Laser cooling of internal degrees of freedom. II.
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Theoretical progress in the cooling of internal degrees of freedom of molecules using shaped laser
pulses is reported. The emphasis is on general concepts and universal constraints. Several alternative
definitions of cooling are considered, including reduction of the von Neumann entropy,
—tr{plogp} and increase of the Renyi entropi,{p?}. A distinction between intensive and
extensive considerations is used to analyse the cooling process in open systems. It is shown that the
Renyi entropy increase is consistent with an increase in the system phase space density and an
increase in the absolute population in the ground state. The limitations on cooling processes
imposed by Hamiltonian generated unitary transformations are analyzed. For a single mode system
with a ground and excited electronic surfaces driven by an external field it is shown that it is
impossible to increase the ground state population beyond its initial value. A numerical example
based on optimal control theory demonstrates this result. For this model only intensive cooling is
possible which can be classified as evaporative cooling. To overcome this constraint, a single bath
degree of freedom is added to the model. This allows a heat pump mechanism in which entropy is
pumped by the radiation from the primary degree of freedom to the bath mode, resulting in
extensive cooling. ©1997 American Institute of Physids$0021-960807)02304-0

I. INTRODUCTION cess is based on a series of partitions of the system. The first
of these partitions separates the matter and the radiation de-
Laser cooling of a microscopic object, such as a singleyrees of freedom. Specifically in this study, the radiation is
ion in a trap or an ensemble of molecules is at the forefronemployed to control the evolution of the matter. With this
of atomic physics2 The ultra-cold temperatures obtained model in mind, the radiation does not serve as an entropy
enhance the quantum nature of matter, the most dramatiink. This is in contrast to atomic cooling where through
effect being Bose condensatibin contrast to atomic cool- spontaneous emission the light serves as the primary entropy
ing, laser cooling of molecules has not been demonstratesink. This assumption allows a simplified theoretical descrip-
yet. This study is devoted to the understanding of moleculation based on the state of the matfgrand the evolution is
cooling. A few mechanisms have been propos&bme of generated by the Liouville-von Neumann equation:
them, by analogy with atomic cooling, rely on spontaneous - i
emission as the. key coollng eleménthe present study is @»__ —[H,p]+ %o(p), (1.2
devoted to cooling mechanisms based on the coherent prop- 9t h
erties of light. This study contains a critical evaluation of our(j is the Hamiltonian which includes the radiation as a time
previous study,whose result has been a new cooling meCha‘dependent field:
nism.
Theoretical analysis of laser cooling requires the under- H=Hg— u- “(t). (1.2

standing of the interplay between thermodynamic and quan- ~ . NS .
g IMerpay betw y ! au rFereHsls the system Hamiltoniar#{(t) is a time dependent

tum considerations. Thermodynamic analysis of macroscopi ~ . .
éeld and u is the transition dipole operator. For an open

cooling processes reveals that the main obstacle to cooling ¢ : hich is | tact with ¢ | bath

imposed by the second law. The entropy reduced by thglfar.] uEm 33151‘35“ tvr\1/ Ich 1S 'rl cor]l 3.(: Wi i andex err%:iléo a

cooling process must be dumped in an appropriate reservoifD in Eq.(1.3) is the generator of dissipative dynamics.
Energy balance relations are one of the bridging factors

or entropy sink. The mechanism of entropy disposal is then ) ; )
Py Py ciSp etween thermodynamics and quantum mechanics. With the

used to classify the cooling scenario. Evaporative coolini - .
constitutes one such class. This process occurs in an op rtition described by Eq1.1) the rate of change of energy
n the system becomes:

thermodynamic system where a fraction of the system is sad
rificed to carry away the excess entropy. Heat pump cooling (g <

constitutes the second class. In a heat pump an external ——

dt

oH s
= |+ Zo(F). 13

source of work is used to drive entropy from the system to an

entropy sink. It will be shown that this classification is useful This equation can be interpreted as the time derivative of the

for microscopic cooling scenarios. first law of thermodynamics;~**where the power absorbed
Constructing a microscopic model for the cooling pro- or emitted from the radiation field becomes
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JH 90 tem) and secondarybath nuclear degrees of freedom. This

'7):<W> =— () ot (1.4  scenario, as will be shown in section Ill allows for a heat
pump cooling mechanism.

This study also explores the consequences of a finite

The second partition distinguishes between the molecuhe&_lt _sink.hlndt_his_ regime the Qy?amici can be_simpflified by
lar nuclear and the electronic degrees of freedom. Specifllettlng the dissipative termnip, from the equation of mo-

cally two electronic surfaces are employed enabling the syst-'o,n' Undefr the.;e con”dgmns tTe, e:j/qlutlrc])n opelratpr becomes
tem to be driven through optical transitions. The state of suchnNtary, @ fact that will be exploited in the analysis.

; ; P ; The consequence of an infinite heat bath in a simple
a system using pseudo-spin notation is described as
y ap P 3-level cooling model has been studfedt was shown that

R R R R Pe Pe an isothermal partition between the system and bath can be
p=pg®@Py+ pe®Pet pc®S, +pleS. = ( At ) , constructed based on the weak coupling limit. This construc-
Pe Py 1 tion enables one to consider the radiation as an entropy sink

(1.9 through spontaneous emission. Such a possibility is beyond

wherepy, pe are the nuclear populations on the ground andhe scope of the present study, since coherent control which
excited Surfacesy respective|y, aﬁg is the nuclear coher- IS the main agent of the COOllng process Is Only realizable for
ence between these surfacég,g is the projection on the Very fast processes. Under these conditions the rate of spon-
upper and lower electronic surface @@dare the raising and [@N€OUS emission is too slow to be important.

