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A local minimum is found in the 0g
1 long range potential curves of the K2 and Rb2 alkali dimers.

This well-of magnitude 42 cm21 for K2 and 93 cm21 for Rb2—is located above the firstns
1n2P3/2 dissociation limit and metastable states could be populated using laser light blue detuned
compared to the resonance line. To compute the previously unknown energies and lifetimes of these
quasibound states, two grid methods are employed. One method is based on diagonalizing a Fourier
grid Hamiltonian, the other uses a propagation technique in imaginary time to filter out vibrational
eigenfunctions. Equivalent results are given by both methods. Then the lifetimes are extracted from
the correlation function obtained by propagation in real time of these numerical vibrational wave
functions. The methods are employed both in adiabatic representation with one electronic potential
curve and in diabatic representation with two potential curves. Two quasibound states are found for
K2, and three for Rb2 above seven stable bound states. Their lifetimes vary from 20 ps to 3 ns.
© 1997 American Institute of Physics.@S0021-9606~97!02848-1#
po
e
i

fo
Fo
di
s

at

tin

a
e
in

n
e

in
ex
p
d
s
un
ic
o

om
sing
ive
lli-

n
s a

lear

s
ure
ints

li-
ells
tes

cited:
d

ells
m-
ge

ge
by
I. INTRODUCTION

Recent progress in laser cooling of atoms has made
sible collision experiments at ultracold temperatures, op
ing the way for detailed studies of long-range interatom
potentials.1–5 Indeed, photoassociation spectroscopy~PAS!
within a cold atom sample now provides accurate data
loosely bound rovibrational states of diatomic molecules.
such states, the vibrational motion extends to relative
tances between the two atoms up to several hundred
atomic units (1 a.u.5a055.291 77310211 m). Most experi-
mental results have been obtained for the first excited st
of the alkali dimers M25Li2, Na2, K2, Rb2, dissociating into
M(ns)1M(np2P1/2,3/2), where ns and np are the ground
state and the first excited state of the alkali atom. Star
usually from a continuum state ofu symmetry, a rovibra-
tional level of an attractive molecular potential curve ofg
symmetry is populated by absorption of a photon with
frequency detuned to the red from the atomic transition. D
tailed information can then be deduced for the correspond
long-range potentials~typically for distances larger tha
20a0!, where the resonant dipole–dipole interaction betwe
the atoms is the dominant electrostatic term and comb
with fine structure or hyperfine structure interaction. The
istence of so-called pure long-range molecules has been
dicted by Stwalleyet al.6 using potential curves calculate
by Movre and Pichler.7 Due to the competition of the variou
interaction terms, long-range wells containing several bo
levels may exist at distances much larger than the typ
chemical bond. Up to now, their existence has been dem
strated for Na2,

8,9 K2,
5 and Rb2.
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Some studies using laser light detuned to the blue fr
the atomic resonance have been recently reported, cau
the excitation of long-range molecular states with repuls
potential curves. They result in the suppression of the co
sions at ultracold temperatures~also called optical shielding!,
demonstrated in Na2,

11,12 in Rb2,
13,14 and in rare-gas

species.15,16 We consider in the present work a situatio
where the potential curve is no longer repulsive, and ha
local minimum at large distances.

There is a big gap between the range of the internuc
separation where ordinary molecular transitions occur~typi-
cally for distances 3 – 10a0! and the interatomic separation
where radiative transitions occur in the long-range or p
long-range molecules: In the latter case, inner turning po
of the vibrational motion are around 60a0 in the case of
sodium and 20a0 in the case of cesium. Spectroscopic app
cations of the population of bound states in long-range w
are very promising, as many other interesting excited sta
can be reached once this intermediate state has been ex
Applications to two-color spectroscopy of doubly excite
states of Na2,

17,9 K2
18 have already been performed.

In the present work we discuss the case of external w
in molecular potential curves which may arise from the co
petition between the spin–orbit interaction and long-ran
interaction converging to aR23 dipole–dipole term. Those
wells are located at distances where the asymptoticR23 be-
havior is not yet reached so thatab initio calculations are
required. We shall call those states ‘‘intermediate long-ran
molecules.’’ An example of such a situation is provided
the fine structure coupling between the1Sg

1 and3Pg Hund’s
10633/10633/10/$10.00 © 1997 American Institute of Physics
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10634 Dulieu et al.: Long-range alkali dimers
case a states dissociating into the firstns1np limit of the
alkali dimers, as shown for K2 in Fig. 1. There are actually
two 0g

1 Hund’s case c molecular states correlated to
np2P3/21ns2S1/2 and np2P1/21ns2S1/2 states of the sepa
rated atoms. Due to the avoided crossing around 17a0 , the
0g

1(np2P3/21ns2S1/2) potential curves exhibits two minima
the usual one at small internuclear separations, and a sec
ary one at 17.6a0 , a typical intermediate long-range dis
tance. The minimum of this secondary well lies above
asymptotic level of the two separated atoms. The ques
arises whether there are any bound levels there, and wha
their lifetimes. Such states have never been observed
although the consequence of the avoided crossing betw
two 0g

1 states has been detected in the self-broadened q
static blue wings of heavier alkali resonance lines.19

The aim of the paper is twofold:

~1! We present the results of theoretical calculations wh
discuss the existence of such 0g

1 wells for the various
alkali dimers and the properties~energies and lifetimes!
of the quasibound vibrational levels lying in them.

