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The method presented here is based on the solution of the time-dependent complex-scaled 
Schrodinger equation to provide the complex-scaled evolution operator after one optical cycle. 
This method is mainly suitable in the study of multiphoton ionization or dissociation under the 
influence of high intense fields. An illustrative numerical example is given. 

I. INTRODUCTION 

Multiphoton ionization and dissociation of atoms and 
molecules are currently intensively studied by theoreticians 
and experimentalists.‘-7 For field intensities above 10” 
W/cm2 nonlinear effects predominate in the atomic and mo- 
lecular systems and nonperturbative approaches should be 
taken.’ 

Chu and Reinhardt’*” calculated the multiphoton ioni- 
zation rates by extending the Floquet theory to include con- 
tinuum. The ionization (or dissociation) rates are associated 
with the imaginary parts of the complex eigenvalues of the 
truncated time-independent complex-scaled Floquet-Ham- 
iltonian matrix. 

To the best of our knowledge, all published works on the 
multiphoton ionization/dissociation rates by the complex- 
Floquet theory, were also based on the solution of the time- 
independent eigenvalue problem 

$A2 =%4?2? (1) 
where 

&” 1 1 T 
“T = - -v2e-2ie+- 

2 s To 
V( e”x,t ‘) dt ’ + &on , 

&” 
1 T 

n,n’#n = - s To 
V(xe’e,t’)exp[ico(n’ - n)t’] dt’, (2) 

and 

T=2n (3) 
cd 

is the time periodicity of the Hamiltonian and w is the fre- 
quency of the time-dependent field. 

The complex eigenvalues provide the positions and 
widths of the metastable quasienergy states 

E, = E, (position) - $ I, (width) (4) 

and 
7, (lifetime) = fi/I, . (5) 

” Permanent address: Department of Chemistry, Technion-Israel Insti- 
tute of Technology, Haifa 32oo0, Israel. 

For an infinite large Floquet matrix jy: the quasiener- 
gies are assigned an additional good quantum number n. 
Such that 

E, = E,, + +iom, (6) 
where E,. are associated with a single Brillouin zone (e.g., 
n = 0 channel). Resulting of the truncation of Z there is an 
“edge effect” which makes it hard to isolate the quasiener- 
gies which are associated with a single Brillouin zone. This 
difficulty becomes a severe one as the intensity of the field 
gets a high value and many channels (i.e., Brillouin zones) 
are involved in the dissociation/ionization process. In such a 
case there is a need to diagonalize a very large Hamiltonian 
matrix since the dimension of Z in the variational calcula- 
tions, is equal to the product of the number of channels (i.e., 
number of terms in the Fourier series expansion of the qua- 
sienergy state) and the number of basis functions which are 
taken into consideration. No doubt that when not too many 
channels are involved in the dissociation/ionization process, 
this method is efficient and useful.” However, we found it 
less efficient and hard to use when there are many resonance 
quasienergy states in a single Brillouin zone and also when 
the intensity of the field is high. 

The purpose of this work is to show that resonance posi- 
tions, widths, and partial widths of metastable quasienergy 
states can be obtained from solutions of the time-dependent 
Schrijdinger equation over the first optical cycle. The meth- 
od proposed here is based on previous works where the Flo- 
quet theory was used, without complex scaling, in the study 
of laser-driven dissociative systems (see, e.g., Hirschfelder, 
Wyatt, and co-workers)‘* and on the work of Leforestier 
and Wyatt who studied the solutions of the complex-sym- 
metric Floquet-Hamiltonian. ” The first step of the calcula- 
tion is to construct a complex-evolution matrix U (01 T) by 
solving the complex-scaled time-dependent Schrodinger 
equation. The complex eigenvalues of U (01 T) , A,, are asso- 
ciated with the quasienergies of the studied time-periodic 
Hamiltonian. So far the procedure is very similar to the one 
used before, for example, by Leforestier and Wyatt.13 How- 
ever, as we shall show in Sec. II, the effect of the complex 
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scaling on the results is large. As in the time-independent 
cases, the continuum states can be distinguished from the 
resonance states. The continuum solutions form a spiral in 
the complex il plane. One edge of the spiral is 0 + i0 and the 
other one is 1 + i0 if the threshold energy of the bare Hamil- 
tonian is taken as zero. The resonance solutions are stable 
and not much affected by varying 8 [remember that exp( i6J) 
is the complex scaling factor]. The resonance widths are 
given by 

sr, = -21m [$log/2,] (7) 

and the resonance positions (modulo &) of the quasienergy 
states are 

e, =Re[GlogL,]. 