lowering operators of the electronic transition. The present study is an '”tegrg"@&az” of thg f'e.ld of co-
For the two surface model, the Hamiltonian becomes herent control of molecular processes-- The objective of

cooling can be defined as a target function for optimal con-
H= |:|g® Pyt |:|e® FA’e‘ e(t),&®§+ —e()*a® S tr(_)I t_heory_. _Opti_miza_tion toward _this target is_ to pe obtain_ed
within a finite time interval. This construction is close in
spirit to finite time thermodynamics where a thermodynamic
e 0 , (1.6 objective is to be obtained in finite tinf8-2% The introduc-
g tion of time means that theate of cooling can be defined.

wherel:|e,g are the surface Hamiltonians(t) is a time de- This_sugges_ts an interpretation of thg third Igw of thermody-
pendent control function, anfl is the electronic transition Namics stating that the rate of cooling vanishes when the
dipole. absolute zero is approached.

Complete controllability requires a complex control
function e(t). To realize this possibility with radiation two
independent polarization components of the transition dipolé" THEORY
operator are required together with simultaneous control oA. Definitions of cooling

the time dependent amplitude and polarization of the radia- . . S Lo o
. . S Cooling a macroscopic object is easily identified as low-
tion field. These conditions can then be translated to the . ~ . . . L

. . eéring its temperature. For a microscopic object the definition
phase and amplitude of the control functien

With the partition described by E@l.6), the power ab- ﬁf cooll_ng 'S mr?'rehmvolved. One reason is ttt\e '.rlfsc;mf.Of Iéarg:e
sorbed or emitted from the field becores uct.u.atlons which cause .temperature .to € 11 detined. n
addition, a microscopic object is more likely to be in a ther-
- e mal disequilibrium state.
(u® S+>ﬁ)' (1.7 To set a rigorous framework for defining the cooling
process, an ensemble nbninteractingmicroscopic objects

Analysis of this equation reveals that control of the powerlS considered. This ensemble can be open, meaning that the
direction is obtained by adjusting the phase of the field to th@article number is subject to change. This situation leads to a
phase of the instantaneous transition dipole expectation. Féfistinction between intensive and extensive variables. Con-
example by choosing the phase angle of the time derivativéidering specifically the partition between the upper and
of the field to bem/2 out of phase with the instantaneous 0Wer electronic surfaces, E{L.5), the ground state energy
transition dipole phase angle, zero power conditions are okeXtensive variable becomeSy=tr{H,® Py}, and the frac-
tained. This instantaneous control strategy can be employdéPn number of particles in the ground surface will be:
to control the change of other quantities such as the grountly/N=tr{Pyp}. The intensive energy variable becomes the
surface energyH,). These possibilities have been exploredaverage energy per particley=(Hg)/(Pg). Under this par-
in our previous paper. tition, an intensive(normalized ground surface density op-
The final partition defines the boundary between the syserator can be define(;ng: ,39/<Pg).
tem and the bath, or more precisely the entropy sink. One For a microscopic system the entropy replaces tempera-
possibility which has been explored in our previous pajger ture as a primary observable since it can be defined for a
to use the upper electronic manifold as the entropy sink. Isystem in disequilibrium. The point of view adopted is of
will be shown that this choice leads to evaporative coolinginformation theory where the entropy is a measure of disper-
Another possibility is to distinguish between primagys-  sion in the probability distribution of an ensemBf&’ In

andé‘:(,,%b(ﬁ)} becomes the heat transfer current.

He e

= -2 Read
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guantum mechanics this information depends on the choiceR(g/e)ztr{pé,e} and cr_R(g/e)=tr{F§,e}. Equality is at-

of the measurement. The definition employed is thereforeained only when there is no coherence between the ground
that entropy is a measure of dispersion in the outcome of and excited surface.

complete quantum observation. Such an observation is re- The extensive Renyi entropyr(g) has several advan-
lated to the observable chosen. Of particular importance fofages over the extensive von Neumann definition as a mea-
cooling is the energy observable. The information entropysure of cooling achievement. The Renyi entropy increases

related to a complete energy observation becomes both as the degree of purity of a state increases, as well as
when the amount of population in that state increases. This is
og=— Z p,logp, ., (2.3 in contrast with the extensive von Neumann definition of the
n

entropy, in which the entropy on the ground state can be
decreasednote that the sign of the Renyi entropy is reversed
relative to the von Neumann definitiprither by genuine
cooling or by evaporation of particles, i.e. transfer to the
tropy is proportional to the thermodynamical entropyPTXCited electrpnic _state. O ne of the most exciting appl_ica—
~ tions of cooling is achievement of Bose condensation.

= + i iti ion. : . .
7E KB(IogZ AH)) whereZ is the partition function Evaporatmn of hot particles is of no value per se for Bose
Since the entropy is related to the observable measure . . ) . : :
condensation, since there is no increas@,jp,, the maxi-

the observable which minimizes this entropy defines an in- lation i level. Th ke the clai
variant of the system. The minimization leads to an obseryi UM popuiation In any fevel. Thus, one can make the claim

able represented by an operator which commutes jwiffhe that the increase in the extensive Renyi entropy proyide; a
entropy related to the minimum dispersion observable deg'reCt measure of the.approach to. Bose condensation in a
fines the von-Neumann entrop¥: way that the decrease in the extensive von Neumann entropy
does not.
o,n=—tr{plogp}=—(logp), (2.2 Another way to express this is in terms of phase space.
An increase in the extensive Renyi entropy corresponds to an
ﬁ?gcrease in phase space density of the system, whether there

where p, is the expectation of the n'th energy eigenvalue
Pn=tr{P,p} whereP,=|n)(n| andH|n)= e|n). For a sys-
tem in thermal equilibriunp;=exp(—BH)/Z, the energy en-

Obviously o,,< o, with equality for a thermal ensemble.

