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The theory of active control of molecular motion by use of shaped laser pulses is developed
emphasizing the role of interference and using thermodynamic analogies. Attention is focused on
the control of the dynamics in a system withn states coupled by radiation, and the phase relations
which generate particular control schemes are derived. Among the new results reported is an optimal
control scheme which constrains the value of the phase. Then-state model can be considered to
represent a molecule withn electronic potential energy surfaces and an arbitrary number of degrees
of freedom or as the skeleton spectrum of system where each level in the spectrum can be associated
with a specific set of quantum numbers for all of the degrees of freedom. We show how the control
of the dynamics of ann-state molecule can be represented in terms of the control of the dynamics
of a precisely defined surrogate fewer state system. This reduction is illustrated by use of a surrogate
two state system to describe the dynamics of population transfer in a three state system. ©1996
American Institute of Physics.@S0021-9606~96!02314-0#

I. INTRODUCTION

Finding ways to control the selection of products of a
chemical reaction is, arguably, the essence of chemistry. The
intensive studies of synthetic methodology carried out over
the past two centuries have led to the development of numer-
ous methods for generating desired chemical species. Most
of these methods rely on amplifying the yield of the desired
product by adjusting the equilibrium between reactants that
do and do not form the desired species so as to favor the
former, or by adjusting the rates of competing reactions
which form different species from the same reactant so as to
enhance the formation of the desired species, or by combi-
nations of these methods. All of these methods are funda-
mentally macroscopic in the sense that they depend on the
statistical, incoherent, properties of a many molecule system,
e.g., collisions between reactant molecules and between re-
actant and solvent molecules. In contrast, this paper dis-
cusses the influence on product selectivity generated by ac-
tive control of the molecular dynamics and, more generally,
the active control of the temporal evolution of complex mo-
lecular systems.

Much of the study of active control of quantum molecu-
lar dynamics has been stimulated by advances in laser tech-
nology, in molecular spectroscopy, and in our understanding
of molecular dynamics. The developments in laser technol-
ogy we refer to include methods for the generation of very
short pulses, of shaped pulses, of pulses with a well-defined
phase relationship, of very pure monochromatic light fields,
and of very high intensity light fields. The application of

these and other laser technologies to molecular spectroscopy
has yielded both a wealth of information concerning molecu-
lar potential energy surfaces and an increased awareness that
interference effects can be used to guide system evolution.
Simply put, it is now recognized that the dynamics of a
strongly coupled light–matter system can be influenced by
alteration of the temporal and spectral distributions of the
radiation coupled to the system. The underlying principle of
the new approach to controlling product selectivity in a re-
action is different from that used in earlier attempts to
achieve ‘‘bond selective chemistry.’’ The new approach is
based on exploitation of quantum interference effects
whereas the old approaches are, typically, based on trying to
create a situation in which the rate of bond breakage will
greatly exceed the rate of transfer of energy from the excited
bond to the rest of the molecule.

Two different ways of using quantum mechanical inter-
ference to control product selectivity in a chemical reaction
have been proposed.1–8

Suppose there are two independent excitation pathways
between a specified initial state of a molecule and a specified
final state of the products; these might be transitions involv-
ing absorption of one and three photons, respectively.2,3

Quantum theory requires that the probability of forming the
specified product is proportional to the square of the sum of
the transition amplitudes for the two pathways; because the
amplitudes can have different signs, the magnitude of that
probability is determined by the extent of their interference.
For example, when one- and three-photon transitions gener-
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ate the independent pathways between the initial and final
states, the extent of interference can be controlled by altering
the relative phase of the two excitation sources. The situation
is analogous to the formation of a diffraction pattern in a
two-slit experiment in that the excited state amplitude in
each molecule is the sum of the excitation amplitudes gen-
erated by two routes which are not distinguished from each
other by measurement. Using this method, Gordon and co-
workers have reported an example of control of the popula-
tion of a level in HCl, and also of the ratio of concentrations
of the products in the branching photodissociation of HI to
form HI1 and I1.4,5 These results provide experimental con-
firmation of the Brumer–Shapiro control scheme.2,3

The selectivity of product formation in a chemical reac-
tion can also be influenced via interference in the time
domain.6 In the simplest case, when only two electronic po-
tential energy surfaces are involved, an incident~first! pulse
of light transfers probability amplitude from the electronic
ground state to the excited state, creating a coherent wave
packet on the excited state potential energy surface. That
wave packet then evolves on the excited state potential en-
ergy surface. A second pulse of light, incident after an inter-
val t, will, depending on the position and momentum of the
wave packet, select a particular reaction channel. This con-
trol scheme has been demonstrated7 with respect to the com-
petition between ionization and dissociative ionization of
Na2, namely, Na2→Na2

11e vs Na2→Na11Na, by varying
the time delay between the first and second pulses. The result
obtained is an experimental confirmation of the Tannor–Rice
control scheme.6

It is also possible to modulate the product yield via in-
terference between two impulsive excitation pulses with a
variable time delay between them.8 In this case the second
pulse of the sequence, whose phase is locked to that of the
first one, also creates amplitude in the excited electronic
state, which is in superposition with the initial, propagated,
amplitude. This intramolecular superposition of amplitudes
is subject to interference; whether the interference is con-
structive or destructive, giving rise to larger or smaller ex-
cited state population for a given interpulse delay, depends
on the optical phase difference between the two pulses and
on the detailed nature of the evolution of the initial ampli-
tude. This situation is also analogous to a two-slit experi-
ment. The method described, which is a variant of the
Tannor–Rice scheme, has been used to control the popula-
tion of a level of I2.

8 The success of this experiment confirms
that it is possible to control population flow with interference
that is local in time.

In principle, the methods available for guiding the evo-
lution of a quantum system by coupling it to an external field
are not restricted to the use of a time-independent field or a
simple pulse sequence. If the goal to be achieved is, say,
maximization of the amount of a product in a reaction, the
design of the external field which accomplishes the goal is an
inverse problem: Given the target product and the quantum
mechanical equations of motion, calculate the guiding field
which is required. The solution to this inverse problem is
very likely not unique, which for the case under consider-

ation is a strength since it is then plausible that one of the
possible guide fields is more easily generated than others.