The key step in the calculation is the computation of the 
complex-scaled evolution operator U. Basically two types of 
procedures can be used. In the first one, the column vectors 
of U are propagated in time one by one to a given desired 
accuracy. In the second type of procedures, the entire matrix 
U is propagated in time to keep exactly the same numerical 
error in the evolution of each one of the vectors in the evolu- 
tion matrix U. Several different possible computational 
methods for the computation of U are described and com- 
pared in Sec. III. 

The probability for ionization or dissociation resulting 
from absorbing n photons can be approximately estimated 
from the ratio between the partial widths r, (defined to be a 
factor of the residue of the S matrix at a pole) and the total 
width l?,. The partial widths were previously obtained for 
time-independent Hamiltonians (including the Floquet- 
Hamiltonian matrix) by the asymptotic analysis of the com- 
plex-scaled resonance states. IL” 

In our case the calculation of the partial widths is less 
straightforward as one can see in Sec. IV. A summary of the 
method proposed here is given in Sec. V. 

As an illustrative numerical example we studied the 
simple case where 

ii= - +$ + f(x,[l -tacos(wt)] (9) 

and chose f(x) to be the Rosen-Morse potential’* 

f(x) = - b 
cos h 2(aX) ’ 

(10) 

since it does not support resonances when t is treated adia- 
batically and since it has been used before as a testbed for 
theories and computational methods.” 

In our calculations we chose V, = 2, cy = l/& then 
f(x) supports three bound states at the energies - 2, - 5, 
and - & (For the resonance positions, widths, and partial 
widths as function of LI, see Ref. 11.) 

II. RESONANCE POSITIONS AND WIDTHS (LIFETIMES) 
OF QUASIENERGY STATES 

The solution of the time-dependent Schrodinger 
equation 
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G(x,t)Y(x,t) = ifi- 
dt 

(11) 

can be given by 

Y(x,t) = ^U(x,t)Y(x,O) ) (12) 
where ^v( x,t) is the time evolution operator. For time-peri- 
odic Hamiltonians following the Floquet-Bloch theorem, 
there are quasistationary solutions Ya for which 

VI, (x,t) = e - iE-Da (x,t) (13) 
and 

9?, (x,t) = *p, (x,t + 72 . (14) 

By substituting Eqs. ( 13) and ( 14) into Eq. ( 12) one imme- 
diately can see that by solving the eigenvalue problem 

^u(x,T)~, (x,T) = A,@, (x,T) (15) 
the quasienergies mapped to a single Brillouin zone are 
obtained 

A, = exp( - k,T/+i). (16) 
For metastable systems the resonance quasistationary solu- 
tions @, (x,t) exponentially diverge as x-+ 00. However, 
they become square integrable functions upon complex scal- 
ing. 9-” We may suggest (on the basis of our numerical expe- 
rience) to carry out the following transformation: 

x+(x - x,)exp(i& + x0, (17) 

where x, is the vector position at the minimum of the field- 
free potential. Consequently, the complex eigenvalues of the 
complex-scaled time-evolution operator are associsted with 
complex-quasi-“energy” solutions E, . When H( x,t)- 
[from now on x stands for a complex-scaled coordinate, 
x = (x’ - x,,)exp(i@ + x,]-can be written as 

i?= iio(x) + ii*(x,t). (18) 

Then, instead of solving the differential Eqs. ( 11) an$( 12), 
one can use the eigenfunctions of the complex-scaled Ho as a 
basis set, 

~o~jo’ = E !“)y<o) L I 
and solve the following time-dependent matrix problem: 

XU(Olt) = ifi d”if’r) , td%Tl , (19) 

where 
U(Ol0) =l (20) 

and 

Xg(t) = EjO’Sg + (YjO’@,(x,t)pqO’) . (21) 
For the different computational methods to evaluate 
U (017’) see Sec. III. The complex-quasienergies E, are asso- 
ciated with the eigenvalues of the complex matrix U ( T), 

‘J(OlT)D, =&Da , (22) 
as defined in Eq. ( 16). The complex eigenvalues ;1, can be 
divided into two different sets. The first one is of the reson- 
ances which are the complex (i.e., 11, 1 < 1) eigenvalues that 
are 8 independent. The second type of complex eigenvalues 
are 8 dependent and are associated with the rotating con- 
tinua. Following the Balslev and Combes theorem 
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E, (continuum) = (Za + tin)exp( - 2i0) - tiwn ; 

a?&[ -8fm,co] , (23) 
where 

n = - co,...,m. 

