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Dissipative dynamics of an adsorbate near a metal surface is formulated consistently by replacing
the infinite system-bath Hamiltonian by a finite surrogate Hamiltonian. This finite representation is
designed to generate the true short time dynamics of a primary system coupled to a bath. A detailed
wave packet description is employed for the primary system while the bath is represented by an
array of two-level systems. The number of bath modes determines the period the surrogate
Hamiltonian reproduces the dynamics of the primary system. The convergence of this construction
is studied for the dissipating Harmonic oscillator and the double-well tunneling problem. Converged
results are obtained for a finite duration by a bath consisting of 4—11 modes. The formalism is
extended to dissipation caused by electron-hole-pair excitations. The stopping power for a slow
moving proton is studied showing deviations from the frictional limit at low velocities. Vibrational
line shapes of hydrogen and deuterium on nickel were studied. In the bulk the line shape is mostly
influenced by nonadiabatic effects. The interplay between two baths is studied for low temperature
tunneling between two surface sites of hydrogen on nickel. A distinction between lattice modes that
enhance the tunneling and ones that suppress it was found. 998 American Institute of Physics.
[S0021-96067)00720-4

I. INTRODUCTION the bath is described by its correlation functions. This basic
derivation has been supplemented by the requirement that
The dynamics of molecules adsorbed on metal surfaceghe reduced equations of motion have the semi-group form,
are complicated due to the simultaneous encounter with disneaning that they preserve the complete positivity of the
sipative forces from two origins: electronic and phononic.density operatof:°
Electronic dissipative forces are caused by the interaction of A complementary approach to dissipative dynamics is to
the free metal electrons, or more precisely from eIectron-hol%xiomatica”y require a semigroup form. This leads to a gen-
pairs interacting with the adsorbate. These electron-holg | form for the reduced evolution equatidhs!® These
pairs are able to exchange a continuous amount of energyy, ations allow a consistent study of different dissipative
The other source of dissipative forces are the lattice V'brafnodels%“'ls but require an empirical treatment when a par-

thﬂS.OI‘ phonons Wh'C.h again form a band Of. energy Ievelsticular system is studied. Such an approach has been used for
In this study, a consistent quantum theory is proposed t?nodeling the photodesorption of NO from a nickel

describe the short time dissipative dynamics of an adsorbate 6-18 .
. ) : S . Surfacet®18where the influence of the metal electrons was
interacting with a metal surface. The formulation is cast into,

o . imposed empirically by using the semigroup form.
a wave packet and surrogate Hamiltonian description. Th tical disadvant f both th . q
The basic idea is to distinguish between the dynamics of € practical disadvantage of bo € semigroup an

the primary system, the adsorbate, and that of the bulk whicﬂje Redfield theories is that they are formulated in Liouville
consists of the electronic and lattice degrees of freedom. ThEPaCc€ Where the state of the system is represented by a den-
focus of the study is the dynamics of the primary systenIty OPerator. This fact squares the number of required rep-
which therefore is described in detail. The treatment of thd€Sentation points in comparison to a wave function descrip-
bulk, or the bath modes, includes the minimum details relion- Although powerful numerical techniques have been
quired to specify their influence on the primary system. ~ developed to solve the dynamics in Liouville spate=*it

The idea of partitioning the system into primary and bathStill is extremely taxing to treat these problems, limiting the
modes has been the key element in the quantum theory §€OPe of systems that can be studied.
dissipative dynamics. Starting from the work of BlotH, The approach presented in this paper is based on con-
reduced equations of motion for the primary system havestructing a surrogate finite system bath Hamiltonian, which
been derived. The reduction is obtained by performing a parin the limit of an infinite number of bath modes generates the
tial trace over the bath degrees of freedom resulting in drue systems dynamics. This is done by renormalizing the
Liouville description of the primary mode. The most well System-bath interaction term in the surrogate Hamiltonian.
studied derivation is based on the assumption of weak couFo reduce further the computational effort, the bath modes
pling between the system and bath leading to a differentiaire represented by the elementary two-level sys{€hs).
equation describing the systems dynanficsin this deriva- The primary system is represented by the Fourier
tion, commonly called Redfield dynamics, the influence ofmethod?>~2° allowing a very general description. The dy-
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namics generated by the finite surrogate Hamiltonian aribrational frequencies, comparable to the Debye cutoff fre-
able to reproduce, for a specified period of time, the truequency, the phonons make a significant contribution to the
system-bath dynamics. This construction is not Markoviarline shape. A fingerprint of this contribution is the strong
and therefore differs from the Redfield or semigroup treattemperature dependente.
ments. The use of a finite number of degrees of freedom to  The stopping power by metal electr8he of a fast
represent the bath limits the length of time in which themoving ion is another case in which dissipative forces are
dynamics is consistent with that of an infinite bath. The finiteresponsible. For kinetic energies above the Fermi energy of
nature of the bath usually shows up as recurrences whicthe electrons the dissipative forces are purely frictional. At
eventually appear. Increasing the number of bath modew kinetic energies, the surrogate Hamiltonian method
postpones the recurrence to a later time, thus the number shows that the dissipative effect is different.
modes needed is determined by the time scale of the dynam- Dissipative forces play a dominant role in tunneling. The
ics. reason being that tunneling is exponentially sensitive to all
The surrogate Hamiltonian approach is close in spirit tovariables which influence the dynamics. An extreme case is
real time path integral techniqué&?” where a large many- that dissipative forces can stop tunneling completéty’
body propagator is constructed and approximated. These apunneling through a barrier of a double-well potential is
proximations represent the bath modes as Harmonigsed in this study as a benchmark to validate the surrogate
oscillators?®~3for which the path integration can be carried Hamiltonian theory. The theory is then applied to low tem-
out analytically*? perature diffusion of hydrogen on a nickel surface. Both
Other wave packet approaches to describe dissipativehononic and electronic dissipative forces on the primary
phenomena have been proposed. Significant effort has be&#neling system are to be considered.
devoted to mean field methods which approximate the many-
body wave function in a product form. These methodsll. GENERAL FRAMEWORK
known as TDSC® or TDH3* neglect explicit correlation.