The methodology used in calculations of the field re-
quired to maximize a particular product yield is optimal con-
trol theory.9–11 It is usually found that the optimal guiding
field has a complicated spectral and temporal structure
whose efficiency is determined by the extent of interference
between the amplitudes associated with its different spectral
and temporal components. In the model problems studied to
date it is predicted that the use of an optimal guide field can
increase the desired product yield by many orders of magni-
tude relative to the yield from a two-pulse control field.12

To facilitate understanding of possible strategies for di-
recting molecular evolution, it is important to study the ge-
neric aspects of control of both population and energy trans-
fer between potential energy surfaces. For example, if one
wishes to increase the yield of a chemical species, one has to
understand how to control population transfer on one elec-
tronic potential energy surface and population transfer from
one surface to another surface. If, on the other hand, one
wishes to coherently excite or to de-excite the motion of the
molecule on the ground electronic state potential energy sur-
face, it is necessary to control the energy flow within the
molecule. It is worth noting that it is possible to combine the
control processes for several elementary processes to achieve
quite elaborate control schemes, including constraints on the
dynamics, e.g., control of radiation damage.13,14

In principle, the general formalism for designing fields
that optimally control particular aspects of the molecular dy-
namics is applicable to systems with an arbitrary number of
degrees of freedom. However, in practice, the utility and ac-
curacy of the application of the formalism to ann-degree of
freedom system is limited by lack of knowledge of the sys-
tem Hamiltonian~e.g., the complete Born–Oppenheimer po-
tential energy surfaces and the regions where the Born–
Oppenheimer approximation is inapplicable!, by the
complexity of the system spectrum whenn is large, and by
the difficulty of finding a global minimum inn degrees of
freedom. Accordingly, it is of considerable interest to de-
velop a reduced description of the dynamics, which focuses
attention on a subset of the most important degrees of free-
dom and treats the other degrees of freedom as a background
to which the subset is coupled. This reduction is useful only
if it suggests accurate approximations which permit analysis
of the dynamics of the subsystem with weak perturbations
from the background. Note that the preceding argument has
been phrased in terms of the dynamics of a complicated mol-
ecule with n degrees of freedom, but it also applies to a
molecule embedded in a solvent.

In this paper we present an overview of a formalism for
active control of molecular dynamics that differs from previ-
ous formulations in its emphasis on the relationship between
the role of interferences and the quasithermodynamic char-
acter of the control process. We also present a reduced space
formalism for the design of control fields and a simple test of
that formalism.
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II. BACKGROUND INFORMATION: THE TWO STATE
SYSTEM

To provide background for our analysis of then-state
system, in this section we sketch the formalism for active
control of a molecule coupled to the radiation field when
only two electronic states of the molecule play roles in the
reaction dynamics, e.g., the ground electronic state and the
first excited electronic state. Details of the analysis can be
found elsewhere.15

The density operator describing the state of the system
can be represented as16

r5rg^Pg1re^Pe1r i^S11r i
1

^S2 , ~2.1!

whererj is the density operator for statejPg, e ~g refers to
the ground state ande to the excited state!, the symbol^
denotes the tensor product,Pj is a projection operator on
surfacejPg, e, and theS6 are raising and lowering operators
that transfer amplitude from one surface to another. The first
two terms in Eq.~2.1! represent the state of the molecules
with population on the ground and excited surfaces, while
the last two terms represent the electronic coherence induced
by the radiation field. It is convenient to represent the Hamil-
tonian of the system as the sum of internal Hamiltonians,
H05Hg^Pg1He^Pe, and a radiative coupling interaction
term which control the transfer of amplitude between the two
electronic manifolds,

Vt52m ^ $S1e~ t !1S2e* ~ t !%, ~2.2!

wherem is the transition dipole moment operator ande(t)
represents a semiclassical time dependent radiation field. It is
via control of the spectral composition, the time profile of the
field amplitude and the phase of the field that we can control
the evolution of the molecule. When intramolecular coupling
of electronic manifolds is included in the Hamiltonian, radia-
tionless transitions within the molecule can be included in
the group of dynamical processes to be controlled.

The evolution of the molecule is described by the gen-
eralized Liouville–von Neumann equation16

]r

]t
52

i

\
@H,r#1LDr, ~2.3!

whereLD is an operator representing the dissipative coupling
of the system to background states. Equation~2.3! describes
the dynamics of an open quantum mechanical system under
the assumption that the evolution operator defines a dynami-
cal semigroup.17–20The source of the dissipative termLDr is
the reduction of the combined system and bath dynamics to
the dynamics of the system only. The semigroup formalism
provides an explicit form for the dissipative operatorLD , but
we shall not need that detailed form for most of our consid-
erations. Note that the first term in Eq.~2.3! describes the
unitary dynamics supported by the Hamiltonian.

The mechanism by which control of the dynamical evo-
lution of our model molecule is achieved is the alteration, by
variation of the external field, of population, and energy
transfers between its two electronic states. This mechanism
is, in a sense, analogous to the control of transformation of

the equilibrium states of a macroscopic system by altering
population and energy transfers between macroscopic states
via variation of external parameters. Accordingly, it is inter-
esting to examine the exchange of energy between the mol-
ecule and the external field, and to relate that energy ex-
change to alteration in the populations of the molecular
states. The rate of change of energy is

d^E&
dt

5 K ]H

]t L 1^LD*H&, ~2.4!

since @H, H#50. Eq. ~2.4! is a version of the first law of
thermodynamics,15,21–23written in terms of the time rate of
change of the energy and the power

P5 K ]H

]t L , ~2.5!

which is the time derivative of the work, and the heat flow

J5
dQ

dt
5^LD*H&. ~2.6!

With these definitions, the power absorbed from the field into
the system becomes

P52 K m ^ HS1

]e

]t
1S2

]e*

]t J L
522 ReH ^m ^S1&

]e

]t J . ~2.7!

In Eq. ~2.7!, ^m^S1& is the expectation value of the instan-
taneous transition dipole moment; variation of its value pro-
vides the means for controlling the molecular evolution.

For the two state system under consideration it can be
shown that the flow of population from the ground state sat-
isfies

dNg

dt
52

i

\
^m ^ $S1e2S2e* %&5

2

\
Im$^m ^S1&e%

~2.8!

when nonradiative couplings between the ground and excited
state surfaces are ignored, i.e.,LD*Pg50. The flow of energy
from the ground state can also be calculated when it is as-
sumed that the rate of electronic dephasing is small, i.e.,
LD*Pg'0 and/or the rate of pure vibrational dephasing is
small, i.e.,LD*Hg'0. These conditions apply when the rate
of relaxation to equilibrium is small relative to the rate of
loss of phase coherence. Under these conditions

dEg
dt

5
2

\
Im~^mHg^S1&«! ~2.9!

and

F52 ReS K ]m

]x
^S1L « D , ~2.10!

wherex represents the internal coordinates of the molecule,
is the internal force which the electromagnetic field exerts on
the molecule.
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Molecular transfer processes can be promoted either by
controlling the field«(t) or its time derivative. We note that
the transfer equations~2.8! and ~2.9! have similar structure,
namely, each contains the imaginary part of a product of a
molecular expectation valuêX& and the field«. Equation
~2.7! has an analagous structure; transfer is controlled by the
real part of the product of a molecular expectation value and
the time derivative of the field. For convenience we rewrite
Eq. ~2.8! in the form

dNg

dt
5
2

\
u^m ^S1&uu«usin~fm1f«!, ~2.11!

wherefm is the phase angle of the instantaneous dipole mo-
ment andf« is the phase angle of the radiation field. The
overall phase angle in Eq.~2.11! is the sum of the phase
angle of the induced polarization of the molecule and the
phase angle of the polarization of the light. In a similar way

P522u^m ^S1&uU ]«

]t Ucos~fm1f«̇! ~2.12!

and

dEg
dt

5
2

\
u^mHg^S1&uu«usin~fmH1f«!, ~2.13!

wherefmH is the phase angle of^mHg^S1&. We also have

F52U K ]m

]x
^S1L Uu«ucos~fm81f«!, ~2.14!

where fm8 is the phase angle of̂]m/]x^S1&. Equations
~2.11!–~2.14! clearly show that the sum of the phase angles
generates the following possibilities for control of the dy-
namics:

fm1f«̇50
5p

for maximum energy transfer
for maximum energy emission, ~2.15!

fm1f«5p/2
52p/2

for maximum positive population transfer
for maximum negative population transfer, ~2.16!

fmH1f«5p/2
52p/2

for maximum energy transfer to the ground state surface
for maximum energy removal from the ground state surface, ~2.17!

fm81f«50
5p

for maximum positive force
for maximum negative force. ~2.18!