Here we assume (without loss of generality) that the ther- 
shold energy of the bare (i.e., field free) Hamiltonian is zero. 
By substituting Eq. (23) into Eq. ( 16) one can see that 

/1, (continuum) = e - i[cos 2f3.(2-, + hn) - f&m] T/#i 

where 
Xe 

- (E, + fiion)Tsin 2O/fi 
, (24) 

n = - co,...,co. 

Therefore, the second class of solutions which are associated 
with the rotating continua in a single Brillouin zone will 
form a spiral in the complex ;1 plane. The edge of the spiral 
will be at ;1, = 1 + i 0 (i.e., i-, = - hn), whereas the core 
ofthespiralisat/2, =O+iO(Za = CO). 

Indeed, the results for the Rosen-Morse time-depen- 
dent model Hamiltonian (described in Sec. I) which are pre- 
sented in Fig. 1 confirm this analysis. 

As we can see from Fig. 1 [and also from Eq. (24) ] the 
spiral has a fractal dimensionality and the rate of conver- 
gence to the origin of R, = 0, strongly depends on the value 
of the rotational angle 8. [exp(i@ is the complex scaling 
factor.] Consequently, the resonances will be more easily 
distinguished from the continuum solutions as 0 becomes 
larger. 

The fact that the resonances can be easily isolated from 
the continuum is shown in Fig. 2. A basis set of 50 eigenv?- 
tors of complex-scaled field-free Hamiltonian matrix Ho 
(those which were associated with the lowest real parts of 
E I”‘> were used. From Fig. 2 one can see that most of the 
eigenvalues of U (017’) (39 out of 50) fall into the core of the 
spiral. The resonances and rotating continua are affected by 
the strength intensity of the field (I. 

We may stress here that there is not a simple unique 
procedure to find out in which Brillouin zone a given qua- 

-1.2 -00 -04 0.0 0.4 OB 1.2 

a*0 2 bO.45 rad 

-o.*b , , ! , , j , , , , -0.6 -0.4 0.0 0.4 0.8 
(a) RI x 

(b) Re h 

FIG. 2. The resonance and scattering eigenvalues of the time evolution ma- 
trix after one optical cycle U(O] T) using 50 particle in a box basis functions. 
(a) Weak field intensity of a = 0.2. (b) Strong field intensity of a = 0.8. 

sienergy is located. (See, however, a possible way to allocate 
the Brillouin zones in Sec. IV). This fact is clearly illustrated 
in Fig. 3 where the complex quasienergies E, = ifi log A, /T 
are shown in the complex-e, plane. 

Identification of the Brillouin zone in which a given qua- 
sienergy state is located will provide the familiar Balslev- 
Combes behavior of resonances and rotating continuum as 
were obtained by solving the time-independent Floquet- 
Hamiltonian (see Fig. 2 in Ref. 11) . 

a =0.2 
0.0 0 *aa e o e 0 0 

Re X 

FIG. 1. Complex eigenvalues {A,) of the first optical cycle complex-scaled 
evolution matrix U(O] T) for the time-periodic Rosen-Morse Hamiltonian 
[Eq. (9)] with the field intensity a = 0.2 and T= 2~. The three isolated 
open circles stand for the resonance eigenvalues which are not affected by 
the value of the rotational angle 0. 

-0.4 -02 0.0 0.2 0.4 

Re d 

FIG. 3. Complex quasienergies in one Brillouin zone (not necessarily the 
same one), E = (i?i//T)ln A,, obtained for the Rosen-Morse time periodic 
Hamiltonian [ Eq. (9) 1. 
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III. THE COMPLEX-SCALED EVOLUTION OPERATOR U 
BY DIFFERENT COMPUTATIONAL METHODS 

(k$qs) 

As was described before, the resonance positions and 
widt$ can be obtained by propagating the evolution opera- 
tor U for one optical cycle provided complex scaling has 
been carried out. Roughly the procedure can be divided in 
two: ( 1) constructing a faithful representation of the Hilbert 
spacz of the problem; (2) propagating the evolution opera- 
tor U. 

