Wave packet evolution in isolated pyrazine molecules: Coherence

triumphs over chaos
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Recent measurements of the rotational state dependence of the initial fluorescence
decay of the vibrationless 'B ,, state of pyrazine are analyzed from several points of
view. The relationship of these analyses to recent ideas dealing with quantum chaos

is discussed.

i. INTRODUCTION

In the accompanying paper' to this one we have
presented evidence that the radiationless evolution of 'Bj,
pyrazine is coherent, at least up to some time characteristic
of its radiative decay. The argument used to interpret the
experiments was based on Green’s function techniques
and showed that seemingly inconsistent data could be
reconciled by simply considering the smoothness of a
“self-energy” function. In this paper we will be concerned
with the implication of this interpretation as to the
existence of chaos in bounded quantum mechanical sys-
tems.

To this end the relationship of spectroscopic mea-
surements to the evolution of molecular properties is
reviewed using a method of Heller. We then proceed to
examine the existence or nonexistence of molecular chaos
in pyrazine.

. WAVE PACKET DYNAMICS

A very perceptive description of the dynamical pro-
cesses associated with the interaction of light and mole-
cules, particularly fluorescence spectroscopy and Rayleigh—
Raman spectroscopy, has been developed by Heller and
co-workers.>* This description makes extensive use of
the dynamics of wave packet motion on an energy
surface.

Heller points out that the usual second order pertur-
bation theory expression for the spontaneous Raman
scattering amplitude between rovibrational states |i) and
|/ can be rewritten in the form

as{wy) = J; e e EN= g | i(2) Yt

+ nonresonant term, )]
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where

&) = tas* é]l0),

| = thap* éslS ), )
and

o)) = 7" |g;). (3)

The energy of the incident steady radiation field is ;.
The derivation of Eq. (1) uses the assumptions that the
Born-Oppenheimer (BO) separation is valid and that
only two BO states are involved in the scattering. Then
M is the transition moment between the lower a and
upper b of these states, é; and &g are unit vectors describing
the polarization of the exciting and scattered radiation, v
is the radiative lifetime of the upper state, and Hj is the
upper state vibrational Hamiltonian. The function ¢; is a
vibrational wave packet which propagates on the excited
state surface; it is not an eigenfunction of H,. Let

R=(wp) = f: di(l)e rENgy, @

This function, called the Raman wave function by Heller,
is a superposition of wave packets with respect to the
continuous variable ¢ and with phase factors exp[i(w;
+ E)t]. Assuming that u,, is independent of vibrational
amplitude, it can be shown that the total dispersed
fluorescence from the irradiated molecuie is

Itpr = (R®(w)|R>(w))), &)

aside from the usual frequency factors (w;w?) and some
constants.

A simple first use of Eq. (5) is to confirm, in different
language, the interpretation of the variation of Ag.q /40w
with detuning given in Ref. 1. Note that if w; + E; is
resonant with the particular BO state energy the wave
packets displaced with respect to ¢ add constructively and
an extended wave function is generated. However, if w,
+ E; is detuned from the BO state energy the wave
packets displaced with respect to ¢ interfere destructively
after an interval At equal to the reciprocal of the frequency
mismatch. The net results are, of course, that the fluores-
cence emission is quenched by detuning and that the
localized wave packet created by interaction of the mol-
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ecule with a detuned radiation field can only sample a
very short section of the time evolution of the system.
Equation (4), which pertains to the case of a steady
radiation field, can be extended to describe interaction of
a molecule with a pulsed field. Let a(?) be the amplitude
as a function of time of the pulsed field. Then we write,

L

Rl )= lim | ¢4t — wa(ue rEX-ert-ady ()
T—w

Clearly, R(wy;, 1) — R*(w;) when a(u) — 1. Consider the
function

Kw;, 1) = (R(wy, DIR(wy, 1)) @)
and form
o
W= ;1_11; _fj; Koy, t)dt. 8)

