm−1 and, trivially, �H̃S ,HS�=0. This Lind-
blad operator results in a pure dephasing of the eigenstates of
the system. The choice of �0=100 cm−1 is a convenient scal-
ing factor, as all energies/couplings within the system are on
the order of 100 cm−1. For convenience, we also introduce
the phenomenological interaction strength, s�, which has di-
mension time,

LD�S =
1

2�2s���HS�S,HS
+� + �HS,�SHS

+�� , �9�

where s� is the only phenomenological input in this treat-
ment and is used to observe the effect of changing the
dephasing rate on eT dynamics without changing the Hamil-
tonian parameters. Then � in Eq. �6a� is defined by

�� = s��0
2. �10�

In the following, we investigate the regime s�

=10−4–102 �cm−1�−1. For s�=10−4 �cm−1�−1, �=3�1010 s−1

�a dephasing time of 30 ps�; for s�=10−3 �cm−1�−1, �=3
�1011 s−1 �a dephasing time of 3 ps�, etc. For s�

=102 �cm−1�−1, our upper limit, �=3�1016 s−1 �a dephasing
time of 0.03 fs�. This is obviously unphysically fast dephas-
ing; we use it here to explore the large � limit.

The reduced density matrix may be numerically propa-
gated according to Eq. �2� to obtain time-dependent popula-
tions, but we will take a simpler approach. We will find the
nonequilibrium steady-state solution for the electron transfer
rate constant from donor to acceptor. In this model, which is
described in detail elsewhere,32,33,38 electronic population is
injected into the donor site by some unspecified source with
a given flux C, and the acceptor site is coupled to a popula-
tion sink inducing a decay with characteristic rate �, see Fig.
1. These terms are used to drive the system into a nonequi-
librium steady state as t→	.

In Eq. �A1� of the Appendix, we give the equations of
motion with pure dephasing for the two-bridge system,
D-B2-A, where we have assumed a single adjacent site cou-
pling VD1=VNA=Vi,i+1=V �with �=1 and s� abbreviated s for

clarity�. The first line of each equation contains terms due to
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unitary Hamiltonian evolution. The remaining terms are due
to pure dephasing and interaction with the constant incoming
flux �C� and the absorbing boundary term ���. These im-
posed boundary conditions are the only nonrigorous aspect
of Eq. �A1�. From the equations of motion, it appears that the
diagonal elements are not constant in time, as would be ex-
pected from pure dephasing. However, this simple behavior
is seen only when the density matrix is constructed in the
energy eigenbasis. Conservation of energy is the more gen-
eral characteristic of a pure dephasing process. If Eq. �A1�
were constructed in the basis of eigenstates of HS, rather than
in the basis of local states, �D	 , �B1	 , �B2	 , �A	 �and in the
absence of the source and sink terms C and ��, the diagonal
elements would indeed be conserved.

To solve for the steady-state eT rate, we reexpress the
equations of motion in the matrix form19

�̇ = A · � + C , �11�

where A is an �N+2�2� �N+2�2 matrix of coefficients, � is
an �N+2�2�1 vector consisting of the reduced density-
matrix elements, and C is an �N+2�2�1 vector with the
element corresponding to �DD equal to C and all others zero.
At steady state, all �̇ij are equal to zero. The electron transfer
rate keT,SS is the ratio between the steady-state flux through
the system, ��AA,SS=C, and the population of the donor
level, �DD,SS,19,33

keT,SS =
C

�DD,SS
. �12�

The steady-state approach has several advantages: the solu-
tion of Eq. �11� requires only an inversion of the A matrix,
and an analytical solution for the eT rate may be found for
reasonably small systems. We have also found the values of
the density-matrix elements at long times by solving the
equations of motion ��A1� and �A2�� for N=1. The “long-
time” eT rates calculated through this method are equivalent
to the steady-state eT rates we report here. Solution of the
full dynamics becomes computationally intensive for N
1,
thus partially motivating the use of the steady-state method.

Electron transfer rates will be functions of the four inde-
pendent parameters �, V, �, and s�, as well as the number of
sites, N, in the system. Plots of steady-state electron transfer
rate keT,SS versus bridge length �for N=1−6�� and versus
log s� �for �=3�1010–3�1016 s−1� in the case of pure
dephasing are pictured in Fig. 2. We have also obtained ana-
lytical solutions for the steady-state eT rate for N=1 and N
=2. Because they are very lengthy, we will not present the
full expressions for keT,SS here, but rather inspect several use-
ful physical limits.

