Quasibound states in long-range alkali dimers: Grid method calculations
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A local minimum is found in theg) long range potential curves of the, l&nd Rl alkali dimers.

This well-of magnitude 42 cm' for K, and 93 cm?! for Rb,—is located above the firshs
+n?Pg, dissociation limit and metastable states could be populated using laser light blue detuned
compared to the resonance line. To compute the previously unknown energies and lifetimes of these
quasibound states, two grid methods are employed. One method is based on diagonalizing a Fourier
grid Hamiltonian, the other uses a propagation technique in imaginary time to filter out vibrational
eigenfunctions. Equivalent results are given by both methods. Then the lifetimes are extracted from
the correlation function obtained by propagation in real time of these numerical vibrational wave
functions. The methods are employed both in adiabatic representation with one electronic potential
curve and in diabatic representation with two potential curves. Two quasibound states are found for
K,, and three for Rpabove seven stable bound states. Their lifetimes vary from 20 ps to 3 ns.
© 1997 American Institute of Physids$0021-960807)02848-1

I. INTRODUCTION Some studies using laser light detuned to the blue from

the atomic resonance have been recently reported, causing

Recent progress in laser cooling of atoms has made pog;: o . .
sible collision experiments at ultracold temperatures, open%-he excitation of long-range molecular states with repulsive

ing the way for detailed studies of long-range interatOmicpotential curves. They result in the suppression of the colli-

potentials:™ Indeed, photoassociation spectroscdfAS) sions at ultracol_d tempfg{;\tgreﬂso Cgllﬁd OP“C?" shielding
within a cold atom sample now provides accurate data fopem‘?”sfglag‘i/(\jl n I\Qa; n thZ' " and 'E rare-gas
loosely bound rovibrational states of diatomic molecules. Fo?ﬁ’]ec'e h € C,OTS' erin t elpresent W(I)r_ a S|tuakt]|on
such states, the vibrational motion extends to relative dis?here the potential curve is no longer repulsive, and has a

tances between the two atoms up to several hundreds $ic@ minimum at large distances. _
atomic units (1 a.u= a,=5.291 7 10~ 11 m). Most experi- There is a big gap between the range of the internuclear

mental results have been obtained for the first excited statg€Paration where ordinary molecular transitions odtypi-

of the alkali dimers M=Li,, Na,, K, Rb,, dissociating into cally for d|_st§mces 3—_@)) and the_ interatomic separations
M(ns)+M(np2P1,2,3,2), wherens and np are the ground where radiative transitions occur in the I-ong—rang(-a or pure
state and the first excited state of the alkali atom. Startind®"d-range molecules: In the latter case, inner turning points
usually from a continuum state af symmetry, a rovibra- of the vibrational motion are around &9 in the case of
tional level of an attractive molecular potential curvegpf Sodium and 28, in the case of cesium. Spectroscopic appli-
symmetry is populated by absorption of a photon with acations of the population of bound states in long-range wells
frequency detuned to the red from the atomic transition. De@r€ Very promising, as many other interesting excited states
tailed information can then be deduced for the correspondin§an be reached once this intermediate state has been excited:
long-range potentialgtypically for distances larger than Applications to two-color spectroscopy of doubly excited
20a,), where the resonant dipole—dipole interaction betweerstates of Ng'"?K,'® have already been performed.

the atoms is the dominant electrostatic term and combines In the present work we discuss the case of external wells
with fine structure or hyperfine structure interaction. The ex4in molecular potential curves which may arise from the com-
istence of so-called pure long-range molecules has been prgetition between the spin—orbit interaction and long-range
dicted by Stwalleyet al® using potential curves calculated interaction converging to & 3 dipole—dipole term. Those

by Movre and Pichlef.Due to the competition of the various Wwells are located at distances where the asympRiit be-
interaction terms, long-range wells containing several boundhavior is not yet reached so thab initio calculations are
levels may exist at distances much larger than the typicalequired. We shall call those states “intermediate long-range
chemical bond. Up to now, their existence has been demormolecules.” An example of such a situation is provided by
strated for Na,®° K,,® and Rh.*° the fine structure coupling between th,; and’I1y Hund's
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2000 ‘ \ \ \ \ (2) A time-dependent method which first uses a filtering
procedure based on a propagation technique in imagi-
1000 | nary timé*’ to filter approximate vibrational wave
\' jng functions on a grid out of an initial wave packet, then
ﬂ\\\/‘x propagates them in real time in order to compute their
;S\ ok / ——— lifetime.
< / Ki4s)+K(dpy~ ; : : .
= In Sec. IV the results are discussed in connection with
§° 21000 © / possible experiments.
Y
/12g+
-2000 © / Il. INTERMEDIATE LONG-RANGE POTENTIAL
| / CURVES FOR THE ALKALI DIMERS
-3000 \/ ‘ ‘ ‘ ‘ We m nalyze molecular ntial curves in a region
s 10 15 20 25 30 35 e must analyze molecular potential curves in a regio