In expanded form,

1]
I(wh t) = f <¢ileiHb(t—-u')ei(Ei+w1)(t—u-)_—y(t—u’)a(ur)dul
-T

!
X J- ele(t—u)l ¢‘> et(Ei+w1)(l—u)—-y(t—u) a(u) du.
-T

&)

If we insert in Eq. (9) a decomposition of unity in terms
of a complete set of states (singlets in our case) and
assume that only one such state makes an important
contribution to the integral,

Kon 0 = | [/, cosiSiemais)ive)

X etEredi=ug~v(=Wg()dy |2, (10)
If the exciting radiation field consists of an on resonance
delta function pulse,

T
W= lim o f A Gy T v 2

= P(SIS). ()

Clearly, P(S|S) is the probability of finding the system in
the initially prepared state after an infinite period of time,
hence can be used to measure the occurrence of recur-
rences in the system. Neglecting photon emission (i.e.,
setting ¥ = 0), for an intermediate case molecule such as
pyrazine we can write

N
W= 3 KSml, (12)
n=1

where the {m,} are the mixed singlet-triplet levels into
which |S’) evolves. In the egalitarian coupling model

M=

I{Stml* = 1/N. (13)

[0

n=1

Thus, for this coupling model, the probability of finding
the system in the initial state as ¢ — oo is only N~!, the
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same as implied by classical chaos, yet phase coherence
of the wave function is maintained for all time.

lil. EXISTENCE/NONEXISTENCE OF MOLECULAR
CHAOS IN PYRAZINE

We have argued that the time evolution of a wave
packet state in 'Bs, pyrazine is coherent for a time up to
the radiative lifetime. We now invert our argument and
ask how this interpretation reflects on the existence or
nonexistence of chaos in bounded quantum mechanical
systems. We take chaos to mean the loss of phase
coherence in the evolution of a state of the molecule, and
ask if other signals of chaos are consistent with all of the
data for the fluorescence decay of pyrazine.

Pyrazine has 24 vibrational modes. Even though the
frequencies of these modes span a considerable range, the
existing evidence for mode mixing via Fermi resonance,
for Duschinsky rotation, for Coriolis coupling, and the
like,® suggests that any reasonable classical mechanical
model will exhibit chaotic motion at very low total
energy.® We shall assume this to be the case for a classical
mechanical model of pyrazine at the energy characteristic
of the mixed single—triplet levels in the intermediate level
structure scheme used to describe pyrazine.

A bounded quantum mechanical system, which nec-
essarily has a discrete spectrum, will always display at
least almost periodic motion. For such a system a recur-
rence will eventually reconstruct any chosen initial state.

Kosloff and Rice’ have discussed an extension of the
Kolmogorov entropy, first defined for classical mechanical
systems,®'* to apply to quantum mechanical systems.
The Kolmogorov entropy of a system is an asymptotic
measure of its properties; in classical mechanics it is, in
principle, computed from an indefinitely long sequence
of observations of the time evolution of pairs of trajectories
that start from nearby points in phase space. If the initial
differences in coordinates and momenta, Ag(0) and Ap(0),
grow rapidly and erratically enough with |z| that prediction
and retrodiction of the separation of the trajectories is
impossible for lack of sufficiently precise initial conditions,
the classical mechanical system is said to exhibit chaos.
For a classical mechanical system regular and chaotic
motion are characterized by, respectively, zero and non-
zero Kolmogorov entropy. The Kosloff-Rice extension
of the concept of Kolmogorov entropy to quantum me-
chanical systems shows that its value is zero for a bounded
system since, if the spectrum of the system is discrete,
the recurrence time is always finite (although it can be
very long). We note that it is also the case in classical
mechanics that if the spectrum of the Liouville operator
for the system is discrete the Kolmogorov entropy of that
system is zero and the motion is regular.>'? True relaxa-
tion, in the sense of an irreversible approach to some
asymptotic state of the system, only occurs when the
spectrum of the system is continuous.