We will first consider the case in which dephasing is a
perturbation to the system dynamics �s��0

2=��V ,� ,�� and
the energy gap between the donor/acceptor and the bridge is
significantly larger than the coupling and the rate out of the
acceptor site ���� ,V�. For N=1 �s
s�, �=1�, the expres-

sion for the steady-state eT rate reduces to
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keT,SS =
4V4

�2�
� 1

1 + ��s/4�� +
2sV4

�2 � 1

1 + ��s/4�� . �13�

Since s is very small, we may use the approximation 1/
�1+x��1−x+. . ., to obtain

keT,SS =
4V4

��2 + s
V4

�2 − s2V4�

2�2 . �14�

This expression follows the McConnell superexchange form
for electron transfer rate:19,39,40

keT 
 �VBB

�
�2�N−1���VDBVBA

�
��2

. �15�

For very small �, the first term dominates the sum and the eT
rate is constant with increasing s. For s
s2� /2 �s�2/��,
the rate will grow with increasing s like
�s−s2� /2�. In the limits stated above, the transport is always
superexchange-like.

Within the McConnell formulation,39 the rate decreases

FIG. 2. Electron transfer rate vs bridge length �left� and log s� �right� for �=
III A�. V=100 cm−1, �=300 cm−1, and keT,SS and s� were calculated in unit
exponentially,
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keT = k0 exp�− �SEr� , �16�

where �SE is the superexchange decay parameter,

�SE =
− 2�ln�V/���

�r
, V/� � 1, �17�

where �r is the intersite spacing on the bridge and r is the
donor-acceptor distance.34,39,40 Fits of the plots of ln keT,SS vs
N in Fig. 2 �up to �s�=1� follow this form perfectly with
�SE=4.2/�r for �=800 cm−1 �V /�=0.125�, �SE=5.0/�r
for �=1200 cm−1 �V /�=0.083�, �SE=5.4/�r for �
=1500 cm−1 �V /�=0.067�, and �SE=6.0/�r for �
=2000 cm−1 �V /�=0.05�.

One can see from Fig. 2 that, with pure dephasing ap-
plied, the eT rate exhibits perfect exponential decay with
bridge length, except in certain cases when s��0

2�V. These
cases may be explained by inspecting the symbolic expres-
sion for the steady-state rate in the limit where s��0

2=�
�V ,� ,� �with �=1 and no assumption about the relative

cm−1 �a� and �=1500 cm−1 �b� calculated with pure dephasing applied �Sec.
s−1 and cm−1, respectively.
800
s of p
magnitudes of V and ��. For N=1, we obtain
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keT,SS =
�V4��1/2�s6V6 + �1/16�s6V4�2�

�1/16�s6V8�2 + �1/2�s6V10 = � . �18�

In this case, the eigenstates are now fluctuating over a range
larger than their energy separation, so the exit from the ac-
ceptor site is rate limiting and the eT rate is given by �.

We have also obtained analytical solutions for N=2 in
the same physical limits. In the limit where s��0

2=�
�V ,� ,� �with �=1� and ��� ,V, the steady-state electron
transfer rate again assumes the McConnell superexchange
form of Eq. �15�. In the limit where s��0

2=��V ,� ,�, once
again keT,SS=�.

The above analysis has shown that pure dephasing can-
not induce incoherent transport. This result is reasonable
considering that dephasing via the system Hamiltonian
amounts to a system-bath interaction that perturbs system
eigenstates, which does not induce the localization that
would lead to incoherent eT.33 �The dependence of eT rate on
� in the pure dephasing case comes from the fact that chang-

FIG. 3. Electron transfer rate vs bridge length �left� and log s� �right� for �=
�Sec. III B�. V=100 cm−1, �=300 cm−1, and keT,SS and s� were calculated i
mechanistic change from superexchange to incoherent hopping �left�. Note
=800 cm−1 and the traces for N=4, N=5, and N=6 overlap for �=1500 cm
ing � changes the system energy levels relative to �, the flux
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out of the system, which is held constant.� Therefore, the
presence of dissipative system-bath interactions can lead to
incoherent transport only if the energy fluctuation caused by
the bath is not spatially homogeneous.