Control of population transfer using the relation displayed in
Eq. ~2.16! has been demonstrated experimentally by Sherer
et al.8 In this experiment gaseousI 2 was irradiated with two
short ~femtosecond! laser pulses; the first pulse transfers
population from the ground state potential energy surface to
the excited state potential energy surface, thereby creating an
instantaneous transition dipole moment. The instantaneous
transition dipole moment is modulated by the molecular vi-
bration on the excited state surface. At the proper instant,
when the instantaneous transition dipole moment expectation
value is maximized, a second pulse is applied. The direction
of population transfer is then controlled by changing the
phase of the second pulse relative to that of the first pulse.

In contrast with the conditions~2.15!–~2.18!, when we
wish to prevent transfer of population or energy the phase
angle relations are:

fm1f«̇56p/2 for zero total energy transfer,
~2.19!

fm1f«50,p for zero population transfer, ~2.20!

fmH1f«50,p for zero change in the ground

state energy, ~2.21!

fm81f«56p/2 for zero force. ~2.22!

Examination of the control conditions~2.19!–~2.22!
shows that there are two values of the sum of phase angles
for which zero transfer occurs. In principle, then, one can
simultaneously block the transfer of, say, the energy, and
select the direction of the transfer of the population. One
particularly interesting case is the definition of the phase
angles for zero total power absorption. Since no energy is
absorbed or emitted from the field these conditions define
laser catalysis.24

A note of caution must be inserted at this point. It ap-
pears, at first sight, that there is a meaning which can be
attached to the absolute phase of the field and to the phases
of the molecular expectation values. However, it must be
remembered that the phase of the molecular quantity is in-
duced by the radiation field prior to the present time. There-
fore, all phases must be related to the phase of a previous
pulse which synchronizes the molecular clock with the field
clock. With this synchronization it is possible to understand
how quantum mechanical interference between events which
are induced in the past propagates and can be used to control
energy and/or population transfer at a later time. From the
experimental perspective, both the amplitude and the phase
of the light must be controlled.
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III. GLOBAL CONTROL OF DYNAMICS

We now seek the optimal strategy for transfer of an ob-
servable with minimum power consumption under the re-
striction of zero population transfer. Consider the following
functional for a ground state quantity^Ag&:

U5
d^Ag^Pg&

dt
1Wu«u2, ~3.1!

whereW is a penalty function imposed by the power con-
sumption. The globally optimal solution can be obtained by
varying the ground state quantityU5^Ag& at a specific final
time t f with the following constraints:

~a! The evolution of the system is governed by the
Liouville–von Neumann equation~2.3!.

~b! There is zero population transfer sodNg50.
~c! The power consumption is bounded byE

5*0
t f u«u2 dt.

Taking account of the constraints by the method of
Lagrange multipliers, the functional to be minimized takes
the form

U*5Tr$Ag^Pgr~ t f !%1E
0

t f
TrH S ]r

]t
2Lr DB1lu«u2J dt,

~3.2!

whereB is an operator Lagrange multiplier andl is a scalar
Lagrange multiplier. The variation ofU* is with respect tor
and u«u. The conditiondNg/dt50 determines the phase of«
through Eq.~2.20!. It therefore is omitted from the variation.
Taking the variation of Eq.~3.2! and integrating by parts
leads to the following equations:

~a! A forward equation for the density operator,

]r

]t
5Lr, ~3.3!

subject to the initial conditionr5r~0!.
~b! A backward equation for the Lagrange operatorB,

2
]B

]t
5L*B, ~3.4!

subject to the final conditionB(t f) 5 Ag ^ Pg. The dissipative
part of Eq.~3.4! is symmetric in time, meaning that dissipa-
tion takes place in the forward as well as in the backward
evolution.

~c! A condition on the field

u«~ t !u5
1

2l
TrH ]Lr~ t !

]u«u
B~ t !J 52

1

2l K ]L*B~ t !

]u«u L .
~3.5!

Equation~3.5! can be interpreted as the scalar product of a
forward moving density and a backward moving time-
dependent operator. The optimal field at timet is determined
by a time-dependent objective function propagated from the
target timet f backwards to timet. A first order perturbation

approach to obtain a similar equation for optimal control in
Liouville space has been derived in a different method by
Yan et al.25

In dissipative dynamics, the backwards propagating tar-
get operator decays into a stationary operator and, therefore,
L*B~2`!50. This leads to loss of control, as can be seen
from Eq. ~3.5!.

Thus far we have not made explicit use of the phase
constraint which defines the control of a particular dynamical
process, e.g., relationships~2.19!–~2.22!. Although we have
used a constraint on the energy while minimizing, via the
variational calculus,̂Ag^Pg& on the ground surface, this pro-
cedure yields only the variational solution for the amplitude
of electric field; the variational solution for the field phase is
lost. However, the phase of the field is constrained by the
condition ondNg/dt, through Eq.~2.20!. In general, if the
goal is to minimize some dynamical function without con-
sideration of the changes of any other observables, then we
do not need to explicitly specify any of the phase relation-
ships exhibited by the field.

We now examine the formalism needed to explicitly in-
clude a constraint on the phase of the field in the optimiza-
tion procedure.

Consider the case where we try to minimize the ground
surface energy under the condition of zero population trans-
fer, for which we have the phase relation

f«1fm50. ~3.6!

To incorporate Eq.~3.6! as a constraint in the variational
calculation of the optimal field, we represent the electric field
as«(t) 5 A«(t)e

if«(t), and the objective functional as

U*5Tr$Hg^Pgr~ t f !%1E
0

t f
TrH S ]r

]t
2Lr DBJ dt

1l1E
0

t f
A«
2 dt1l2E

0

t f
~f«1fm!2 dt, ~3.7!

whereB is the operator Lagrange multiplier introduced ear-
lier andl1, l2 are two scalar Langrange multipliers. We note
that the time average off«1fm vanishes but the time aver-
age of ~f«1fm!2 is positive definite, hence the form that
appears in Eq.~3.7!.