. - The dynamics under study is staged in the multimode
They form the base for quantum-classical metRodS

X X X coupled system-bath entity. The surrogate Hamiltonian
where the primary part is treated quantum mechanically ang o4 presented in this section is designed to study the

. ; A _
the bath classically or semi-classicaffy*' TDSCF and vari- dynamics of a finite system coupled to an infinite multimode
ants which take into consideration some correlation hav%ath at low temperature. It is assumed that the bath has a
been a}égﬂéed extensively to atomic sticking on  cold ;qniinyous infinity of modes each of which is coupled only
surface Their primary drawback is thgt they contain infinitesimally to the finite system under study. This means
uncontrollable approximations. The mean field method cany ot ot jow temperatures the bath is well approximated as a
be corrected by explicitly including correlations. The most qjiection of independent harmonic oscillators, even when
sophisticated method is the multi-configuration time depentq gyerall coupling of the system to the bath is strong. An
dent Hartre¢MC-TDH).""™When applied to a system-bath 5 itional assumption is that the coupling to each mode is

encounter it has the same flavor as the surrogate Hamiltonig[hear in the mode’s displacement. This assumption is always
method. well justified when the overall bath-system coupling is suf-

Another dissipative wave packet method equivalent tQicienily weak, but it may also be applicable for strong cou-
the semigroup approach has been developed by Percival al ﬂng.

others**52 The method constructs a non-linear stochastic

L ) S , The complex bath and its coupling to the system have
Schralinger equation, which is solved using Monte Carloy, pe reduced to a tractable computational scheme. The

techniques. It has the advantage of generality, but has Nyzqt a5k is to construct a representation of the coupled

merical difficulties including slow convergence. This ap- system which can be systematically improved enabling

proach is simple to understand by considering a quantuny’gy,qy of convergence characteristics. Once the representa-
system influenced by a time dependent stochastic potentiglye \wave function has been constructed, dynamics is

The evolution can be followed either by averaging the eVOyetermined based on the expansion of the evolution

lution operatot* or by following individual realization of the N T
stochastic force and averaging all the realizations at the en&Ioerator U(E)jlex-p( IHU/A) or the Green operatpr
(E)=(E—H) in terms of a Chebychev polynomial

The surrogate Hamiltonian method is applied to a variet)f3 -

of dynamical dissipative processes taking place on metalSeries:* The propagation enables a direct extraction of ob-

Vibrational spectral linewidths are a direct measure of dissiSeTvable information.

pative forces. In the linear response limit the line shape is th@a. Representation of the coupled system
Fourier transform of the dipole—dipole correlation function. L
Decay of correlation due to dissipative forces is reflected by The system-bath repres_entatloq IS devglopgd through_the
the linewidth. The interplay between the nonadiabatic ancftUdy OT the totaI.Hamlltoman. This Ham|lt9n|ar.1A|s parti-
phononic effects on vibrational line shafe® has been the tioned into the primary system's bare Hamiltoniéfy the
subject of numerous theoretical studies. For high frequencath HamiltoniarHg and an interaction terrd;,; leading to:
modes, most of the effect is due to electron-hole-pair excita- ~ ~ ~ =~

tions. Electronic effects have been studied using density H=Hs+Hg+Hint 2D
functionaP”°® or molecular orbita®® theories. For lower The primary system Hamiltonian has the form:
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H=T+V(R), (2.2) . 1 .
Bi(e)= ﬁ; Vb s(e—¢)). (2.9

whereT =P?/2M is the kinetic energy of the primary system

and Vs is an external potential which is a function of the Similar equations exist for the corresponding annihilation

system coordinateR. The bath HamiltoniarHg is decom-  gperators.J(e) in these equations are normalizing factors
posed to an infinite sum of normal modes: defined by:

HB:; €;b]b;. (2.3 =2 |V2o(e;—e). (2.9
J

The indexj is a multidimensional index describing a com- o ~t . )

plex bath of Bosonic modes with energies. Finally, the This definition ensures th&, andB, retain the Boson com-
interaction term is a multiplication of a dimensionless geo-Mutation relations:

metric function f(R) with a Boson modeb| of potential o At ,

coupling strengthv; : [BeBo1=d(e—¢€"). (2.10

The Heisenberg equations of motion for the new Boson op-

Hine=f(R)X V(b +by). (2.4 erators are obtained from the Hamiltonian of E2.1) by
J commutation:
The operatorsli)j’r and Bj are Boson type creation and annihi- . A A L . A
lation operators, obeying the commutation rules: B(e)=—ieB(e)—if(R)yI(e)R=P/M,P=—-VV(R)
A Bt 1= 3 . .
[b;,b%:1=6; ;1. 2.9 —Vf(R)f JI(e)BT(e)de+H.C. (2.1

This system-bath Hamiltonian already represents a drastic
reduction in complexity compared to the generic system-batihe Hamiltonian which contains the dynamical information
entity, mainly due to the simple linedin the bath coordi- of these equations of motion is the surrogate Hamiltonian:
nate interaction term. Nevertheless, for the specific system
under study where an adsorbate interacts with the electronic
and phonon baths, it will be shown that this description is
reasonable.

Equations(2.1)—(2.4) serve as the starting point of the +f(|§)f \/J(_G)BT(E)dG'FH.C. (2.12
investigation, but further reduction is required since these
equqtions are too involved_ to be treated directly. The pro_bi:ormally, this Hamiltonian governs the dynamics of the pri-
lem is simplified by observing that the bath modes are unin- ~ Tl

teresting by themselves. Only their influence on the primarymaryR_.P system n a completely equivalent manner to the
. . full Hamiltonian. This statement must be qualified since not
system has to be considered. The goal is to assemble

Hamiltonian consisting of a finite number of bath modes,aeh initial states of the bath exist in the Hilbert space of the

. . - . surrogate Hamiltonian. However, since a Boltzmann average
which faithfully represents the dynamics of the primary sys- A o . .
. e .7 7~ over the initial states is intended, this poses no practical
tem under the influence of an infinite bath for a finite time.

. . .problems. The consequence is that the system-bath is fully
This means that a systematic approach to converge a speciti : - .

. . characterized by the normalizing function, often called the
dynamical question has to be developed.

Such a goal is achieved by transforming the IohySiCa”yspectral densityi(€). A derivation using path integral meth-

rich Boson bath to a simplified finite bath. This is done byOdS'Il'iaed:xﬁgtg;ecj?)r:tehg?sncelgfr?gndensi oints the wav to a
examining the Heisenberg equations of motion for the pri- P ty p y

marv svstem: convergent method of sampling the bath by a finite number
y sy ' of modes. The finite bath dfl oscillators is constructed by
E requiring a spectral density which resembles, and, in the

A, ~T+VyR)+ f B(e)B()de

R=P/M, limit N—o, converges to, the given spectral density of the
. full bath. The algorithm of sampling the Boson bath assumes
p= —Vvs(ﬁ)—Vf(ﬁ)( ORY BjT+H.C.>. (2.6)  the given spectral density functiai{€) is of finite support,
! so that there exists an interval of enerdies, ;] outside of
The bath enters these equations through the operator: which the density is zero. The interval is sampled by select-

ing N energy pointsieg<e;<---<ey_i. FOr each energy
Boson creatio3! and annihilatiorB,, operators are defined.
The energy sampling specifies a density of states for the
discrete bathp(e,,)~(ems1— €m)  *. In conjunction with the
where a creation operat&®'(€) for aninteraction-Bosoris  spectral density, the density of states imposed by the sam-
defined: pling determines an effective interaction through the relation:

> v,-B,T+H.c.=J JI(e)Bl(e)de+H.C., 2.7
J
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UnBlp(em) = I(em Bl (em). (2.13 5*:(0 0) A:(O 1) ﬁ:%:<0 ) 219
Thus, for the discrete surrogate Hamiltonian, the strength of 10 00 01

interaction between theith Boson and the primary systemis - .o generaN case, a wave function is represented as a
given by: spinor of 2 components bit ordered. This means that the
Um=vJ(em)/p(€m)- (2.19 mth comppnent represent; a spin grrgngement determined by
the 1's(spin up and 0's(spin down in it's binary represen-

The discrete surrogate Hamiltonian therefore takes the fo't'ation. Each componens,(R) is defined on the equally

lowing form: spaced grid. The Fourier mettfdd* is used for the repre-

o N Nt R sentation of the primary system operators.