=& llifl Izi U(x,JL;t)exp[2Nn -@)/N] . 

( 1) In representing the Hilbert space a few alternatives 
have been tried. The first is a basis set expansion. The most 
simple of these expansions is the particle in a box basis set. 
Other basis sets are possible, such as the harmonic oscillator 
basis set. The restriction on the choice of basis sets is the 
ability to apply the complex scaling since the dilation of the 
Hamiltonian is equivalent to the scaling of the basis func- 
tions by a complex factor, 

s 
- Xv(t) = _ m ~t(x’)ii(~‘e+‘~,t)~~(x’) dx’ 

s 

m 
= _ m [di(x’e+is)]*ii(x~,t)~j(x’e-ie) dx’. 

(25) 

Two advantages can be identified in the Fourier meth- 
od: (a) the complex-scaling procedure, x +exp( if3) x, is di- 
rect and can be applied to all coordinates simultaneously; 
(b) the matrix operations scale as --Nlog N compare to 
-N * of matrix multiplication. This means that for very large 
basis sets the Fourier method will be always advantageous. 

(2) Considering the propagation scheme: The equation 
of motion for the time-evolution operator Ugiven in a matrix 
representation becomes 

(30) 

The solution is complicated by the explicit time dependence 
of the Hamiltonian. Basically two methods have been tried. 

The first method propagates each vector in the initial 
evolution operator separately for one optical cycle by means 
of the Adams-Moulton predictor-corrector method” 

ifi dun (Olt) 
dt 

= &“(f)U, (O/f) , n = 1,2 ,..., N, 

For cases in which the applied field is not too strong, the use 
of the interaction picture can produce a much smaller basis 
set. The intzraction representation is produced by predia- 
gonalizing HA, the time-independent part of the Hamilto- 
nian matrix H. The alternative to the basis set expansion is 
the use of a discrete variable representation (DVR) . l9 The 
natural choice, in analogy to the particle in the box represen- 
tation, is the Fourier representation. The basic idea is a dual 
discrete representation, both in configuration space and, via 
the fast Fourier transform (FFT), also in momentum 
space” and is to perform the operation of an operator in 
Hilbert space on a vector locally. For the potential operation 
a configuration representation leads to the operation 

V(xieie;t)t&xi) (26) 

on all the grid points xi. The Rotential operation can be ap- 
plied directly to the operator U which was discretized as 

u,,, (OlO) = a,,, , (31) 
where the time-evolution matrix over the first optical cycle 
U(OlT) is given by 

U(OlT) = [ ~~,~~IT),~,~~IT),...,~,~~IT)] * (32) 
The advantage of this method is that in situations without 
strong mixing some vectors may require less numerical ef- 
fort than others. The propagation method used in this work 
is the sixth order Adams-Moulton predictor-corrector vari- 
able time step,** which provides a prediction to the seventh 
time-grid point of U, based on the previous calculated sixth 
time-grid points of U,. Insertion of the predicted seventh 
time-grid point of U, to the time-dependent Schrodinger 
equation provides the time derivative of U, which is needed 
in the calculation of the desired corrector. Previous experi- 
ence13 has shown that this method can provide the Floquet 
eigenvalues as accurate as are needed, when the imaginary 
component of the complex quasienergy is much smaller than 
the real one (i.e., for narrow resonances). 

The alternative to propagating the vectors of U one by 
one is to propagate them simultaneously. The idea is to break 
up the total propagation to many small time steps At, 

^v(Olt) en ^v(t, It, + At) . (33) 
n 

U(x,,x;;t> . (27) 

The kinetic energy operation is local in momentum represen- 
tation. A forward FFT transforms the vector to momentum 
space. The kinetic energy operation becomes 

k2 e - 28 
2m ’ 

(28) 

The operation is completed by an inverse Fourier transform 
back to configuration space. The proc$ure can be geneAal- ^v(t, It, + At) 

ized to the operation on the operator U. The operator Uis 
transformed to momentum space by a mixed forward (on 
x, ) and backward (on XL ) Fourier transform. 