Taking the variation ofU* with respect tor, A« , andf«

leads to the following equation for the phase, in addition to
the Eqs.~3.3!–~3.5! for r(t), B(t) andA«(t):

f«1fm5
1

2l2
TrH ]Lr

]f«
B~ t !J . ~3.8!

Equation~3.8! explicitly describes how the time evolution of
the phase angles must vary so as to minimize the value of
~f«1fm!2 to satisfy the constraint of zero population transfer
between potential energy surfaces. Note that control of the
field phase is critically influenced by the backward propaga-
tion of the target functionB(t).
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IV. THE TRANSFER EQUATIONS FOR A SYSTEM
WITH MORE THAN TWO ELECTRONIC SURFACES

There are several different ways one can view the dy-
namics in a system withn states. For example, then states
could represent then electronic potential energy surfaces in a
molecule with an arbitrary number of degrees of freedom.
Alternatively, then states could be a skeleton spectrum rep-
resentation in which each level corresponds to a particular
set of quantum numbers of a many degree of freedom sys-
tem. We shall use, for the most part, then-state molecule
view, but the reader should keep in mind the other view.

Consider, then, a molecule withn electronic states. For
the purpose of deducing the control conditions we will ex-
amine the extreme~and unlikely! case in which every pos-
sible pair of these electronic states is connected via the ra-
diation field and a nonzero transition dipole moment. If the
molecule is coupled to a radiation field which is a superpo-
sition of individual fields, each of which is resonant with a
dipole allowed transition between two surfaces, the density
operator of the system can be represented in the form

r5(
i51

n

r i i ^Pi i1 (
1< i , j<n

r i j ^Si j

5(
i51

n

r i i ^Pi i1 (
1< i, j<n

~r i j ^Si j1r i j* ^Si j
1!, ~4.1!

where ri i is the projection operator onto surfacei ,
iP(1,...,n) and theSi j andSi j

1 are lowering and raising op-
erators in the basis of the connected statesi and j .

The Hamiltonian of then-state system is

H5Ho1Vt5(
i51

n

H i i ^Pii

2 (
1< i, j<n

m i j ^ @Si j«~ t !1Si j
1«* ~ t !#,

~4.2!

wheremi j is the transition dipole moment between statesi
and j and e(t) is the semiclassical representation of the ra-
diation field.

We find that the power absorbed from the field by the
system is

P52 (
1< i, j<n

K m i j ^ SSi j ]«

]t
1Si j

1
]«*

]t D L
522 ReS (

1< i, j<n
^m i j ^Si j &

]«

]t D
522 (

1< i, j<n
u^m i j ^Si j &uu«̇ucos~fm i j

1f«̇!, ~4.3!

and that the flow of population from the ground state~i51!
to the rest of the electronic states~i.1! is, with neglect of
the dissipative coupling of then-state system to the bath
states,

dNg

dt
5

i

\
^@H,P11#&

52
i

\ (
1, i<n

~^m i1^Si1&«2^m1i ^S1i&«* !

5
2

\ (
1, i<n

Im~^m1i ^S1i&«!

5
2

\ (
1, i<n

u^m1i ^Si1&uu«usin~fm1i
1f«!. ~4.4!

Finally, the flow of energy from the ground state is

dEg
dt

5
2

\ (
1, i<n

Im~^m1iH11^Si1&«!

5
2

\ (
1, i<n

u^m1iH11^Si1&uu«usin~fm1iH11
1f«!,

~4.5!

and the internal force which the radiation field exerts on the
molecule takes the form

F52 ReS (
1< i, j<n

K ]m i j

]x
^Si j L e D

52 (
1< i, j<n

U]m i j

]x
^Si jUueucos~fm i j

8 1fe!. ~4.6!

The phase angle conditions for control of the system
dynamics follow directly from the above. For example, the
analogues of Eqs.~2.15!–~2.18! are

fm i j
1fė i j

50

fm i j
1fė i j

5p
for maximum energy absorption
for maximum energy emission ~4.7!

for 1< i, j<n, whereei j is the resonant electric field component between statesi and j ;

fm1i
1fe1i

5p/2

fm1i
1fe1i

52p/2
for maximum positive population transfer
for maximum negative population transfer ~4.8!

for 1, i<n, wheree1i is the resonant field component between the ground state and excited statei ;

fm1iH11
1fe1i

5p/2

fm1iH11
1fe1i

52p/2
for maximum energy transfer to ground state surface

for maximum energy removal from ground state surface ~4.9!
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for 1, i<n;

fm i j
8 1fe i j

50

fm i j
8 1fe i j

5p

for maximum positive force
for maximum negative force ~4.10!

for 1< i, j<n.

The above relations define the conditions for concurrent
control of population and energy transfers between all of the
states of the system which are connected by dipole allowed
transitions. It is unlikely that a situation that complicated will
ever be encountered. In then-state molecule view, which has
been emphasized above, typically, not all pairs of states are
connected with nonzero transition dipole moments. In the
skeleton spectrum view, there is usually a small subset of
states~doorway states! connected by transition dipole mo-
ments to the ground state, and a dense background of states
that either have zero transition dipole moments or very small
transition dipole moments with ground state, with the door-
way states and the background states only weakly coupled.
In both cases, when only some pairs of states are coupled
with nonzero transition dipole moments the appropriate con-
trol conditions are simplified.

V. REDUCTION OF THE DYNAMICS OF AN n-STATE
SYSTEM TO THE DYNAMICS OF AN EQUIVALENT
SMALLER SYSTEM

There is an interesting analogy between the analysis pre-
sented in this section and the optics of thin films. In thin film
optics, Herpin’s theorem26 states that a symmetrical
multilayer stack is equivalent to a single layer with an effec-
tive refractive index~called the Herpin index! and an effec-
tive phase thickness. We shall develop a representation of the
population dynamics of ann-state system in terms of the
properties of a surrogate system with fewer states. The states
of the surrogate system must, of course, be defined in terms
of then states of the full system, so we are really developing
an alternative representation of then state system. However,
we expect the formal relations which define the reduction of
n to, say,m states to be of value in guiding the generation of
accurate approximations to the dynamics of the fulln state
system.

The reduction procedure can be defined using the Schro-
dinger representation of the dynamics of then-state system.
The molecular wave function of then-state system can be
written as a superposition of the electronic eigenfunctions
$un~r !%, which yields

c~r ,t !5(
n

Cn~ t !un~r !e
2 ivnt. ~5.1!

Insertion of Eq.~5.1! into the Schrodinger equation yields
the following equations of motion for the coefficientsCn :

27

Ċn~ t !52
i

\ (
k
Ck~ t !Vnke

2 ivknt, ~5.2!

whereVnk5^unuVuuk& andvkn5vk2vn .
We assume that the molecule-field coupling is dominated

by the dipole transition interactionVnk52mnkE, wheremnk

is the transition dipole matrix element. Of course,
mnk5melf nk , where f nk 5 *drun* (r )uk(r ) is the Franck–
Condon factor between electronic surfacesn and k.28 The
resonant continuous electric fieldE(t) can be written in the
form

E~ t !5
E0

2 (
1< j, i<n

~eig i j t1e2 ig i j t!. ~5.3!