B. Electron transfer rate with semilocal dephasing

We would now like to observe the effects of dephasing
of a more local nature. There are two issues to consider in
constructing the system operator. First is the degree of local-
ity of the system-bath interaction and second is the nature of
the system-bath interaction. To address the first issue, we
observe that the simple system Hamiltonian HS, conveniently
constructed in the site basis, contains coupling matrix ele-
ments between adjacent sites only; we will therefore build
the dissipation operator from several local �2�2� dissipation
operators so that it too only has off-diagonal elements be-
tween adjacent sites. Second, we assume that local distor-
tions of geometry �local vibrations and librations� and dipole

cm−1 �a� and �=1500 cm−1 �b� calculated with semilocal dephasing applied
ts of ps−1 and cm−1, respectively. Note the turnover with � �right� and the
in the plots of keT,SS vs log s�, the traces for N=5 and N=6 overlap for �
800
n uni
that
−1
moments affect electronic structure via site energies and in-
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tersite hopping integrals, which are present in the system
Hamiltonian. Therefore, we construct the system operator by
decomposing the system Hamiltonian and the reduced den-
sity matrix into a set of �2�2� matrices, where each member
of the set is labeled with index n�n=1, . . . ,N+2�−1� and
HS�1,1� is the 1,1 �first column-first row� matrix element of
the original HS,

HS�n� = � HS�n,n� HS�n,n + 1�
HS�n + 1,n� HS�n + 1,n + 1� � , �19a�

�S�n� = � �S�n,n� �S�n,n + 1�
�S�n + 1,n� �S�n + 1,n + 1� � . �19b�

We also construct a set of �2�2� Lindblad operators

F�n� = H̃S�n� , �19c�

where H̃S�n�=HS�n� /�0. Then the nth Liouvillian operator is

�LD�S� = −
�

2
��F�n��S�n�,F�n�+� + �F�n�,�S�n�F�n�+�� ,

�20�

and the total dissipation superoperator �with matrix elements
. . .n−1, n, n+1, . . .� is

LD�S�n,n� = �LD�S��1,1� + �LD�S��n − 1��2,2� ,

LD�S�n,n + 1� = �LD�S��n��1,2� , �21�

LD�S�n + 1,n� = �LD�S��n��2,1� .

The dissipation operator is now tridiagonal such that it con-
tains no interactions between sites that were not initially
coupled in the system Hamiltonian. The eigenstates of pairs
of sites are dephased in dissipation of this type. Incidentally,
since we are manipulating the system Hamiltonian to con-
struct our semilocal Lindblad operator, we may easily com-
pare our results from this model to those from the pure
dephasing case above.

In Eq. �A2� of the Appendix, we give the equations of
motion for the elements of the reduced density operator for
the two-bridge system, D-B2-A, with semilocal dephasing
�with �=1 and s
s��. The first line of each equation con-
tains terms due to unitary Hamiltonian evolution and the
remaining terms are due to dephasing and interaction with
the source �C� and sink ��� intrinsic to the steady-state
model. All of the terms in Eq. �A2� are present in �A1� �for
the equations of motion with a pure dephasing operator�.
With respect to �A1�, the equations for the diagonal elements
within �A2� are missing terms like −sV2 Re �ij, where j
= i±2. Additionally, unlike the pure dephasing case, only co-
herences between adjacent sites show time evolution due to
this semilocal dephasing.

Plots of steady-state electron transfer rate keT,SS versus
bridge length �for N=1–6� and versus log s� �for �=3
�1010–3�1016 s−1� for the local dephasing case are pic-
tured in Fig. 3. Again, we may consider certain useful limit-
ing cases. For N=1, if s��0

2=��V ,� ,� �with �=1� and �

�� ,V �where s
s��,
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keT,ss =
4V4

�2�
+ s� 8V6

�2�2� − s2�32V8

�2�3 +
6V6

�2�
+

V4�

4�2� . �22�

The first term is a McConnell superexchange term as is the
last s2 term. Unlike the pure dephasing case, this expression
contains several terms that do not result in exponential decay
of rate with bridge length. Therefore we may not observe
simple superexchange behavior when this type of dephasing
is introduced. This is seen in Fig. 3, where even for small
values of s�, the plots start to deviate from pure superex-
change behavior immediately.19,34