As interesting as the preceding argument is from the
point of view of formal theory, measures which require
extremely long observation periods are usually irrelevant
in real experimental situations. It is never possible to
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completely isolate a molecule from the rest of the universe.
Although the time scale on which small coupling terms
generate evolution of a state of the system can be very
long, some perturbations, e.g., collisions with a wall or
other molecules, greatly restrict the time available for
observation of isolated molecule properties. Since a system
with a discrete spectrum can exhibit apparent relaxation
for some period of time, it is worthwhile examining how
the putative characteristics of quantum mechanical chaos
are manifest in the time evolution of the system. Note
that we have described the time evolution of a system
with a discrete spectrum as apparent relaxation since it is
really a coherent dephasing and is not irreversible.

Pomphrey!! has suggested, and others have demon-
strated, that the energy level spectrum of a system which
is classically chaotic is more regular than is the energy
level spectrum of a system which is classically quasiper-
iodic. The notion underlying this suggestion is that clas-
sically chaotic systems have strongly coupled degrees of
freedom which, in the quantum mechanical description,
implies removal of all degeneracies and “level repulsion.”
On the other hand, classically quasiperiodic systems have
underlying dynamical symmetries which, in the quantum
mechanical description, implies the existence of degenerate
states. It is the level repulsion mentioned above that tends
to regularize the spectrum relative to one which exhibits
clustering attributable to degeneracies. We now ask how
this difference in the structures of the spectra influences
the temporal evolution of a prepared wave packet.

It is worthwhile, before proceeding further, to remark
on some features of the relationship between the energy
level spectrum of a system and the recurrence time in
that system. Consider a situation in which the energy
level spectrum has near degeneracies. In this case the
recurrence time, neglecting fluctuations, is expected to be
very long. We then infer that quantum systems which in
the classical limit correspond to quasiperiodic motion
have longer recurrence times than do quantum systems
for which the corresponding classical motion is chaotic.
Furthermore, when the spacing of the levels in the
spectrum becomes incommensurate the recurrence time
depends on the definition of the precision of the recurrence
of the state. For systems with an infinite number of
discrete levels a recurrence never occurs even though
phase coherence is never lost in the evolution of an initial
state. These counterintuitive observations are illustrated
by detailed studies of two model systems:

(i) The Jaynes—Cummings'?> model consists of a two
level system coupled to a harmonic oscillator. If at = 0
we prepare this system in a coherent state of the oscillator
the initial state never recurs and, indeed, has a very
complicated partial revival pattern.

(ii) The Wigner-Weisskopf'> model consists of a
single state coupled to an infinite manifold of evenly
spaced states. In this system the amplitude of a prepared
state decays exponentially for a while. However, if the
density of states is finite, after some time there is a partial
revival of the initial state amplitude. The partially recon-
stituted initial stay decays again, and revives at still later
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times, etc. If the density of states becomes infinite the
revival of the initial state is suppressed and the temporal
evolution becomes an exponential decay of amplitude.

In each of cases (i) and (ii) the system has zero
Kolmogorov entropy because the time evolution is com-
pletely predictable.

What emerges from these considerations is that the
partial revival time of an initial state can be a more
suitable measure of molecular behavior than the recurrence
time. We define the partial revival time as the interval
required for the initial state to regain a significant fraction
of its amplitude. For a large molecule, in which the
prepared state is coupled to a dense set of states, the
partial revival time can be very long. In principle the
partial revival time is of the order of the reciprocal of the
largest frequency spacing among the dominant supporting
states. Evenly spaced energy level spectra have, therefore,
longer partial revival times than do unevenly spaced
energy level spectra.