Adopting the rotating wave approximation~RWA! and intro-
ducing the detuning frequencyDvnk5vnk2gnk and the
Rabi frequencyMnk52(mnkE0)/(\), we find the following
equations of motion:

Ċn~ t !1 i (
kP~1,...,n!

kÞn

Mnk~ t !Ck~ t !50, ~5.4!

where theMnk(t) are the elements of then3n time-
dependent matrix

M ~ t !5
1

2 S 0

M21e
iDv21t

A

Mn1e
iDvn1t

M12e
2 iDv21t •••M1ne

2 iDvn1t

0 •••M2ne
2 iDvn2t

A A

Mn2e
iDvn2t •••0

D .
~5.5!

For the case of zero detuning of the radiation field,M (t)
becomes time-independent

M5
1

2S 0 M12 •••M1n

M21 0 •••M2n

A A A

Mn1 Mn2 •••0

D ~5.6!

and the equation of motion for the population coefficient of
thenth electronic state is given by

Ċn~ t !1 i (
kP~1,...,n!

kÞn

MnkCk~ t !50. ~5.7!

If all of the states of the system are equally strongly
coupled to each other, the system dynamics can only be de-
scribed by completely-solving the above equations. How-
ever, it is common~especially in ann-state system! that
some pairs of states are strongly coupled and other pairs of
states are weakly coupled. Then we expect that the popula-
tion transfers among strongly coupled states dominate the
system dynamics, and that it should be possible to study the
n-state system dynamics in the subspace of strongly coupled
states with a correction from the influence of the weakly
coupled states.

The reduction scheme we use to define the surrogate
fewer state system follows the method proposed by Shore.29

The scheme has a compact form when we introduce two
orthogonal projection operators,P andQ, and work in the
frequency domain instead of the time domain. The time evo-
lution matrix for then-state system dynamics,U(t), and its
Fourier transform,G~v!, satisfy the following equations:
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S ddt1 iM DU~ t !50
~5.8!

~vI2M !G~v!51,

wherev is the frequency domain variable andI is then3n
unit matrix.

Let P be the projection operator onto the subspace com-
posed of the states having stronger couplings within which
we try to approximate the system dynamics, and letQ be the
projection operator onto the remaining states. Then

P1Q51, P25P, Q25Q, and PQ5QP50. ~5.9!

We are interested in evaluating the matrix elements ofG~v!
within the subspace ofP states in the frequency domain.
Multiplying both sides of the equation forG~v! in Eq. ~5.8!
by P1Q51 we find

~vI2M !PG~v!1~vI2M !QG~v!5P1Q. ~5.10!

Further multiplying byP from the right andQ from the left
yields

Q~vI2M !PG~v!P1Q~vI2M !QG~v!P50, ~5.11!

from which we obtain

QG~v!P5Q@Q~vI2M !Q#21QMPG~v!P. ~5.12!

Note that we require the inverse of the matrixvI2M within
theQ subspace. Now multiplying both sides of Eq.~5.10! by
P, we find

P~vI2M !PG~v!P1P~vI2M !QG~v!P5P. ~5.13!

SubstitutingQG(v)P from Eq. ~5.12! into Eq. ~5.13! yields

P~vI2M !PG~v!P2PMQ@Q~vI2M !Q#21

3QMPG~v!P5P, ~5.14!

and multiplying Eq.~5.14! by P on both sides yields

P$vI2PMP2PMQ@Q~vI2M !Q#21QMP%

3PG~v!P5P. ~5.15!

We now write

M̃ ~v!5PMP1PMQ@Q~vI2M !Q#21QMP, ~5.16!

which generates a representation of the frequency domain
time evolution operator withinP space

PG~v!P5P@vI2M̃ ~v!#21P. ~5.17!

From PG(v)P we can get the time evolution operator
PU(t)P by use of a Fourier transform. These localized op-
erators permit the construction of those portions of the time
evolved state vectors that lie within the subspace ofP states.
The influence of the remaining states~Q states! occurs
through the action of the operatorM̃ ~v!.

The preceding analysis is just a transformation of one
representation of then-state problem to another representa-
tion. To be useful, the new representation must admit the use
of simplifying approximations not suggested by the original
representation. One such approximation is to replace the fre-

quency variablev in M̃ ~v! in Eq. ~5.16! by a typicalP-space
eigenfrequency, sayv1

0. We thereby obtain the frequency-
independent effective operator

M̃5PMP1PMQ@Q~v1
0I2M !Q#21QMP. ~5.18!

Note that the original matrix elementsPMP associated with
the P-space state population dynamics have to be modified
to include the influence ofQ-space states. Viewed in the time
domain, the replacement ofM̃ ~v! by M̃ washes out the de-
tails of the time variation withinQ space. For this approxi-
mation to be useful all strongly coupled states should be
included in theP space and theQ space should not include
any states that couple strongly to theP space. We now find
that the population dynamics of them levels within theP
subspace is governed by the equations of motion

Ċm~ t !1 i (
kP~1,...,m!

kÞm

M̃mkCk~ t !50. ~5.19!

Although we have phrased the preceding argument in terms
of the dynamics of a complicated molecule withn degrees of
freedom, it also applies to a molecule embedded in a solvent.

We now connect the analysis given above with the equa-
tion of motion displayed in Eq.~2.3!. That equation of mo-
tion follows from subdivision of a system into an open sub-
system S, with Hamiltonian HS , and a complementary
reservoirR with HamiltonianHR , such that the complete
system HamiltonianH is given by

H5HS^ IR1IS^HR1HSR. ~5.20!

When the coupling betweenS andR is weak the evolution of
the open systemS, due to the internal dynamics ofS and the
interaction with the reservoirR, can be described in density
matrix form by

]rS~ t !

]t
5LrS~ t !52

i

\
@HS ,rS#1LD~rS! ~5.21!

as stated in Sec. II. Now writing

rS~ t !5L trS~0! ~5.22!

we find

L t5eL t, t>0 ~5.23!

which we require to satisfy the semigroup condition19,30

L tLt5L t1t . ~5.24!

HenceL is a semigroup generator.
Returning to the formal reduction procedure described at

the beginning of this section, we note again that the operator
M̃ ~v!, which is a function of the frequency variablev, in-
corporates all of the dynamics associated with evolution of
then-state system, and the formalism merely reorganizes the
exact representation of then-state population transfer dy-
namics. The formalism, as such, does not demand that them
states in theP subspace are strongly coupled to each other
and that the (n–m! states in theQ subspace are weakly
coupled to those in theP subspace. The use of a typical
unperturbed eigenfrequency of theP subspace,v1

0, to re-
place the variable frequencyv in M̃ ~v!, by virtue of washing
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out the details of the time variation within theQ subspace,
generates the separation of the total system into a strongly
coupled subsystem which is weakly coupled to a reservoir. In
general, we expect this approximation will lead to a loss of
time reversibility, hence can be used to explore an explicit
form for the operatorLD .