A=T+V(R)+ EO emBI B+ f(R) ZO UnBl+H.C. The wave function representation is designed to effi-
m= m=

ciently perform sums of spin operators. The algorithm for

21 R
) _ i _ 213 applying the number operator for theh spin, n,, on the
This c_onstru_ct|on has the mgrlt that Msincreases and the |\5e functionWw, consists of multiplying the component
sampling refined, the dynamical observables converge. Thg 1 thekth bit of the binary representation of the integer
convergence progresses in time with increasing number gf; (9 or 7).

bath modes and is inversely proportional to the largest en- Applying the operatok,V(R) BJ—T is performed by recur-

ergy sampling intervap(emay. Although the Hamiltonian sion. The recursion is based on the structure of the matrix

Eq. (2'13. degqnbmg .the gorrelated systgm-bath dynamlcs IS’representation of the interaction operator. Observing the ma-
greatly simplified it is still untractable in a computational

scheme excent in a one or two mode approximation. In ordetrrix representation of the three mode case although this ma-
P PP . 7 7 1rix is never actually computed or stored reveals the general
to be able to check convergence a further reduction is re-

quired. pattern:

0 V;, Vb, 0 V; 0 0 O

V; 0 0 V, 0 Vs 0 O

V, 0 0 V, 0 0 V; O
V, V; 0 0 0 0 Vs

B. A Boson bath as a set of TLSs

Further reduction is based on the assumption is that the

bath temperature is low. Under these conditions no single/yé: (2.20
mode oscillator is highly excited. This allows each bath V3 0 0 0 0 V; V, O
mode to be represented by a two-level sys{&irS), leading 0 V; 0 0 V, 0 0 V,
to a replacement of the Boson operators by TLS operators: 0 V; 0 V, 0 0 V,

b'—o,, 0 0 0 V; 0 V, V; O

b—o_. (2.16  The general recursive form of the matrix is described as fol-
Notice that the commutation relations also transform: lows. The 2'x 2" matrix 7} is defined by:

[b,b=1—[c_,0,]=1—-2n, (2.17) [N U

N a A a . 7N= | yrg > : (2.21)

wheren=b'b—n=0,0_. Since(n) is 1 for an excited N-N-1 ' N-1

TLS and 0 otherwise, the violation of the commutation reIa—The definition is recursive with,, being the 2'x 2™ unit

tions is small if none of the TLSs get highly excited. For ,4irix and7y_,=0. The operator”y consists of only di-

higher bath temperatures a three level system formulatioagona| operations, reducing the numerical effort to a quasi-

can be built along the same lines. _ linear one MlogM), in the number of spinor components
The numerical implementation of the dynamics of a sub-\, — oMy,

system coupled ! two-level system¢TLS) is best under- This algorithm contains all possible system-bath correla-

Sthd by first following the special case of a one mode;jong |t is possible to restrict the number of simultaneous
N=1 bath. In this case the wave function is represented as goyy excitations. The most extreme restriction includes only

two-component spinor a single phonon excitation, yielding an algorithm resembling

bo(R) the model of Stile®t al®® for phonon dissipation in inelastic

by (R)) (2.189  collisions with metal surfaces. Such models have also been
1

used for calculating sticking probabilitié*4
The “0” component corresponds to spin down while the
“1” component to spin up. The functiong,(R) are defined
on equally spaced grids although other representation tec
nigues are possible. ThR-independent spin operators ap-
pearing in the Hamiltonian are represented as22matrices The primary system is represented by the Fourier
in the 2 component vector space: method?3~%° enabling multidimensional systems to be ana-

V(R)= (
*E. System-bath dynamics
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lyzed with no restriction on the potential shape. The expo-
nential convergence of the method allows an elimination of
errors due to representation.

Extracting dynamical information on the system requires
propagation of an initial wave function by applying the evo-
lution operator:

¥ (t)=0(t)¥ (0)=e " F/ip (). (2.22

The time dependence of the expectation value of any opera-
tor is determined by:

(A(D)=(V(1)|A|P(1)). (2.23 “0.0 10.0 20.0
. Time
Frequency domain observables can be extracted from the
half Fourier transform of various correlation functions: FIG. 1. The energy relaxation of the harmonic oscillator. The energy expec-
tation value is shown for an increasing number of bath mé¢8¢s7,9 for a
i ot zero temperature Ohmic bath with=0.01 ande;= 3. The thin line repre-
Clw)= hJ <\P 0)|X(t)>dt sents an exponential decay obtained from a semi-group weak coupling limit.
The insert shows the short time dynamics which deviates from the semi-
=<‘I’(0)|é(ﬁw)x(0)> (2.24 group result(Note: 1 period of the oscillator is equal tar2)
whereG(E)=(E—H) ! is the Green’s operator.
A general, accurate, stable and efficient method of ex- p2
: : : ; N NN oo Rt
ecuting these calculations is to expand the evolution operator H= > + > + 2 € bj b;+ REJ_‘, Vi(b;+ bj ). (3.1

or the Green’s function operator in a series of Chebychev
polynomialsT,(H) whereH is the Hamiltonian operator lin- The bath is described by a linear spectral density,
early scaled and shifted so that it's spectrum is in the rangé(e) = ae with a cutoff frequency ok.. This type of bath is
{—1,1.>***The expansion coefficients are functionsg#6r  known as an Ohmic batff. The dimensionless parameter
the evolution operatdd(t) or of E for the Greenian operator determines the strength of the coupling. A finite bath with
G(E). When the Hamiltonian is completely hermitian, the equally spaced sampling of the energy range was used. Other
expansions are both accurate and extremely stable. When tBampling strategies, such as the exponential sampling used in
Hamiltonian has a nonhermitian component, these exparBection Il B gave essentially similar results. The weak cou-
sions are still stable, provided a slightly different scaling ispling limit predicts a pure exponential decay of energy which
performed for the Hamiltoniatsee Ref. 70 for detailsAn  for zero temperature has the rafe=27aw,.”
alternative is to use a Newtonian polynomial expangfon. The surrogate Hamiltonian is applied to a relaxing har-
These techniques will be used for all the dynamical calculamonic oscillator with a coupling parameter=0.01 and
tions shown in this study. €.=3. The calculation was performed with an increasing
The propagator technique is also used to construct thaumber of TLSs which progressively pushed the converged
initial state for the calculation. Propagating in imaginary part of the approximation to longer timégig. 1). The period
time leads eventually to the fully correlated groundstate obf convergence,, from Fig. 1 is inversely proportional to
the combined system- bath enti/By employing a filter- the sampling intervatt ~2mhl pma=2mhNle;, and linear
diagonalization methdd’* other eigenstates are extracted with the number of bath modes for equal sampling.
directly. Thermal observables are obtained by Boltzmann The dephasing phenomena of the oscillator is best ob-
weighting the results from the individual calculations. served through the study of the dipole correlation function:

i~
P T
Ill. APPLICATION TO MODEL PROBLEMS C(t)= <l/lg|Re 4 R|1,bg> (3.2

52

The application of the surrogate Hamiltonian to well (Yol R o)
studied model problems exemplifies its ability to describeThe autocorrelation function is shown in Fig. 2 together with
dissipative phenomena. An important aspect to be address#ige weak coupling exponential envelope.
is the convergence of the method with respect to the number For this mode there is no pure dephasing. Therefore
of bath modes. T,=3T,. This relation is confirmed by the calculation.