~2! We discuss the theoretical methods used to comp
such properties. Indeed, standard methods are often
ficult to use for the determination of such loosely bou
states embedded in a continuum.20 We have checked, fo
the specific case of long-range molecules, the efficie
of two numerical grid methods which have recently be
developed in view of other applications.

In Sec. II, we briefly discuss the potential curves for t
various alkali dimers, showing that intermediate range s
ondary wells can indeed be observed in the cases of K2 and
Rb2. In Sec. III, we present two different approaches to
vestigate the possibility for such wells to stabilize vibration
states:

~1! A time-independent method using a Fourier grid Ham
tonian method21 and recently applied to the calculatio
of bound states for coupled molecular states in the sh
range region.22,23

FIG. 1. 1Sg
1 and3Pg potential curves for K2 ~fine structure neglected!.
J. Chem. Phys., Vol. 107, N
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~2! A time-dependent method which first uses a filteri
procedure based on a propagation technique in im
nary time24–27 to filter approximate vibrational wave
functions on a grid out of an initial wave packet, the
propagates them in real time in order to compute th
lifetime.

In Sec. IV the results are discussed in connection w
possible experiments.

II. INTERMEDIATE LONG-RANGE POTENTIAL
CURVES FOR THE ALKALI DIMERS

We must analyze molecular potential curves in a reg
where there is competition between fine structure interac
and asymptotic molecular interaction. When the spin–o
coupling is neglected, the Hund’s case a potential curves
be computed accurately by effective potential techniques
to large internuclear distances. We use the1Sg

1 and 3Pg

curves correlated to the firstns1np asymptote computed in
the most recent works by Magnieret al. for Na2,

28 Magnier
and Millié for K2,

29 and Foucraultet al. for Rb2 and Cs2.
30

These curves are matched at large distances to
asymptotic calculations of Ref. 31. The Li2 molecule is not
considered here, as the fine structure splitting is too sma
be efficient for the formation of intermediate long-range p
tential wells. For K2 the curves are represented in Fig.
both are repulsive at large internuclear distances, theS curve
lying above theP curve; then, around 18a0 , the S curve
becomes attractive and crosses theP curve. In an adiabatic
representation, due to fine structure coupling, this cross
turns into an avoided crossing. In the present work, the e
tronic Hamiltonian is limited to the 232 subspace defined
by the twoS andP states. We use a perturbative treatme
of the fine structure coupling with an effective spin–orb
Hamiltonian where the atomic value for the fine structu
constantA is introduced. This assumption is justified in th
range of internuclear distances considered here, as
checked for Cs2 by comparison to the nonperturbative resu
of Ref. 32. We have computed the two Hund’s case c pot
tial curves correlated to the2S12P1/2 and2S12P3/2 asymp-
totes by diagonalization of the effective electronic Ham
tonian. An intermediate long-range well is observable in
0g

1(P3/2) potential curve in Na2, K2, and Rb2, as can be seen
from Fig. 2 and from Table I where the position of the loc
minimum and neighboring local maximum are reported
gether with their energy position above the2S12P3/2 asymp-
tote. It should be noted that when they exist, the wells
very shallow: 40 cm21 for Na2, 42 cm21 for K2, and
93 cm21 for Rb2. Due to the large value of the atomic fin
structure in cesium, and with the present accuracy of
calculations it is not possible to assert whether there is a
well or a shoulder in the potential.

We have searched for the possible bound levels ly
within these wells by performing both single-channel a
two-channel calculations. In the first case, we introduce o
the potential energyV(R) of the upper 0g

1(P3/2) adiabatic
curve. In the two-channel calculations, we have used a
o. 24, 22 December 1997
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10635Dulieu et al.: Long-range alkali dimers
abatic representation, where we define a 232 potential ma-
trix Vi j (R):

S VS

A/&
A/&

VP2A/2D ~2.1!

containing the1Sg
1 and3Pg energiesVS andVP as diagonal

elements, and the spin–orbit coupling as an off-diagonal
ement and correction to theVP energy. We have taken th
atomic valuesAK538.4 cm21 andARb5158.4 cm21 for the
fine structure constantA of the two molecular states.

Alternatively, the two-channel calculations could ha
been performed in an adiabatic representation conside
the upper and lower 0g

1 curves coupled by radial coupling. I
the present study, we assume that there is no coupling
tween the rotation motion of the molecule and the electro
motion.