Given Eq.~5.19!, it is straightforward to obtain the cor-
responding density matrix form of the equation of motion.
The density matrix element for themth state population in
the P subspace,rmm, is defined byrmm5CmCm* , from
which we find the time variation

]rmm

]t
5ĊmCm

* 1CmĊm
*

52 i(
k
M̃mk~rkm2rmk!

52 i(
k

~PMP!mk~rkm2rmk!

1 i(
k,

~PMQ!mn@Q~v1
02M !Q#n1

21

3~QMP!1k~rmk2rkm!. ~5.25!

A comparison of Eqs.~5.25! and ~5.21! yields

]rmm

]t
52

i

\ (
k

@~HS!mkrkm2rmk~HS!km#1LD~r!mm,

~5.26!

where, in the rotating wave approximation,LD has the rep-
resentation

LD~r!mm5 i (
k,n,1

~PMQ!mn@Q~v1
02M !Q#n1

21

3~QMP!1k~rmk2rkm!. ~5.27!

VI. THE TRANSFER EQUATIONS FOR A SYSTEM
WITH THREE ELECTRONIC STATES

As an example of the formalism outlined in Sec. IV, in
this section we examine the excitation dynamics of a mol-
ecule with three electronic states coupled to a radiation
field.29,31,32The results obtained from this analysis will be
used as the benchmark for a test of the reduced dynamics
formalism described in Sec. V. We note that the three level
system is of interest in its own right, e.g., to analyze the
two-step excitation of a molecule through an intermediate
electronic state.

Using the Heisenberg representation it is straightforward
to extend the formalism set out in Sec. II to a molecule with
three electronic states. The result of the analysis is a set of
multiple phase relationships, each involving the phase angle
of the individual transition dipole moment and the phase
angle of the coupled radiation field.

For example, if we assume electric dipole transitions are
allowed between the ground state surface, denoted 1, and the
first excited state surface, denoted 2, and between the ground

state surface and the second excited state surface, denoted 3,
the condition for maximum positive population transfers
from the ground state surface is

fm12
1fe1

5p/2,

~6.1!
fm13

1fe2
5p/2,

and the condition for maximum negative population transfers
is

fm12
1fe1

52p/2,

~6.2!
fm13

1fe2
52p/2,

wheree1 ande2 are the fields generating the 1→2 and 2→3
transitions, respectively.

The conditions stated in Eqs.~6.1! and ~6.2! induce
population transfers into~out of! the ground state surface that
have the same direction. We can also generate two-way
population transfers, e.g., a maximum positive population
transfer between state 1 and state 2, and a maximum negative
population transfer between state 1 and state 3~or vice
versa!. The necessary conditions are

fm12
1fe1

5p/2,

~6.3!
fm13

1fe2
52p/2.

Clearly, there are interesting opportunities for the control of
the population transfer dynamics in a three state system.

We now examine the Schrodinger representation of the
dynamics of a three state system. The equations of motion
for the population coefficients are, according to Eq.~5.7!,

iĊ1~ t !5 1
2 @M12C2~ t !e

2 iDv21t1M13C3~ t !e
2 iDv31t#,

iĊ2~ t !5 1
2 @M12C1~ t !e

iDv21t1M23C3~ t !e
2 iDv32t#, ~6.4!

iĊ3~ t !5 1
2 @M13C1~ t !e

iDv31t1M23C2~ t !e
iDv32t#.

A. Analytical solution for a partially decoupled three
state system

It is difficult to obtain a general analytic solution to the
set of equations~6.4!. However, when one transition dipole
moment is zero an analytic solution can be found. Let
M2350. Then

iĊ1~ t !5 1
2 @M12C2~ t !e

2 iDv21t1M13C3~ t !e
2 iDv31t#,

iĊ2~ t !5 1
2 M12e

iDv21tC1~ t ! ~6.5!

iĊ3~ t !5 1
2 M13e

iDv31tC1~ t !.

If we substitute the trial solutions
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C1~ t !5C1
0e2 i ~l1Dv211Dv31!t/2,

C2~ t !5C2
0e2 i ~l1Dv211Dv31!t/2, ~6.6!

C3~ t !5C3
0e2 i ~l1Dv212Dv31!t/2

into Eq. ~6.5!, we obtain the following algebraic equations:

~l1Dv211Dv31!C1
01M12C2

01M13C3
050,

M12C1
01~l2Dv211Dv31!C2

050, ~6.7!

M13C1
01~l1Dv212Dv31!C3

050.

The set of equations~6.7! define an eigenvalue problem. In
the special case whenDv215Dv315Dv the eigenvalues are
found to be

l150;
~6.8!l2,352Dv6R,

where R5ADv21M12
2 1M13

2 . After normalization, which
imposes the conditionuC1

0u21uC2
0u21uC3

0u251, the null ei-
genvector is found to be

~C1
0,C2

0,C3
0!5

1

AM12
2 1M13

2 ~0,2M13,M12!, ~6.9!

while the other two eigenvectors are found to be

S 7AR6Dv

2R
,

M12

A2R~R6Dv!
,

M13

A2R~R6Dv!
D .

~6.10!

The physical interpretations of the situations these eigen-
modes describe are very interesting. The first eigenmode cor-
responds to transfer of all of the ground state amplitude to
the other two excited states, and the distribution of amplitude
between the two excited states is unusual in that the stronger
the dipole coupling of an excited state with the ground state
the less populated it is. To interpret the situations described
by the other two eigenmodes we note that when the detuning
frequencyDv approaches zero, the probabilities

~ uC1
0u2,uC1

0u2,uC2
0u2!

5SR6Dv

2R
,

M12
2

2R~R6Dv!
,

M13
2

2R~R6Dv!
D ~6.11!

converge to

S 12 , 12 M12
2

M12
2 1M13

2 ,
1

2

M13
2

M12
2 1M13

2 D , ~6.12!

which implies that half of the probability amplitude is
trapped in the ground state while the other half is shared
between the two excited states according to the magnitudes
of their coupling with ground state surface. For nonzero de-
tuning, one eigenmode describes the situation with more than
half of the probability amplitude in the ground state while
the other eigenmode describes the opposite effect.

B. Solution for the fully coupled three state system

An analytic solution for the dynamics of a fully coupled
three state system can only be obtained when all of the de-
tunings are zero, in which case the equations of motion be-

come ordinary differential equations. When the detunings are
nonzero the dynamics can be studied using perturbation
theory.

Suppose that the initial conditions areC1~0!51 and
C2(0)5C3(0)50, i.e., the system is in the ground state at
time t50. Then the equations of motion~6.4! become

iĊ1~ t !50,

iĊ2~ t !5 1
2 M12e

iDv21t, ~6.13!

iĊ3~ t !5 1
2 M13e

iDv31t,

which can be solved by iteration. To second order we find

C1~ t !'C1
~0!~ t !1C1

~1!~ t !1C1
~2!~ t !

511
M12

2 1M13
2

4Dv2 ~e2 iDvt1 iDvt21!,

C2~ t !'2
M12

2Dv
~eiDvt21!1

M23M13

4Dv2 ~e2 iDvt1 iDvt21!