For the case of strong coupling, the bath parameters
were «=0.3 ande;=1.3. The resulting energy and dipole

A popular benchmark system for dissipative dynamics isauto correlation function as a function of time are shown in
the relaxing Harmonic oscillator. When an oscillator is im- Fig. 3. The calculation was performed with an increasing
mersed in a bath, its frequency will shift due to the interac-number of TLSs. It is seen that energy is very quickly dissi-
tion and energy relaxation and dephasing will take place. Apated in the course of about half a period. The energy decays
simple model is the harmonic oscillator coupled linearly to ato a value of 0.6, higher than the oscillator 0.5 groundstate.
bath: The decay exhibits damped oscillations of the energy.

A. The harmonic oscillator in an Ohmic bath
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FIG. 2. The absolute value of the autocorrelation function of the dipoleFIG. 4. The absolute value of the autocorrelation function of the dipole
function for the relaxing Harmonic oscillator weakly coupled to the bath. function for the relaxing harmonic oscillator strongly coupled to the bath.
The dynamics is shown with an increasing number of bath modes. The thifhe dynamics is shown with an increasing number of bath modes.

lines represent the weak coupling envelope.

has been studied by using Feynman path integral
The absolute part of the autocorrelation function isapproache8}®® renormalization-group methdtfsand Red-
shown in Fig. 4. The strongly coupled case converges slowljield dynamics theor§?
at times longer than one period of the harmonic oscillator. ~ The Hamiltonian for the symmetric double-well is:
The decay times, estimated from the converged part of the p2

. . . . .. R .
functions shows that for this system~T,. A= W+VD(R)+2]_ h;(%;,p;) + R_og Cix. (33

Here,M, P, R are the mass, momentum and position of the
double-well oscillatorVy is the double-well potential with
separation distanc®,, and h; is the Hamiltonian of the
Crossing a potential energy barrier is a cornerstone ifjth harmonic oscillator, with frequency, mass, position and
chemical research. Kramers over 50 years ‘affb has momentumi; , m; , X; p;. The bath system coupling is char-
pointed out the crucial role dissipative forces have on this;cterized by the spectral densiq(e)=2j|vj|25(e— &),
process. The most problematic issue is the dissipative effec;,gherevj =C;! /—ijwj_
on tunneling dynamics and on the crossover from Arrhenius Specifically the spin-bose system with an Ohmic bath is
kinetics to groundstate tunnelifig®®’*~*!A popular model  stdied, characterized by a spectral density linear in energy:
system for this problem is the symmetric double-well POten-j(e) = we. It is knowr’® that fora~1 the dissipation greatly
tial and its low temperature analog, the dissipative two statgfluences the tunneling rate. Furthermore, a transition to a
system, often termed the spin-bose probférithis model  completely localized regime occurs at the critical coupling
value of a,=1878°
A numerical representation of the Ohmic bath, has to
address the many energy scales of the problem. This fact is
characteristic of Ohmic baths and is the reason why renor-
malization techniques are useful for this probl&The bath
sampling technique has to span different energy scales, re-
sulting in an exponential sampling: €,=€b",
n=0---N—1 wheree, is the low energy cutoff and is the
sampling base. This scheme naturally introduces a high en-
ergy cutoff for the spectral density ai,=e,bN 1. It is
15 known that the critical behavior at=1 exists only when the
high frequency cutoff is raised to infinity. For a finite cutoff
‘ frequency, the tunneling rat® behaves ad~A (eg/€.),
) 10 15 whereA, is the rate without dissipatioff.
Time The double-well potential studied is described by poten-

B. The effects of a Ohmic bath on double-well
tunneling

FIG. 3. The energy relaxation of the harmonic oscillator for strong couplingtil:

case. The energy expectation value is shown for an increasing number of . 1 >

bath modeg7,9,1) for a zero temperature linearly coupled Ohmic bath V(R)=3(V +V_—(V,—V_)°+4C), (3.4
with «=0.3 ande,=1.3. The thin line represents an exponential decay 2 .

obtained from a semi-group weak coupling limit. The insert shows the IongWherth = :I-/Z<(Ri Ro) . The various parameters for the

time energy decay. calculation are tabulated in Table I. For these parameters, a
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TABLE |. Parameters of the double-well tunneling calculation.

Parameter Valuéa.u) .
‘510

Minima separatiorR, 0.7 &
Spring constank 0.029 38 £10°
Oscillator massv 1836 2
Minima coupling C 0.001 00 S 0
Oscillator representation grid size 64 points o
Oscillator grid spacing\R 0.1250 g .
Low energy cutoffw, 1.328e-05 &= 10
Number of bath spind| 8 "
Base for exponential samplirig 2 10 00 05 L0 15 2.0
High energy cutoffwy_ ;= wobN ! 1.700e-03 : ’ o ’ '

FIG. 6. The rate of tunneling, represented by the averaged velocity
) o d/dt(R) as a function of the dissipation paramegerThe dashed line indi-
bath of 8 spinsi§=2) was sufficient to converge the dynam- cates the theoretical result=Aq(wo/wy_1)%

ics up to a period of 1 psec. For longer times additional

Bosons are required. The tunneling time of the bare double-

well oscillator is of that order. The 8 Bosons imply using tunneling rate predicted by dimensional arguméhtshich

spinors of 256 wave packets, each represented by a 64 poits merged with the calculation fag<1.

grid, totaling a megabyte of memory for each wave func- The conclusion from the above benchmark systems is

tion. The calculation times for each run were approximatelythat the surrogate Hamiltonian implementation is able to cap-

1-2 hours on a Silicon-Graphics R8000 machine. ture quantitatively the dissipative dynamics associated with
The calculation is initialized by decoupling the two po- correlation functions and quantum tunneling dynamics. Once

tential wells[settingC=0 in Eq. (3.4)]. The groundstate confidence has been gained, the method can be applied to

i of the left well is determined by propagating in imaginary more realistic encounters.

time on a trial wave function:

. t—oo IV. NONADIABATIC EFFECTS ON ADSORBATES
e Htwtrial 'r/fg . (35)