Cooling means that the dispersion of the system is reduce change of particle numbdi.e. transfer of population to
In the exireme pure state the von Neumann entrapy becom?ﬁe excited electronic stater not. In contrast, a decrease in

zero, and a pure energy eigenstate will have zero €NeT%e extensive von Neumann entropy is a measure of an in-

entropy. crease in phase space density only if there is no evaporation
It is important to examine the relation between the en- . '
. . The extensive von Neumann entropy can be reduced by
tropy of the complete system and its partitions. For example : L . o
A . . évaporating the population in the higher energy vibrational
partitioning the system to the ground and excited electronl? i . . :
. . evels; however, there will be no accompanying change in
manifolds results ih . ; .
phase space density, The Renyi entropy takes into account
Ton=<0un(Q)+oyn(€)=0yn(9) + opn(€) +Smix (2.3 the inequivalenc_e betwee_n evaporating high energy compo-
R N - nents and true increase in phase space density. Again, in-
where g,5(9/€) =tr{pg/clogpge}, Uun(g/e):”{Pg/emgpg/e_}’ crease in phase space density is closely related to the ap-
Pge={Pye) and Smix=—Pglogpy—Pelogp.. Equality in  proach to Bose condensation.
Eq. (2.3 results only wherp.=0. The inequality is the re- A third perspective is obtained by noting that for nor-
sult of the restriction due to the partition to the limited set Ofmalizedb, (tr{p}= 1),tr{ﬁ§}<tr{ﬁz}<1, where the equal-
operators used to characterize the systelw=Py@Ag ity is satisfied if and only ifp=p, is a pure state. Thus, the
+P.®B,. Notice thato,,(g/e) relate to the unnormalized Renyi entropy is a direct measure of the degree of
density operator and are therefore extensive whilecoherencé? i.e. approach to pure state character in the sys-
oyn(g/€) relate to the normalized density operator and areem. In retrospect, this is a very natural measure of Bose
therefore Intensive. FOf an open quantum system the Intertondensation, in which all particles go into the same pure
sive entropyo,n(g) provides a measure of the single particle state(which need not necessarily be the ground state of the
000“.”9- However, the extensive er_ltropy,,,q(g), does not  system, or even an eigenstatélthough in this paper we
provide a good measure of the cooling achievement since thgcus on single particle cooling.e. quantum statistics is not
number of particlesg) can shrink to zero due to evapora- considereji it seems the Renyi entropy is better suited for
tion to the excited state, and thus this entropy can decreasfscribing the quantum statistical domain. Recall that the
without any cooling per se. For this reason it is useful toysyal logarithmic functionality in the Gibbs-von Neumann
consider the Renyi entropy: definition is designed to give extensive behavior, i.e. linear
- - roportionality between entropy and system size. When
or=tr{pA=(p). (2.4 Prop y ! Py y
guantum statistics are important and coherence extends over
The Renyi entropy is a concave function which maximizes a# large fraction of the system volume it is not clear that the
one for a pure state and vanishes when all population is lostonventional property of extensive behavior remains mean-
For the Renyi entropy a similar partitioning inequality can beingful.
derived: og=0R(g)+ogr(€)= péo‘R(g)+ p2or(e) where We turn now to the partitioning of the system into the
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primary and bath degrees of freedom. This leads to the inexceed the initial projection in the thermal §t§%§ihe proof
equality: for the latter is as follows. Letp(t)=Up;U" where

A A )i =exp(—BE;) & /Z is diagonal. Then
0=~ (10Gp)—(10Gpe) ~ 5 (o al

=0yn(S)+oyn(b)—lsp, (2.5 (p(t))ii:% Uij(PT)ijEi
wherel is the maximal mutual information between the
systems and the batth as measured by a coincidence ex- => UijUjTi(PT)jj
]

periment. This inequality has been proved by LindBladd

is a quantum effect imposed by restricting the observables to

the two parts. Equality in Eq(2.5) is obtained when the =Z |Uij|2(p-|—)“-. (2.6
correlation between the system and the bath can be charac- !

terized by the operatd€=As®By,. When there is no corre- Now, the maximum value ofg(t));; is obtained ifU;;=1
lation between the system and baf=p®p,, then whenj is the index for the maximum eigenvalue pf and

lsp=0. Uj;=0 otherwise. Hence,p(t));i < (p1) max-
With these definitions cooling can be viewed in a num- It is worth noting that this same constraint holds even if
ber of alternative ways. From an intensive viewpoint as:  part of the system is projected out. For example, one of the
« a reduction of the average energy{Hp}, applications presented below involves the use of an excited
« a reduction of entropyg associated with energy dis- electronic state to promote cooling in the ground electronic
persion, state. In principle, this excited state population can be sepa-
* a reduction of intensive von Neumann entropyrated from the ground state population in the lab, e.g. by
un(9), ionization followed by ion optics. Hence the projector can be
« an increase of the intensive Renyi entrapy(g). realized in the lab. Such a projection cannot, however, assist
From an extensive viewpoint: in increasing the maximum eigenvalue. The proof is as fol-

* an increase in the ground state number denQI%yg) lows:

wherePy=[0)(0], ~ s B0 Ctent
. . . . t)=U,PU,p7tU;PU,, 2.
« an increase in the extensive Renyi entrapy(g). p(1)=UzPU1prU;PU; @7

