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Dissipative dynamics of an adsorbate near a metal surface is formulated consistently by replacing
the infinite system-bath Hamiltonian by a finite surrogate Hamiltonian. This finite representation is
designed to generate the true short time dynamics of a primary system coupled to a bath. A detailed
wave packet description is employed for the primary system while the bath is represented by an
array of two-level systems. The number of bath modes determines the period the surrogate
Hamiltonian reproduces the dynamics of the primary system. The convergence of this construction
is studied for the dissipating Harmonic oscillator and the double-well tunneling problem. Converged
results are obtained for a finite duration by a bath consisting of 4–11 modes. The formalism is
extended to dissipation caused by electron-hole-pair excitations. The stopping power for a slow
moving proton is studied showing deviations from the frictional limit at low velocities. Vibrational
line shapes of hydrogen and deuterium on nickel were studied. In the bulk the line shape is mostly
influenced by nonadiabatic effects. The interplay between two baths is studied for low temperature
tunneling between two surface sites of hydrogen on nickel. A distinction between lattice modes that
enhance the tunneling and ones that suppress it was found. ©1997 American Institute of Physics.
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I. INTRODUCTION

The dynamics of molecules adsorbed on metal surfa
are complicated due to the simultaneous encounter with
sipative forces from two origins: electronic and phonon
Electronic dissipative forces are caused by the interactio
the free metal electrons, or more precisely from electron-h
pairs interacting with the adsorbate. These electron-h
pairs are able to exchange a continuous amount of ene
The other source of dissipative forces are the lattice vib
tions or phonons which again form a band of energy lev
In this study, a consistent quantum theory is proposed
describe the short time dissipative dynamics of an adsor
interacting with a metal surface. The formulation is cast in
a wave packet and surrogate Hamiltonian description.

The basic idea is to distinguish between the dynamic
the primary system, the adsorbate, and that of the bulk wh
consists of the electronic and lattice degrees of freedom.
focus of the study is the dynamics of the primary syst
which therefore is described in detail. The treatment of
bulk, or the bath modes, includes the minimum details
quired to specify their influence on the primary system.

The idea of partitioning the system into primary and ba
modes has been the key element in the quantum theor
dissipative dynamics. Starting from the work of Bloch,1–3

reduced equations of motion for the primary system h
been derived. The reduction is obtained by performing a p
tial trace over the bath degrees of freedom resulting i
Liouville description of the primary mode. The most we
studied derivation is based on the assumption of weak c
pling between the system and bath leading to a differen
equation describing the systems dynamics.4–7 In this deriva-
tion, commonly called Redfield dynamics, the influence
8862 J. Chem. Phys. 106 (21), 1 June 1997 0021-9606/97/1
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the bath is described by its correlation functions. This ba
derivation has been supplemented by the requirement
the reduced equations of motion have the semi-group fo
meaning that they preserve the complete positivity of
density operator.8–10

A complementary approach to dissipative dynamics is
axiomatically require a semigroup form. This leads to a g
eral form for the reduced evolution equations.11–13 These
equations allow a consistent study of different dissipat
models,14,15 but require an empirical treatment when a pa
ticular system is studied. Such an approach has been use
modeling the photodesorption of NO from a nick
surface,16–18where the influence of the metal electrons w
imposed empirically by using the semigroup form.

The practical disadvantage of both the semigroup a
the Redfield theories is that they are formulated in Liouvi
space where the state of the system is represented by a
sity operator. This fact squares the number of required r
resentation points in comparison to a wave function desc
tion. Although powerful numerical techniques have be
developed to solve the dynamics in Liouville space6,19–22 it
still is extremely taxing to treat these problems, limiting t
scope of systems that can be studied.

The approach presented in this paper is based on
structing a surrogate finite system bath Hamiltonian, wh
in the limit of an infinite number of bath modes generates
true systems dynamics. This is done by renormalizing
system-bath interaction term in the surrogate Hamiltoni
To reduce further the computational effort, the bath mod
are represented by the elementary two-level system~TLS!.
The primary system is represented by the Four
method,23–25 allowing a very general description. The dy
06(21)/8862/14/$10.00 © 1997 American Institute of Physics
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8863R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
namics generated by the finite surrogate Hamiltonian
able to reproduce, for a specified period of time, the t
system-bath dynamics. This construction is not Markov
and therefore differs from the Redfield or semigroup tre
ments. The use of a finite number of degrees of freedom
represent the bath limits the length of time in which t
dynamics is consistent with that of an infinite bath. The fin
nature of the bath usually shows up as recurrences w
eventually appear. Increasing the number of bath mo
postpones the recurrence to a later time, thus the numbe
modes needed is determined by the time scale of the dyn
ics.

The surrogate Hamiltonian approach is close in spirit
real time path integral techniques,26,27 where a large many
body propagator is constructed and approximated. These
proximations represent the bath modes as Harmo
oscillators,28–31 for which the path integration can be carrie
out analytically.32

Other wave packet approaches to describe dissipa
phenomena have been proposed. Significant effort has
devoted to mean field methods which approximate the ma
body wave function in a product form. These metho
known as TDSCF33 or TDH34 neglect explicit correlation.
They form the base for quantum-classical methods35–39

where the primary part is treated quantum mechanically
the bath classically or semi-classically.40,41TDSCF and vari-
ants which take into consideration some correlation h
been applied extensively to atomic sticking on co
surfaces42–46 Their primary drawback is that they conta
uncontrollable approximations. The mean field method
be corrected by explicitly including correlations. The mo
sophisticated method is the multi-configuration time dep
dent Hartree~MC-TDH!.47,48When applied to a system-bat
encounter it has the same flavor as the surrogate Hamilto
method.

Another dissipative wave packet method equivalent
the semigroup approach has been developed by Perciva
others.49–53 The method constructs a non-linear stochas
Schrödinger equation, which is solved using Monte Ca
techniques. It has the advantage of generality, but has
merical difficulties including slow convergence. This a
proach is simple to understand by considering a quan
system influenced by a time dependent stochastic poten
The evolution can be followed either by averaging the e
lution operator54 or by following individual realization of the
stochastic force and averaging all the realizations at the

The surrogate Hamiltonian method is applied to a vari
of dynamical dissipative processes taking place on me
Vibrational spectral linewidths are a direct measure of dis
pative forces. In the linear response limit the line shape is
Fourier transform of the dipole–dipole correlation functio
Decay of correlation due to dissipative forces is reflected
the linewidth. The interplay between the nonadiabatic a
phononic effects on vibrational line shapes55,56 has been the
subject of numerous theoretical studies. For high freque
modes, most of the effect is due to electron-hole-pair exc
tions. Electronic effects have been studied using den
functional57,58 or molecular orbital59,60 theories. For lower
J. Chem. Phys., Vol. 106
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vibrational frequencies, comparable to the Debye cutoff f
quency, the phonons make a significant contribution to
line shape. A fingerprint of this contribution is the stron
temperature dependence.56

The stopping power by metal electrons61–63 of a fast
moving ion is another case in which dissipative forces
responsible. For kinetic energies above the Fermi energ
the electrons the dissipative forces are purely frictional.
low kinetic energies, the surrogate Hamiltonian meth
shows that the dissipative effect is different.