where there is competition between fine structure interaction
and asymptotic molecular interaction. When the spin—orbit
FIG. 1. '3 and®I1, potential curves for K (fine structure neglected coupling is neglected, the Hund'’s case a potential curves can
be computed accurately by effective potential techniques up
to large internuclear distances. We use iﬁe; and 31'[g
curves correlated to the firats+ np asymptote computed in
the most recent works by Magniet al. for Na,,?® Magnier
and Millié for K,,2° and Foucraulet al. for Rb, and Cs.*°
eI'hese curves are matched at large distances to the
asymptotic calculations of Ref. 31. The,lnolecule is not
considered here, as the fine structure splitting is too small to
the . : l:()]e efficient for the formation of intermediate long-range po-

usual one at small internuclear separations, and asecond .\ vells. For k the curves are re L2 i

. presented in Fig. 1:

ary one at 17@0’ a typ'ct”" intermediate Iong-range dis- both are repulsive at large internuclear distancestharve
tance. The minimum of this secondary well lies above theI

asymptotic level of the two separated atoms. The questioﬁ/Ingl above thell curve; then, around 1, the X curve

arises whether there are any bound levels there, and what afg o> attractive and crosses Iheurve. In an adiabatic
their lifetimes. Such statesyhave never been (,)bserved rtepresentation, due to fine structure coupling, this crossing

' : . Y&lirns into an avoided crossing. In the present work, the elec-
although the consequence of the avoided crossing betwee{n

o . ronic Hamiltonian is limited to the 8 2 subspace defined
two O, states has been detected in the self-broadened quasi- .
.9 . ; . . y the two, andIl states. We use a perturbative treatment
static blue wings of heavier alkali resonance lih&s.

: ; i of the fine structure coupling with an effective spin—orbit
The aim of the paper is twofold: oo ? .
Hamiltonian where the atomic value for the fine structure
(1) We present the results of theoretical calculations whictconstantA is introduced. This assumption is justified in the
discuss the existence of suclj Qvells for the various range of internuclear distances considered here, as was
alkali dimers and the propertidsnergies and lifetimgs checked for Csby comparison to the nonperturbative results
of the quasibound vibrational levels lying in them. of Ref. 32. We have computed the two Hund'’s case c poten-
(2) We discuss the theoretical methods used to computtal curves correlated to th&S+ 2P,;, andS+ 2P, asymp-
such properties. Indeed, standard methods are often difetes by diagonalization of the effective electronic Hamil-
ficult to use for the determination of such loosely boundtonian. An intermediate long-range well is observable in the
states embedded in a continudfwe have checked, for Oa—(Pg/z) potential curve in Na K,, and RB, as can be seen
the specific case of long-range molecules, the efficiencyrom Fig. 2 and from Table | where the position of the local
of two numerical grid methods which have recently beenminimum and neighboring local maximum are reported to-
developed in view of other applications. gether with their energy position above &+ 2P, asymp-

In Sec. II. we briefly discuss the potential curves for thetote. It should be noted that when they exist, the wells are
o y P very shallow: 40cm?! for Na, 42cm?! for K, and

various alkali dlm_ers, showing that |nt_ermed|ate range secy, -1 g0, Rb,. Due to the large value of the atomic fine
ondary wells can indeed be observed in the cases,alr . . .

: . structure in cesium, and with the present accuracy of the
Rb,. In Sec. lll, we present two different approaches to in-

. - L N calculations it is not possible to assert whether there is a real
vestigate the possibility for such wells to stabilize vibrational . .
states: well or a shoulder in the potential.

We have searched for the possible bound levels lying

(1) A time-independent method using a Fourier grid Hamil-within these wells by performing both single-channel and
tonian methot! and recently applied to the calculation two-channel calculations. In the first case, we introduce only
of bound states for coupled molecular states in the shortthe potential energW(R) of the upper g(PS,Z) adiabatic
range regiorf>* curve. In the two-channel calculations, we have used a di-

R(au)

case a states dissociating into the finstt np limit of the
alkali dimers, as shown for Kin Fig. 1. There are actually
two Og Hund's case ¢ molecular states correlated to th
np?Pg,+ns’S;, and np?Py,+ns’S,, states of the sepa-
rated atoms. Due to the avoided crossing aroural 1the
04 (NP?P3,+NS’S,;) potential curves exhibits two minima,
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400 3 ] 350 Two different grid methods are considered. In both
350 F (@) @)/\: 300 methods, the wave functions are represented by their values
—~300 m 1 K 1250 on a grid ofN equally spaced points, either in the coordinate
s§ 250 /\ ; /\ 1 200 space for int_ernuclear distances, or_in the momentum space
;:200 RN L 150 through Fourier transform. The Hamiltonian operator is com-
§° 151617181920 171819202122 puted from the evaluation of the potential operatgrdiag-
$ 400 e 1 1 500 onal in the coordinate representation and of the kinetic op-
§ 300 \/\Q i 1300 eratorT, diagonal in the momentum representation.
§200 5 it 1 100 Once these approximate resonant states have been ob-
2 Rb, tained they can be further refined by propagating their wave
100 -. o " '/ /\ ~100 functions in real time with outgoing boundary conditions,