(P(t))ii:% Vij(PT)jlei
B. Limitations imposed by unitary transformations

In the finite system under study the dynamics is de- :zj: ViiVJTi(PT)ii
scribed by a unitary evolution operator. Under these condi-
tions the total von Neumann entropy or the Renyi entropy =S Vi) 2.8
are preserved. The conservation of these two entropies forms ; il \PTji :
a special case of a general theorem that the expectation of a A A an _ _
function of p i.e. (f(p)) is invariant under unitary transfor- WhereV==U,PU,. Note thatV is no longer unitary. How-

mation. The proof is based on the cyclic invariance of theBVer, since the effect d? is to set certain rows dﬂlzegual
trace and the fact th@tandf(p) commute® Thereforejna [0 Z€ro, itis clear that if the maximum value Bf|Uj;|* is 1,
cooling process generated by a unitary evolution, the defhen the maximum value af;|V;j| is also equal to 1. Con-

crease in entropy in the primary system is compensated fopider now an initial thermal state on the ground electronic
by an increase in the remainder surface. It becomes clear that under a unitary evolution the

There is a simple geometrical interpretation to the conMaximum goal obtainable is to evaporate all other eigen-
stancy of the Renyi entropy under unitary evolution. In a twoStates except the ground state. _
level system the density operator can be represented as a Similarly, a unitary transformation can only increase the
three component of a Bloch-type vector in which the@verage energy when the initial state is ina thermal d|§tr|bu—
z-component is the population difference between the twdion- The Proof follows from.the observation that the eigen-
levels, and the x and y components are the real and imagl@lues ofp can change position but cannot change magni-
nary parts of the polarization of the state. The length of thdude under a unitary transformation. At=0 tr{pH}
vector is equal tar{p2}. In the absence of dissipation, the =Z *=.e” #=E,. The eigenvalues giy are ordered mono-
vector precesses around the instantaneous field vector witkenically, and thus any permutation of these eigenvalues via
out changing length. For a pure state, the vector evolves such unitary transformation gives additional weight to higher
that the tip is always on the unit sphere, while for an impurevalues ofE,, increasing the average energy.
state the tip evolves on a sphere of constant, smaller radius.

Another viewpoint concerning unitary transformations is ) _
that they preserve the eigenvalues of the density operato?.' Optimal control of laser cooling
This leads to a further consequence that, starting from a ther-  The agents of change are unitary transformations gener-
mal state, the projection on the ground stéRp) cannot ated by a time dependent Hamiltonian. This Hamiltonian is
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controlled by the external electromagnetic field. Considering o5
cooling to be the objective there is infinite leverage in con-
structing a field leading to this objective. Optimal control
theory is employed to find the optimal unitary transformation 041
with the objective of cooling, subject to the constraints of
finite duration and a limited field powé?:3334

Within the present quantum mechanical context, the ob-
jective is represented as a target operatoobtained in a
finite time interval {Ot;}. Optimal control theory(OCT)
seeks the optimal field as a variation problem of an objective
J which is a functional of the field&(t):

0.3

Energy (a.u.)

0.2

J=tr{p(ty)A}. (2.9

Two constraints are imposed:

(1) The evolution of the system has to be governed by the 25 35 4.
Liouville-von Neumann equation.

(2) The total field energy has to be minimized.

3.
R (a.n)

) . o FIG. 1. Schematic cooling model based on the HBr molecule. The ground
These two constraints lead to the modified objective  and excited potential energy surfaces are shown together with the wavefunc-
tions. The transitions induced by the radiation field, the agents of control are

. ra t dp . ) '
J:tr{AP(tf)}—joftl’“a—f—,%(p))B]dt also indicated

tf
—)xf | e|2dt. (2.10 ll. APPLICATIONS
0

The object of control is to cool a particular vibrational
é is an operator Lagrange mu|t|p||er and is a_sca|ar mode on the grOUnd electronic surface. The time duration
Lagrange multiplier. An extremum for the objectidéhas to ~ &llowed for the process is ten vibrational periods. The short
be found. It is done by a variation af with respect tosp, duration classifies the process to be in the impulsive limit.

5 Real(e) and 6 Imag(e). The variation leads to the follow- The radiation field couples the ground electronic surface by a
ing equations of motion: transition dipole to an excited electronic surface. When the

radiation is turned off the coupling between the different

p . parts of the system vanishé&q. (1.6)).

E:“'Q(p)’ (213 The first system studied is constructed from a single vi-
R brational mode and is identical to the system of Ref. 7. Fig.

ﬁ_ _ 7;+(|_3)) (2.12 1 shows the model. Initially the upper electronic manifold is

at - ' ' not populated. In the one mode study the radiation populates

the excited electronic surface creating an entropy sink. In the
second system studied, additional vibrational modes serve as
B(t;)=A. (2.13  an entropy sink, and the excited surface population can be

] regained.
The structure of the above equations represents two counter

currents, where the density operagocarries the information A Reexamination of the Results of Paper I:

from the initial statep(0) forward in time and the target Electronic entropy sink

operatorB propagates the information on the objectite The system studied is modeled on the HBr molecule.
backward in time. The difficulty in solving these equations isThe initial state is thermal with a temperature of 5000 K
the result of the temporal separation in the boundary conditlocated exclusively on the ground electronic surface. In the
tions and of the nonlinear dependence of the optimizatiorinstantaneous control approatthe cooling scenario is di-
objective on the field. In the previous study, an instantaneousided into two stages. In the first stage, an initial short pulse
approach was employed to approximate the optimal solutiomoves the population to the excited electronic surface, which
based on a monotonic improvement of the objective. In thects as an entropy sink. In the second stage, the ground sur-
present study a global iterative approach is employed basddce population is cooled at the expense of heating the ex-
on Krotov’s method® The details of the method are found in cited surface population. The amount of population trans-
Appendix A. In all cases studied, the global approach outfered to the excited surface is set by the first pulse and from
performed the local method significantly. As a result the uni-then on kept constant. Instantaneous control of energy trans-
tary transformation obtained is very close to the optimalport between the surfaces was brought about with zero addi-
cooling achievement subject to the constraints imposed. Thisonal population transfer. The results of the calculations
means that the particular solutions obtained are typical whickhow a small amount of intensive cooling on the ground
allows one to draw general conclusions. electronic surface.