Dissipative forces play a dominant role in tunneling. T
reason being that tunneling is exponentially sensitive to
variables which influence the dynamics. An extreme cas
that dissipative forces can stop tunneling completely.64–67

Tunneling through a barrier of a double-well potential
used in this study as a benchmark to validate the surro
Hamiltonian theory. The theory is then applied to low tem
perature diffusion of hydrogen on a nickel surface. Bo
phononic and electronic dissipative forces on the prim
tunneling system are to be considered.

II. GENERAL FRAMEWORK

The dynamics under study is staged in the multimo
coupled system-bath entity. The surrogate Hamilton
method presented in this section is designed to study
dynamics of a finite system coupled to an infinite multimo
bath at low temperature. It is assumed that the bath ha
continuous infinity of modes each of which is coupled on
infinitesimally to the finite system under study. This mea
that at low temperatures the bath is well approximated a
collection of independent harmonic oscillators, even wh
the overall coupling of the system to the bath is strong.
additional assumption is that the coupling to each mode
linear in the mode’s displacement. This assumption is alw
well justified when the overall bath-system coupling is s
ficiently weak, but it may also be applicable for strong co
pling.

The complex bath and its coupling to the system ha
to be reduced to a tractable computational scheme.
first task is to construct a representation of the coup
system which can be systematically improved enabl
a study of convergence characteristics. Once the represe
tive wave function has been constructed, dynamics
determined based on the expansion of the evolut
operator Û(t)5exp(2iĤt/\) or the Green operato
Ĝ(E)5(E2Ĥ)21 in terms of a Chebychev polynomia
series.23,24The propagation enables a direct extraction of o
servable information.

A. Representation of the coupled system

The system-bath representation is developed through
study of the total Hamiltonian. This Hamiltonian is part
tioned into the primary system’s bare HamiltonianĤs the
bath HamiltonianĤB and an interaction termĤint leading to:

Ĥ5Ĥs1ĤB1Ĥint. ~2.1!

The primary system Hamiltonian has the form:
, No. 21, 1 June 1997
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8864 R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
Ĥs5T̂1Vs~R̂!, ~2.2!

whereT̂5P̂2/2M is the kinetic energy of the primary syste
and Vs is an external potential which is a function of th
system coordinatesR̂. The bath HamiltonianĤB is decom-
posed to an infinite sum of normal modes:

ĤB5(
j

e j b̂j
†b̂j. ~2.3!

The index j is a multidimensional index describing a com
plex bath of Bosonic modes with energiese j . Finally, the
interaction term is a multiplication of a dimensionless ge
metric function f (R̂) with a Boson modeb̂j

† of potential
coupling strengthVj :

Ĥint5 f ~R̂!(
j
Vj~ b̂j

†1b̂j !. ~2.4!

The operatorsb̂j
† and b̂j are Boson type creation and annih

lation operators, obeying the commutation rules:

@ b̂j,b̂
†
j 8#5d j , j 81̂. ~2.5!

This system-bath Hamiltonian already represents a dra
reduction in complexity compared to the generic system-b
entity, mainly due to the simple linear~in the bath coordi-
nate! interaction term. Nevertheless, for the specific syst
under study where an adsorbate interacts with the electr
and phonon baths, it will be shown that this description
reasonable.

Equations~2.1!–~2.4! serve as the starting point of th
investigation, but further reduction is required since the
equations are too involved to be treated directly. The pr
lem is simplified by observing that the bath modes are un
teresting by themselves. Only their influence on the prim
system has to be considered. The goal is to assemb
Hamiltonian consisting of a finite number of bath mode
which faithfully represents the dynamics of the primary s
tem under the influence of an infinite bath for a finite tim
This means that a systematic approach to converge a spe
dynamical question has to be developed.

Such a goal is achieved by transforming the physica
rich Boson bath to a simplified finite bath. This is done
examining the Heisenberg equations of motion for the p
mary system:

Ṙ̂5P̂/M ,

Ṗ̂52¹Vs~R̂!2¹ f ~R̂!S (
j
Vj b̂j

†1H.C.D . ~2.6!

The bath enters these equations through the operator:

(
j
Vj b̂j

†1H.C.5E AJ~e!B̂†~e!de1H.C., ~2.7!

where a creation operatorB̂†(e) for an interaction-Bosonis
defined:
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B̂†~e!5
1

AJ~e!
(
j
Vj b̂j

†d~e2e j !. ~2.8!

Similar equations exist for the corresponding annihilati
operators.J(e) in these equations are normalizing facto
defined by:

J~e!5(
j

uVj u2d~e j2e!. ~2.9!

This definition ensures thatB̂e
† andB̂e retain the Boson com-

mutation relations:

@B̂e,B̂e8
†

#5d~e2e8!. ~2.10!

The Heisenberg equations of motion for the new Boson
erators are obtained from the Hamiltonian of Eq.~2.1! by
commutation:

Ḃ̂~e!52 i eB̂~e!2 i f ~R̂!AJ~e!Ṙ̂5P̂/M , Ṗ̂52¹Vs~R̂!

2¹ f ~R̂!E AJ~e!B̂†~e!de1H.C. ~2.11!

The Hamiltonian which contains the dynamical informati
of these equations of motion is the surrogate Hamiltonia

Ĥsurr5T̂1Vs~R̂!1E eB̂†~e!B̂~e!de

1 f ~R̂!E AJ~e!B̂†~e!de1H.C. ~2.12!

Formally, this Hamiltonian governs the dynamics of the p
mary R̂2 P̂ system in a completely equivalent manner to t
full Hamiltonian. This statement must be qualified since n
all initial states of the bath exist in the Hilbert space of t
surrogate Hamiltonian. However, since a Boltzmann aver
over the initial states is intended, this poses no pract
problems. The consequence is that the system-bath is
characterized by the normalizing function, often called t
spectral densityJ(e). A derivation using path integral meth
ods leads to the same conclusion.64

The existence of the spectral density points the way t
convergent method of sampling the bath by a finite num
of modes. The finite bath ofN oscillators is constructed by
requiring a spectral density which resembles, and, in
limit N→`, converges to, the given spectral density of t
full bath. The algorithm of sampling the Boson bath assum
the given spectral density functionJ(e) is of finite support,
so that there exists an interval of energies@eo ,ec# outside of
which the density is zero. The interval is sampled by sele
ing N energy points:e0,e1,•••,eN21. For each energy
Boson creationB̂m

† and annihilationB̂m operators are defined
The energy sampling specifies a density of states for
discrete bathr(em)'(em112em)

21. In conjunction with the
spectral density, the density of states imposed by the s
pling determines an effective interaction through the relati
, No. 21, 1 June 1997
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8865R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
UmB̂m
† r~em!5AJ~em!B̂m

† ~em!. ~2.13!