It is assumed that within each interval the variation of % is 
small such that a short time solution can be obtained by a 
truncated Magnus series 

Uk,kJZ = ss 
(kjjx)(xl^U(f)~x’)(x’lkr) dxdx’ (29) 

and the discrete version 

[&t’)&(P)] dt” 
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We aE left now with the problem of exponentiating the 
operator H. The most simple solution is to use a Taylor ex- 
pansion. An expansion of five to ten terms has been tried. 
There are two sources of error, one is the truncation of the 
Magnus series and the other is the truncation of the Taylor 
expansion. These two errors should be balanced. In our case 
only a convergence in the lower right quarter of the complex 
energy plane g is required. That is, Re(E) > Ethreshold and 
Im( E) < 0. Therefore, the Taylor series expansion is not an 
optimal one since any point in the complex energy plane 
which is located inside a circle centered at [ Re( E) 
=E threshold ,Im (E) = 0] is converged. 

An alternative to the Taylor series expansion is to use a 
uniform polynomial expansion. This is a generalization to 
the complex plane of the Chebychev polynomial which is 
uniform in the interval ( - 1,l) .23 The advantage of a uni- 
form approximation is that all the vectors in U are propagat- 
ed with the same error. The uniform interpolation points on 
the boundary of $2 can be obtained by making use of the 
Schwartz-Cristoffel transformation which maps the evenly 
distributed interpolation points on the boundary of a circle 
in the complex energy plane into the boundary of the domain 
9. Once the interpolating points {zo,zl,zZ,...] are known, 
then the interpolating polynomial can be obtained. For nu- 
merical stability the polynomial is presented in Newton’s 
form24 

f(z) =P(z) =a,+a,(z--0) 

+a,(z-z,)(z-z,) + **-, (35) 
where the coefficients can be recursively obtained 

a, =f(&J , a, = 
f(zo) -f(z) ,a*. . 

z, - z 

The polynomial approximation in Eq. (35) is applied to the 
exponential function of Eq. (34) where z is replaced by the 
truncated Magnus series. 

The three methods mentioned above, (A) sixth order 
Adams-Moulton prediction corrector; (B) second order 
Magnus series expansion combined with the Taylor expan- 
sion and the FFT; and (C) second order Magnus series ex- 
pansion combined with the uniform polynomial expansion 
obtained by the Schwartz-Cristofel mapping algorithm, 
were applied to the complex-scaled Rosen-Morse time-peri- 
odic Hamiltonian. The results presented in Table I show 
three resonance complex eigenvalues of the time-evolution 
operator after one optical cycle [see Eq. ( 15 ) 1, 

2, =pa exp(iy,) , (36) 
obtained by themethods (A), (B), and (C). By far themost 

rapid convergence was obtained by method (A), where each 
vector in the initial time evolution operator was separately 
propagated for one optical cycle. However, different results 
may be obtained for other cases. The slightly different results 
obtained for the two broad resonances are due to accumulat- 
ed roundoff error. 

IV. PARTIAL WIDTHS OF MULTIPHOTON 
DISSOCIATION (IONIZATION) PROCESS 

The partial widths are defined to be factors of the resi- 
dues of the S matrix at a pole. In a half-collision process the 
ratio between the partial width Fn and the total width pro- 
vide the probability for dissociation or ionization resulting of 
absorbing n photons. The partial widths for time-periodic 
Hamiltonians were previously obtained by Moiseyev, 
Bench, and Korsch” exactly as it was first proposed for 
time-independent Hamiltonians by Peskin, Moiseyev, and 
Lefebvre. i4 

The resonance complex-quasienergy state has been ex- 
panded in a Fourier series 

q,, = e - braT’fr@res (x,t) , (37) 

a,,, t-&t) = 2 4?(x) eiwnr , 
It= -03 

(38) 

where E, is the complex quasienergy of the resonance which 
is allocated in the first Brillouin zone (i.e., n = 0). If n is an 
open channel for dissociation (ionization) and the threshold 
energies of the field-free Floquet Hamiltonian is E, 
= - tin, then the complex scaled dy(x) takes the asymp- 

totic form 

P [ 1 l/Z q5me”(x)+an - fik, exp[ik,x exp(i@] , (39) 

where 

4, = [‘&kes - tin)]“*/fi. (40) 

The partial widths are given by I4 

rn = +?)a,)*. (41) 

More recently a new formula for the partial widths was 
derived by Moiseyev and Peskin from the complex reso- 
nance-scattering theory [see Eq. ( 19) in Ref. ( 16) 1, 

rn = I$)-: W[f,4,] I2 3 
where Wstands for the Wronskian 

TABLE I. The three resonance eigenvalues of the time-evolution operator after one optical cycle, 
A, =p= exp(iy,), obtained by the methods (A), (B), and (C) described in Sec. III for the time periodic 
Rosen-Mone Hamiltonian. 