and to the final condition for the Lagrange multiplér
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FIG. 2. Ground surface intensive energy as a function of time. The time is FIG. 3. Excited surface intensive energy as a function of time.

in units of vibrational periods on the ground electronic surface.
(E4(0)=1.72102 a.u.)
On the excited surface the entropy fluctuates consider-
i . . ) . ably (Fig. 6) with a very large deviation between the energy

This cooling scenario has been reconsidered in theq yon Neumann entropies. This reflects the fact that the
present study, employing optimal control theory. An objec-prgiected state on the excited surface is nonstationary.
tive operator residing on the ground electronic surface was 1he entropy picture is summarized in Fig. 7 where the
chosen to maximize the projection on the zero eigenstate andgiricted von Neumann entropq. 2.3 is compared to the
minimize the projection on all other eigenstates: total entropy which is constant. The very large increase in

R * R the restricted entropy reflects the buildup of significant elec-

A=|[0%0|= > [nXn| ®Py. (3.)  tronic coherence. This coherence is responsible for a non-

n=1 zero transition dipole expectatidn® S, ) which is the pri-
The population transfer to the excited surface was unlimiteanary quantity which enables control. When the restricted
in contrast to the instantaneous control approach. von Neumann entropy is identical to the total von Neumann

The results of the calculation are presented in Fig. 2entropy the correlation between the ground and excited elec-
Significant intensive cooling is observed, reaching very closéronic manifolds vanishes, thus the ability to control is lost.
to a pure state on the ground electronic surface in the targdthe final approach of the restricted entropy to the initial
time of ten periods. entropy value reflects the achievement of the cooling objec-

The difference between the global and instantaneous apiive where all the initial ground surface entropy is transferred
proach is noticed in Fig. 2, showing that in the global ap-to the excited surface. At the target time the ground surface
proach the reduction in the ground surface energy is noapproaches a pure state which means that the rate of cooling
monotonic. The final ground surface energy isor energy decrease, vanisHes.

E4(tf) =0.408 which is quite close to the zero point energy
0.346.

On the excited surface the intensive energy is approxi- 14
mately constant as seen in Fig. 3. The initial spike is insig-
nificant since the excited state population is negligible at that
point. A

The projected population on the ground surfgBg) in 08 ]
Fig. 4 shows the difference from the instantaneous control
approach. The trend is for a significant population reduction.

The target of cooling can also be viewed as a decrease in
entropy. Fig. 5 shows the entropy reduction. By coarse-
graining the time scale to units of a vibrational period the
entropy decrease can be considered monotonic. The conclu-
sion from Fig. 5 is that the three types of intensive entropy
are qualitatively very similar. The similarity between the von

A
2007
\%

0.5 4

Neumann entropy and the energy entropy means that the *¢ 1 3 3 4 5 ¢ 37 5 5 10
cooling process is very close to adiabatic i.e. the system is Time

very close to diagonal in the energy representation. The total

entropy reduction is a factor of 10. FIG. 4. Ground surface population as a function of time.
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141 ==~ Energy entro 1.9 === Von Neumann entropy
Von lﬁiumanz’;mropy = Restricted Von Neumann entropy
—~on
1.2 9 I, A —— 2(1-Renyi entropy)
i 18
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FIG. 5. Ground surface intensive entropy as a function of time. von Neu+IG. 7. von Neumann entropy of the full density operatgy, (dashed ling
mann entropyo,n(g) (solid line), energy entropyre(g) (dashed linand  and the restricted von Neumann entropy to two surfagggg) + o,(€)
2(1-o0g(9)) (dotted ling. (solid line) as a function of time.

At this point the cooling scenario should be analyzedshows the limitations imposed on the cooling achievement
from an extensive point of view. Fig. 8 shows the differencepy the unitary transformation. In the initial state the eigen-
between the intensive and extensive Renyi entropies. A clegfa|ues are distributed according to the thermal population on
decrease in the extensive Renyi entropy is observed indicaghe different vibrational levels of the ground electronic sur-
ing that the cooling is at the expense of the ground surfacgce showing a monotonic decrease. In the instantaneous op-
population i.e. evaporative cooling. timization after the excitation pulse the eigenvalues on the

A similar picture is obtained by examining the phaseground surface decrease due to population transfer to the
space distribution function in Fig. 9. The final distribution is gxcited surface. The cooling process increases the lowest ei-
more compact than the initial one. This result is at the eXgenvalues on ground surface density and further decreases
pense of a smaller volume under the distribution peak. Ofne rest. The increase in the=0 eigenvalue only reaches its
the excited surface the rough landscape represents a nonsfgitial value. In the global optimization the evaporation of all
tionary state. the higher eigenstates is clearly visible.