III. QUASIBOUND STATE CALCULATIONS:
DESCRIPTION OF THE METHODS, DETERMINATION
OF THE ENERGIES AND LIFETIMES

As can be seen from Table I, the minimum in the ou
well for K2 and Rb2, described in Sec. II, lies above th
np2P3/21ns2S1/2 and np2P1/21ns2S1/2 dissociation limits,
so that the bound states are embedded intwo dissociation
continua, and should be considered as resonances. How
by performing calculations in a finite box, a bound sta
treatment can be implemented in a first step.

FIG. 2. 0g
1 adiabatic potential curves correlated to the firstS1/21Pj ( j

51/2,3/2) asymptotes of alkali dimers.
J. Chem. Phys., Vol. 107, N
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Two different grid methods are considered. In bo
methods, the wave functions are represented by their va
on a grid ofN equally spaced points, either in the coordina
space for internuclear distances, or in the momentum sp
through Fourier transform. The Hamiltonian operator is co
puted from the evaluation of the potential operatorV, diag-
onal in the coordinate representation and of the kinetic
eratorT, diagonal in the momentum representation.

Once these approximate resonant states have been
tained they can be further refined by propagating their w
functions in real time with outgoing boundary condition
providing a determination for their lifetime.

A. Fourier grid Hamiltonian method

The fundamental principles of the Fourier grid Ham
tonian method~FGH! are extensively described in Ref. 2
The present application is very similar to the calculatio
performed in Ref. 23 for the spin–orbit perturbations in t
alkali dimer spectra, the only difference being that the we
are very shallow in the present case. Briefly, the poten
energy operatorV—local in the coordinate space—and th
kinetic energy operatorT—local in the momentum space—
are represented by their mapping on a grid ofN equally
spaced values of internuclear distances. Each potential c
involved is described by aN3N diagonal matrix:

Vi j 5V~Ri !d i j , i 51,...,N, ~3.1!

while the kinetic energy is expressed as a diagonal matri
the momentum space:

Trs5kr
2/2md rs , r 51,...,N, ~3.2!

where m is the reduced mass of the system. An analyti
Fourier transform yields the correspondingnondiagonalma-
trix in the coordinate representation:33

Tii 5
\2

4mL2

N212

6
, ~3.3!

Ti j 5~21! i 2 j
\2

4mL2

1

sin2@~ i 2 j !p/N#
. ~3.4!
TABLE I. Computed properties of the outer well of the 0g
1(P3/2) potential curve in the alkali dimers. The

minimum of the well is located at distanceRe and energyEe , with a depthDe ; the top of the barrier is located
at distanceRb , and energyEb , the height beingHb . The origin of energies is taken at the firsts1p limit for
each dimer, so thatHb5Eb2DEf s/3.

0g
1(S1P3/2) Potential well Potential barrier

Dimer
DEf s

(cm21)
Re

~a.u.!
Ee

(cm21)
De

(cm21)
Rb

~a.u.!
Eb

(cm21)
Hb

(cm21)

Na2 17.2 15.8 323.4 39.9 17.3 363.3 357.6
K2 57.6 17.6 281.0 42.0 19.6 323.0 303.8
Rb2 237.6 17.3 255.8 93.3 21.4 349.1 269.9
Cs2 554.1 15.9 165.2 1.4 22.1 407.6 222.9
o. 24, 22 December 1997
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10636 Dulieu et al.: Long-range alkali dimers
The diagonalization of theN3N matrix ~single-state
calculations! or of the 2N32N matrix ~two-state calcula-
tions! provides eigenvalues corresponding either to bou
states or to~discretized! continuum states. True bound stat
are identified by looking for those wave functions which a
located within the extension of the potential well. Bou
states interacting with the dissociation continuum have
small oscillating part extending toward the grid edge: t
part of the wave function cannot be used for quantitat
calculations, as it depends on the extension of the grid,
of the discretization of the continuum; however, it allow
one to identify the corresponding state as a quasibound l
with a finite lifetime. The energy of such states weakly d
pends upon the grid extension, as will be discussed below
contrast, the wave functions for the continuum states ext
over all the grid, and the density of states or their energ
markedly depend upon the size of the grid.