- The unique features of the interaction of the primary

With this initial state, the two wells are recouped and the fullSyStem with the electronic continuum requires a modified
dynamics takes oves(t) = exp(iFit) Yy The mean posi- formuIaﬂqn. The adla}batlc part of the interaction of the hy-

. f th i B is the d ical ob drogen with the semi-free metal electrons can be accounted
tion of the oscillator,(y(t)|R[y(1)), is the dynamical ob- ¢, by employing density functional calculatidhs® or re-
servable recorded during the evolution.

o ey " ion of th functi lated methods such as the empirical EAM? The nonadia-
lgure 5 shows the mean position of the wave funclion, ;e - nteractions are responsible for the dissipative
as a function of time for various values of the d'ss'pat'onphenomenée'%

parameter. The exponential growth in the transition time is In order to simulate the nonadiabatic phenomena they

clearly shown_ in.the. figure. The oscillations ‘!”der the imtlu'must be reduced to an effective heat-bath formulation. The
ence of t_hgldlssma'uc.)n appear damped and |rreg.ular. . basic idea is to construct the appropriate finite heat bath

The .|n|t|al tu.nnel'lng rate gvergged over the first PSEC ISyhich models the interaction of an interstitial atom with the
shown, in logarithmic scale in Fig. 6. Also shown is the conduction electrons of the metal for a specified period of
time. The relevant spectral density calculation is based on a
screened Coulomb electron-proton interaction.

The nonadiabatic interaction model describes the sys-
tem’s dynamics by an Anderson type Hamiltonian, where the
interaction of the proton with the conduction electrons is
explicit;

. P? . .
A= W+V(Z)+§k: €Nk

- + QI Vel kkD2505, (4.1)

4101,:1.4 Kk’

0 200 400 600 800 1000 Here |k) represents the free one-electron states of the con-
Time (fs) duction band, characterized by 3 dimensional momerium

, N _ and energye,=#%2k?/2u,. The operators) anda, are the
FIG. 5. The expectation value of the positiBnof a double-well oscillator electron creation and annihilation operators for the state
for various values of the dissipation parameter An eight TLS bath was P

required to converge the results, until a duratiort6f1000 fsec. |k). The number operator becomes:=a}a,. The interac-
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tion term between the proton and the electrons is propor- ule’e (2ke—|q|) x 2Ke|q
tional to the inverse volume of the electron dasThis is a J(e,9)= —;7 3| arctan — %

. ) ) . kK K*+ 2Kg|q] 4k + K
manifestation of the locality of the proton-electron interac-
tion potentialv(r) which has a finite range ! wherex is lq|
the screening parameter. The constafts,, are the Fourier QPR (4.7

transform of the proton-electron interaction potential:

where u. and e are the electron mass and charge respec-
Vq:f €9y (r)dr. 4.2) tively, k is the inverse screening Iength afil: is the mo-
mentum of an electron at the Fermi level. The last two pa-

_ ) rameters are determined by the electron den&e the
Following Muller—Hartman, Ramakrishnan and Toulouseappendiy.

(MHRT),%*%the Hamiltonian is reformulated to describe the
coupling of the proton to a bath of Bosons. This approxima-

tion is valid for low temperatures when a local proton-

electron gas interaction takes place as in the case of the prdf: ELECTRONIC FRICTION FOR HYDROGEN
ton dynamics problems considered here. Alternative forms oP YNAMICS

Bosonization are discussed in Ref. 86. The Bosonization is
formulated in terms of electron-hole-pair excitations which
are created and annihilated by the following operators:

When a proton moves in a uniform electron gas it dissi-
pates its translational ener§¥lt is known that for velocities
lower than the Fermi velocities of the electrons, the energy
At ata s aga , dissipation has the form of friction dependence:
b/=alac Bi=afac {lkl<ke, [kK'|>keh. 4.3

dE
An electron-hole paiEHP) is characterized by two single d_Zk: — g, (5.9
electron states designated by the six dimensional index
j=(k,k") with k<kg and k’>kg, wherekg is the Fermi  wherev, is the velocity of the proton an#, is its kinetic
momentum of the conduction electron gasj &£HP repre- energy. The friction coefficien is independent of the hy-
sents an excitation energy;= e —¢€, and momentum drogen mass and velocity. The theory of hydrogen transla-
g;=k’—k. As long as the electron gas is close to its ground-ional energy dissipation in an electron gas has been devel-
state, these operators approximately obey the Boson commuped and experimentally tested in the range of energies

tation relations: higher than the Fermi enerdy, > ez (usually E,~1 kev).
L A Here, the models of nonadiabatic interactions presented in
[bj,b;r,]zéj'jrl. (4.4 Section IV and the numerical treatment of these models in

Section |l B are used to explore the very low velocity re-
For a thorough discussion of this Bosonization see Ref. 94gime, where the proton kinetic energy is much smaller than
The Heisenberg equations of motion for the EHP operathe Fermi energy.
tors b/ and the proton operatoR andsZ can be obtained The friction phenomena has been simulated using six
from the Hamiltonian of Eq(4.1). An inspection reveals that TLSs which sample twa-values® three e-values of the
the following effective Hamiltonian generates the samespectral densityl(q,e) representing the nonadiabatic bath.

dynamics? The first stage consists of localizing the atom by using a
confining harmonic potential. The ground state of the com-
P2 R R . bined EHP-proton system is then calculated by propagating
H= m+Vo(Z)+E gni+Q 1Y [que'qi'zb;r in negative imaginary time. In the second stage the harmonic
! ! potential is replaced by a constant potential and the relaxed

+H.C.]. (4.5 spinor wave packet is subjected tokik executed by the

momentum shift operatoe'"o?. The evolution operator is
This Hamiltonian is simpler than the original Anderson type.then applied to propagate the energetic wave packet coupled
It is similar to the Polaron Hamiltoniatf.For a one dimen-  to the cold Fermion sea. During the evolution the expectation
sional proton it is shown in the Appendix that the EHP bathvalue of the proton kinetic energy is recorded at regular in-
is uniquely and fully determined by the two parameter nonatervals. Figure 7 shows relaxation of the kinetic energy due
diabatic spectral density: to electronic friction.

The friction coefficients as a function of the electron
density and different proton momenta are shown in Fig. 8. A
cutoff energye.=0.27 eV was used in the calculations. The
high momentum cases converged to a velocity independent
This function, with a screened-Coulomb electron-proton in-friction regime. The convergent value of the friction coeffi-
teraction is calculated analytically using the Fermi—Diraccient # fits well with calculations based on the Lindhard
distribution at zero temperature. An analytical approximationtheory for screened-Coulomb interactioisee Ref. 62 The
for the nonadiabatic spectral density(s&e the Appendjx results are not particularly sensitive to the value of the cutoff

1
Iea)= o2 Vo|*dle—€)o(gf~a). (4.6
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0.040 : ‘ ‘ ‘ cantly the dynamics of bulk hydrogen, in particular the re-
surfacing motior’® Using the EAM schen®% the
hydrogen/nickel potential energy surface has been calculated
together with the local electron density. These results serve
as input for calculating the nonadiabatic line broadening of
hydrogen in an interstitial subsurface site and in a surface
adsorption site.