0 151719 21 23 25 '0 15 20 25 providing a determination for their lifetime.

internuclear distance (au) . . . .
A. Fourier grid Hamiltonian method

FIG. 2. 05 adiabatic potential curves correlated to the figp,+P; (]

_ 1/2.3/2) asymptotes of alkali dimers. The fundamental principles of the Fourier grid Hamil-

tonian methodFGH) are extensively described in Ref. 21.
The present application is very similar to the calculations
abatic representation, where we define>a2potential ma-  performed in Ref. 23 for the spin—orbit perturbations in the
trix Vj;(R): alkali dimer spectra, the only difference being that the wells
are very shallow in the present case. Briefly, the potential
Vs AlV2 : -
(2.1 energy operato/—local in the coordinate space—and the
A2 Vy—A2 kinetic energy operatof—local in the momentum space—
containing the'X | and®I1, energies/y andVy, as diagonal ~are represented by their mapping on a gridNofequally
elements, and the spin—orbit coupling as an off-diagonal elspaced values of internuclear distances. Each potential curve
ement and correction to théy; energy. We have taken the involved is described by BIXN diagonal matrix:
atomic valuesAx=38.4 cm ! andAg,=158.4 cm ! for the
fine structure constart of the two molecular states. Vii=V(R)&;, i=1,.N, (3.2
Alternatively, the two-channel calculations could have
been performed in an adiabatic representation considerin\% . L . . o
. . hile the kinetic energy is expressed as a diagonal matrix in
the upper and Iower;) curves coupled by radial coupling. In !
: ; the momentum space:
the present study, we assume that there is no coupling be-
tween the rotation motion of the molecule and the electronic

motion. Trs=kr2/2,u5rs, r=1,...N, (3.2
ll. QUASIBOUND STATE CALCULATIONS: where u is the reduced mass of the system. An analytical
DESCRIPTION OF THE METHODS, DETERMINATION Fourier transform yields the correspondingndiagonaima-
OF THE ENERGIES AND LIFETIMES trix in the coordinate representatidh:
As can be seen from Table I, the minimum in the outer
well for K, and Rl, described in Sec. Il, lies above the B2 N2+2
Np2Ps,+Nns?S,, and np?P,,+ ns?S,, dissociation limits, Tii “aul2 6 3.3

so that the bound states are embeddedwio dissociation

continua, and should be considered as resonances. However, 5

by performing calculations in a finite box, a bound state T =(—1)] h 1
treatment can be implemented in a first step. g 4ul? sirf[(i—j)mIN]"

(3.9

TABLE |. Computed properties of the outer well of thtg@Pw) potential curve in the alkali dimers. The
minimum of the well is located at distan& and energye,, with a depthD,,; the top of the barrier is located
at distanceR,,, and energ\E,, the height beindd,, . The origin of energies is taken at the fisst p limit for
each dimer, so thatl,=E,— AE;//3.

04 (S+P3p) Potential well Potential barrier
AE;¢s Re Ee D¢ Ry Ey Hy
Dimer (cm™} (a.u) (cm™} (cm™} (a.u) (ecm™} (em™}
Na, 17.2 15.8 3234 39.9 17.3 363.3 357.6
K, 57.6 17.6 281.0 42.0 19.6 323.0 303.8
Rb, 237.6 17.3 255.8 93.3 21.4 349.1 269.9
Cs, 554.1 15.9 165.2 1.4 221 407.6 222.9
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340 TABLE Il. Energies(in cm™1) computed within a one-channel model for
thev=0,1,2 levels in the outer well of the,@P3,) potential curve in K.
330 - The different cases are discussed in Sec. |l B. The number of time Nteps
(of 0.5 ps duratiop the initial guesses for the energy, and the dispersibn
T (in cm™) in the filter diagonalization metho@DM) are also reported. The
~ 320 \ 1 origin for the energies is thes4 4p dissociation limit. The top of the
§ - \ barrier being located at 323 cth thev =2 level should be considered as a
§>5 310 resonance.
g 200 | Method v=0 v=1 (v=2)
FGH
290 [6—30 a.u} grid E 292.16 311.29 324.44
[15-20 a.u]. grid E 292.16 311.31 324.74
280 Filtering
2 only [D=0.01 cn Y] E 29214
Rfau) N, 0[3]
. » . . E 292.15 311.27 323.20
FIG. 3._ Probability densm_es for the lowest levels in t@(ﬁ’m) potential e[N.] 200[47] 310[249] 320[323
curve in K, computed Wlth t_he FGH m}ethod wqh one channel. The FDM E 202 15 311.27 32323
=0,1 levels are drawithick lines at their approximate energy. Several =270 D 0.006 0.014 0.14