The accuracy of the FGH method has already b
checked for single well curves of Na2 in Ref. 23: The com-
puted vibrational wave functionscv provide rotational con-
stantsBv5^cvu1/(2mR2)ucv& in very good agreement with
experiment. In the present work, typical results for a sin
state calculation using the 0g

1(P3/2) adiabatic curve of K2 are
presented in Fig. 3. A grid with 500 points has been us
ranging from 6a0 to 30a0 . The convergence of the eigenva
ues is checked by varying the number of grid points, an
numerical accuracy better than 0.1 cm21 is reached. All the
vibrational levels of this double-well curve are obtain
within such conditions. One may as well restrict the range
the grid to the outer well only, in order to save computi
time and memory. Choosing a 100-point grid extending fr
15a0 to 20a0 , we obtain exactly the same results. This
lows us to conclude that the outer well in the adiaba
0g

1(P3/2) curve clearly supports two bound states, easily
beled asv50,1. Their energies are reported in Table II. Tw

FIG. 3. Probability densities for the lowest levels in the 0g
1(P3/2) potential

curve in K2, computed with the FGH method with one channel. Thev
50,1 levels are drawn~thick lines! at their approximate energy. Sever
determinations of thev52 level are given~thin lines!, slightly shifted
around its energy for clarity. Full line: FGH method with the@15–20 a.u.#
grid; dot-dashed line: FGH method with the@6–3.0 a.u.# grid; dotted line:
filtering only ~see the text!; dashed line: FDM.
J. Chem. Phys., Vol. 107, N
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determinations for a (v52)-like vibrational state, mainly lo-
calized within the external well, are also shown for bo
grids above. The energy of this state lies slightly above
barrier, and now the shape of the wave function varies
cording to the grid size, as is illustrated in Fig. 3.

B. Filter diagonalization method

While the FGH method requires the evaluation of t
entire Hamiltonian matrix in a large basis, the filter diag
nalization method,24–27 hereafter referred to as FDM, is de
signed to extract a single eigenstate or a small subse
eigenstates of the Hamiltonian within a limited energy ran
An energy filter based on a Gaussian filtering procedure
used to locate the wave function in the predetermined ene
range. From the filtered wave function, a Krylov space
then constructed and used as a basis for diagonalizing
Hamiltonian. We shall use the same example as in Sec. I
for a single-state calculation.

In order to obtain the ground state of our system, it w
suggested in Ref. 24 to choose as an initial wave funct
c int a Gaussian wave packet localized in the region of
minimum of the potential and to propagate it in imagina
time, t52 i t according to

c~t!5e2Ht/\c int[e2 iHt/\c int , ~3.5!

whereH is the Hamiltonian of the system. This procedu
filters out the higher energy eigenstates ofH and ast→`
only the ground state survives. Since the normalization is
conserved in this propagation scheme, it is employed rep
edly with a finitet and the wave function is renormalized
every time step to keep the numerical calculations within
range of the computer.

In the present work we use for all states the proced
designed by Ref. 25 to obtain excited eigenstates. A Ga
ian filter is selecting states in an energy region around
initial guesse:

c~t!5e24~H2e!2t/\DEc int[e24i ~H2e!2t/\DEc int . ~3.6!

TABLE II. Energies~in cm21! computed within a one-channel model fo
the v50,1,2 levels in the outer well of the 0g

1(P3/2) potential curve in K2.
The different cases are discussed in Sec. III B. The number of time stepNt

~of 0.5 ps duration!, the initial guessese for the energy, and the dispersionD
~in cm21! in the filter diagonalization method~FDM! are also reported. The
origin for the energies is the 4s14p dissociation limit. The top of the
barrier being located at 323 cm21, thev52 level should be considered as
resonance.

Method v50 v51 (v52)

FGH
@6–30 a.u.# grid E 292.16 311.29 324.44
@15–20 a.u.# grid E 292.16 311.31 324.74

Filtering
only @D50.01 cm21# E 292.14

e@Nt# 0 @3#
E 292.15 311.27 323.20

e@Nt# 290 @47# 310 @249# 320 @323#
FDM E 292.15 311.27 323.23

e5270 D 0.006 0.014 0.14
o. 24, 22 December 1997
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10637Dulieu et al.: Long-range alkali dimers
The real parametert has the dimension of a time whil
DE is the energy range covered by our numerical proced
and appears as a scale factor in the propagation algor
where the propagator is expanded by Newtonian interp
tion polynomials with Chebychev sampling points.34,35 This
choice for sampling points ensures a uniform convergenc
the whole spectral range of the Hamiltonian, i.e., the err
are distributed in a uniform way. This procedure can be
terpreted as relaxation to the ground state of a modi
Hamiltonian:H* 54(H2e)2/DE. The quality of the result
can be checked by computing the dispersion

D~t!5A^c~t!uH2uc~t!&2^c~t!uHuc~t!&2, ~3.7!

which is zero for a pure energy eigenstate, and is used
criterion to stop the propagation process of Eq.~3.6!. The
rapidity of the convergence will be influenced by the val
of the initial guesse, relative to the final eigenenergyE. As
the filtering parametert has the dimension of a time, w
shall use a unit valuets520 678 a.u., or 0.5 ps, which i
well adapted to the physics of the problem.