Examining the cooling achievement from an extensive  symmarizing, in the optimal control cooling process the
point of view shows that the maximum cooling obtainable isfina| result is evaporative cooling, and the extensive Renyi
limited by the conservation of eigenvalues of the densityentropy will hence decrease. The rate of the process is ex-
operator. Therefore it cannot exceed the evaporative coolingemely fast: within ten vibrational periods all higher vibra-

limit. This can be seen in Fig. 10 where both the instantational eigenvalues have been removed to the excited elec-
neous and global optimization results are shown. Fig. 10

2.0

Intensive Renyi cntropy

09 |

=== Restrictcd Renyi entropy

1.9

Von Neumann entropy

=== Energy entropy

\ -
V=N YN TN N A
= \rwr’ N/
0.1 —
0 1 2 3 4 5 6 7 8 9 10
1.1 - - - Ti
0 1 2 3 4 5 6 7 8 9 10 ime
Time

FIG. 8. Ground surface intensive Renyi entropy(g) (solid line) and
FIG. 6. Excited surface intensive entropy as a function of time. von Neu-ground surface extensive Renyi entrapy(g) (dashed lingas a function of
mann entropy(solid line) and energy entropgydashed ling time.
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Initial state
==== After excitation pulse
=== After cooling process
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Initial state
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FIG. 9. Coordinate-momentum phase space Wigner distribution function of:

(9) initial thermal state W(q,p,0). (b) Ground surface final state FIG. 10. Eigenvalues of the ground surface density operd@rThree

Wy(d.p.tf). ¢) Excited surface final staté/e(q,p,ts). stages in the instantaneous optimizatioriThe initial thermal statéwhite),
ii . after the excitation pulsegray), iii . after the cooling procedslark). (b)
Two stages in the global optimization.initial thermal statgwhite), ii. at
the final timet; (dark).

tronic surface. The optimal control mechanism evaporates

the excited vibrational eigenstates without disturbing the

lower ones. As a result the process seems adlaba'tlc on thge coupling between modes depends strongly on the field
ground electronic surface but impulsive on the excited SUlMntensity. The coupling vanishes at least quadratically when
face. the field turns off.
The initial state is constructed as a direct product state of
the primary and sink vibrational modes exclusively on the
B. Vibrational entropy sink ground electronic surface. In each vibrational mode a mix-

e . ture of thev =0 andv =1 states was constructed:
To overcome the limitations imposed by the conserva-

tion of eigenstates under unitary transformations a vibra-

tional mode is added which serves as the entropy sink. In thifii: E((|0 WO, + [ 1,0(L) @ (|0y)(0y | +]1,)(1 |))®|5 _
construction, the primary mode is embedded in a larger sys- 4 XX XA Y YT ¢

tem. The cooling model employed consists of two vibrational 3.2
modes demonstrated in Fig. 11. Tkemode serves as the

primary mode with an harmonic potential of frequency This initial state has equal entropy in the primary and bath
wy,=1. They mode is the bath mode with frequency mode, with zero correlatioor= o+ oy, oy=log 2.

w,=0.5. The origins of the excited surface modes were  Optimal control theory was employed to seek a cooling
shifted in relation to the ground surface. The coupling be-mechanism. The objective operator in the primarynode
tween the modes is induced by the transition dipole functiorconsists_of the projection on the ground surfages= (|0)
with the nuclear componeni = w(X+Y). With this choice  x(0[)®Py, and the identity operator in thg mode:
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FIG. 11. Schematic cooling model for the two-mode model. Xtmode is
the primary mode. Thg mode is the entropy sink. The light induces popu-
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lation and energy transitions from the ground to the excited surface and vise
versa. Energy can flow from one mode to the other through the excited

electronic surface. The system can be partitioned to the ground and excited
electronic manifolds and/or the andy vibrational modes. The reduced FIG. 13. Ground surface population as a function of time. The time is in
description of the primary and bath modes is shown as the projections on thébrational periods of the coordinate on ground surface.

perpendicular one dimensional planes.

AzAxc@fy. Again the time duration is limited to ten vibra-

Time

10

The entropy decrease on ground surface of the primary
mode is observed, which is the finger print of intensive

tional periods. The performance of the intensive energy r€¢ooling. The entropy reduction is by approximately a factor

! e ) ) of 10. The total entropy orR mode shows that an appreciable
From Fig. 12 it is clear that the energy in the primary notion is due to amplitude on the excited surface. Jhe

mode is reduced almost to the zero point valuemsde entropy compensates for the decrease i theound

duction is shown in Fig. 12.

(Ex(g)=0.525 compared to 0)5The

energy in the bath ¢ rface.

mode more than compensates this decrease, due t0 absorp- rig 15 proves that this cooling is also extensive. The
tion of energy from the field. At intermediate times the en-jncrease in the ground surface density and in the extensive
ergy is stored on the excited electronic surface. This is inkenyi entropy signify this fact. The extensive Renyi entropy
accordance with Fig. 13 showing significant population; () decreases in the first five vibrational periods meaning
transfer to the excited surface during the cooling process. nat this part of the process is evaporative. In the last part of

In the first five cycles it seems that the energy reductionq process ther(g) and the number density increase be-
in the primary mode is due to population transfer to the

excited electronic surface. During the last five cycles this

energy is pumped to the bath mode.

Fig. 14 shows the en-

tropy balance of the cooling process. 3.0 — ———
a ¥t [ W -
l", ’ ““‘\ 0" T \‘t
¢ 8X
25F f o .’\ i) T L
12 ,' (YN} [
/ LY R & "l‘
4
i memm SX+SY [N
L1 20n B L
= W
1.0 e ———
R E 15 ¥ /_/\\/\ _______ e 1
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=
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FIG. 12. Intensive energy in the primaBy mode on the ground electronic

surface and in the bath modg, . The time is in

x mode. The frequencies of the modes atg=1 andw,=0.5.