determinations of thex=2 level are given(thin lines, slightly shifted
around its energy for clarity. Full line: FGH method with tHE5—20 a.u]
grid; dot-dashed line: FGH method with thé—3.0 a.u] grid; dotted line:
filtering only (see the tejt dashed line: FDM.

determinations for au(= 2)-like vibrational state, mainly lo-

calized within the external well, are also shown for both

grids above. The energy of this state lies slightly above the
The diagonalization of theN XN matrix (single-state barrier, and now the shape of the wave function varies ac-

calculation$ or of the 2NX 2N matrix (two-state calcula- cording to the grid size, as is illustrated in Fig. 3.

tions) provides eigenvalues corresponding either to bound

states or tddiscretizedl continuum states. True bound statesB. Filter diagonalization method

are identified by looking for those wave functions which are

located within the extension of the potential well. Bound

states interacting with the dissociation continuum have a . .- method®~2" hereafter referred to as FDM, is de-

small oscillating part extending toward the grid edge: thlsSigned to extract a single eigenstate or a small subset of

part of _the wave function cannot be “S?d for quant_'tat'_veeigenstates of the Hamiltonian within a limited energy range.
calculations, as it depends on the extension of the grid, i.e

) o } : An energy filter based on a Gaussian filtering procedure is
of the discretization of the continuum; however, it allows 9y gp

. ) ; k used to locate the wave function in the predetermined energy
one to identify the corresponding state as a quasibound Iev?g

ith a finite lifeti T ¢ h stat kv d nge. From the filtered wave function, a Krylov space is
with a finte firetime. The energy ot such states weakly de-y, o, onstructed and used as a basis for diagonalizing the
pends upon the grid extension, as will be discussed below. |

: . Fiamiltonian. We shall use the same example as in Sec. Il A
contrast, the wave functions for the continuum states extenﬂ)r a single-state calculation

over all the grid, and the density of states or their energies In order to obtain the ground state of our system, it was

marl_f_idly depend up]?r;hther(lszS of t?ﬁ g”?" readv b suggested in Ref. 24 to choose as an initial wave function
€ accuracy ot the method has aready beer) int & Gaussian wave packet localized in the region of the

chfcgeqbfort'_smglle wellfcurvtgs of i I_R(’jef. 2t3:t_The lcom- minimum of the potential and to propagate it in imaginary
puted vibrational wave functiong, provide rotational con- time, t=— i according to

stantsB, ={(,|1/(2uR?)|,) in very good agreement with .
experiment. In the present work, typical results for a single  ¥(7)=e "7ty =e My, (3.9

state calculation using the;QP) adiabatic curve of Kare  \ynere s the Hamiltonian of the system. This procedure
pres_ented in Fig. 3. A grid with 500 points has be_en usedsiters out the higher energy eigenstateskbfand asr— o
ranging from @, to 308,. The convergence of the eigenval- .y the ground state survives. Since the normalization is not
ues is checked by varying the number of grid points, and &qnserved in this propagation scheme, it is employed repeat-
numerical accuracy better than 0.1chis reached. All the edly with a finiter and the wave function is renormalized at

wprgﬂonal Ievels_ ,Of this double-well Curve are obtained every time step to keep the numerical calculations within the
within such conditions. One may as well restrict the range Ofrange of the computer.

the grid to the outer well only, in order to save computing |, the present work we use for all states the procedure

time and memory. Choosing & 100-point grid extending froMyegjgned by Ref. 25 to obtain excited eigenstates. A Gauss-

158, t0 20ay, we obtain exactly the same results. This al-j5 fiiter is selecting states in an energy region around an

lows us to conclude that the outer well in the ad'abat'cinitial guesse:

O;(Pg/z) curve clearly supports two bound states, easily la- , . ,
beled axy=0,1. Their energies are reported in Table Il. Two ~ ¢(7)=e 4H- O ThAE . = 4i(H-aUAAE,, (3.6

While the FGH method requires the evaluation of the
entire Hamiltonian matrix in a large basis, the filter diago-
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PP RPN 15 :
= =40 -
L@ 1 0.160- (b) T=20pS e=310cm”
v=1
10150 el )
T 5%
=z =100ps
- © P { 0.160 8
5
2 5
1 0.150 =
16 17 18 19 20 16 17 18 19 20
Riau) R (aw) 0

100
FIG. 4. Filtering sequence for the modulus of the wave function ofuthe

=1 level in the outer well of theg)(Pw) potential curve in K (one chan-
nel calculation.