In the limit where s��0
2=��V ,� ,� and ��V ,� �with

�=1�,

keT,SS =
4V4

�2�
. �23�

With semilocal dephasing a turnover is seen with increasing
s� �Fig. 3�. At intermediate values, keT flattens out at shorter
N than for higher or lower values of s�. This turnover is
absent with pure dephasing �Fig. 2�. Plots of rate versus
log s� for N=3–6 have a maximum at s��10−2 cm, which
corresponds to a maximum at �=3�1012 s−1. This depen-
dence on �—proportional to � at small � and decaying with
� at large �—is reminiscent of Kramers’ classical theory for
the dependence of rate of thermally activated barrier crossing
on friction.41

The analytical result for N=2 in the limit of s��0
2=�

�V ,� ,� �with �=1� and ��� ,V is

keT,SS =
4V6

�4�
+ s� 8V6

�2�2 +
2V6

�4 −
16V8

�4�2�
− s2�32V8

�4�3 +
12V8

�4 +
2V6

�4�
+

3V6�

4�4 � . �24�

If s��0
2=��V ,� ,� �with �=1�, we once again have a recov-

ery of superexchange behavior,

keT,SS =
4V6

�4�
. �25�

To better understand the nature of this semilocal dephas-
ing model, we may compare our results to those obtained
using the same donor-bridge-acceptor system and the same
steady-state model for eT rate, but with an even more local
approach to dephasing. To do this, we look to a phenomeno-
logical dephasing scheme,19 where a relaxation parameter �
is added to the equations of motion of the off-diagonal ele-
ments of the density matrix associated with the bridge sites
and describes the dephasing of the electron as it passes
through the bridge. � in this treatment is analogous to our
parameter � �it has units of frequency�.

The equations of motion for N=2 with this phenomeno-
logical dephasing scheme can be found elsewhere.19 These
equations reveal a dephasing of all off-diagonal elements as-
sociated with bridge states ���D1 /�tdiss=−1/2��D1,
��D2 /�tdiss=−1/2��D2, ��1A /�tdiss=−1/2��1A, ��2A /�tdiss

=−1/2��2A, and ��12/�tdiss=−��12�. The equations of mo-
tion for our semilocal scheme �Eq. �A2�� do not include
dephasing terms for �D2 and �1A elements, except for those

like −1/2��ij associated with the coupling to the “sink.” This
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is because, with our Hamiltonian-based system operator,
only coherences between adjacent sites are affected. So, our
dephasing scheme does not affect �D2 and �1A. Furthermore
coherences between adjacent sites are only affected by our
scheme if the two sites differ in energy. �Therefore, our
dephasing scheme does not affect �12; the term proportional
to s in Eq. �31� for ��12/�t is pure imaginary.� So, because of
the structure of our system Hamiltonian, the states that
emerge unperturbed by the system-bath interaction are eigen-
states of subunits composed of two adjacent, degenerate sites
�“coherent subunits”�. If the two sites are nondegenerate,
then �see Eq. �A2� for ��D1 /�t and ��2A /�t�, the coherence
between them decays by two first-order processes. One has a
rate constant proportional to the square of the energy differ-
ence between the sites ��2� and one is proportional to the
product of the coupling element between the sites �V� and
the energy difference between the sites ���. The relaxation
terms within the phenomenological approach are first order
our model, in the limit of strong dephasing, there is still a
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in � and have no dependence on V or � because the bridge
units all act as isolated sites that interact with the bath iden-
tically.