For the single potential calculation involving th
0g

1(P3/2) potential curve of K2, we employed a 64-point grid
extending fromR514a0 to R522a0 with a mesh sizeDR
50.125a0 . The initial Gaussian wave packetc int of width
4a0 , is centered at the minimum of the well (Re517.6a0),
and extends far outside the grid borders, in order to ens
that it will contain at least a small part of the continuu
eigenstates@Fig. 4~a!#. In the momentum space, the wav
packet is centered around an arbitrary~low! value of 0.01
a.u. In Fig. 4~b!–4~d! we show a typical filtering sequenc
for the v51 level, obtained with an initial guess for th
energye5310 cm21 and a propagation stepts50.5 ps. The
dispersion reaches 0.01 cm21 after about Nt5330 time
steps. In principle, the filtering procedure is sufficient to fi
any energy eigenstate, and the results after filtering indivi
ally the v50,1,2 levels are displayed in Table II. For thev
50,1 levels, the results are the same as for the FGH met
In contrast, the wave function of thev52 resonant level,

FIG. 4. Filtering sequence for the modulus of the wave function of thv
51 level in the outer well of the 0g

1(P3/2) potential curve in K2 ~one chan-
nel calculation!.
J. Chem. Phys., Vol. 107, N
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strongly mixed with the continuum, differs from the two pr
vious determinations~see Fig. 3! and has a very slow con
vergence witht.

A repeated application will eventually lead to zero d
persion. But it has been pointed out by Neuhauser26,36,27that
the convergence of the filtering procedure is slow. This
illustrated in Table II, and in Fig. 5: the determination of th
energy of the excited levels at a given level of accura
requires many more time steps than for the ground state
ergy. To speed up the convergence and to obtain at o
several neighboring eigenstates, the filtering procedure
stopped afterNt steps~or tfilter5Ntts!, well before reaching
an accurate determination of a given vibrational levelv. This
yields an approximate eigenstatecv

F . Then a subspaceK of
nKryl states is generated from the HamiltonianH operating
on cv

F :

f0
K5cv

F , f1
K5Hcv

F ,
~3.8!

f2
K5H2cv

F ,...,fnKryl21K5HnKryl21cv
F .

The dimensionnKryl of K is chosen comparable to th
number of eigenstates considered. The Hamiltonian is fin
diagonalized within the subspaceK, after a suitable orthogo
nalization scheme, as for example the Gram–Schmidt pro
dure:

j05f0
K , j15f1

K2^f0
Kuf1

K&f0
K ,

~3.9!
j25f2

K2^j0uf2
K&j02^j1

Kuf2&j1
K ,... .

This procedure will be efficient if the elements inK are
not linearly dependent, thus requiring one to stop the filter
procedure before reaching a too low value for the dispers
D. The present procedure differs from the procedure s
gested by Neuhauser but has the same effectiveness. M
ematically the procedure described by Eqs.~3.8! and~3.9! is
equivalent to the Lanczos method,37,34 but due to the use o
the modified Gram–Schmidt procedure~3.9! it should be
more stable. However, the size of the Krylov space is limi

FIG. 5. Dispersion as a function of filtering time, on the energies of thv
50,1,2 levels in the outer well of the 0g

1(P3/2) potential curve in K2, after
the filtering procedure~one channel calculation!. All curves are truncated for
low t values for clarity.
o. 24, 22 December 1997



a
o

d

a

s
th

th
ite

th
G

rg

o
u
us
di

s

er
e
ve

m
n
ed
o-
a

ry
re
tio
im

ti

e

o

po-
the

for

upt

10638 Dulieu et al.: Long-range alkali dimers
by the numerical instabilities generated by the Gram
Schmidt procedure, practically limitingnKryl to the range
5–12.34

In the present example, we have chosen a Krylov sp
with nKryl55. The energies are reported in the bottom
Table II. Through successive trails, we finally generate
ground state approximate wave functioncv50

F , starting from
an initial guesse5270 cm21, and stopping when reaching
dispersionD50.1 cm21 after Nt518 steps~or tfilter59 ps!:
The resulting dispersion on the three lowest eigenvalue
the Krylov space is then equivalent to the one obtained in
filtering-only procedure, but in a much shorter time, as
filtering procedure has not been repeated for the exc
states. As mentioned previously, thev52 level is less accu-
rate as its energy is already slightly above the edge of
well. Nevertheless, the agreement with the previous F
method is excellent~see Table II!. The wave function for the
v52-like level is drawn in Fig. 3, and differs slightly from
the FGH determinations.

C. Filtering by time propagation: Lifetimes

Due to their energy, larger than the dissociation ene
of the 2S12P3/2 limit, the states located in the 0g

1(P3/2)
outer potential well have a metastable character, which d
not manifest itself clearly in the above procedures, beca
of the boundary conditions imposed by a finite grid. We m
allow the metastable states obtained in the two precee
sections to evolve freely as a function of real timet: Their
wave functioncK, obtained from the Krylov procedure, i
now propagated according to

C~ t !5e2 iHt/\CK. ~3.10!