T (ps)

FIG. 5. Dispersion as a function of filtering time, on the energies ofuthe
=0,1,2 levels in the outer well of theg*QPa,z) potential curve in K, after
the filtering proceduréone channel calculatignAll curves are truncated for
low 7 values for clarity.

The real parameter has the dimension of a time while

AE is the energy range covered by our numerical procedure

and appears as a scale factor in the propagation algorith@y.ong1y mixed with the continuum, differs from the two pre-
where the propagator is expanded by Newtonian interpolay,, s determinationgsee Fig. 3 and has a very slow con-
tion polynomials with Chebychev sampling poirts® This vergence withr.

choice for sampling points ensures a uniform convergence in - “p repeated application will eventually lead to zero dis-

the whole spectral range of the Hamiltonian, i.e., the eMOr$ersion. But it has been pointed out by Neuha?fs¥ that

are distributed in a uniform way. This procedure can be inyhe convergence of the filtering procedure is slow. This is

terpreted as rSIaxatmn t02 the ground state of a modifieqy strated in Table II, and in Fig. 5: the determination of the

Hamiltonian:H* =4(H—€)“/AE. The quality of the result  gnergy of the excited levels at a given level of accuracy

can be checked by computing the dispersion requires many more time steps than for the ground state en-
ergy. To speed up the convergence and to obtain at once

D(7)= (D) H[sh(7)) = (¢(7) [H]sh(7))?, (37)  several neighboring eigenstates, the filtering procedure is

stopped afteN . steps(or 7"*'=N_ ), well before reaching

N . . an accurate determination of a given vibrational leveT his
which is zero for a pure energy eigenstate, and is used as a

criterion to stop the propagation process of E816). The yields an approximate elgensta;é. Then a subspadé of

rapidity of the convergence will be influenced by the valuegr';“l’r'/jps_tates is generated from the Hamiltonienoperating
of the initial guess, relative to the final eigenenerdy. As v’

the filtering parameter has the dimension of a time, we o=yt , ¢f=Hy’,

shall use a unit value;=20 678 a.u., or 0.5 ps, which is B (3.8
; dR=H?yF ) = H"kry~LyF

well adapted to the physics of the problem. 2 v Py —1K v"

For the single potential calculation involving the
Og(P3,2) potential curve of i, we employed a 64-point grid
extending fromR=14a, to R=22a, with a mesh siz&AR

The dimensiomy,,, of K is chosen comparable to the
number of eigenstates considered. The Hamiltonian is finally
diagonalized within the subspake after a suitable orthogo-

=0.12%,. The initial Gaussian wave packefy of width o7 4i0n scheme, as for example the Gram—Schmidt proce-
4a,, is centered at the minimum of the welR{=17.6a), dure:

and extends far outside the grid borders, in order to ensure

that it will contain at least a small part of the continuum  £0=d0., &= —(dp|d%) o,
eigenstategFig. 4@]. In the momentum space, the wave K K K K
packet is centered around an arbitralyw) value of 0.01 §2= 2~ (bol $2) b0 (€1l P2)ér . -
a.u. In Fig. 4b)—4(d) we show a typical filtering sequence This procedure will be efficient if the elementsknare

for the v=1 level, obtained with an initial guess for the not linearly dependent, thus requiring one to stop the filtering
energye=2310 cni ! and a propagation step=0.5 ps. The procedure before reaching a too low value for the dispersion
dispersion reaches 0.01 ¢ after aboutN,=330 time D. The present procedure differs from the procedure sug-
steps. In principle, the filtering procedure is sufficient to findgested by Neuhauser but has the same effectiveness. Math-
any energy eigenstate, and the results after filtering individuematically the procedure described by E@8) and(3.9) is

ally thev=0,1,2 levels are displayed in Table Il. For the equivalent to the Lanczos methdd*but due to the use of
=0,1 levels, the results are the same as for the FGH methothe modified Gram—-Schmidt procedu¢8.9) it should be

In contrast, the wave function of the=2 resonant level, more stable. However, the size of the Krylov space is limited

(3.9
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by the numerical instabilities generated by the Gram-—
Schmidt procedure, practically limiting., to the range t=0
5_1234 0.001 ¢ f\