It is worthwhile demonstrating in a different fashion
from the argument in Sec. IV B of Ref. 1 that the
distribution of energy levels is irrelevant for calculation
of the initial decay of the prepared states, i.e., up to the
first partial revival time. First consider an initial state
which can be represented as an expansion in the eigen-
functions of the system Hamiltonian, i.e.,

|P> = 2 Cn. (14)

The time evolution of this state is given by

lo(®)) = Z Creyn, (15)

and the amplitude of the initial state is
£(@) = (oO)lo(t))
= 3 |ClPe™. (16)

Equation (16) can be thought of as a discrete ap-
proximation to the Fourier integral

F(i) = fw |C(w)*e“ dw. a7

If the continuous function |C(w)|? obeys the conditions

[ 1cwrdo =1,

|C()* — 0

there exists a discrete approximation of the type displayed
in Eq. (16) for the integral, and when the distance between
levels approaches zero the approximation becomes exact,
i.e.,

S — Fo. (19)

From the point of view of Egs. (17) and (19) the energy
level distribution plays the role of defining the quadrature
points of the discrete approximation. In fact if

Rl = [ gtarde, (20)

w — o0, (18)
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then

[ = 2 W(wng(@n), 2n

where the w, are the quadrature points, W(w,) are the
weight functions and g(w,) is the value of the function g
at the quadrature point.

We can now compare the initial decays of two
molecules with different energy level distributions. If we
assume that the initial state is arbitrary we can choose it
in such a way that we obtain the same spectral envelopes
Fi(t) = Fy(¢) in both molecules. The two spectral distri-
butions, corresponding to the two molecules, will construct
different discrete approximations to the same decay inte-

gral.

In the following examples we construct the decay
patterns for wave packets constructed from several different
energy level distributions. Our purpose is to illustrate the
varieties of apparent decay and revival of initial state for
fully coherent evolution under conditions for which the
initial decays are identical.

Consider, first, (a) a uniform distribution of energy
levels, (b) energy levels converging to an accumulation
point as (AE)™3 and (c) a Poisson distribution of energy
levels. These spectra are shown in Fig. 1, and the corre-
sponding f(¢) in Fig. 2. In these cases the average density
of states is the same. Note that the Poisson distribution
(c) has the strongest revival pattern since it has relatively
large gaps in the spectrum, that distribution (b) has a
relatively weak but nontrivial revival pattern and that the
uniform energy level distribution (a) has a revival time
that coincides with the recurrence time. For the uniform
spectrum the recurrence time, in the units shown in Fig.
2, is 2m - (40), since there are 40 levels in the unit interval.

il

T

|
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s ]
D e FIG. 1. Model level structures (a)
_— — uniform distribution (b) levels
- — converging to an accumulation
— point as (AE)~? (c) Poisson distri-
—_— bution.

(a) (b) (c)
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FIG. 2. Evolution of the systems in Fig. 1. — uniform, + cubic, *
Poisson.

Consider now spectra modeling those of O; and
HCN, shown in Fig. 3; the corresponding f(f) are shown
in Fig. 4. O; has a Wigner distribution of nearest neighbor
energy level separations,'* a characteristic some investi-
gators associate with quantum chaos.!* The energy levels
of HCN tend to stick together because of an underlying
dynamical symmetry in the system Hamiltonian.' Note
that HCN has a strong initial state revival pattern since
the spectrum has large gaps; the initial state revival
pattern for O; is much weaker. The unit of time in the
figure for O3 is 0.02 ps; that for HCN is 0.0069 ps.

It is clear, from these examples, that despite apparent
irreversible decay for a time interval, coherent evolution
of a wave packet leads to significant but partial revival of
the initial state on a time scale short compared to the
recurrence time. And, despite the uniform value for the
initial rate of decay, the coherence of the wave packet
evolution is manifest in the variation of the partial
recurrence time, and amplitude, with spectral distribution.
Relative to the time scale determined by the initial decay,
these partial amplitude revivals occur at very long times.
Thus, if evidence for coherence is sought at short times
it must be in phenomena other than the partial revival
of wave packet amplitude. If the experimental probe does
not depend on wave packet coherence, the temporal
evolution will appear irreversible on the usual time scale
of measurement.

