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The theory of active control of molecular motion by use of shaped laser pulses is developed
emphasizing the role of interference and using thermodynamic analogies. Attention is focused on
the control of the dynamics in a system wittstates coupled by radiation, and the phase relations
which generate particular control schemes are derived. Among the new results reported is an optimal
control scheme which constrains the value of the phase.nfstate model can be considered to
represent a molecule with electronic potential energy surfaces and an arbitrary number of degrees
of freedom or as the skeleton spectrum of system where each level in the spectrum can be associated
with a specific set of quantum numbers for all of the degrees of freedom. We show how the control
of the dynamics of am-state molecule can be represented in terms of the control of the dynamics
of a precisely defined surrogate fewer state system. This reduction is illustrated by use of a surrogate
two state system to describe the dynamics of population transfer in a three state systdé806 ©
American Institute of Physic§S0021-960606)02314-(

I. INTRODUCTION these and other laser technologies to molecular spectroscopy
o . has yielded both a wealth of information concerning molecu-
Finding ways to control the selection of products of a|5r notential energy surfaces and an increased awareness that
chemical reaction is, arguably, the essence of chemistry. Th@ye ference effects can be used to guide system evolution.
intensive studies of synthetic methodology carried out Oveéimply put, it is now recognized that the dynamics of a

the past two centuries haye led tq the devel_opment ‘?f numeE'trongly coupled light—matter system can be influenced by
ous methods for generating desired chemical species. Mo

of these methods rely on amplifying the yield of the desired%I lﬁz;[gonnczltrlle?dtteonmzrzl satZ?n S_FFEZtLarlldtzztrilgut|or?nsCiofletkc1)?
product by adjusting the equilibrium between reactants th P y : ying p P

do and do not form the desired species so as to favor tﬁt‘iwe_ new approach to controlling proc_iuct se_lectlvny In are-
action is different from that used in earlier attempts to

former, or by adjusting the rates of competing reactions . . X . y :
which form different species from the same reactant so as t chieve “bond se_lec_t|ve chemistry. Th_e new approach is
enhance the formation of the desired species, or by comb ased on exploitation of quantum interference effects
nations of these methods. All of these methods are fundaV-VhereaS th_e 0'9' approaghes are, typically, based on try|ng- to
mentally macroscopic in the sense that they depend on thgeate a situation in which the rate of bond breakage YVI||
statistical, incoherent, properties of a many molecule systerfg,rea“y exceed the rate of transfer of energy from the excited

e.g., collisions between reactant molecules and between r8ond to the rest of the molecule. o
actant and solvent molecules. In contrast, this paper dis- Two different ways of using quantum mechanical inter-

cusses the influence on product selectivity generated by aderence to control product selectivity in a chemical reaction
tive control of the molecular dynamics and, more generallyhave been proposéd’
the active control of the temporal evolution of complex mo- ~ Suppose there are two independent excitation pathways
lecular systems. between a specified initial state of a molecule and a specified
Much of the study of active control of quantum molecu- final state of the products; these might be transitions involv-
lar dynamics has been stimulated by advances in laser teciig absorption of one and three photons, respectfrély.
nology, in molecular spectroscopy, and in our understandinguantum theory requires that the probability of forming the
of molecular dynamics. The developments in laser technolspecified product is proportional to the square of the sum of
ogy we refer to include methods for the generation of verythe transition amplitudes for the two pathways; because the
short pulses, of shaped pulses, of pulses with a well-definedmplitudes can have different signs, the magnitude of that
phase relationship, of very pure monochromatic light fields probability is determined by the extent of their interference.
and of very high intensity light fields. The application of For example, when one- and three-photon transitions gener-
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5458 Tang, Kosloff, and Rice: Evolution of a molecular system

ate the independent pathways between the initial and fination is a strength since it is then plausible that one of the
states, the extent of interference can be controlled by alteringossible guide fields is more easily generated than others.
the relative phase of the two excitation sources. The situation The methodology used in calculations of the field re-
is analogous to the formation of a diffraction pattern in aquired to maximize a particular product yield is optimal con-
two-slit experiment in that the excited state amplitude introl theory®™! It is usually found that the optimal guiding
each molecule is the sum of the excitation amplitudes genfield has a complicated spectral and temporal structure
erated by two routes which are not distinguished from eachyhose efficiency is determined by the extent of interference
other by measurement. Using this method, Gordon and cqsetween the amplitudes associated with its different spectral
workers have reported an example of control of the populaznd temporal components. In the model problems studied to
tion of a level in HCI, and also of the ratio of concentrations yte it is predicted that the use of an optimal guide field can
of the p+roducts Lns the branching photodissociation of HI t0jncrease the desired product yield by many orders of magni-
form HI™ and I These results provide experimental con- e rejative to the yield from a two-pulse control fiéfd.

firmation of the Brumer—Shapiro control schefite. To facilitate understanding of possible strategies for di-

i The sellectl\gty pffr)roducctj forma-m:)nfm a chemmtr;\]I retgc- recting molecular evolution, it is important to study the ge-
lon 9""2 aiso be Influenced via interterence in the time, ;. aspects of control of both population and energy trans-
domain? In the simplest case, when only two electronic po-

. : o fer between potential energy surfaces. For example, if one
tential energy surfaces are involved, an incidginst) pulse . . . . .