~6.14!

C3~ t !'2
M13

2Dv
~eiDvt21!1

M12M23

8Dv2 ~eiDvt21!2.

Note that the perturbation parameter is the ratio of the Rabi
frequencyMnk to the detuning frequencyDv.

The temporal evolution of the populations of the three
states of the system are displayed in Fig. 1~a!. We note that
the induced resonant transitions oscillate with approximately
the detuning frequencyDv and that the first excited state is
populated more than is the second excited state. In Fig. 1~b!
we show the change of population of the first excited state as
the detuning frequency is raised. It can be seen that the popu-
lation decreases rapidly as the detuning increases, which jus-
tifies the use of the rotating wave approximation.

VII. MOLECULE–LASER PULSE INTERACTION

In this section we report a numerical study of the popu-
lation transfer dynamics induced by the interaction of a three
state molecule with a short pulse of radiation.

A. Single pulse dynamics

The equations of motion for the probability amplitudes
are obtained as before, with the interaction term now of the
form

Vnk52mnkE~ t !52 1
2mnkS1~ t !E1~e

ignkt1e2 ignkt!,
~7.1!

whereS1(t) is the shape function of pulse 1,E1 its amplitude
and gnk is the carrier frequency. We choose for the shape
functionS1(t)5exp~2~t2t1!

2/s1
2!, wheres1 is the width of

the pulse. As before, we choose the initial conditions
C1~0!51 andC2(0)5C3(0)50. A direct application of first
order perturbation theory yields
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C2
~1!~ t !5

im21E1

2\ E
0

t

expS 2
~t2t1!

2

s1
2 1 iDv21t Ddt

52
m21E1

2\

Ap

2
s1 expS 2

s1
2Dv21

2

4
1 iDv21t1D

3FerfiS s1
2Dv2122i t1

2s1
D

2erfiS s1
2Dv2122i ~ t2t1!

2s1
D G , ~7.2!

where erfi(z), the complex error integral, is defined as

erfi~z!52
2i

Ap
E
0

iz

e2x2 dx. ~7.3!

We note that erfi(z)52 i erf(iz) with erf(z)
5 2/Ap*0

ze2x2 dx, the standard error integral. Variants of
~7.2! have been published by several investigators.28,33

A typical temporal evolution of the population of the
first excited state is displayed in Fig. 2~a!, where the central
peak time, the width of the pulse and the detuning frequency
are all set to be 1. Note that the population of the excited
state saturates in about two time units, i.e., in a time which is
about twice the pulse width.

To study the influence of detuning of the radiation field
on the temporal evolution of the excited state population, we
apply a pulse withs151 andt151 and three different detun-
ing frequencies,Dv2151, 2, and 3. The time evolution of the
excited state population is displayed in Fig. 2~b!. As ex-
pected, the population decreases rapidly as the detuning in-
creases and its asymptotic value drops to near zero for large
detuning. Furthermore, the course of the time evolution of
the excited state population is different for different detun-
ings. WhenDv is small the excited state population rises
smoothly to its asymptotic value. However, whenDv is large
the excited state population does not rise monotonically. For
small t the population growth follows the radiation field in
almost the same manner as whenDv is small but at later
time the system starts to diminish the overshooting portion of
population. In the extreme case whenDv is very large the
population of the excited state after interaction of the system
with the radiation pulse is essentially zero, but it is not zero
during the interaction with the pulse. In this case the excited
state plays the role of a virtual state.

The influence of pulse width on the excited state popu-
lation can be studied by applying to the three state system
radiation pulses which have same amplitude but different
widths. The temporal evolutions of the state populations are
displayed in Fig. 2~c!. Clearly, our narrowest pulse generates
an increase in the excited state population to its asymptotic
value without overshoot, but the wider pulses generate, at
some intermediate time, an overshoot in the excited state
population as a function of time. This result arises as follows.
Let t→` and suppose the pulse is not present prior tot50.
Under these conditionsC2

(1)(t) becomes

C2
~1!~ t !5

im21E1

2\ E
2`

`

expS 2
~t2t1!

2

s1
2 DeiDv21t dt.

~7.4!

This integral is, apart from the factor (im21E1)/~2\!, the Fou-
rier transform of the pulse shape function

expS 2
~t2t1!

2

s1
2 D ,

which illustrates that what matters in producing lasting exci-
tation is the magnitude of the Fourier component of the pulse
shape function at the detuning frequencyDv21. Because the
spectral content of a pulse is inversely proportional to its
temporal width, short duration pulses generate greater as-
ymptotic excitation than do long pulses.

B. Double pulse dynamics

Tannor and Rice6 proposed the use of two pulses, with a
variable separation, to enhance the formation of a selected
product in a branching chemical reaction. Schereret al.8

have developed ‘‘wave packet interferometry’’ to control, in
addition to the time delay, the relative phase shift between a
pair of femtosecond pulses, thereby fully exploiting the co-
herence properties of laser light. In this subsection we will
study two examples of the response of a molecule to two
radiation pulses.

FIG. 1. The probability profiles for three state system coupled with mono-
chromatic fields, on ground state surface~—!, first excited state surface~---!
and second excited state surface~---!. All Mnk are made equal to a constant
M and M /Dv51/4. ~b! The probability profile on the first excited state
surface as detuning frequency increases fromDv2151 ~—! to Dv2152 ~---!.
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1. Zero relative phase shift between two pulses

If the two pulses that interact with the molecule have no
relative phase shift, the probability amplitude on the first
excited state surface is

C2
~1!~ t !5

im21E1

2\ E
0

tFexpS 2
~t2t1!

2

s1
2 D

1expS 2
~t2t2!

2

s2
2 D GeiDv21t dt. ~7.5!

Consider two pulses, one centered att151 and the other at
t252 or t253. The excited state population for this case is
displayed in Fig. 3~a!, which shows that the population trans-
fer is larger forDt51 than forDt52. In fact, the asymptotic
population of the excited state is a periodic function of the
delay between the pulses, as shown in Fig. 3~b!. For the
parameters we have used, the excited state population has
maxima atDt50.25 and 6.5 and a minimum atDt53.25.
Figure 3~b! also can be interpreted as an interference pattern
with variable pumping and dumping as the delay time be-
tween the pulses is changed.

2. Nonzero relative phase shift between two pulses

Suppose there is a relative phase shiftf between two
Gaussian pulses that interact with a molecule. Then

C2
~1!~ t !5

im21E1

2\ E
0

tFexpS 2
~t2t1!

2

s1
2 D

1expS 2
~t2t2!

2

s2
2 2 if D GeiDv21t dt . ~7.6!

For simplicity, we assume thats15s251. First consider the
situation whenDv2150. In this case it can be shown that the
excited state population is proportional to cosf, i.e., that
there is constructive interference atf52np and destructive
interference atf5~2n11!p. The excited state population is
displayed in Fig. 3~c! for variousf. Note that whenf5p the
excited state acts like a virtual state.