Both the phenomenological model and our semilocal
model lead to a turnover from superexchangelike behavior to
nearly distance-independent behavior of rate as the bridge is
lengthened. Additionally, both models show the same
Kramers’-type dependence of rate on �, where a certain
amount of system-bath coupling enhances the rate via inelas-
tic scattering, but too much has a localization effect and
slows the rate. These behaviors are absent in the system that
undergoes only pure dephasing. However, there are clear dif-
ferences between the dynamics induced by the two partly
local models. In the limit where ���, V, �, �N=1�, with no
assumptions made about the relative magnitudes of the other
parameters, the steady-state solution for the electron transfer
rate in the phenomenological site-dephasing model is
keT,ss =
�2V2 + ����3/4� + 2�V2�

���3/4� + �V2 + ��3�2/4V2�� + ���5�2/4� + 2V2 + ��2�2/2V2�� + ���4/16V2�
, �26�

whereas the solution in the semilocal model is �where s��0
2=��,

keT,ss =
�2V2 + sV2���3/4� + 2�V2�

���3/4� + �V2 + ��3�2/4V2�� + sV2��11�2/4� + 2V2 + ��2�2/V2�� + s�2��4/16V2�
. �27�
One can see from Eqs. �26� and �27� that the major differ-
ences in these two expressions are in the multipliers of the
dephasing terms. One might expect that, in the limit where V
is very small, the semilocal solution would approximately
reduce to the completely local �phenomenological� solution
because coherent subunits would now be equivalent to single
sites. However, it seems that, instead of having additional
terms that disappear in the limit of small V, the s terms in the
semilocal solution are scaled by V2 and �2. In the limit
where V is very small keT,SS scales as V2 in the site-dephasing
model �Eq. �26�� and as V4 in the semilocal model �Eq. �27��
because in the semilocal model, bridge sites dephase not as
single sites, but as coupled pairs that further split each other
through the interaction given by V.

The limit of large � is also quite illustrative of the dif-
ference between the two models. When ���, V, �, the phe-
nomenological model gives

keT,SS =
2V2

�
. �28�

This implies that all eT pathways �coherent and incoherent�
are effectively destroyed if � is large enough. This is a rea-
sonable result if the dephasing acts on isolated sites because,
in that case, the states that emerge after dephasing is finished
are completely local and there is no probability for an elec-
tron to transfer from one end of the molecule to another. In
superexchange contribution because the coherence between
the bridge sites is not destroyed. This is because the dissipa-
tive modes associated with two adjacent, degenerate sites
that are coupled in the Hamiltonian interact with the electron
as a coherent subunit. These coherent subunits overlap, so
states that emerge from the dephasing process do not com-
pletely localize electron density. Therefore, in the strong
dephasing limit, superexchange may still occur.

IV. CONCLUSIONS

We have investigated the consistency of using dephasing
rules determined by coupling regions of differing size to the
bath. We have determined that pure dephasing, the perturba-
tion of system eigenstates through the system-bath interac-
tion, does not disrupt coherent eT because it induces no lo-
calization. It is also clearly unphysical for very large systems
and becomes exact for a single site. For reasonable system-
bath coupling, eT may proceed through superexchange in a
system undergoing only pure dephasing, effectively because
the initial state is localized on D, so it is not itself an eigen-
state. It is far more reasonable physically to construct a Lind-
blad operator that reflects the perturbation of more local elec-
tronic structure by local nuclear distortions and dipole
moments. The degree of locality of this interaction is guided
by the structure of the system Hamiltonian and by the nature
of the measurement performed on the system �i.e., the nature

of the environment�. This strategy leads to the emergence of

IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



074501-9 Electron transfer mechanism J. Chem. Phys. 124, 074501 �2006�
coherent subunits, superpositions of sites among which co-
herence is not destroyed during the dephasing process. Be-
cause, in our semilocal model, dephasing does not result in a
set of completely localized states �as occurs with the phe-
nomenological model described above�, superexchange-type
eT �in the sense that a strong coherence remains between
bridge sites� may still occur even in the limit of strong
dephasing. Additionally, our model does not affect coher-
ences between sites that are not coupled in the system
Hamiltonian. This model provides a convenient means of
eliminating many of the phenomenological aspects of dissi-
pative equations of motion while incorporating a degree of
dephasing-induced localization �dictated by the system
Hamiltonian� that leads to a switch in eT mechanism from
superexchange to incoherent hopping.

The general issue of choosing the optimal set of basis
functions to describe quantum dynamics with environmental
decoherence, not specifically addressed here, remains a ma-
jor challenge to the community. The present analysis offers
some results concerning specific physical limits which must
be considered in any systematic approach.
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APPENDIX: EQUATIONS OF MOTION FOR THE
ELEMENTS OF THE REDUCED DENSITY OPERATOR

1. Pure dephasing for the two-bridge system,
D-B2-A

In the following, we have assumed a single adjacent site
coupling VD1=VNA=Vi,i+1=V �with �=1 and s� abbreviated s
for clarity�.