(42) 

Methods 

(A) 
(B) 
CC) 

PI Yt Pz Y2 Pa Y3 

0.994 066 1 3.364 645 0.5685 4.0909 0.151 0.728 
0.994 066 4 3.364 645 0.5685 4.09 10 0.758 0.730 
0.994 065 4 3.364 653 0.5688 4.0915 0.758 0.729 
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(43) 

and 

(44) 

f, = - 2i --& sin(k,xe”) . 
” 

This formula pr&ided stable partial widths in the study of 
HD/Ag( 111) resonances. We shall show here its applicabil- 
ity and numerical stability (lack of oscillations) in the calcu- 
lation of the partial widths of the time-period Rosen-Morse 
model Hamiltonian. 

The main difficulty in calculating the partial widths by 
the methods described in Sets. II and III is due to the follow- 
ing facts: 

( 1) We do not get directly the Fourier components of 
Q(x,t). However, the Fourier component and @(x,t) can be 
easily computed. 

(2) The eigenfunctions of the time-evolution operator 
U(O] 2’) provide @(x,T) (i.e., after one optical cycle only) 
and not Q, at any given time. 

(3) All of the quasienergy states obtained by the diagon- 
alization of U (017’) are located in a single Brillouin zone, but 
not necessarily in the same one (e.g., see Fig. 3 ). 

Let us assume that il, and D, are the complex eigen- 
value and eigenvector of U( 017’) which are associated with a 
resonance state. In order to get the desired Fourier trans- 
form components we first need to calculate ares (x,t) in the 
time interval t& [ 0, T] . We shall use the periodicity property 
of a, by solving once more the time-dependent Schrii- 
dinger equation 

dD(t.) 
&“(tj)D(tj) = i+iL-, 

dt 
j=O,l,..., -g - 1, (46) 

where 

D(O) = D,, (47) 
tj = jAt , (48) 

and T/At should be an even number. The time-dependent 
periodic complex-scaled function Y, (x,tj ) is now given by 

W,(x,tj) = 2 Df’“(tj)+;“’ . (49) 
i=l 

\yi”) are the variational known eigenfunctions of the com- 
plex-scaled field-free Hamiltonian Ho. 

In the next step of the calculations we carry out a Four- 
ier transform of D, (kht); k = O,l,... . The results of the 
Fourier transform of the components of the vector D,, are 
stored in a matrix A,, where i = 1,2,...,Nand the index k is 
associated with the n = [ (T/2At) - k] Fourier compo- 
nent. The components 4, in the Fourier series expansion of 
a’, (x,t) are now available 

d, (X) = ;g, A,, $j”‘( x) (50) 

and 

T/2AT 

‘P,, (x,kAt) = ,I kAr IT n = , gT,2At 4, (x)e + ionkAt. (51) 

Before carrying out the asymptotic analysis of 4”) we should 
identify the Brillouin zone in which each one of the reso- 
nance quasieneregy states is localized. Let n, denote the 
Brillouin zone in which 111, is localized. n, is the value of n 
for which 

(52) 

gets a maximal value. Now we can shift the indices in the 
Fourier series expansion of $a to localize the resonance qua- 
sienergy states at the same (zero) Brillouin zone 

EP,, =:log& -hon, 

= E, (position) - $ r(width) , 

L(x) =A,Ax), 

(53) 

where n = 1 2 3 , , ,--* * 
The partial widths r,, can be obtained from the asymp- 

totic analysis of 4,. Two formulas are given’“r6 

and 

2 
- ik,+ - 

4-,(x) 
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(54) 

(55) 

where 

x= (x’-x0) e”+x,, 

(fi,,)*/2~=Ercs -+iun, (56) 
and x’ is a real variable. l?,, (x) is the “local” width in con- 
trast to the partial width r,, = lim,- m l?, (x) which is 6 in- 
dependent. The partial widths satisfy the condition 

r,= - 2Im(E,,) = c r, 
n=l 

(57) 