Thus, for the discrete surrogate Hamiltonian, the strength
interaction between themth Boson and the primary system
given by:

Um5AJ~em!/r~em!. ~2.14!

The discrete surrogate Hamiltonian therefore takes the
lowing form:

Ĥ5T̂1Vs~R̂!1 (
m50

N21

emB̂m
† B̂m1 f ~R̂! (

m50

N21

UmB̂m
† 1H.C.

~2.15!

This construction has the merit that asN increases and the
sampling refined, the dynamical observables converge.
convergence progresses in time with increasing numbe
bath modes and is inversely proportional to the largest
ergy sampling intervalr(emax). Although the Hamiltonian
Eq. ~2.13! describing the correlated system-bath dynamic
greatly simplified it is still untractable in a computation
scheme except in a one or two mode approximation. In or
to be able to check convergence a further reduction is
quired.

B. A Boson bath as a set of TLSs

Further reduction is based on the assumption is that
bath temperature is low. Under these conditions no sin
mode oscillator is highly excited. This allows each ba
mode to be represented by a two-level system~TLS!, leading
to a replacement of the Boson operators by TLS operato

b̂†→ŝ1 ,

b̂→ŝ2 . ~2.16!

Notice that the commutation relations also transform:

@ b̂,b̂†#51→@ŝ2 ,ŝ1#5122n̂, ~2.17!

where n̂5b̂†b̂→n̂5ŝ1ŝ2 . Since ^n̂& is 1 for an excited
TLS and 0 otherwise, the violation of the commutation re
tions is small if none of the TLSs get highly excited. F
higher bath temperatures a three level system formula
can be built along the same lines.

The numerical implementation of the dynamics of a su
system coupled toN two-level systems~TLS! is best under-
stood by first following the special case of a one mo
N51 bath. In this case the wave function is represented
two-component spinor

C~R!5S f0~R!

f1~R!
D . ~2.18!

The ‘‘0’’ component corresponds to spin down while th
‘‘1’’ component to spin up. The functionsfm(R) are defined
on equally spaced grids although other representation t
niques are possible. TheR-independent spin operators a
pearing in the Hamiltonian are represented as 232 matrices
in the 2 component vector space:
J. Chem. Phys., Vol. 106
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b̂†5S 0 0

1 0D , b̂5S 0 1

0 0D , n̂5b̂†b̂5S 0 0

0 1D . ~2.19!

For the generalN case, a wave function is represented a
spinor of 2N components bit ordered. This means that t
mth component represents a spin arrangement determine
the 1’s~spin up! and 0’s~spin down! in it’s binary represen-
tation. Each componentfm(R) is defined on the equally
spaced grid. The Fourier method23,24 is used for the repre-
sentation of the primary system operators.

The wave function representation is designed to e
ciently perform sums of spin operators. The algorithm
applying the number operator for thekth spin, n̂k, on the
wave functionC, consists of multiplying the componen
fm by thekth bit of the binary representation of the integ
m ~0 or 1!.

Applying the operator( jVj (R)b̂j
† is performed by recur-

sion. The recursion is based on the structure of the ma
representation of the interaction operator. Observing the
trix representation of the three mode case although this
trix is never actually computed or stored reveals the gen
pattern:

V 351
0 V1 V2 0 V3 0 0 0

V1 0 0 V2 0 V3 0 0

V2 0 0 V1 0 0 V3 0

0 V2 V1 0 0 0 0 V3

V3 0 0 0 0 V1 V2 0

0 V3 0 0 V1 0 0 V2

0 0 V3 0 V2 0 0 V1

0 0 0 V3 0 V2 V1 0

2 . ~2.20!

The general recursive form of the matrix is described as
lows. The 2N32N matrix V N is defined by:

V N5S V N21 VN1N21

VN* 1N21 V N21
D . ~2.21!

The definition is recursive with1m being the 2m32m unit
matrix andV N5050. The operatorV N consists of only di-
agonal operations, reducing the numerical effort to a qu
linear one (M logM), in the number of spinor componen
(M52N).

This algorithm contains all possible system-bath corre
tions. It is possible to restrict the number of simultaneo
bath excitations. The most extreme restriction includes o
a single phonon excitation, yielding an algorithm resembl
the model of Stileset al.68 for phonon dissipation in inelastic
collisions with metal surfaces. Such models have also b
used for calculating sticking probabilities.69,44

C. System-bath dynamics

The primary system is represented by the Four
method,23–25 enabling multidimensional systems to be an
, No. 21, 1 June 1997
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8866 R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
lyzed with no restriction on the potential shape. The ex
nential convergence of the method allows an elimination
errors due to representation.

Extracting dynamical information on the system requi
propagation of an initial wave function by applying the ev
lution operator:

C~ t !5Û~ t !C~0!5e2 i Ĥt/\C~0!. ~2.22!

The time dependence of the expectation value of any op
tor is determined by:

^Â~ t !&5^C~ t !uÂuC~ t !&. ~2.23!

Frequency domain observables can be extracted from
half Fourier transform of various correlation functions:

C~v!5\E
0

`

eivt^C~0!ux~ t !&dt

5^C~0!uĜ~\v!x~0!&, ~2.24!

whereĜ(E)5(E2Ĥ)21 is the Green’s operator.
A general, accurate, stable and efficient method of

ecuting these calculations is to expand the evolution oper
or the Green’s function operator in a series of Chebyc
polynomialsTn(Ĥ) whereĤ is the Hamiltonian operator lin
early scaled and shifted so that it’s spectrum is in the ra
$21,1%.24,23The expansion coefficients are functions oft for
the evolution operatorÛ(t) or of E for the Greenian operato
Ĝ(E). When the Hamiltonian is completely hermitian, th
expansions are both accurate and extremely stable. Whe
Hamiltonian has a nonhermitian component, these exp
sions are still stable, provided a slightly different scaling
performed for the Hamiltonian~see Ref. 70 for details!. An
alternative is to use a Newtonian polynomial expansion71

These techniques will be used for all the dynamical calcu
tions shown in this study.

The propagator technique is also used to construct
initial state for the calculation. Propagating in imagina
time leads eventually to the fully correlated groundstate
the combined system-bath entity.72 By employing a filter-
diagonalization method73,74 other eigenstates are extract
directly. Thermal observables are obtained by Boltzma
weighting the results from the individual calculations.

III. APPLICATION TO MODEL PROBLEMS

The application of the surrogate Hamiltonian to w
studied model problems exemplifies its ability to descr
dissipative phenomena. An important aspect to be addre
is the convergence of the method with respect to the num
of bath modes.

A. The harmonic oscillator in an Ohmic bath

A popular benchmark system for dissipative dynamics
the relaxing Harmonic oscillator. When an oscillator is im
mersed in a bath, its frequency will shift due to the intera
tion and energy relaxation and dephasing will take place
simple model is the harmonic oscillator coupled linearly to
bath:
J. Chem. Phys., Vol. 106
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Ĥ5
P̂2

2
1
R̂2

2
1(

j
e j b̂j

†b̂j1R̂(
j
Vj~ b̂j1b̂j

†!. ~3.1!