��DD/�t = iV�D1 − iV�1D − 1/2sV���D1 + �1D�

+ sV2��11 − �DD� − 1/2sV2��D2 + �2D� + C ,

��11/�t = − iV�D1 + iV�1D + iV�12 − iV�21 + 1/2sV���D1

+ �1D� + sV2��DD + �D2 − 2�11 − 1/2�1A

+ �2D + �22 − 1/2�A1� ,

��22/�t = − iV�12 + iV�21 + iV�2A − iV�A2 + 1/2sV���2A

+ �A2� + sV2�− 1/2�D2 + �1A + �11 − 1/2�2D
− 2�22 + �A1 + �AA� ,
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��AA/�t = − iV�2A + iV�A2 − 1/2sV���2A + �A2�

− 1/2sV2��1A − 2�22 + �A1 + 2�AA� − ��AA,

��D1/�t = iV�DD + i��D1 + iV�D2 − iV�11 − 1/2s�2�D1

+ 1/2sV��− �DD + �11 − 2�D2� + sV2�1D

+ 1/2sV2�− 3�D1 + 2�12 − �21 − �DA� ,

��D2/�t = iV�D1 + i��D2 + iV�DA − iV�12 − 1/2s�2�D2

+ 1/2sV���12 − �DA − 2�D1� + 1/2sV2�− 3�D2

− �DD + 2�11 + 2�1A − �22� ,

��DA/�t = iV�D2 − iV�1A − 1/2sV���D2 + �1A�

− 1/2sV2��D1 − 2�DA − 2�12 + �2A� − 1/2��DA,

��12/�t = − iV�D2 + iV�11 + iV�1A − iV�22 + 1/2sV���1A

+ �D2� − 1/2sV2�− 2�D1 + �1D + 2�12 − 2�DA

− 2�21 − 2�2A + �A2� ,

��1A/�t = − iV�DA + iV�12 − i��1A − iV�2A − 1/2s�2�1A

− 1/2sV���DA + 2�2A − �12� − 1/2sV2�− 2�D2

+ �11 + 3�1A − 2�22 + �AA� − 1/2��1A,

��2A/�t = − iV�1A + iV�22 − i��2A − iV�AA − 1/2s�2�2A

+ 1/2sV���22 − �AA − 2�1A� − 1/2sV2�− 2�12

+ �DA + �21 + 3�2A − 2�A2� − 1/2��2A. �A1�

2. Semilocal dephasing for the two-bridge system,
D-B2-A

In the following, we have assumed a single adjacent site
coupling VD1=VNA=Vi,i+1=V �with �=1 and s� abbreviated s
for clarity�.

��DD/�t = iV�D1 − iV�1D − sV2��DD − �11�

− 1/2sV���D1 + �1D� + C ,

��11/�t = − iV�D1 + iV�1D + iV�12 − iV�21 + 1/2sV���1D

+ �D1� + sV2��DD + �22 − 2�11� ,

��22/�t = − iV�12 + iV�21 + iV�2A − iV�A2 + 1/2sV���2A

+ �A2� + sV2��11 + �AA − 2�22� ,

��AA/�t = − iV�2A + iV�A2 − 1/2sV���2A + �A2�

+ sV2��22 − �AA� − ��AA,

��D1/�t = iV�DD + i��D1 + iV�D2 − iV�11 − 1/2s�2�D1

+ 1/2sV���11 − �DD� + sV2��1D − �D1� ,

��D2/�t = iV�D1 + i��D2 + iV�DA − iV�12,
��DA/�t = iV�D2 − iV�1A − 1/2��DA,
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��12/�t = − iV�D2 + iV�11 + iV�1A − iV�22

− sV2��12 − �21� ,

��1A/�t = − iV�DA + iV�12 − i��1A − iV�2A − 1/2��1A,

��2A/�t = − iV�1A + iV�22 − i��2A − iV�AA − 1/2s�2�2A

− sV2��2A − �A2� + 1/2sV���22 − �AA�

− 1/2��2A �A2�
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