In the present example, we have chosen a Krylov space
with ng,,=5. The energies are reported in the bottom of \/
Table Il. Through successive trails, we finally generated a
ground state approximate wave functiqbfgo, starting from 0 |
an initial guesse=270 cm%, and stopping when reaching a 1=5ps
dispersionD=0.1 cm* after N,=18 steps(or 7"®=9 ps: 0001 |
The resulting dispersion on the three lowest eigenvalues of ' \
the Krylov space is then equivalent to the one obtained in the N
filtering-only procedure, but in a much shorter time, as the
filtering procedure has not been repeated for the excited

t=2.5ps

t=20ps

TS

Iy
I
| /W\M

/

states. As mentioned previously, the=2 level is less accu- 0

rate as its energy is already slightly above the edge of the t=30ps =40ps

well. Nevertheless, the agreement with the previous FGH 0.001 ¢ il 1

method is excellentsee Table |\. The wave function for the

v=2-like level is drawn in Fig. 3, and differs slightly from ,

the FGH determinations. LT by g,
0 1 L

15 20 25 15 20 25
R (au)

C. Filtering by time propagation: Lifetimes
FIG. 6. Modulus of the wave function as a function of propagation time for
Due to their energy, larger than the dissociation energyhev=2 level in the outer well of the f(Pa,) potential curve in K (one
of the 2S+ 2|:>3/2 limit, the states located in the;Q P3p) channel calculation The high frequencies oscillations are due to an abrupt
outer potential well have a metastable character, which dog&!™f of the initial wave function at the edge of the grid.

not manifest itself clearly in the above procedures, because
of the boundary conditions imposed by a finite grid. We must

allow the metastable states obtained in the two preceedinflich is represented in Fig. 7 for the three-0,1,2 meta-
sections to evolve freely as a function of real timeTheir Stable bound levels of the outer well. The decreasing expo-

wave functionyX, obtained from the Krylov procedure, is nential is clearly manifested for the three levels, so that the
now propagated according to lifetime 7, is readily obtained from

P (t)=e HUApK, (3.10

Outgoing boundary conditions are defined by transfer- 1 e
ring the outgoing portion of the wave function to another
grid.2® Use of an imaginary absorbing potential would have v=0
the same effectivened$3%4°

Propagating the metastable wave function in real time
has the effect of a time filter. The components which belong
to the continuum will decay much faster than the long-lived
resonancé! After a large enough time delay, only the reso-
nance is left which is manifested by a wave function with a
constant shape.

As a demonstration, the wave functions of #he0,1,2
levels obtained above, after diagonalization within the Kry-
lov subspace, are chosen as initial wave functions for the real
time-propagation procedure. The numerical propagation

‘ ‘ (a)
1000 2000 3000

—_
o

TTe—

\

v=1

(b)
0 200 400 600 800

correlation function C(t)

—

scheme is the same as for the filtering procedure. The time \\\\
evolution of thev =2 level is illustrated in Fig. 6: As ex- T
pected, since this level lies above the barrier, the propagation 0.1 v y=2 \\\ E

in real time finally filters out the =1 bound level. A similar

time sequence may also be drawn for the0,1 levels: The 001 | (c)
shape of their wave function does not vary in time as there is ) 10 20
no contin_uum components in such states. propagation time t (ps)
The lifetime 7, is deduced from the time dependence of
the correlation function FIG. 7. Correlation functionC(t) (on a logarithmic sca)efor the v
=0,1,2 in the outer well of theg)(Pm) potential curve in K (one channel
C(t)=((0)| (1)), (3.11)  calculation.
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0.05 . ; ,
[ Fourier Grid Hamiltonian J Energy—filter A (a)
[/

0.04 | i\

\ o
0.03 + I

1A

’ \
Krylov space 0.02 Il \\ \-‘
!
\&

| |
T 0.01 ¢ | \ ]
! /A\
AL ] .
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FIG. 8. Schematic description of the present methods for calculating energy
and lifetime of resonant states.

F o0 |
- fa7h 31 0.01 +
log[ C(t2)]—log[C(t1)]" (3.12

The lifetime could also be obtained by calculating the
flux

T, =

h FIG. 9. P li iti = = [
_ * . * . 9. Probability densities for th@) v=0 level, (b) v=1 level in the
)= 2mi ()" Vp(r) = (1) Vo= (1) ]. (3.13 05(P3,2) potential curve in K, in a two channel model. Full line: FGH,
) [15-20 a.u| grid, dashed line: FGH[6-30 a.u} grid, dot-dashed line:
For a pure resonant state the flux should be asymptoticallypm.