0.06 
0 =0.0 

r; 

0.00 I 
4.0 6.0 6.0 10.0 

X 

FIG. 4. Partial widths r, = lim,-_ r. (x) for four channels opened for 
dissociation obtained by the asymptotic analysis of the 
CT, = - 0.6512 + tin, Tt0,,,/2 = 0.071) resonance wave function which 
is associated with the first excited state of the field-free Rosen-Morse Ham- 
iltonian. 
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FIG. 5. A comparison between partial widths r,, n = 1,2,3,4 obtained by 
the asymptotic analysis of the complex-scaled resonance quasienergy states 
by the two different formulas given in Q. (54) (solid line) and in Eq. (55) 
(dashed line). 

whereas I’, /r, provides the probability of ionization or dis- 
sociation due to the absorption of n photons by the atomic or 
molecular systems. 

The results presented in Fig. 4 were obtained by using 

Eq. (55) in the analysis of the Rosen-Morse quasienergy 
states. 

The partial widths r, are estimated from the plateau 
obtained as r, (x) is varied with x. The use of formula (55) 
rather than Eq. (54) increases dramatically the stabilization 
length of the plateau and also reduces the amplitude of the 
oscillations obtained near the edge of the box (see Fig. 5). 

V. SUMMARY 

For a time-periodic Hamiltonian given by 

ii = So(x) -i- &(x,t), 

where 

&(x,t + T) = ii,(w), 

the positions and widths (inverse lifetimes) of the metasta- 
ble quasienergy states can be calculated as follows: 

( 1) Complex scale the internal coodinates of the Hamil- 
tonian x + (x - x,) exp( 8) + x0, where x0 is the vector po- 
sition at the minimum of the field-free potential V,. 

(2) Calculaz the “first” n eigenfunctions Yj”) of the 
complex-scaled Ho. That is, the eigenfunctions which are 
associated with the n-lowest realfarts of E I’), where E !‘) 
are the complex eigenvalues of H,. Note that $1”’ can Ibe 
calculated on m grid points or can be constructed of m-basis 
functions (m>n). 

(3) Use the field-free Hamiltonian eigenfunctions $j”’ 
to construct the n x n matrix Z,. 

(4) Solve the time-dependent SchrGdinger equation to 
get the evolution matrix U(OlT) [see Eqs. (19)-(21)]. 
U(Ol T) can be obtained by propagating the entire unitary 
matrix U( 010) = 1, or by propagating the column vectors of 
U one by one as described in Sec. III. 

(5) Calculate the complex eigenvalues /2, of U(OI ZJ. 
Vary the value of 8. The B-independent solutions are the 
resonances. The resonance positions (module ti) E, and 
widths l?,,, are obtained from Eqs. (7) and (8). The contin- 
uum solutions appear as a spiral in the complex /2 plane. 

The probability for ionization/dissociation and the par- 
tial widths can be obtained as follows: 

(6) Calculate the eigenvector of U( 017’)) D,,, , which is 
associated with the resonance eigenvalue /2,, . 

(7) Solve the time-dependent SchrGdinger equation 
X(t) D,,, (t) = ifid D,, (t)/dt, where te [ 0,7’j (see discus- 
sion in Sec. IV). Store the time dependent solutions every At 
time steps. 

(8) Carry out a Fourier transform of D,,, (kht); 
k = 0, l,..., [ ( T/At) - 11. Store the results of the Fourier 
transform in a matrix A. 

(9) Use A to construct the coefficients Q,, (x) in Four- 
ier series expansion of the resonance quasienergy state as 
given in Eqs. ( 50). 

(10) Find the optical cycle (Brillouin zone) nres at 
which the resonance quasienergy state $,,, is mostly local- 
ized [see Eq. (52)]. 

( 11) Shift the indexes of @, (x) [obtained in step (9) of 
the calculations] to localize \v,,, at the zero Brillouin zone 
[see Eqs. (53) 1. 
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( 12) Calculate the partial widths I,, from the asympto- 
tic analysis of 6 [see Eqs. (54)-( 56) 1. I,/l?,,, provides the 
probability for ionization or dissociation resulting from ab- 
sorbing n photons. 
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