0.025 | ] Vibrational adiabatic line broadening of atomic hydro-
gen on metal surfaces has been calculated by Persson and
Hellsing">® yielding values of 10-30 cm' (FWHM) de-
pending on electron density. It has been estimated that pho-
non contributions are small for high frequenciés.

FIG. 7. The kinetic energy as a function of time of a slow proton moving in A. Line shape of hydrogen in bulk nickel
an electron gas. The electron density parameterg=isl.5 and the cutoff

energy ise.=0.27 eV. Three calculations are shown corresponding to dif- The phonon bath contribution to the line shape at low
ferent samplings of the EHP bath: 4, 6, and 8 TLSs. temperature has been calculated by the surrogate Hamil-
tonian method and found to be extremely small. This is a
result of the vibrational misfit between the slow lattice
phonons(cutoff frequency at~300 cm ') and the hydro-
gen bulk frequency (970 cnt for the mode perpendicular
to the surfacg The nonadiabatic effect was calculated using
the method of Section IV with the primary system potential
taken as an EAM adiabatic potential.

Details of the procedure for estimating the decay times
as follows. First, the ground statg and ground energy

of the total system is determined by evolving a trial func-
n in imaginary time. Then, the ground state is operated on
y the position operator of the oscillator. This yields the state

Kinetic Energy (eV)
(=
[—3
g

20 40 60 80 100
Time (fs)

energy and a cutoff energy et=1 eV has yielded similar
results. For low velocities the friction becomes velocity de-
pendent.

Another feature seen in Fig. 8 is that the friction coeffi-
cients diminish as the electron density is lowered. This oc
cursin spite of the increasi the spectral density. Since the
spectral density is a Fermi-golden rule expression for energy
rate dissipation, it is obvious that the relevant dynamics arg
more complex than a low order perturbation description. Theﬁg
energy dissipation is less efficient for a low density gas, du
to the fact that the Fermi momentufik: decreases. This -
leads to a less efficient coupling of thg proton motion be-#(0)=R#yq. The stata/(0) is now propagated in time using
cause of the long wavelength associated with the interactio];ehé;;u”é’('j;")m'|<t3/r(‘lt‘;‘|n|_'| Dj';?g )theai\aomtcljci)gotlze ocsgr"rlealgczoin_

oS!
in Eq. (4.9. C(t)=€e'Ea""((0)| y(t)) are monitored. Their decay rates
determineT, andT,.
VI. LINE SHAPES OF HYDROGEN IN NICKEL The EHP bath sampling was refined until convergence of

The chemistry of hydrogen embedded in nickel has beef® Slopes was obtained, to within 6%. This was done by
recently probed on a molecular levéf?” Using HREELS considering several baths. The first bath consisted of 4
spectroscopy the vibrational line of bulk hydrogen was iden{2€®20) EHP’s. Then, additional calculations were made
tified. The line shape gives insight to the dissipative forcedVith 6 (3e22q) and then §4e®2q) EHP baths, where it was
This means that an extensive energy sampling is not re-
quired. Next, a refinement of thg-sampling was tried. A
bath of 8(2e®4q) EHP’s was used and the slopes were in-

10 creased by more than 25%. Finally a @26q) EHP bath
~os ! was run, and the slopes changed by less than 6%, signaling
§ ) that sufficient sampling was obtained. The calculational ef-
g 06 | fort grows exponentially with the number of EHP modes.
£ ’ Thus it is quite difficult to obtain better converged results.
< The 12 EHP bath converges the dynamics for one period of
E 041 the oscillator before recurrences set in. This time was suffi-
-E’ oz | cient to observe an energy absorption of nearly 10% of the
=~ | excitation.

: + ¥ * The nonadiabatic line broadening and decay times are

0'00_0 2.0 4.0 6.0 8.0 10.0 shown in Table Il as a function of the interstitial electron

Proton Momentum (a.u.) density. In interstitial nickel the electron density parameter

FIG. 8. The fricti ficient f . o et re~ 2.1 yields a line width o~23 cm ! (FWHM). Line-

. 8. The friction coefficient for a proton moving in an electron gas as a,, :

function of the translational momentum and of the electron density:Wldth of hydrogen on \M'OO) a”?' Mc(.100). been measuréd
rs=1.5—circles,r ;= 2—triangles,r ;= 3—squares and,=4—diamonds. by IR spectroscopy yeilding a line width in the range of 12 to

The cutoff energy for these calculations was=0.27 eV. 65 cm 1. The large isotope effect measured leads to the
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TABLE II. Vibrational relaxation times of bulk hydrogen. show a crossover temperature of 160 K. Quantitatively, the
n T T EWHW) calculated tunneling rates a|_’1d the crossover tem_peratl_Jres are
e [fsed [fsed em- 1L much lower than the experimental values. The inclusion of
phonon interactions by Wahnstrom hindered the tunneling
;'5 ;;8 igg gg leading to even larger discrepancy between theory and ex-
3. 622 634 17 periment.

The model employed by Wahnstrom assumed that the
bath was approximately Ohmic. The bath parameters were
determined from a molecular dynamics calculation of the
nonadiabatic relaxation mechanism. The monotonic relatiogyrface motion. The calculated diffusion rates for this model
between linewidth and electron density allows use of theyre g orders of magnitude lower than the measured diffusion
vibrational line shape of hydrogen as a direct measure ofates. This result reflects the fact that an Ohmic bath with

local electron density. a~1 suppressed the tunneling ratese Section Il B. The
_ _ discrepancy can be explained by noticing that other types of
B. Line shape of hydrogen on a Ni(100) phonon motion can enhance the tunneling, through the effect

Hydrogen resides as an atomic species on a nigag ~ Of lowering the tunneling bariers(phonon assisted
surface with typical frequencies of 588 cinfor the perpen-  diffusion %. To investigate the two competing trends a cal-
dicular mode and 387 cit for the transverse mod&° culation based on the surrogate Hamiltonian theory was ini-

Since the transverse mode has vibrational frequencie@ated- _ _
similar to the phonon frequencies, an attempt to calculate the ~Four separate calculations of the tunneling rates were

line broadening is made. The surface phonon bath is approxfartied out based on the same adiabatic potential adopted
mated as an Ohmic batli(€) = we with a cutoff frequency from Wonchobaet al.” The first calculation was performed
set atw,=300 cni 119 The interaction of the vibrating With & frozen lattice establishing a benchmark. The second

atom with the bath is chosen ¥= Ria,S Vi (bf + b), R calculation employed an Ohmic bath linearly coupled to the
being the coordinate of the vibrating aton% ejayjjls theJB,ohr tunneling motion(see E¢3.3). The parameters O.f the bath
radius. In this form, the dimensionless constans approxi- were take_n from Ref. 101. In the th|r_d calculation the pri-
mately equal to unity®® The bath was represented by an mary motion was coupled to an Ohmic bath by a Gaussian

increasing number of modes equally sampling the energ oupling fun(_:tl|on.;(R)—re]xpé (R Ro) /Zf )nlg Eq. (2'4)'”
range. Nine modes were sufficient to converge the dynamics® was p05|t|one at the arrier peak andwas smat
for a period of 150 fs. No significant energy and dipole Cor_enough to localize the coupling function to the immediate

relation damping were observed for this time period. SimilarviCinity of barrier. The dynamics induced by any mode in the

results were found for the deuterium isotope. bath in this case raises and lowers the barrier relative to the