The bath is described by a linear spectral dens
J(e)5ae with a cutoff frequency ofec. This type of bath is
known as an Ohmic bath.75 The dimensionless parametera
determines the strength of the coupling. A finite bath w
equally spaced sampling of the energy range was used. O
sampling strategies, such as the exponential sampling us
Section III B gave essentially similar results. The weak co
pling limit predicts a pure exponential decay of energy wh
for zero temperature has the rate:G52pav0.

76

The surrogate Hamiltonian is applied to a relaxing h
monic oscillator with a coupling parametera50.01 and
ec53. The calculation was performed with an increasi
number of TLSs which progressively pushed the conver
part of the approximation to longer times~Fig. 1!. The period
of convergencetc , from Fig. 1 is inversely proportional to
the sampling intervaltc'2p\/rmax52p\N/ec and linear
with the number of bath modesN for equal sampling.

The dephasing phenomena of the oscillator is best
served through the study of the dipole correlation functio

C~ t !5
^cguR̂e2

i
\ ĤtR̂ucg&

^cguR̂2ucg&
. ~3.2!

The autocorrelation function is shown in Fig. 2 together w
the weak coupling exponential envelope.

For this mode there is no pure dephasing. Theref
T15

1
2T2. This relation is confirmed by the calculation.
For the case of strong coupling, the bath parame

were a50.3 andec51.3. The resulting energy and dipo
auto correlation function as a function of time are shown
Fig. 3. The calculation was performed with an increas
number of TLSs. It is seen that energy is very quickly dis
pated in the course of about half a period. The energy dec
to a value of 0.6, higher than the oscillator 0.5 groundsta
The decay exhibits damped oscillations of the energy.

FIG. 1. The energy relaxation of the harmonic oscillator. The energy exp
tation value is shown for an increasing number of bath modes~3,5,7,9! for a
zero temperature Ohmic bath witha50.01 ande353. The thin line repre-
sents an exponential decay obtained from a semi-group weak coupling l
The insert shows the short time dynamics which deviates from the se
group result.~Note: 1 period of the oscillator is equal to 2p.)
, No. 21, 1 June 1997
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8867R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
The absolute part of the autocorrelation function
shown in Fig. 4. The strongly coupled case converges slo
at times longer than one period of the harmonic oscilla
The decay times, estimated from the converged part of
functions shows that for this systemT1'T2.

B. The effects of a Ohmic bath on double-well
tunneling

Crossing a potential energy barrier is a cornerstone
chemical research. Kramers over 50 years ago77,78 has
pointed out the crucial role dissipative forces have on t
process. The most problematic issue is the dissipative eff
on tunneling dynamics and on the crossover from Arrhen
kinetics to groundstate tunneling.67,66,79–81A popular model
system for this problem is the symmetric double-well pote
tial and its low temperature analog, the dissipative two s
system, often termed the spin-bose problem.82 This model

FIG. 2. The absolute value of the autocorrelation function of the dip
function for the relaxing Harmonic oscillator weakly coupled to the ba
The dynamics is shown with an increasing number of bath modes. The
lines represent the weak coupling envelope.

FIG. 3. The energy relaxation of the harmonic oscillator for strong coup
case. The energy expectation value is shown for an increasing numb
bath modes~7,9,11! for a zero temperature linearly coupled Ohmic ba
with a50.3 andec51.3. The thin line represents an exponential dec
obtained from a semi-group weak coupling limit. The insert shows the l
time energy decay.
J. Chem. Phys., Vol. 106
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has been studied by using Feynman path integ
approaches,64,66 renormalization-group methods83 and Red-
field dynamics theory.65

The Hamiltonian for the symmetric double-well is:

Ĥ5
P̂2

2M
1VD~R̂!1(

j
hj~ x̂j,p̂j !1

R̂

R0
(
j
Cj x̂j. ~3.3!

Here,M , P̂, R̂ are the mass, momentum and position of t
double-well oscillator,VD is the double-well potential with
separation distanceRo , and hj is the Hamiltonian of the
j th harmonic oscillator, with frequency, mass, position a
momentum:v j , mj , x̂j p̂j. The bath system coupling is cha
acterized by the spectral densityJ(e)5( j uVj u2d(e2e j ),
whereVj5Cj /A2mjv j .

Specifically the spin-bose system with an Ohmic bath
studied, characterized by a spectral density linear in ene
J(e)5ae. It is known75 that fora'1 the dissipation greatly
influences the tunneling rate. Furthermore, a transition t
completely localized regime occurs at the critical coupli
value ofac51.83–85

A numerical representation of the Ohmic bath, has
address the many energy scales of the problem. This fa
characteristic of Ohmic baths and is the reason why ren
malization techniques are useful for this problem.86 The bath
sampling technique has to span different energy scales
sulting in an exponential sampling: en5e0b

n,
n50•••N21 wheree0 is the low energy cutoff andb is the
sampling base. This scheme naturally introduces a high
ergy cutoff for the spectral density atec5e0b

N21. It is
known that the critical behavior ata51 exists only when the
high frequency cutoff is raised to infinity. For a finite cuto
frequency, the tunneling rateD behaves asD'Do(e0 /ec)

a,
whereDo is the rate without dissipation.83

The double-well potential studied is described by pote
tial:

V̂~R!5 1
2 ~V11V22A~V12V2!214C!, ~3.4!

whereV651/2k(R6Ro)
2. The various parameters for th

calculation are tabulated in Table I. For these parameter

e
.
in

g
of

g

FIG. 4. The absolute value of the autocorrelation function of the dip
function for the relaxing harmonic oscillator strongly coupled to the ba
The dynamics is shown with an increasing number of bath modes.
, No. 21, 1 June 1997
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8868 R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
bath of 8 spins (b52) was sufficient to converge the dynam
ics up to a period of 1 psec. For longer times additio
Bosons are required. The tunneling time of the bare dou
well oscillator is of that order. The 8 Bosons imply usin
spinors of 256 wave packets, each represented by a 64 p
grid, totaling a1

2 megabyte of memory for each wave fun
tion. The calculation times for each run were approximat
1–2 hours on a Silicon-Graphics R8000 machine.

The calculation is initialized by decoupling the two p
tential wells @settingC50 in Eq. ~3.4!#. The groundstate
cg of the left well is determined by propagating in imagina
time on a trial wave function:

e2Ĥtc trial

t→`
→ cg . ~3.5!

With this initial state, the two wells are recouped and the f
dynamics takes over:c(t)5exp(2iĤt)cg . The mean posi-
tion of the oscillator,̂ c(t)uR̂uc(t)&, is the dynamical ob-
servable recorded during the evolution.

Figure 5 shows the mean position of the wave funct
as a function of time for various values of the dissipati
parametera. The exponential growth in the transition time
clearly shown in the figure. The oscillations under the infl
ence of the dissipation appear damped and irregular.