FIG. 14. Entropy balance of the two mode cooling process showing the total
entropy which is conserved. The ground surface von Neumann intensive

vibrational periods of the
entropy of the two modes.
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entropy o,,(9), as a function of time. The total entropy of tikemode:
(a,n)x, The total entropy of they mode: {,,)y, and the sum of the
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FIG. 15. Intensive Renyi entropyx(g) (solid line), extensive Renyi en- =)
tropy or(g) (dashed lingand the expectation of projectidp®|0x)<0x| on &
the zero vibrational levelgray) of the ground surface reduced density g
tr,{pg} as a function of time. %
o
yond their initial value meaning that extensive cooling is
obtained.
The optimal field is shown in Fig. 16. It shows some s n - - - e
pulse structure with a very broad frequency spectrum. Frequency (a.u.)

The probability density of the initial and final states on
the x andy coordinates is shown in Fig. 17. The cooling ©
process can be viewed as rearranging the “mountains” such
that the profile in thex mode becomes narrow while main-
taining the total volume.

Finally Fig. 18 shows the phase space distribution of the
primary mode before and after the cooling process. The final
state is very close to the ground vibrational state of this os-
cillator. Time

It is clear from this study that both intensive as well as
extensive cooling of the primary mode has been obtained. FIG. 16. (a) Real part of the radiation field as a function of time as obtained

The instantaneous optimization approach was also usefa)m the gl_obal_optimiz_ation fo_r co<_)|ing the ground surface vibrational mo-
for cooling the two mode system. First it was tried for thetlon. The time is in units of vibrational period on the ground surfdbg.

o Spectrum of the field shown ifg). (c) Time - energy phase space Wigner
initial state distribution of the field.

Frequency

.1
p°_§(|oxoy><oxoy|+|1XOV><1XOV|)' 3.3 tronic surfaces. Renyi entropy increase was also used as a

The entropy of this state is log2 in the primary mode andtarget showing comparable cooling achievement.

zero in the bath mode meaning .thgt system is hot and thﬁ/, DISCUSSION AND SPECULATION
bath cold. The instantaneous optimization solution was able
to remove 98.6% of the excess energy from the primary There are two basic cooling strategies: evaporation and
mode within 21 vibrational periods. The global optimization the heat pump mechanism. With the use of optimal control
was superior, it removed 99.7% of the excess energy in 1theory these strategies can be cast into the realm of impul-
vibrational periods. When the instantaneous optimizatiorsive cooling of molecular vibrations. For a single mode sys-
was applied to the initial state E¢B.2) with a hot initial bath  tem the only possibility is evaporative cooling which in its
the cooling rate was extremely slow. Nevertheless the promost extreme application means evaporating all levels except
jection on the ground vibrational level exceeded its initialthe ground vibrational level. Analysis has shows that such a
value. strategy exploiting the excited electronic surface as the
In the instantaneous approach the local target was desvaporative sink is possible in finite time. If there is unlim-
fined as: primary mode energy reduction, subject to zerdted time, a sequence of adiabatic passage procéséesn
population transfer between the ground and excited eledse imagined which moves all the ground electronic surface
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FIG. 17. Diagonal elements of the density operator on the ground electronif|G. 18. Coordinate - momentum phase space Wigner distribution of the
surfacepy(x,x,y,y). @ Initial state, and pfinal state. reduced density om primary mode.(a) Initial state, andb) final state.

excited vibrational levels to the upper electronic manifold.tion, since there is no increase in tpg., the maximum
The selectivity of this process depends on the time duratiopopulation in any level. Thus, one can make the claim that
allocated. The minimum energy input for such a process cathe increase in the Renyi entropy provides a direct measure
be obtained by ordering each reactant and target vibrationaif the approach to Bose condensation in a way that the de-
level according to increasing energy. The finite time optimalcrease in theextensiveé von Neumann entropy does not.
control solution is less efficient in energy consumption, butMoreover, the Renyi entropy is a standard measure of the
maintains the selectivity property. The reduced efficiency isdegree of coherendge. pure state characjeof a quantum
manifested in the final state on the excited surfagewhich  state® In retrospect, this is a very natural measure of Bose
is nonstationary meaning there is a higher energy contentondensation, in which all particles go into the same pure
For a time duration of ten cycles the energy price is quitestate, which need not necessarily be an eigenstate of the sys-
small. tem. Although quantum statistics have not been considered
The obvious drawback of the evaporative cooling strat-explicitly, it seems that the usefulness of the Renyi entropy
egy is the inability to increase the number density of theas a measure of cooling will carry over completely into that
ground state beyond its initial value. The role of radiation inregime.
this process is to access the entropy sink by moving popula- The role of the radiation in heat pump cooling is to sup-
tion to the excited surface. In synchronization with this taskply the power to drive the process and to synchronize the
electronic coherence is establishied# 0. This electronic co- motion on the two surfaces of the two modes. The efficiency
herence is a necessary requirement for controllability. of the process with respect to power consumption is quite
Cooling by a heat pump mechanism is superior to evapohigh, approximately 70%. The extra power is required to
rative cooling since it does not sacrifice the number densitygrive the system to its goal in finite time. This synchroniza-
to obtain the cooling goal. Embedding the primary system irtion is crucial since the inverse unitary transformation is per-
even one bath mode is sufficient for a heat pump mechanismmissible which will cool the bath mode and heat the primary
to be operative. This construction in which the primary sys-mode.
tem is embedded into a larger system overcomes the limita- In the search for a unitary transformation the instanta-
tion imposed by unitary transformations. neous approach was also employed. When the bath mode
There are advantages to using the Renyi entropy to chawas cold(zero initial entropy a solution was obtained able
acterize the degree of cooling of a system. An increase ito heat the bath and cool the system. When both the system
Renyi entropy corresponds to an increase in phase space demd the bath were hot with equal entropy only the optimal
sity of the system, whether there is change of particle numeontrol procedure was able to find a solution leading to sig-
ber (i.e. transfer of population to the excited electronic gtate nificant cooling.
or not. Yet, evaporation is of no value for Bose condensa- The specific unitary transformation found by the optimal
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control procedure is composed of an evaporative phase for
about half the total time duration followed by a dump period
where the excited surface population is transfered into the
ground vibrational level of the primary mode.