Outgoing boundary conditions are defined by transf
ring the outgoing portion of the wave function to anoth
grid.38 Use of an imaginary absorbing potential would ha
the same effectiveness.24,39,40

Propagating the metastable wave function in real ti
has the effect of a time filter. The components which belo
to the continuum will decay much faster than the long-liv
resonance.41 After a large enough time delay, only the res
nance is left which is manifested by a wave function with
constant shape.

As a demonstration, the wave functions of thev50,1,2
levels obtained above, after diagonalization within the K
lov subspace, are chosen as initial wave functions for the
time-propagation procedure. The numerical propaga
scheme is the same as for the filtering procedure. The t
evolution of thev52 level is illustrated in Fig. 6: As ex-
pected, since this level lies above the barrier, the propaga
in real time finally filters out thev51 bound level. A similar
time sequence may also be drawn for thev50,1 levels: The
shape of their wave function does not vary in time as ther
no continuum components in such states.

The lifetimetv is deduced from the time dependence
the correlation function

C~ t !5^c~0!uc~ t !&, ~3.11!
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which is represented in Fig. 7 for the threev50,1,2 meta-
stable bound levels of the outer well. The decreasing ex
nential is clearly manifested for the three levels, so that
lifetime tv is readily obtained from

FIG. 6. Modulus of the wave function as a function of propagation time
the v52 level in the outer well of the 0g

1(P3/2) potential curve in K2 ~one
channel calculation!. The high frequencies oscillations are due to an abr
cutoff of the initial wave function at the edge of the grid.

FIG. 7. Correlation functionC(t) ~on a logarithmic scale! for the v
50,1,2 in the outer well of the 0g

1(P3/2) potential curve in K2 ~one channel
calculation!.
o. 24, 22 December 1997
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tv52
t22t1

log@C~ t2!#2 log@C~ t1!#
. ~3.12!

The lifetime could also be obtained by calculating t
flux

J~r !5
\

2mi
@c~r !* ¹c~r !2c~r !¹c* ~r !#. ~3.13!

For a pure resonant state the flux should be asymptotic
coordinate independent, thusJ}tv .

In the present one-channel calculations, the compu
lifetimes using Eq.~3.12! are 174 ns, 7.4 ns, and 13.7 ps f
the v50,1,2 levels, respectively, in the K2 long-range well.
The marked difference between the time constants ov
50,1 clearly reflects that the uppermost level is the m
sensitive to the tunneling through the barrier, which is
only decay process in the one-channel model. In suc
model thev50 level may be considered as a true bou
state. Thev52 level is a resonance lying slightly above th
barrier, and decaying with a much smaller lifetime.

The real time filtering procedure is different from th
time-energy filter used to locate resonances by Baer42 and
Mandelstamet al.43 It has the advantage that the procedu
directly relates to our intuition of the behavior of a met
stable state.

The time filtering procedure could well be implement
from a wave function obtained by the FGH method. Mo
generally, we would like to put emphasis on the ‘‘interco
nectivity’’ between the different steps of the method p
sented here, as illustrated by the diagram in Fig. 8: e
filtering step~in energy or in time! might well be stopped a
any arbitrary time step~imaginary or real!, and the resulting
wave function then is used as an input for the next filter
procedure, or for the Krylov diagonalization process.

IV. RESULTS

Section III was devoted to the presentation of our me
ods for calculating energies and lifetimes of resonant sta
and illustrated using a single potential picture of the mole
lar system. Actually, we have shown in Fig. 2 and Sec
that two potentials should be considered. We now pres
two-channel calculations in both FGH and FDM approac

FIG. 8. Schematic description of the present methods for calculating en
and lifetime of resonant states.
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for the K2 and Rb2 molecules only. Indeed, no bound leve
have been found for Na2, despite the presence of a well i
the upper adiabatic curve: for this molecule, the weaknes
the spin–orbit coupling does not allow one to consid
Hund’s case c as a good approximation for the description
the electronic states.

A. Quasibound states of K 2

Only two statesv50,1, with a wave function located
mainly in the outer well of the 0g

1(P3/2) potential, are found
within the two-channel FGH approach. As shown in Fig.
for both grids defined above, the wave functions are stron
perturbed by the continuum of the 0g

1(P1/2) potential, and
one may expect strong predissociation effects, with a lifeti
substantially smaller than for the one-channel model. T

gy

FIG. 9. Probability densities for the~a! v50 level, ~b! v51 level in the
0g

1(P3/2) potential curve in K2, in a two channel model. Full line: FGH
@15–20 a.u.# grid, dashed line: FGH,@6–30 a.u.# grid, dot-dashed line:
FDM.

TABLE III. Energies E ~in cm21!, relative to the (4s14p) asymptote,
rotational constantsBv ~in cm21!, and lifetimes~in ps! computed in a two-
channel model, for thev50,1,2 levels in the outer well of the 0g

1(P3/2)
potential curve in K2. The initial guessese for the energy and the dispersio
D ~in cm21! in the FDM are also reported. We used 180 time steps of 0.5
in filtering, before diagonalization.