OQur point is that what is observed depends on the
nature of the experiment. Or, put another way, it is
possible to carry out an experiment which does not
sample the coherence properties of the systemm wave
function, for which experiment apparent irreversibility is
manifest. It is also possible, in principle so long as the
system spectrum is discrete, to carry out an experiment
which does depend on the coherence properties of the
system wave function, for which case partial revivals of

IR N IR
L PUPEEEAE I IO e

FIG. 3. Level structures for O; and HCN.
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FIG. 4 (a). Evolution of the Qs system shown in Fig. 3. (b). Evolution
of the HCN systemn shown in Fig. 3.

the initial state or other evidence of phase memory will
be found. In addition to the case of pyrazine, which we
have discussed, that this is so is illustrated by the experi-
ment of Lambert, Felker, and Zewail.'® These investigators
used picosecond pulses to excite a well defined vibrational
mode on the 'B,, surface of anthracene. At the energy of
excitation (1420 cm™' of vibrational energy, 30 000 cm™!
total energy) there are about 50 !'B,, vibrational levels
within the coherence width of the laser, while the total
density of (vibrational) states is in excess of 10°/cm™".
The emission from the prepared state to the ground
electronic state was monitored, with the following results.
In the frequency domain the resonance emission is sharp,
regular, and can be analyzed in terms of the known
normal modes of the molecule. For energies below that
of the resonance emission there are clumps of lines in
the spectrum. The temporal behavior of the system in
the resonance emission region shows recurrences with
frequency 1 GHz. In the spectral region where there are
clumps of lines recurrences are observed with the same
frequency, but phase shifted. Indeed, depending on the
emission mode studied there is either a «/2 phase shift
or no phase shift relative to the resonance emission
recurrence pattern. Felker and Zewail give a simple and
elegant interpretation of these observations in terms of
coherent evolution of the prepared state.

Our interpretation of wave packet dynamics in pyr-
azine, and Felker and Zewail’s interpretation of wave
packet dynamics in anthracene,'® can be used to test

some of the ideas concerning quantum chaos. We shall
focus attention on three of those ideas, namely, the
Kosloff-Rice’ extension of the Kolmogorov entropy theo-
rem to quantum mechanical systems, Heller’s criterion'”"'
and the recent definition, by Goelman and Shapiro,'® of
quantum chaos in terms of the properties of the eigen-
function of a stationary state.

As mentioned earlier in this paper, Kosloff and Rice
show that the Kolmogorov entropy of a bounded quantum
mechanical system is zero, hence there cannot be a
quantum chaos with one-to-one relationship with classical
mechanical chaos. It is immediately obvious that the
observation of coherent wave packet evolution in a region
of the spectrum with discrete energy level structure is
consistent with the Kosloff~Rice analysis. The examples
of wave packet evolution described earlier show how
complex the temporal behavior can be given the constraint
of phase memory.

Heller’s criterion for quantum chaos is conveniently
stated in terms of wave packet motion on an energy
surface. He proposes that a system is chaotic when, as
t — oo, the wave packet uniformly covers the available
energy surface. In the egalitarian coupling model for
intermediate case molecules this condition is achieved.
Yet, as we have shown both theoretically and experimen-
tally, the coherence of the system wave function is
maintained for all time. Thus, an experiment that does
not depend on, or sample, phase coherence will yield a
result which agrees with that predicted under the assump-
tion chaos exists, while an experiment that does depend
on the coherence properties of the prepared state will
yield a result which indicates that the system is not
chaotic. It is, then, perhaps a semantic distinction as to
whether or not Heller’s criterion defines quantum chaos.