The electronic line broadening for this vibrational modestationary well minima. This is in contrast to the linearly

was also calculated, using the method of the previous Seé:__oupled Ohmic bath where for each mode, the barrier is sta-

tion. The nonadiabatic dissipation was calculated using thlgz(_)nahry ar?d the tIWO potentﬁll We"S]‘c ohscnlate out of ]Pgasﬁ'
electron density at a hydrogen adsorption siter g£2.5. inally, the simultaneous efiects of the two types of baths

The bath was represented by equally sampling fpualues was investigated. The spectral density of each of these baths
and three energy values of the spectral density in(Ed). is n.ot known, so pnly a qualitative analysis is possible. To
The nonadiabatic vibrational line broadening contribution foraSsist tohr? gongjpanszn the twczj bathsfffv]:/ere chqsen to have the
hydrogen was 20 cm' (FWHM). The heavier, slowly mov- same Ohmic dependence and cutoif frequencies.

ing deuterium is less affected with a spectral linewidth of 8 The calculation was 'mt'ated by dete_rmmmg the clgen-
cm™! (FWHM). states of the adsorption site. The tunneling route was artifi-

cially blocked and imaginary time propagation was em-
VII. DISSIPATION AND SURFACE DIFFUSION ployed in conjsunctlon with the f||t9r-d|ggo_ngl_|zat|on method
of Neuhausef? For the frozen lattice five initial states were
Low temperature surface diffusion of hydrogen is domi-calculated where the highest eigenvalue was close to the top
nated by tunneling. This is confirmed by experimental result®f the barrier. When baths are added the number of initial
of Gomer!®? showing a temperature independent diffusioneigenstates grows significantly.
regime below temperatures of 100 °K Tunneling calculation  Once these states are available the tunneling route is
of hydrogen on Nil100) have been performed by Wonchoba opened and a negative imaginary potential is placed in the
and Truhlaf' however dissipation effects were not taken empty site. This potential regularizes the problem allowing
into account in that work, although phonon assisted tunnelto operate on the initial wavefunction with the Green opera-
ing was. Wahnstronet al1! have recently investigated the tor G(E)=(E—H) *.”° This operation filters out the tunnel-
same system employing a path integral method to incorpoing state with energy close tB.”* A few calculations re-
rate the influence of phonon collisions. Both of these calcuquired a repeated applications @{E) in order to filter out
lations show a temperature independent diffusion regimehe pure tunneling state. The imaginary part of this state’s
with a crossover temperature, 65 K in Ref 81 and 40 K inenergy is directly related to the tunneling rate. The flux of
Ref. 101. More recent measurements performed by *¥hu, the tunneling state is another measure of the tunneling rate.
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107 ‘ ‘ ‘ ‘ ' ‘ namics without compromising on the quantum nature of the
Frogen Crystal processes involved. A sufficient number of bath modes rep-
10° _— 3:::;;:2:1‘;““ ] resented as two-level-systems are employed to describe the
~—~ Ohmic+Vibrating] dissipative dynamics for a specified observable. The con-
“.:lo_u ] verged periodt, depends on the number of bath modes
] T A N e through the maximum discrete density of stagi¢s,,,). For
“g an equal sampling of the energy ranges linear with the
ot number of modes. These considerations are a manifestation
of the time-energy uncertainty principle where for short time
077 N e ] dynamics a course grained representation of the energy is
ot ‘ ‘ ------ sufficient. The present study is consistent with the observa-
5 10 15 20 25 30 35 40 tion of Cederbaunet al*® that incorporating more indepen-
1000/T(K) dent bath modes is more important than a detailed descrip-

FIG. 9. Diffus s for hvd €00 function of i tion of a single mode.
. 9. Diffusion rates for hydrogen on as a function of inverse . _ : :
temperature. The solid line is a frozen crystal calculation with a crossover For a particular system-bath construction the combined

temperature of 75 °K. The lowest diffusion rate is that of the linearly System is a single entity. The use of the Chebychev propa-
coupled Ohmic bath with a crossover at 67 °K. Next, the highest diffusiongation method'§ leads to a uniform convergence in all the

rates correspond to a Gaussian coupling to a Ohmic bath, simulating indPSampled energy band. This approach differs from other treat-
pendent barrier breathing mode, with a crossover at 65 °K. Finally, the f dissi . d' L hich th . .

results of integration between the 2 Ohmic baths is given by the long-dashef1€NtS Of dissipative dynamics in which there Is an operative
line. The measured diffusion constant at the temperature independent reginglistinction between the representation of the primary system
is 2 X 10" *?(Ref. 102 and 10 ** (Ref. 103. In the double bath calculation and the bath. This distinction is obvious for the quantum/
each bath was sampled by 3 mod@&Ss). classical methods or the Liouville space method in which the

bath is not considered explicitly at all.

An agreement between these two values is a direct indication N the present agpfﬁch the_descrlp;]tlon of the zrlm;ry
of convergence. system IS unrestricted. armonic or unnarmonic or doubpie-

The calculated thermal diffusion rates are shown in Fig\Ve!l Potential can all be represented by the same grid. The

9. It is seen that the linearly coupled Ohmic bath destroys thé’ls,e Off a grid also permits an unrestricted system-bath cou-
groundstate tunneling motion, suppressing it by five order®'Ng function.

of magnitude compared to the frozen lattice tunneling ratesd The time propa%at:?n r.eqwlres an r:n't'al state._ Th'fs IS
This result is consistent with the calculations of 90N N two steps: The firstis to locate the energy eigenfunc-

Wahnstrom® Contrarily, the fluctuating barrier model was tions of the combined system-bath starting from below. The

found to promote the tunneling by a factor of 5. The Com_procedure used is based on propagation in imaginary time.

bined motion, where both baths are given equal strength ex.€ number of eigenfunctions required grows with tempera-

hibits higher tunneling rates than the linear bath alone. Fof“'€ @nd exponentially with the number of bath modes. The
low temperature this enhancement is a by a factor of 10(nalgem‘unctlons found incorporate naturally the shift in the