The general cooling strategy adopted in this study is an
active one. The strong fields applied are able to modify con-
siderably the Hamiltonian of the system. This approach isTwo alternative solutions have been used. According to OCT
therefore in the line of coherent control based on activean extremum for the objectivehas to be found. This is done
intervention?” Existing schemes of laser cooling crucially by variation of J with respect tosp , & Real(e) and
depend on a passive component which is spontaneous emis-imag(e). ‘The other approach, Krotov's method, is to
sion. The slow rate of this process extremely limits the ratenaximizeAJ. AJ=J&"D—3® whereJ® is the objective
of cooling. The advantage of an active approach is twofold,, ihe k'th iteration. From Eq(A3) AJ becomes:

The rates are controlled instead of waiting for spontaneous
emission, and multilevel systems can be handled virtually
just as easily as single level systems, which is essential for
molecular cooling, where there is severe level congestion.
However, the price payed for an active approach is that there
is no built-in entropy sink it has to be provided within the
larger system.

— ~ RN t A&é
J=tr{Ap(ty)}—tr{pB}| S+ Otl’ Pt dt

+ J {5 Bt f Y el2dt. (A3)
0 0

B

-

N ~ ~ t
AJ:tr{Af)A}—tr{AﬁB}|g+J ftr[A;)
0 at

t -~ t -
+f ftr{:%")(Af))B}dHf ftr{A:%(f)(k“))B}dt
0 0

tf tf
—2X\ ReaIJ e(k)Ae*dt—)\J (RealA€)?
0 0
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APPENDIX A: OPTIMAL CONTROL AND KROTOV'S -2 (B, (A6)
METHOD o
B(t;)=A. (A7)

Optimal control theoryOCT) is a method for finding an R
optimal field which leads an initial state of the system to aEd. (A5) is the condition that the density operatprwill
target state in a finite time intervdDt;}. In quantum me- €volve in time according to the Liouville-von Neumann
chanics this objective is represented by a target ope&tor equation. Eq(A6) is the equation of motion for the operator
OCT formulates this as a variation problem. The radiation-agrange multiplieB. Eq. (A7) is the final condition of Eq.
field is the agent of control. An iterative procedure is used tdAB). These are the same equations obtained from CEEj.

find the solution. A maximum value of the objective
I=tr{Ap(tp)} (A1)

which is a functional of the control field(t) has to be
found. Two constraints are imposed:
1. The evolution of the system is governed by Liouville-
von Neumann equation.
2. Minimizing the total field energy.

These two constraints lead to the modified objective:

- - t ap .\~
J=tr{Ap(tf)}—f0ftr:(a—f—j/;(p))B]dt

tt
—Af |e|?dt,
0

whereB is an operator Lagrange multiplier andis a scalar
Lagrange multiplier. Integration by parts leads to

(A2)

(2.1)—(2.13). Three terms in EqA4) depend oM e:

AJ=AJ(1)+AJ(2)+AI(3), (A8)
where
— t R R
AJ(1)=J tr{A Z(p**V)B}dt, (A9)
0

— t

AJ(2)=—2) Realf "M e*dt, (A10)
0

AJ(3)= —)\ftf(Rea(Ae)zwLImag(Ae)Z)dt. (A11)
0

The integrand inAJ(2) is highly oscilatory and therefore
AJ(2) has negligible contribution taJ. For the other two
terms a maximum value fokJ is obtained by maximizing
the integrands. The the problem of maximizig has there-
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FIG. 19. The objective functiondl as a function of the iteration number in
the Krotov method.

fore been reduced to maximizing a quadratic equation in

Ae. Taking the derivatives of Eq$A9) and (A11) with re-
spect to Reald €) and ImagfA ) and equating to zero lead

to
N
N (S (S 1 _
tr[aRea(Ae) '8 ] 2\ RealAe)=0, (A12)
PN
_ 9P Ak+DRK) L _
{almag(Ae)” B ] 2\ ImagAe)=0. (A13)

The field for thek + 1 iteration is obtained from EqA12)
and Eq.(A13)

e D=0t A (A14)
With Egs.(Al12), (A13), (1.6) and(1.1), Ae becomes

1.0 — e
i
09 | inStantane
optimization \
-
‘:‘: 08 | Krotov method
3 1st iteration
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g 07 10th iteration
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0.6
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Ae= _tr{p(k+l)M k)+(p(k+l)la Mp(k+l))B(k)

- A(k+1 B(k}

C

(A15)
The algorithm for finding the best field is as follows:

(1) Propagate backward in time from tinte=t; to time
t=0 the target operatdk [Eq. (A7)] with the field from
the k'th iteration e(¥(t). i

Apply Egs.(A14), (A15) with p(0) andB(0) to calcu-
late e*1)(0).

Use e**1)(0) to propagate to time At.

Calculate Ae(At) by applying step 2 top(At) and
B(At).

Repeat step 3 and 4 until the final tirhet; .

Repeat steps 1 to 5 untill convergence is achieved.

)

)
(4

®)
(6)

Figure 19 shows the convergence of the Krotov method.
It is clear that the iteration procedure saturates. The saturated
value is used in the text as the optimal result of the Krotov
method.
Figure 20 shows the convergence cycles of the Krotov
method compared to the instantaneous optimization ap-
proach for the two mode model with the initial condition
(3.3). The first iteration is from the instantaneous optimiza-
tion and the Krotov method is able to improve significantly
on this result.
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