The initial tunneling rate averaged over the first psec
shown, in logarithmic scale in Fig. 6. Also shown is th

FIG. 5. The expectation value of the positionR of a double-well oscillator
for various values of the dissipation parametersa. An eight TLS bath was
required to converge the results, until a duration oft51000 fsec.

TABLE I. Parameters of the double-well tunneling calculation.

Parameter Value~a.u.!

Minima separationRo 0.7
Spring constantk 0.029 38
Oscillator massM 1836
Minima coupling C 0.001 00
Oscillator representation grid size 64 points
Oscillator grid spacingDR 0.1250
Low energy cutoffv0 1.328e-05
Number of bath spinsN 8
Base for exponential samplingb 2
High energy cutoffvN215v0b

N21 1.700e-03
J. Chem. Phys., Vol. 106
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tunneling rate predicted by dimensional arguments,86 which
is merged with the calculation fora,1.

The conclusion from the above benchmark systems
that the surrogate Hamiltonian implementation is able to c
ture quantitatively the dissipative dynamics associated w
correlation functions and quantum tunneling dynamics. O
confidence has been gained, the method can be applie
more realistic encounters.

IV. NONADIABATIC EFFECTS ON ADSORBATES

The unique features of the interaction of the prima
system with the electronic continuum requires a modifi
formulation. The adiabatic part of the interaction of the h
drogen with the semi-free metal electrons can be accou
for by employing density functional calculations87–90 or re-
lated methods such as the empirical EAM.91,92The nonadia-
batic interactions are responsible for the dissipat
phenomena.56,93

In order to simulate the nonadiabatic phenomena t
must be reduced to an effective heat-bath formulation. T
basic idea is to construct the appropriate finite heat b
which models the interaction of an interstitial atom with t
conduction electrons of the metal for a specified period
time. The relevant spectral density calculation is based o
screened Coulomb electron-proton interaction.

The nonadiabatic interaction model describes the s
tem’s dynamics by an Anderson type Hamiltonian, where
interaction of the proton with the conduction electrons
explicit:

Ĥ5
P̂2

2M
1V~ Ẑ!1(

k
ekn̂k

1V21(
kk8

Vk2k8e
i ~k2k8!•Ẑâk

†âk8. ~4.1!

Here uk& represents the free one-electron states of the c
duction band, characterized by 3 dimensional momentumk
and energyek5\2k2/2me . The operatorsâk

† and âk are the
electron creation and annihilation operators for the st
uk&. The number operator becomes:n̂k5âk

†âk. The interac-

FIG. 6. The rate of tunneling, represented by the averaged velo
d/dt^R& as a function of the dissipation parametera. The dashed line indi-
cates the theoretical resultD5D0(v0 /vN21)

a.
, No. 21, 1 June 1997
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8869R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
tion term between the proton and the electrons is prop
tional to the inverse volume of the electron gasV. This is a
manifestation of the locality of the proton-electron intera
tion potentialv(r ) which has a finite rangek21 wherek is
the screening parameter. The constantsVk2k8 are the Fourier
transform of the proton-electron interaction potential:

Vq5E eiq•rv~r !d3r . ~4.2!

Following Muller–Hartman, Ramakrishnan and Toulou
~MHRT!,94,95the Hamiltonian is reformulated to describe t
coupling of the proton to a bath of Bosons. This approxim
tion is valid for low temperatures when a local proto
electron gas interaction takes place as in the case of the
ton dynamics problems considered here. Alternative form
Bosonization are discussed in Ref. 86. The Bosonizatio
formulated in terms of electron-hole-pair excitations whi
are created and annihilated by the following operators:

b̂j
†5âk8

† âk; b̂j5âk
†âk8 $uku,kF , uk8u.kF%. ~4.3!

An electron-hole pair~EHP! is characterized by two singl
electron states designated by the six dimensional in
j5(k,k8) with k,kF and k8.kF , wherekF is the Fermi
momentum of the conduction electron gas. Aj EHP repre-
sents an excitation energye j5ek82ek and momentum
qj5k82k. As long as the electron gas is close to its groun
state, these operators approximately obey the Boson com
tation relations:

@ b̂j,b̂j8
†

#5d j, j 81̂. ~4.4!

For a thorough discussion of this Bosonization see Ref.
The Heisenberg equations of motion for the EHP ope

tors b̂j
† and the proton operatorsP̂ andsẐ can be obtained

from the Hamiltonian of Eq.~4.1!. An inspection reveals tha
the following effective Hamiltonian generates the sa
dynamics:94

Ĥ5
P̂2

2M
1Vo~ Ẑ!1(

j
e j n̂j1V21(

j
@Vqj

eiqj•Ẑb̂j
†

1H.C.#. ~4.5!

This Hamiltonian is simpler than the original Anderson typ
It is similar to the Polaron Hamiltonian.32 For a one dimen-
sional proton it is shown in the Appendix that the EHP ba
is uniquely and fully determined by the two parameter no
diabatic spectral density:

J~e,q!5
1

V2(
j

uVqj
u2d~e j2e!d~qj

z2q!. ~4.6!

This function, with a screened-Coulomb electron-proton
teraction is calculated analytically using the Fermi–Dir
distribution at zero temperature. An analytical approximat
for the nonadiabatic spectral density is~see the Appendix!:
J. Chem. Phys., Vol. 106
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J~e,q!5
me
2e2e

p2\4k3 S arctanS ~2kF2uqu!k
k212kFuqu D 1

2kFuqu
4kF

21k2

2
uquk
q21k2D , ~4.7!

whereme and e are the electron mass and charge resp
tively, k is the inverse screening length and\kF is the mo-
mentum of an electron at the Fermi level. The last two p
rameters are determined by the electron density~see the
Appendix!.

V. ELECTRONIC FRICTION FOR HYDROGEN
DYNAMICS

When a proton moves in a uniform electron gas it dis
pates its translational energy.62 It is known that for velocities
lower than the Fermi velocities of the electrons, the ene
dissipation has the form of friction dependence:

dEk
dZ

52hvz , ~5.1!

wherevz is the velocity of the proton andEk is its kinetic
energy. The friction coefficienth is independent of the hy
drogen mass and velocity. The theory of hydrogen tran
tional energy dissipation in an electron gas has been de
oped and experimentally tested in the range of energ
higher than the Fermi energyEk@eF ~usuallyEk'1 kev!.
Here, the models of nonadiabatic interactions presente
Section IV and the numerical treatment of these models
Section II B are used to explore the very low velocity r
gime, where the proton kinetic energy is much smaller th
the Fermi energy.

The friction phenomena has been simulated using
TLSs which sample twoq-values^ three e-values of the
spectral densityJ(q,e) representing the nonadiabatic bat
The first stage consists of localizing the atom by using
confining harmonic potential. The ground state of the co
bined EHP-proton system is then calculated by propaga
in negative imaginary time. In the second stage the harmo
potential is replaced by a constant potential and the rela
spinor wave packet is subjected to akick executed by the
momentum shift operatoreiPoẐ. The evolution operator is
then applied to propagate the energetic wave packet cou
to the cold Fermion sea. During the evolution the expectat
value of the proton kinetic energy is recorded at regular
tervals. Figure 7 shows relaxation of the kinetic energy d
to electronic friction.