Method v50 v51 (v52)

FGH
@6–30 a.u.# grid E 294.95 312.88 •••
@15–20 a.u.# grid E 293.63 312.32 •••

Bv 9.931023 9.731023 •••

FDM E 293.18 313.64 325.47
e5310 D 0.45 0.004 0.31

tv(ps) 20.4 17 4.6
o. 24, 22 December 1997
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corresponding energies and rotational constants are rep
in Table III. The energies differ only slightly from those o
Table II. Let us note that the size of the grid is a more criti
issue than in the one-channel calculations: indeed, the
sity of continuum states for the 0g

1(P1/2) potential increases
with the size of the grid.

This latter remark also has consequences on the wa
run the calculation within the FDM framework. Startin
from an initial valuee, the value of the dispersion is n
longer a good criterion to stop the filtering procedure:
expected bound state now being strongly mixed with
continuum of the 0g

1(P1/2) channel, we obtain larger value
for the dispersion. But for some choices of the initial valuee,
deduced from the one-channel calculations, the final dis
sion for the bound states deduced after diagonalization of
Krylov space is now excellent. Therefore we proceed
successive trials for the number of filtering stepsNt ; the
results displayed in Table III have been found withe
5310 cm21, after Nt5180 steps with a step size of 0.5 p
and withnKryl55. They are very similar to those of the FG
approach.

FIG. 10. Correlation functionC(t) ~on a logarithmic scale! for thev50 and
v51 in the outer well of the 0g

1(P3/2) potential curve in K2 ~two channel
calculation!.
J. Chem. Phys., Vol. 107, N
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The real time propagation of thev50 andv51 FDM
wave functions provides the correlation functions drawn
Fig. 10. Both levels are decaying much faster than in
one-channel model, and with comparable time consta
~20.4 and 17 ps forv50 andv51, respectively!. The decay
through predissociation in the 0g

1(P1/2) continuum is now
the dominant process, and energy of both levels are c
enough to be perturbed in a similar way by the coupli
term. Let us note that thev50 level exhibits a short-lived
component~with a time constant of 8.5 ps!, probably due to
a small defect of the filtering procedure~the dispersion is
larger for this level, see Table III!. In contrast, the lifetime of
the v52 resonance is now found equal to 4.6 ps. Furt
work should sort out whether this figure is the real lifetime
still contains errors due to the filtering procedure.

B. Quasibound states of Rb 2

As the Rb2(0g
1(P3/2)) outer well is deeper than in K2,

the number of bound states obtained in the one-chan
model is larger. The energies of the 11 levels computed
the FGH method are reported in the first column of Table
A grid ranging from 14a0 to 22a0 , with a step size of 0.07a0

was used. The position of the levels is only slightly modifi
when two-channel calculations are performed. Indeed, du
the value of the fine structure constant, four time larger th
for K2, Hund’s case c representation is a good approxima
for the two 0g

1 electronic states. At the avoided crossing, t
two potential curves stay far apart, so that the radial coup
is very small~see Fig. 2!.

Implementing the FDM method is more delicate than
the K2 calculations. We used a grid similar to the FGH gr
above. We had to filter the vibrational levels by groups~v
50 – 2, v53 – 6, v57 – 10! with different initial guessese,
to reach a small dispersion on their energies. It is strik
that for the one-channel calculations, both methods yi
equivalent results within a few 0.01 cm21, except for the two
uppermost levels. This is reflected also in the very sm
value of the dispersion. Thev58,9,10 levels are decaying b
ns
ns
TABLE IV. Energies E ~in cm21! relative to the (5s15p) asymptote, and rotational constantsBv ~in cm21!, computed within both FGH and FDM
approaches, in a one-channel~FGH-1, FDM-1! and two-channel model~FGH-2, FDM-2!, for the v50 to v510 levels in the outer well of the 0g

1(P3/2)
potential curve in Rb2. Lifetimes for the quasibound states yielded by FDM-2 are also reported. The number of filtering time stepsNt , the initial guesse and
the dispersionD ~in cm21! in the FDM are also specified.

v
FGH-1

E

FGH-2 FDM-1 FDM-2

E 1033Bv Nt e E D Nt e E D tv

0 262.23 263.05 4.70 6 120 262.28 0.31 200 270 263.09 0.17 •••
1 274.40 274.50 4.74 6 120 274.40 0.006 200 270 274.57 0.70 •••
2 285.32 285.36 4.76 6 120 285.32 0.06 200 270 285.35 0.47 •••
3 295.42 295.64 4.77 100 310 295.42 0.02 200 310 295.67 0.14 •••
4 305.04 305.34 4.77 100 310 305.04 0.04 200 310 305.37 0.17 •••
5 314.19 314.44 4.75 100 310 314.19 0.04 200 310 314.46 0.17 •••
6 322.80 322.90 4.71 100 310 322.80 0.03 200 310 322.92 0.20 •••
7 330.70 330.64 4.63 200 340 330.70 0.03 150 330 330.97 0.64 •••
8 337.53 337.53 4.50 200 340 337.51 0.06 250 340 337.63 0.64 2.6
9 343.20 343.44 4.33 200 340 343.30 0.04 250 340 343.50 0.89 0.93