These results are still way below the frozen lattice calculaﬁginary systems frequencies due the interactions with the

tions and the experimental observations. o h . found bation i
The nonadiabatic effect on the tunneling was calculated nce these stationary states are found a perturbation is

using the method presented in Section IV. It was found tgiPplied to the SVS‘erT" designed tq mimic an (_axperimental
have a relatively weak suppressing effect on the tunnelin etup. For exa}mple, In th'e F:alculatlon of stopping power a
rate and crossover temperatures compared to the effects mentum shift operator is imposed on the system, instantly

the phonons. This is due to the small coupling between th&reating a moving particle. For simulating weak field absorp-
hydrogen and the conduction electrons at the surface. tion spectrum the dipole operator is applied to the initial state
As a conclusion, to explain the low temperature tunnel—and the relaxation in time of the dipole correlation functions

ing rates the coupling function between the phonon baths and then transformed to thg line _shape function. This fqrmal—
the hydrogen atom. This has been recently done for the rdSm caters naturally to simulations of ultrafast experiment
surfacing of hydrogen in nickel, where MD simulations WereWhere a §hort eIectromagnetlg pulse is applied to the system
used to calculate the spectral density, revealing that approxi"md tlhe. mduczfad hpolanTatlon is followed .by a weak probi.
mately three baths are required to describe the phonon epiMmu at|qns of therma Processes requires to repeat the
fects(see Ref. 98 for an example of a detailed analysiss propagation step for each initial state and then to Boltzmann

also probable that the adiabatic potential energy surface enflyerage the results. The need for averaging an the exponen-
ployed overestimates the tunneling barrier. tial increase with the number of modes practically limits the

treatment to low temperatures.
The present procedure should be compared to methods
Vil DISCUSSION based in Liouville spac&!®-22For the relaxing Harmonic
The elucidation of dynamical encounters in condensedscillator a sufficient Liouville description would require a
phases has to include dissipation. The surrogate Hamiltonialensity operator represented by a matrix of siz& 64. The
approach presented in this study incorporates dissipative dygurrogate Hamiltonian method with a wavepacket of dimen-
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sions 64< 2" with n=6 TLS bath modes has an equal rep-neous noninteracting electron gas, of density
resentation size. Unlike the Liouville dynamics the wavep, *=(47/3(rsa,)°), wherea, is the Bohr radius and, is
packet calculation has to be repeated many times to descriltke electron packing parameter. Many-body effects such as
a thermal encounter. screening are taken phenomenologically into account by
The two methods are not equivalent, the Liouville ap-modifying the electron-proton Coulomb interaction:

proach has the advantage that it can be constructed to lead

) S e
asymptotically to the thermal equilibrium state. The surro-  ;(r)=— —exp(— «r), (A1)
gate Hamiltonian method which is not Markovian is able to r

describe the correct short time dynamics. For larger grid repwheree is the electron charges~3a/a,\/r is the inverse
resentations at low temperature the balance shifts toward thgreening length and = (4/97) 3.2 Under this interaction,

surrogate Hamiltonian approach. The surrogate Hamiltoniaghe electron hole pair coupling to the proton in Hd.5)
method avoids the complicated issue of calculating the relaxpecomes:

ation tensor required in the Redfield or weak coupling

theory?®1% This is of particular importance for simulating V.= 4me (A2)

strong field ultrafast processes where the relaxation tensor d q°+K*
has to be adjusted to include the effect of the external

- 14106 : P

field ™ The uniform structure of surrogate Hamiltonian oy acted for the nonadiabatic interaction. The derivation is

method will naturally incorporate these effects. along the same lines as for the phonon case but different in
The surrogate Hamiltonian approach can be extended {Qetails. Focus is on the proton dynamics, with the operators

describe dissipative phenomena generated simultaneously Q\Oolving according to the Heisenberg equations of motion:
more than one bath. A natural example is vibrational line

shapes of an adsorbate on metals where both electronic and 7 — PIM,
phononic baths participate. For high frequency vibrational
modes the line shape is dominated by nonadiabatic effects. A

As shown for the phonon bath, the spectral density is

J PEIN
—_ v —in-1! zZhig Z[T
Tunneling dynamics is extremely sensitive to the dissi- A VoriQ ; quq]e 7%y +H.C. (A3)

pative environment. Different local modes can either en- . . .
hance or suppress the tunneling dynamics. In the surrogat-léhe harmonic bath enters the PQOEO” equations of motion
Hamiltonian each of these effects is represented by a sep#irough the Operatmflfdiqu-ze'qizberH-C- In order to
rate bath. The spectral density of these different baths can dake this into account, a new Boson creation operator is de-
determined by analyzing the motion for several positions ofined:

the hydrogen atom on its adiabatic potential surface using 1

MD simulations. In Ref. 98 an example of such a calculation gty )= 1 V. b s(F—a)s(e— e
has been worked out for the tunneling of subsurface hydro- (a.€) \/J(q,e); 0y O(G) =) ole~ e,
gen to a surface site in nickel. The detailed analysis has (A4)

determined three operative baths. Tunneling dynamics i —0-2v. 287 oy .
found to be extremely sensitive to the correlated motion ofﬁ/here'J(q,e) 2 EJN“{' 5(qu @)o(ej~e) is the 2 ,dl
all these baths. This is a general conclusion for any tunneling‘ens'c_Jnal spectral density. Ti&{q,€) have the following
motion influenced by its environment. osonic commutation relations:

This study shows that the surrogate Hamiltonian theory [B(g,€),B(q’,e' ) 1=8(q—q')S(e—€'). (A5)
leads to new insight into the dynamics of dissipating sys-
tems. More effort and comparative studies are still requirededuations of motion can be directly inferred from the Hamil-
to determine the range of utility and applicability of this new tonian Eq.(4.5) leading to:
method.

B(q,e)=—ieB(q,e)+iI(q,e)e%2, (AB)
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APPENDIX: SPECTRAL DENSITY FOR A PROTON IN +f [e"°VJ(q,€)B(q,€) +H.C.]dgde. (A7)

AN ELECTRON GAS The only relevant characteristic of the bath is the spectral

The starting point is the Hamiltonian of E¢4.5 de-  densityJ(q,e€), dependent on two parameters. The spectral
scribing a particle with coordinatg in a potential wellVg, density can be calculated for the screened-Coulomb interac-
interacting with a bath of electron-hole-paifSHP). These tion. First, a calculation of the density of EHPs is made.
Bosons are taken as the elementary excitations of a homogelsing the Fermi—Dirac distribution &t=0 n,= 6(k2—k?)
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where 6(x) is the Heavyside function ankk is the Fermi
wave number of the electron gas, the EHP density is:

N(qe>=; > (=) 8(e— (&0 — €)) 8(q— (k' —k)),
<
QZMZ )

e (6_ e_q)z
16m°h%q

4e

min( €, €g— (A8)

q

where ez is the Fermi energy of the electron gas andi;‘B
q%/2ue . For the small excitations expected in the sys- N
tem, this density of excitations can be well approximated bys

— 32
eq—ﬁ

the function:
2 26

o
N(q,e)~m0(2kp—q). (A9)

Using this approximation the spectral density becomes:

me \?

q/2+K2

J(q,e)=szf dsq’f de’'N(q,€)

X 8(q—d;)d(e—€). (A10)

A direct integration yields Eq4.7) in the text.
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