The friction coefficients as a function of the electro
density and different proton momenta are shown in Fig. 8
cutoff energyec50.27 eV was used in the calculations. Th
high momentum cases converged to a velocity independ
friction regime. The convergent value of the friction coef
cient h fits well with calculations based on the Lindha
theory for screened-Coulomb interactions~see Ref. 62!. The
results are not particularly sensitive to the value of the cu
, No. 21, 1 June 1997
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8870 R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
energy and a cutoff energy ofe f51 eV has yielded similar
results. For low velocities the friction becomes velocity d
pendent.

Another feature seen in Fig. 8 is that the friction coef
cients diminish as the electron density is lowered. This
curs in spite of the increasein the spectral density. Since th
spectral density is a Fermi-golden rule expression for ene
rate dissipation, it is obvious that the relevant dynamics
more complex than a low order perturbation description. T
energy dissipation is less efficient for a low density gas, d
to the fact that the Fermi momentum\kF decreases. This
leads to a less efficient coupling of the proton motion b
cause of the long wavelength associated with the interac
in Eq. ~4.5!.

VI. LINE SHAPES OF HYDROGEN IN NICKEL

The chemistry of hydrogen embedded in nickel has b
recently probed on a molecular level.96,97 Using HREELS
spectroscopy the vibrational line of bulk hydrogen was id
tified. The line shape gives insight to the dissipative forc
acting on the hydrogen atom. Such forces influence sign

FIG. 7. The kinetic energy as a function of time of a slow proton moving
an electron gas. The electron density parameters isr s51.5 and the cutoff
energy isec50.27 eV. Three calculations are shown corresponding to
ferent samplings of the EHP bath: 4, 6, and 8 TLSs.

FIG. 8. The friction coefficient for a proton moving in an electron gas a
function of the translational momentum and of the electron dens
r s51.5—circles,r s52—triangles,r s53—squares andr s54—diamonds.
The cutoff energy for these calculations wase f50.27 eV.
J. Chem. Phys., Vol. 106
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cantly the dynamics of bulk hydrogen, in particular the r
surfacing motion.98 Using the EAM scheme91,92 the
hydrogen/nickel potential energy surface has been calcul
together with the local electron density. These results se
as input for calculating the nonadiabatic line broadening
hydrogen in an interstitial subsurface site and in a surf
adsorption site.

Vibrational adiabatic line broadening of atomic hydr
gen on metal surfaces has been calculated by Persson
Hellsing57,58 yielding values of 10–30 cm21 ~FWHM! de-
pending on electron density. It has been estimated that p
non contributions are small for high frequencies.56

A. Line shape of hydrogen in bulk nickel

The phonon bath contribution to the line shape at l
temperature has been calculated by the surrogate Ha
tonian method and found to be extremely small. This is
result of the vibrational misfit between the slow lattic
phonons~cutoff frequency at'300 cm21) and the hydro-
gen bulk frequency (970 cm21 for the mode perpendicula
to the surface!. The nonadiabatic effect was calculated usi
the method of Section IV with the primary system potent
taken as an EAM adiabatic potential.

Details of the procedure for estimating the decay tim
are as follows. First, the ground statecg and ground energy
Eg of the total system is determined by evolving a trial fun
tion in imaginary time. Then, the ground state is operated
by the position operator of the oscillator. This yields the st
c(0)5R̂cg . The statec(0) is now propagated in time usin
the full Hamiltonian. During the evolution the oscillator en
ergy E(t)5^c(t)uHoscuc(t)& and dipole correlation
C(t)5eiEgt/\^c(0)uc(t)& are monitored. Their decay rate
determineT1 andT2.

The EHP bath sampling was refined until convergence
the slopes was obtained, to within 6%. This was done
considering several baths. The first bath consisted o
~2ê 2q! EHP’s. Then, additional calculations were ma
with 6 ~3ê 2q! and then 8~4ê 2q! EHP baths, where it was
found that the results were much the same as the 4 EHP b
This means that an extensive energy sampling is not
quired. Next, a refinement of theq-sampling was tried. A
bath of 8~2ê 4q! EHP’s was used and the slopes were
creased by more than 25%. Finally a 12~2ê 6q! EHP bath
was run, and the slopes changed by less than 6%, signa
that sufficient sampling was obtained. The calculational
fort grows exponentially with the number of EHP mode
Thus it is quite difficult to obtain better converged resul
The 12 EHP bath converges the dynamics for one period
the oscillator before recurrences set in. This time was su
cient to observe an energy absorption of nearly 10% of
excitation.

The nonadiabatic line broadening and decay times
shown in Table II as a function of the interstitial electro
density. In interstitial nickel the electron density parame
r s' 2.1 yields a line width of'23 cm21 ~FWHM!. Line-
width of hydrogen on W~100! and Mo~100! been measured99

by IR spectroscopy yeilding a line width in the range of 12
65 cm21. The large isotope effect measured leads to

-
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8871R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
nonadiabatic relaxation mechanism. The monotonic rela
between linewidth and electron density allows use of
vibrational line shape of hydrogen as a direct measure
local electron density.

B. Line shape of hydrogen on a Ni(100)

Hydrogen resides as an atomic species on a nickel~100!
surface with typical frequencies of 588 cm21 for the perpen-
dicular mode and 387 cm21 for the transverse mode.100

Since the transverse mode has vibrational frequen
similar to the phonon frequencies, an attempt to calculate
line broadening is made. The surface phonon bath is appr
mated as an Ohmic bath,J(e)5ae with a cutoff frequency
set atvc5300 cm21.101 The interaction of the vibrating
atom with the bath is chosen asV 5 R̂/ao(jVj„b̂j

† 1 b̂j), R
being the coordinate of the vibrating atom andao is the Bohr
radius. In this form, the dimensionless constanta is approxi-
mately equal to unity.101 The bath was represented by a
increasing number of modes equally sampling the ene
range. Nine modes were sufficient to converge the dynam
for a period of 150 fs. No significant energy and dipole c
relation damping were observed for this time period. Sim
results were found for the deuterium isotope.

The electronic line broadening for this vibrational mo
was also calculated, using the method of the previous
tion. The nonadiabatic dissipation was calculated using
electron density at a hydrogen adsorption site, ofr s52.5.
The bath was represented by equally sampling fourq values
and three energy values of the spectral density in Eq.~4.7!.
The nonadiabatic vibrational line broadening contribution
hydrogen was 20 cm21 ~FWHM!. The heavier, slowly mov-
ing deuterium is less affected with a spectral linewidth o
cm21 ~FWHM!.