10 348.13 348.42 4.16 200 340 348.04 0.04 250 340 348.76 0.51 54 ps
o. 24, 22 December 1997
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10641Dulieu et al.: Long-range alkali dimers
tunneling through the barrier, with lifetimes of 3 ns, 0.67 n
and 40 ps, respectively.

When comparing the two-channel calculations, bo
methods are still found in very good agreement up tov56,
although the dispersion is now one order of magnitu
larger. For thev57 – 10 levels, the discrepancies betwe
the two approaches are about 0.1 cm21. This is easily inter-
preted since these uppermost levels have lifetimes sho
than 10 ns~see the last column of Table IV!, and interact
with the 0g

1(P1/2) dissociation continuum. But the lifetime
are only slightly modified by the presence of this continuu
~2.6 ns, 0.93 ns, and 54 ps, respectively!, reflecting the adia-
batic character of the coupling. Moreover, they are s
larger than in the K2 molecule.

In view of possible spectroscopic identification of the
levels, we also display in Table IV their computed rotation
constantsBv5^1/(2mR2)&. The extremum predicted for th
v53,4 levels will be very sensible to the shape of the pot
tial, and may be found slightly shifted towards neighbori
levels in an experimental spectrum.

V. CONCLUSION

In the present work, we have investigated the possibi
of populating bound or quasibound levels in the outer wel
the 0g

1 potential curves correlated to the firstns
1np(2P3/2) asymptote of the alkali dimers. Wells exist fo
Na2, K2, and Rb2, their depth ranging from 40 to 90 cm21.
The bottom of such wells is located 176– 317 cm21 above
the dissociation limit, so that the excitation scheme sho
use a laser light markedly blue detuned from the atomic re
nance frequency. Due to the location of the well, the poss
bound states are embedded in the dissociation continuu
the 0g

1(ns1np(2P3/2)) potential curve. Moreover, radia
coupling with the continuum states of the 0g

1 potential curve
located below and correlated to thens1np(2P1/2) asymp-
tote, has to be considered. The problem therefore deals
two continua.

We have used this system as a way of checking
accuracy and limitations of two different grid methods whi
have been developed in different physical situations and
our knowledge, never been applied to a similar case. O
method ~Fourier grid Hamiltonian! is diagonalizing a nu-
merical Hamiltonian directly computed on a grid. The oth
~filter diagonalization! uses a filter method based on a prop
gation technique in imaginary time, to generate approxim
vibrational wave functions which are further improved
diagonalization in a Krylov subspace. We have perform
both one-channel, and two-channel calculations conside
the upper 0g

1(2P3/2) and lower 0g
1(2P1/2) Hund’s case c po-

tential curves. The lifetimes of the quasibound states h
then been determined by propagation of the wavefunction
real time.

No quasibound state is found in Na2, as the fine structure
coupling is too small for the Hund’s case c picture to
valid. In the K2 molecule, both methods give similar resu
in a one-channel approach where tunneling through the
rier is the only decay mechanism. Results are slightly diff
J. Chem. Phys., Vol. 107, N
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ent in the two-channel calculations, where the predisso
tion to the continuum of the lower lying 0g

1(2P1/2) curve is
the dominant decay mechanism. The existence of two qu
bound states is predicted, with lifetimes of the order of 20
The treatment of a double continuum problem has been c
pleted by study of av52-like level located just above th
barrier (0.2 cm21). The 4.6 ps value found for the lifetim
should be checked in further work. The agreement betw
one-channel calculations with both methods is also v
good for Rb2, with discrepancies smaller than 0.1 cm21 on
the energies. The first eight levels are true bound states,
are not perturbed by the coupling with the lower 0g

1(2P1/2)
curve. The last three levelsv58,9,10 are predicted to b
quasibound, with lifetimes varying from 30 ps to 2 ns.

As a conclusion, both methods seem well adapted
analyze such systems with intermediate long-range wells
the required accuracy on the vibrational energies is aro
0.1 cm21. In the present state of potential curve calculatio
better accuracy is not relevant.

Experimental work should investigate the possibility
populating the quasibound levels by photoassociation
duced by a laser blue detuned from the resonance line.
other population scheme could be by direct bound–bo
triplet transition in cold K2 or Rb2 molecules weakly at-
tached to helium clusters~Refs. 44 and 45!.

These quasibound levels can be used as an interme
step in two-color experiments in a cold alkali sample.
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