When the detuning frequency is not zero the interference
condition becomes more complicated, and the population
maxima and minima no longer occur at exactlyf52np and
f5~2n11!p, respectively. The excited state population
whenDv2151 is shown in Fig. 3~d!. For this particular de-
tuning the excited state population can be shown to be pro-
portional to cos2~12f!/~2!, hence has a maximum atf51,
accidentally equal toDv at this detuning frequency. We note
that whenf5p the population increases following the onset
of each of the pulses.

In general, when the detunings are nonzero in magni-
tude, no simple relationships betweenDv andf are found.

VIII. REDUCTION OF A THREE STATE SYSTEM TO AN
EFFECTIVE TWO STATE SYSTEM

In this section we use the reduction of a three state sys-
tem to a surrogate two state system as an example to illus-
trate the formalism outlined in Sec V.

The equations of motion for the proability amplitudes in
a three state system for the case of zero detuning are

FIG. 2. ~a! The population profile on the first excited state surface induced
by a single Gaussian pulse withs151, t151 andDv2151. The actual draw-
ing is uC2

(1)(t)u2 divided by a constant factorum21E1/2\u2, which is simi-
larly applied in all the following graphs.~b! The excited population profiles
by a single pulse with various detuning frequenciesDv2151 ~—!, Dv2152
~---! andDv2153 ~---!. ~c! The excited population profiles by a single pulse
~t153 andDv2151! with different widthss151 ~—!, s152 ~---! ands153
~---!.
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iĊ1~ t !5 1
2@M12C2~ t !1M13C3~ t !#,

iĊ2~ t !5 1
2@M12C1~ t !1M23C3~ t !#, ~8.1!

iĊ3~ t !5 1
2@M13C1~ t !1M23C2~ t !#,

which we cast into matrix form

Ċn~ t !1 i (
k51,2,3

kÞn

MnkCk~ t !50 ~8.2!

with

M5
1

2 S 0
M12

M13

M12

0
M23

M13

M23

0
D .

Suppose, for the model system under consideration, that
state 3 is weakly coupled with states 1 and 2. Then we expect
that population transfer between state 1 and state 2 will
dominate the dynamics, with only a small contribution from
population transfer to and from state 3. Under such circum-
stances, the three state system can be reduced to a two state
system with a correction to the dynamics from the influence
of the third state.

Following the formalism outlined in Sec. V,P is chosen
to be the projection operator onto the subspace composed of
state 1 and state 2, andQ the projection operator onto state 3.
The first term inM̃ @see Eq.~5.18!# is

PMP5
1

2 S 0
M12

M12

0 D ,
which is a submatrix describing the system dynamics in the
absence of state 3. The second term isPMQ21@Q(v1

0I
2 M )Q#21QMP, which describes the correction to the sub-
system dynamics arising from the coupling to state 3. We
note that in this casePMQ5 1

2(M23

M13!, QMP5 1
2(M13M23), and

@Q~vI2M !Q#21 51/v. The frequency domain variablev
can be replaced by a typical eigenfrequency of theP sub-
space, which is12M12 here. Therefore, for surrogate two state
system we have

M̃5
1

2 S M13
2

M12

M121
M13M23

M12

M121
M13M23

M12

M23
2

M12

D .

FIG. 3. ~a! The population profiles on first excited state surface by double Gaussian pulses with delay timeDt51 ~—! andDt52 ~---! between them. Two
pulses have same width ats51 and detuning frequency is atDv2151. ~b! The population interference pattern when varying delay time between double pulses.
The parameters for the pulses are the same as in~a!. ~c! The excited population profiles by double pulses at zero detuning with relative phase shiftf50 ~—!,
f5p/2 ~---! andf5p ~---!. ~d! The excited population profiles by double pulses at nonzero detuningDv2151 with relative phase shiftf50 ~—!, f5p/2 ~---!,
f5p ~---!, f51 ~•••!, andf5p11 ~-•-•!.
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To see how good this approximation is, we supply a
simple numerical demonstration. Suppose the coupling of
state 3 with states 1 and 2 is one-tenth of the coupling be-
tween state 1 and state 2, i.e.,M135M235(M12/10)
52~1/10!. Then the exact system dynamics is governed by
the coupled equations of motion for the three states, i.e.,

Ċ1~ t !50.5i @C2~ t !10.1C3~ t !#,

Ċ2~ t !50.5i @C1~ t !10.1C3~ t !#, ~8.3!

Ċ3~ t !50.5i @0.1C1~ t !10.1C2~ t !#,

and the approximate system dynamics is governed by the
two coupled equations of motion for the two surrogate states,
i.e.,

Ċ1~ t !5 i @0.005C1~ t !10.505C2~ t !#
~8.4!

Ċ2~ t !5 i @0.505C1~ t !10.005C2~ t !#.

The values ofuC1(t)u
2 and uC2(t)u

2 obtained from Eqs.
~8.3! and ~8.4! are compared in Figs. 4~a! and 4~b!. The
amplitudes and periods of the temporal evolution predicted
by the two approaches to the system dynamics are seen to
agree quite well. The differences seen in the amplitudes are a
consequence of the replacement of the exact eigenfrequen-
cies of the Rabi frequency matrix with a typical eigenfre-
quency from theP subspace.

IX. DISCUSSION

We have dispersed our comments about the formal
analysis throughout the text so there remain only a few re-
marks to be added. It is important to re-emphasize that all of
the control processes we have studied are based on quantum
mechanical interference phenomena. Interference is a global
phenomenon which, in the context of a time dependent de-
scription, implies that events in the past interfere with events
in the present. However, it is easier to understand the char-
acter of a control mechanism using a local time description,
since one can then optimize the transfer of the desired quan-
tity. The links between the local and global pictures are the
phases of the molecular expectation values, the most impor-
tant of which is the nonvanishing instantaneous transition
dipole moment^m^S1&, which itself shows that a crutial
condition for control is the maintenance of well defined
phase relation between amplitude on the ground and excited
state potential energy surfaces. Any degradation of that phase
coherence reduces the efficiency of the control procedure.
The most important dephasing mechanism will be deter-
mined by the backward propagation of the target function
B(t) @Eqs. ~3.7!–~3.8!#. We note that, in general, achieve-
ment of control requires the use of two components of the
dipole operator.

The description of the interaction of light with a system
with two electronic surfaces which we have developed is in
many senses analogous to the thermodynamic description of
two systems which can transfer mass and energy via external
work. Indeed, it is possible to develop versions of the first,
second, and third law of thermodynamics for this case.15 The

thermodynamic analysis leads to the identification of pro-
cesses which transfer energy without transfer of mass and
vice versa. An interesting consequence of the analysis is the
prediction that it should be possible to build a pulsed laser
with an active medium which does not require population
inversion. The next step in the development of this analysis
is the formulation of a quantum theory of the control of the
dynamics of an arbitrary system which includes a consistent
thermodynamic description of the system; this formalism
could provide a thermodynamic guide to the control of mo-
lecular dynamics.
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