VII. DISSIPATION AND SURFACE DIFFUSION

Low temperature surface diffusion of hydrogen is dom
nated by tunneling. This is confirmed by experimental res
of Gomer,102 showing a temperature independent diffusi
regime below temperatures of 100 °K Tunneling calculat
of hydrogen on Ni~100! have been performed by Wonchob
and Truhlar,81 however dissipation effects were not tak
into account in that work, although phonon assisted tunn
ing was. Wahnstromet al.101 have recently investigated th
same system employing a path integral method to incor
rate the influence of phonon collisions. Both of these cal
lations show a temperature independent diffusion reg
with a crossover temperature, 65 K in Ref 81 and 40 K
Ref. 101. More recent measurements performed by Zhu103

TABLE II. Vibrational relaxation times of bulk hydrogen.

r s

T1
@fsec#

T2
@fsec#

G ~FWHM!
cm21

1.5 170 220 50
2. 330 460 23
3. 622 634 17
J. Chem. Phys., Vol. 106
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show a crossover temperature of 160 K. Quantitatively,
calculated tunneling rates and the crossover temperature
much lower than the experimental values. The inclusion
phonon interactions by Wahnstrom hindered the tunne
leading to even larger discrepancy between theory and
periment.

The model employed by Wahnstrom assumed that
bath was approximately Ohmic. The bath parameters w
determined from a molecular dynamics calculation of t
surface motion. The calculated diffusion rates for this mo
are 8 orders of magnitude lower than the measured diffus
rates. This result reflects the fact that an Ohmic bath w
a'1 suppressed the tunneling rates~see Section III B!. The
discrepancy can be explained by noticing that other type
phonon motion can enhance the tunneling, through the ef
of lowering the tunneling barriers~phonon assisted
diffusion104!. To investigate the two competing trends a c
culation based on the surrogate Hamiltonian theory was
tiated.

Four separate calculations of the tunneling rates w
carried out based on the same adiabatic potential ado
from Wonchobaet al.81 The first calculation was performe
with a frozen lattice establishing a benchmark. The sec
calculation employed an Ohmic bath linearly coupled to
tunneling motion~see Eq~3.3!!. The parameters of the bat
were taken from Ref. 101. In the third calculation the p
mary motion was coupled to an Ohmic bath by a Gauss
coupling function:f (R)5exp(2(R2Rb)

2/2s2) in Eq. ~2.4!.
Rb was positioned at the barrier peak ands was small
enough to localize the coupling function to the immedia
vicinity of barrier. The dynamics induced by any mode in t
bath in this case raises and lowers the barrier relative to
stationary well minima. This is in contrast to the linear
coupled Ohmic bath where for each mode, the barrier is
tionary and the two potential wells oscillate out of phas
Finally, the simultaneous effects of the two types of ba
was investigated. The spectral density of each of these b
is not known, so only a qualitative analysis is possible.
assist the comparison the two baths were chosen to have
same Ohmic dependence and cutoff frequencies.

The calculation was initiated by determining the eige
states of the adsorption site. The tunneling route was ar
cially blocked and imaginary time propagation was e
ployed in conjunction with the filter-diagonalization metho
of Neuhauser.73 For the frozen lattice five initial states wer
calculated where the highest eigenvalue was close to the
of the barrier. When baths are added the number of ini
eigenstates grows significantly.

Once these states are available the tunneling rout
opened and a negative imaginary potential is placed in
empty site. This potential regularizes the problem allowi
to operate on the initial wavefunction with the Green ope
torG(E)5(E2H)21.70 This operation filters out the tunne
ing state with energy close toE.74 A few calculations re-
quired a repeated applications ofG(E) in order to filter out
the pure tunneling state. The imaginary part of this stat
energy is directly related to the tunneling rate. The flux
the tunneling state is another measure of the tunneling r
, No. 21, 1 June 1997
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8872 R. Baer and R. Kosloff: Dynamics of adsorbates near metal surfaces
An agreement between these two values is a direct indica
of convergence.

The calculated thermal diffusion rates are shown in F
9. It is seen that the linearly coupled Ohmic bath destroys
groundstate tunneling motion, suppressing it by five ord
of magnitude compared to the frozen lattice tunneling ra
This result is consistent with the calculations
Wahnstrom.101 Contrarily, the fluctuating barrier model wa
found to promote the tunneling by a factor of 5. The co
bined motion, where both baths are given equal strength
hibits higher tunneling rates than the linear bath alone.
low temperature this enhancement is a by a factor of
These results are still way below the frozen lattice calcu
tions and the experimental observations.

The nonadiabatic effect on the tunneling was calcula
using the method presented in Section IV. It was found
have a relatively weak suppressing effect on the tunne
rate and crossover temperatures compared to the effec
the phonons. This is due to the small coupling between
hydrogen and the conduction electrons at the surface.

As a conclusion, to explain the low temperature, tunn
ing rates the coupling function between the phonon baths
the hydrogen atom. This has been recently done for the
surfacing of hydrogen in nickel, where MD simulations we
used to calculate the spectral density, revealing that appr
mately three baths are required to describe the phonon
fects~see Ref. 98 for an example of a detailed analysis!. It is
also probable that the adiabatic potential energy surface
ployed overestimates the tunneling barrier.

VIII. DISCUSSION

The elucidation of dynamical encounters in conden
phases has to include dissipation. The surrogate Hamilto
approach presented in this study incorporates dissipative

FIG. 9. Diffusion rates for hydrogen on Ni~100! as a function of inverse
temperature. The solid line is a frozen crystal calculation with a crosso
temperature of 75 °K. The lowest diffusion rate is that of the linea
coupled Ohmic bath with a crossover at 67 °K. Next, the highest diffus
rates correspond to a Gaussian coupling to a Ohmic bath, simulating
pendent barrier breathing mode, with a crossover at 65 °K. Finally,
results of integration between the 2 Ohmic baths is given by the long-da
line. The measured diffusion constant at the temperature independent re
is 2 3 10212 ~Ref. 102! and 10211 ~Ref. 103!. In the double bath calculation
each bath was sampled by 3 modes~TLSs!.
J. Chem. Phys., Vol. 106
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namics without compromising on the quantum nature of
processes involved. A sufficient number of bath modes r
resented as two-level-systems are employed to describe
dissipative dynamics for a specified observable. The c
verged periodtc depends on the number of bath mod
through the maximum discrete density of statesr(emax). For
an equal sampling of the energy rangetc is linear with the
number of modes. These considerations are a manifesta
of the time-energy uncertainty principle where for short tim
dynamics a course grained representation of the energ
sufficient. The present study is consistent with the obser
tion of Cederbaumet al.48 that incorporating more indepen
dent bath modes is more important than a detailed desc
tion of a single mode.

For a particular system-bath construction the combin
system is a single entity. The use of the Chebychev pro
gation methods25 leads to a uniform convergence in all th
sampled energy band. This approach differs from other tr
ments of dissipative dynamics in which there is an opera
distinction between the representation of the primary sys
and the bath. This distinction is obvious for the quantu
classical methods or the Liouville space method in which
bath is not considered explicitly at all.

In the present approach the description of the prim
system is unrestricted. A harmonic or unharmonic or doub
well potential can all be represented by the same grid. T
use of a grid also permits an unrestricted system-bath c
pling function.