coordinate independent, thds: 7, .
In the present one-channel calculations, the computed
lifetimes using Eq(3.12) are 174 ns, 7.4 ns, and 13.7 ps for for the K, and R molecules only. Indeed, no bound levels
thev=0,1,2 levels, respectively, in the,Hong-range well.  have been found for Na despite the presence of a well in
The marked difference between the time constant) of the upper adiabatic curve: for this molecule, the weakness of
=0,1 clearly reflects that the uppermost level is the mosthe spin—orbit coupling does not allow one to consider
sensitive to the tunneling through the barrier, which is theqynd's case c as a good approximation for the description of
only decay process in the one-channel model. In such ge electronic states.
model thev =0 level may be considered as a true bound
state. They=2 level is a resonance lying slightly above the
barrier, and decaying with a much smaller lifetime. Only two statesv=0,1, with a wave function located
The real time filtering procedure is different from the mainly in the outer well of the p(P3/2) potential, are found
time-energy filter used to locate resonances by Ba@nd  within the two-channel FGH approach. As shown in Fig. 9
Mandelstamet al*® It has the advantage that the procedurefor both grids defined above, the wave functions are strongly
directly relates to our intuition of the behavior of a meta- perturbed by the continuum of the;opm) potential, and
stable state. one may expect strong predissociation effects, with a lifetime
The time filtering procedure could well be implemented sybstantially smaller than for the one-channel model. The
from a wave function obtained by the FGH method. More
generally, we would like to put emphasis on the “intercon-
nectivity” between the different steps of the method pre-TABLE Iil. EnergiesE (in cm™?), relative to the (4+4p) asymptote,
sented here, as illustrated by the diagram in Fig. 8: eackvtational constants, (in cm™), and lifetimes(in ps) computed in a two-
filtering step(in energy or in timg might well be stopped at chann(_el model,_ for thez=_0_,_1,2 levels in the outer well of the;’_(QPm)_
any arbitary ime stemaginary or real and the resulting 1% S 1 The 1t gusseslor e eneiyane e depetin
wave function then is used as an input for the next filteringp fiitering, before diagonalization.
procedure, or for the Krylov diagonalization process.

A. Quasibound states of K ,

Method v=0 v=1 v=2)
IV. RESULTS FGH
. . [6—30 a.u} grid E 294.95 312.88
Section llI was devotgd to thel prc_esentatlon of our methIlS_20 a.l grid E 203.63 312.32
ods for calculating energies and lifetimes of resonant states, B, 99x10°2  9.7x10°3
and illustrated using a single potential picture of the molecu- oM £ 903,18 313.64 35,47
lar system. Actually, we have shown in Fig. 2 and Sec. Il =310 b 0.45 0.004 0.31

that two potentials should be considered. We now present 7.(ps) 20.4 17 4.6
two-channel calculations in both FGH and FDM approaches
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The real time propagation of the=0 andv=1 FDM
wave functions provides the correlation functions drawn in
Fig. 10. Both levels are decaying much faster than in the
one-channel model, and with comparable time constants
(20.4 and 17 ps fov =0 andv =1, respectively. The decay
through predissociation in the;QPl,z) continuum is now
the dominant process, and energy of both levels are close
enough to be perturbed in a similar way by the coupling
term. Let us note that the=0 level exhibits a short-lived
componen{with a time constant of 8.5 psprobably due to
a small defect of the filtering proceduféhe dispersion is
larger for this level, see Table }llin contrast, the lifetime of

propagation time t (ps) the v=2 resonance is now found equal to 4.6 ps. Further

work should sort out whether this figure is the real lifetime or

FIG. 10. Correlation functio(t) (on a logarithmic scalefor thev =0 and ) . -e
still contains errors due to the filtering procedure.

v=1 in the outer well of the g)(Pm) potential curve in K (two channel
calculation.

B. Quasibound states of Rb

corresponding energies and rotational constants are reported As the RQ(OJ(PM)) outer well is deeper than in X
in Table Ill. The energies differ only slightly from those of the number of bound states obtained in the one-channel
Table II. Let us note that the size of the grid is a more criticalmodel is larger. The energies of the 11 levels computed by
issue than in the one-channel calculations: indeed, the demhe FGH method are reported in the first column of Table IV.
sity of continuum states for the;Q P, potential increases A grid ranging from 14, to 22a,, with a step size of 0.G,
with the size of the grid. was used. The position of the levels is only slightly modified
This latter remark also has consequences on the way t@hen two-channel calculations are performed. Indeed, due to
run the calculation within the FDM framework. Starting the value of the fine structure constant, four time larger than
from an initial valuee, the value of the dispersion is no for K,, Hund's case c representation is a good approximation
longer a good criterion to stop the filtering procedure: thefor the two (g electronic states. At the avoided crossing, the
expected bound state now being strongly mixed with thewo potential curves stay far apart, so that the radial coupling
continuum of the g(Pl,z) channel, we obtain larger values is very small(see Fig. 2
for the dispersion. But for some choices of the initial vadue Implementing the FDM method is more delicate than in
deduced from the one-channel calculations, the final dispetthe K, calculations. We used a grid similar to the FGH grid
sion for the bound states deduced after diagonalization of thabove. We had to filter the vibrational levels by groups
Krylov space is now excellent. Therefore we proceed via=0-2,v=3-6,v=7-10 with different initial guesses,
successive trials for the number of filtering stegs; the  to reach a small dispersion on their energies. It is striking
results displayed in Table Ill have been found with that for the one-channel calculations, both methods yield
=310 cm'!, after N,=180 steps with a step size of 0.5 ps equivalent results within a few 0.01 ¢rh except for the two
and withng,,,=5. They are very similar to those of the FGH uppermost levels. This is reflected also in the very small
approach. value of the dispersion. The=8,9,10 levels are decaying by