Shapiro and Goelman'® associate quantum chaos
with the properties of an eigenfunction and not, as do
Kosloff and Rice, with the properties of the spectrum of
all eigenfunctions. To be specific, Shapiro and Goelman
associate chaos with the condition that the path correlation
function

N
PYI =3 2 VA 22)
i=1

fluctuates about zero for all n > 0. In Eq. (27) y(r) is a
stationary state wave function and ry, r,, ..., r, are a set
of cyclically arranged (ry,, = r,) ordered points belonging
to a self-avoiding space filling path in coordinate space.
The conditions that the wave function be normalizable
and continuous imply that if the interval between succes-
sive points on the path is small enough the path correlation
function is nonvanishing. Thus the vanishing of the path
correlation function is to be regarded as its limiting
behavior for suitable interval between points along the
path. Indeed, Shapiro and Goelman show that for the
stadium,'® a system known to be chaotic in its classical
mechanical motion for all energies, the path correlation
functions of the eigenstates are periodic and nondecaying
at low energy whereas this function decays immediately
and then fluctuates about zero for all values of n when
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the energy is high. The fluctuation of the high energy
path correlation function about zero seems to imply there
is a random sampling of wave function values, but it
must be remembered that this cannot be the case since
the wave function satisfies normalization and continuity
conditions; the behavior of the path correlation function
described is at best pseudorandom. The point to which
Shapiro and Goelman draw attention is that wave func-
tions corresponding to slightly different energies are likely
to have path correlation functions with oscillations that
are not cross correlated. This behavior is consistent with
the Kosloff-Rice analysis, which uses properties of the
entire spectrum of states to define the Kolmogorov en-
tropy. '

Consider how the classical mechanical concept of
chaos alters our notion of motion of a representative
point in phase space. It has been argued that if the
dynamical motion is sufficiently unstable that each open
region of the phase space, no matter how small, rapidly
spreads to far separated regions of the phase space as
time advances, then it is impossible to define the phase
space trajectory by considering the motion of smaller and
smaller initial regions of the phase space. The statement
of impossibility is an extrapolation that contradicts the
nature of the solutions of the equations of motion, which
require the trajectory to be continuous and differentiable.
If, nevertheless, the statement of impossibility is accepted,
and on the smallest scale for subdivision of the system
phase space the trajectory is not differentiable, the Ham-
iltonian equations of motion are to be replaced by new
equations of motion which account for the “intrinsic
randomness” of the system.?’ The consequence of strong
instability of motion is, in this view, the breakdown of
the deterministic description of dynamics, leading to
irreversibility of motion. Note, however, that the stated
consequence is ultimately derived from the imputation
of behavior of the trajectory that is inconsistent with the
Hamiltonian equations of motion.

As already described, the Shapiro-Goelman criterion
for quantum chaos exploits the behavior of P[y], given
by Eq. (22). In the implementation of that criterion it is
found that although P[y] fluctuates about zero for high
energy eigenstates, the amplitude of the fluctuations does
not decay as N [see Eq. (22)] increases. Thus, the spatial
correlation of ¢ does not vanish as N increases. Indeed,
we take the behavior of P[yY] to be descriptive of a very
complicated function, but one which has definite phase
and amplitude relations everywhere in space. Note that
if the fluctuations in P[y] were random ¢ would be
nondifferentiable. Since ¥ is an eigenfunction of a bounded
Hamiltonian, or in other words a normalizable and
continuous solution of the Schréedinger equation, it must
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also be differentiable. We conclude, then, that P[y] can
never fluctuate randomly.

The nature of the fluctuations of P[] is relevant to
the interpretation of wave packet dynamics in pyrazine
and anthracene. In both cases the stationary state wave
functions, at the energies of excitation, must be very
complicated in the sense of having many nodes and
highly patterned spatial distributions of amplitude. That
this is so follows from the observation that, at the energy
considered, if such a stationary state wave function is
represented as a mixture of vibrational functions drawn
from the coupled electronic surfaces, those vibrational
wave functions must correspond to reasonable excitation
and have many nodes. Accordingly, it is reasonable to
expect a computation of P[y] for such eigenfunctions to
fluctuate about zero. But, as we have already argued, the
existence of such fluctuations does not imply that phase
memory is lost, and the experiments we have described
show that it has not been lost, i.e., ¢ still has definite
phase and amplitude relations everywhere in the bounded
space.

Briefly put, if an experiment is designed to probe for
coherence in the evolution of a prepared state in a
quantum mechanical system with discrete spectrum, it
will be found that coherence triumphs over chaos.
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