The time propagation requires an initial state. This
done in two steps: The first is to locate the energy eigenfu
tions of the combined system-bath starting from below. T
procedure used is based on propagation in imaginary ti
The number of eigenfunctions required grows with tempe
ture and exponentially with the number of bath modes. T
eigenfunctions found incorporate naturally the shift in t
primary systems frequencies due the interactions with
bath.

Once these stationary states are found a perturbatio
applied to the system, designed to mimic an experime
setup. For example, in the calculation of stopping powe
momentum shift operator is imposed on the system, insta
creating a moving particle. For simulating weak field abso
tion spectrum the dipole operator is applied to the initial st
and the relaxation in time of the dipole correlation functio
is then transformed to the line shape function. This form
ism caters naturally to simulations of ultrafast experime
where a short electromagnetic pulse is applied to the sys
and the induced polarization is followed by a weak prob
Simulations of thermal processes requires to repeat
propagation step for each initial state and then to Boltzm
average the results. The need for averaging an the expo
tial increase with the number of modes practically limits t
treatment to low temperatures.

The present procedure should be compared to meth
based in Liouville space.6,19–22 For the relaxing Harmonic
oscillator a sufficient Liouville description would require
density operator represented by a matrix of size 64364. The
surrogate Hamiltonian method with a wavepacket of dim

er

n
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sions 6432n with n56 TLS bath modes has an equal re
resentation size. Unlike the Liouville dynamics the wa
packet calculation has to be repeated many times to des
a thermal encounter.

The two methods are not equivalent, the Liouville a
proach has the advantage that it can be constructed to
asymptotically to the thermal equilibrium state. The sur
gate Hamiltonian method which is not Markovian is able
describe the correct short time dynamics. For larger grid r
resentations at low temperature the balance shifts toward
surrogate Hamiltonian approach. The surrogate Hamilton
method avoids the complicated issue of calculating the re
ation tensor required in the Redfield or weak coupli
theory.20,105 This is of particular importance for simulatin
strong field ultrafast processes where the relaxation te
has to be adjusted to include the effect of the exter
field.106 The uniform structure of surrogate Hamiltonia
method will naturally incorporate these effects.

The surrogate Hamiltonian approach can be extende
describe dissipative phenomena generated simultaneous
more than one bath. A natural example is vibrational l
shapes of an adsorbate on metals where both electronic
phononic baths participate. For high frequency vibratio
modes the line shape is dominated by nonadiabatic effe

Tunneling dynamics is extremely sensitive to the dis
pative environment. Different local modes can either e
hance or suppress the tunneling dynamics. In the surro
Hamiltonian each of these effects is represented by a s
rate bath. The spectral density of these different baths ca
determined by analyzing the motion for several positions
the hydrogen atom on its adiabatic potential surface us
MD simulations. In Ref. 98 an example of such a calculat
has been worked out for the tunneling of subsurface hyd
gen to a surface site in nickel. The detailed analysis
determined three operative baths. Tunneling dynamics
found to be extremely sensitive to the correlated motion
all these baths. This is a general conclusion for any tunne
motion influenced by its environment.

This study shows that the surrogate Hamiltonian the
leads to new insight into the dynamics of dissipating s
tems. More effort and comparative studies are still requi
to determine the range of utility and applicability of this ne
method.
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APPENDIX: SPECTRAL DENSITY FOR A PROTON IN
AN ELECTRON GAS

The starting point is the Hamiltonian of Eq.~4.5! de-
scribing a particle with coordinateZ in a potential wellVs ,
interacting with a bath of electron-hole-pairs~EHP!. These
Bosons are taken as the elementary excitations of a hom
J. Chem. Phys., Vol. 106
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neous noninteracting electron gas, of dens
re

215(4p/3(r sao)
3), whereao is the Bohr radius andr s is

the electron packing parameter. Many-body effects such
screening are taken phenomenologically into account
modifying the electron-proton Coulomb interaction:

v~r !52
e

r
exp~2kr !, ~A1!

wheree is the electron charge,k'3a/aoAr s is the inverse
screening length anda5(4/9p)1/3.62 Under this interaction,
the electron hole pair coupling to the proton in Eq.~4.5!
becomes:

Vq52
4pe

q21k2 . ~A2!

As shown for the phonon bath, the spectral density
extracted for the nonadiabatic interaction. The derivation
along the same lines as for the phonon case but differen
details. Focus is on the proton dynamics, with the opera
evolving according to the Heisenberg equations of motio

Ż̂5P̂/M ,

Ṗ̂52
]

]Z
Vo2 iV21(

j
Vqj

qj
zeiq j

zẐb̂j
†1H.C. ~A3!

The harmonic bath enters the proton equations of mo

through the operatorV21( jVqj
qj
zeiq j

zZb̂j
†1H.C. In order to

take this into account, a new Boson creation operator is
fined:

B̂†~q,e!5V21
1

AJ~q,e!
(
j
Vqj

b̂j
†d~qj

z2q!d~e j2e!,

~A4!

where J(q,e)5V22( juVqj
u2d(qj

z2q)d(e j2e) is the 2 di-

mensional spectral density. TheB̂(q,e) have the following
Bosonic commutation relations:

@B̂~q,e!,B̂~q8,e8!†#5d~q2q8!d~e2e8!. ~A5!

Equations of motion can be directly inferred from the Ham
tonian Eq.~4.5! leading to:

Ḃ̂~q,e!52 i eB̂~q,e!1 iAJ~q,e!eiqẐ. ~A6!

The following Hamiltonian, which yields exactly the abov
Heisenberg equations can replace the more elaborate Ha
tonian given above:

Ĥ5
P̂2

2M
1Vo~ Ẑ!1E eB̂~q,e!†B̂~q,e!dqde

1E @eiqẐAJ~q,e!B̂~q,e!†1H.C.#dqde. ~A7!

The only relevant characteristic of the bath is the spec
densityJ(q,e), dependent on two parameters. The spec
density can be calculated for the screened-Coulomb inte
tion. First, a calculation of the density of EHPs is mad
Using the Fermi–Dirac distribution atT50 nk5u(kF

22k2)
, No. 21, 1 June 1997
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whereu(x) is the Heavyside function andkF is the Fermi
wave number of the electron gas, the EHP density is:

N~qe!5(
k

(
k8

nk~12nk8!d~e2~ek82ek!!d~q2~k82k!!,

5
V2me

2

16p5\4q
minS e;eF2

~e2eq!
2

4eq
D , ~A8!

where eF is the Fermi energy of the electron gas a
eq[\2q2/2me . For the small excitations expected in the sy
tem, this density of excitations can be well approximated
the function:

N~q,e!'
V2me

2e

16p5\4q
u~2kF2q!. ~A9!

Using this approximation the spectral density becomes:

J~q,e!5V22E d3q8E de8N~q,e!S 4pe

q821k2D 2
3d~q2qz8!d~e2e8!. ~A10!

A direct integration yields Eq.~4.7! in the text.
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