TABLE IV. EnergiesE (in cm™?) relative to the (5+5p) asymptote, and rotational constars (in cm™), computed within both FGH and FDM
approaches, in a one-chan€lIGH-1, FDM-1) and two-channel modéFGH-2, FDM-2, for thev=0 to v =10 levels in the outer well of thegC(Pg,,z)
potential curve in Rp Lifetimes for the quasibound states yielded by FDM-2 are also reported. The number of filtering timd stejpe initial guess and
the dispersiorD (in cm™Y) in the FDM are also specified.

FGH-2 FDM-1 FDM-2

FGH-1
v E E 10°x B, N, € D N, € E D Ty
0 262.23 263.05 4.70 6 120 262.28 0.31 200 270 263.09 0.17
1 274.40 274.50 474 6 120 274.40 0.006 200 270 274.57 0.70
2 285.32 285.36 4.76 6 120 285.32 0.06 200 270 285.35 0.47
3 295.42 295.64 477 100 310 295.42 0.02 200 310 295.67 0.14
4 305.04 305.34 477 100 310 305.04 0.04 200 310 305.37 0.17
5 314.19 314.44 475 100 310 314.19 0.04 200 310 314.46 0.17
6 322.80 322.90 471 100 310 322.80 0.03 200 310 322.92 0.20
7 330.70 330.64 4.63 200 340 330.70 0.03 150 330 330.97 0.64
8 337.53 337.53 450 200 340 337.51 0.06 250 340 337.63 0.64 26 ns
9 343.20 343.44 433 200 340 343.30 0.04 250 340 343.50 0.89 0.93 ns
10 348.13 348.42 4.16 200 340 348.04 0.04 250 340 348.76 0.51 54 ps
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tunneling through the barrier, with lifetimes of 3 ns, 0.67 ns,ent in the two-channel calculations, where the predissocia-
and 40 ps, respectively. tion to the continuum of the lower Iyingaqul,z) curve is

When comparing the two-channel calculations, boththe dominant decay mechanism. The existence of two quasi-
methods are still found in very good agreement up 06,  bound states is predicted, with lifetimes of the order of 20 ps.
although the dispersion is now one order of magnitudeThe treatment of a double continuum problem has been com-
larger. For thev=7-10 levels, the discrepancies betweenpleted by study of a=2-like level located just above the
the two approaches are about 0.1¢mThis is easily inter-  barrier (0.2 cm?). The 4.6 ps value found for the lifetime
preted since these uppermost levels have lifetimes shortshould be checked in further work. The agreement between
than 10 ns(see the last column of Table JVand interact one-channel calculations with both methods is also very
with the O;“(Pl,z) dissociation continuum. But the lifetimes good for R, with discrepancies smaller than 0.1 chon
are only slightly modified by the presence of this continuumthe energies. The first eight levels are true bound states, and
(2.6 ns, 0.93 ns, and 54 ps, respectiyeteflecting the adia- are not perturbed by the coupling with the IoweJ(@)Pl,z)
batic character of the coupling. Moreover, they are stillcurve. The last three levels=8,9,10 are predicted to be
larger than in the Kmolecule. guasibound, with lifetimes varying from 30 ps to 2 ns.

In view of possible spectroscopic identification of these ~ As a conclusion, both methods seem well adapted to
levels, we also display in Table IV their computed rotationalanalyze such systems with intermediate long-range wells, if
constants3, =(1/(2uR?)). The extremum predicted for the the required accuracy on the vibrational energies is around
v=23,4 levels will be very sensible to the shape of the poten0.1 cm L. In the present state of potential curve calculations,
tial, and may be found slightly shifted towards neighboringbetter accuracy is not relevant.
levels in an experimental spectrum. Experimental work should investigate the possibility of
populating the quasibound levels by photoassociation in-
duced by a laser blue detuned from the resonance line. An-
other population scheme could be by direct bound—bound

In the present work, we have investigated the possibilitytriplet transition in cold K or Rb, molecules weakly at-
of populating bound or quasibound levels in the outer well oftached to helium cluster®Refs. 44 and 46
the Q potential curves correlated to the firshs These quasibound levels can be used as an intermediate
+np(?Pg,) asymptote of the alkali dimers. Wells exist for step in two-color experiments in a cold alkali sample.

Na,, K,, and Rb, their depth ranging from 40 to 90 ¢rh
The bottom of such wells is located 176—317 ¢nabove =~ ACKNOWLEDGMENTS
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