. . . . wishes to increase the yield of a chemical species, one has to
of light transfers probability amplitude from the electronic

ground state to the excited state, creating a coherent Wa\}gﬂdgrstand hOW to control population transffer on one elec-
packet on the excited state potential energy surface. Thafonic potential energy surface and population transfer from

wave packet then evolves on the excited state potential en‘?—r_‘e surface to another ;urface. If, on .the other hand, one
ergy surface. A second pulse of light, incident after an interWishes to coherently excite or to de-excite the motion of the

val t, will, depending on the position and momentum of themolec_ulg on the ground electronic state potential energy sur-
wave packet, select a particular reaction channel. This corf@ce, it is necessary to control the energy flow within the
trol scheme has been demonstrateith respect to the com- Molecule. Itis worth noting that it is possible to combine the
petition between ionization and dissociative ionization ofcontrol processes for several elementary processes to achieve
Na,, namely, Na—Naj +e vs Na—Na"+Na, by varying quite elaborate control schemes, including constraints on the
the time delay between the first and second pulses. The resglynamics, e.g., control of radiation damadeé?
obtained is an experimental confirmation of the Tannor—Rice In principle, the general formalism for designing fields
control schemé. that optimally control particular aspects of the molecular dy-
It is also possible to modulate the product yield via in- namics is applicable to systems with an arbitrary number of
terference between two impulsive excitation pulses with adegrees of freedom. However, in practice, the utility and ac-
variable time delay between théhin this case the second curacy of the application of the formalism to ardegree of
pulse of the sequence, whose phase is locked to that of theeedom system is limited by lack of knowledge of the sys-
first one, also creates amplitude in the excited electronigem Hamiltonian(e.g., the complete Born—Oppenheimer po-
state, which is in superposition with the initial, propagated tential energy surfaces and the regions where the Born—
amplitude. This intramolecular superposition of amp“tUdeSOppenheimer approximation is inapplicableby the
is subject to interference; whether the interference is CONzomplexity of the system spectrum wheris large, and by
structive or destructive, giving rise to larger or smaller eX-the difficulty of finding a global minimum im degrees of
cited state population for a given interpulse delay, depend?reedom. Accordingly, it is of considerable interest to de-

on the optical phase difference between the two pulses an\?elop a reduced description of the dynamics, which focuses

on the detailed nature of the evolution of the initial ampli- . :
T . . attention on a subset of the most important degrees of free-

tude. This situation is also analogous to a two-slit experi-
dom and treats the other degrees of freedom as a background

ment. The method described, which is a variant of the hich th bset i led. This reduction i ful onl
Tannor—Rice scheme, has been used to control the popul P which the Subset Is coupied. This reduction IS usetul only

tion of a level of 5.8 The success of this experiment confirms' it suggests gccurate approximations: which permit anal_ysis
that it is possible to control population flow with interference ©f the dynamics of the subsystem with weak perturbations
that is local in time. from the background. Note that the preceding argument has
In principle, the methods available for guiding the evo- been ph_rased in terms of the dynamics Qf a complic_ated mol-
lution of a quantum system by coupling it to an external field®cule withn degrees of freedom, but it also applies to a
are not restricted to the use of a time-independent field or g0lecule embedded in a solvent.
simple pulse sequence. If the goal to be achieved is, say, [N this paper we present an overview of a formalism for
maximization of the amount of a product in a reaction, theactive control of molecular dynamics that differs from previ-
design of the external field which accomplishes the goal is a@us formulations in its emphasis on the relationship between
inverse problem: Given the target product and the quanturihe role of interferences and the quasithermodynamic char-
mechanical equations of motion, calculate the guiding fieldacter of the control process. We also present a reduced space
which is required. The solution to this inverse problem isformalism for the design of control fields and a simple test of
very likely not unique, which for the case under consider-that formalism.
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II. BACKGROUND INFORMATION: THE TWO STATE the equilibrium states of a macroscopic system by altering
SYSTEM population and energy transfers between macroscopic states
via variation of external parameters. Accordingly, it is inter-

tTO pfo"t'ﬁ_e bacl:ground fEr to;lrtr?na]lcly&s I(')f thf%tatet_ esting to examine the exchange of energy between the mol-
system, In this sectioh we sketc € formalism Tor acliV€,c 1o and the external field, and to relate that energy ex-
control of a molecule coupled to the radiation field when

change to alteration in the populations of the molecular

only two electronic states of the molecule play roles in thestates. The rate of change of energy is

reaction dynamics, e.g., the ground electronic state and the

first excited electronic state. Details of the analysis can be d{(E) [dH .

found elsewher&> . ~\ a0/ FkoH 2.4
The density operator describing the state of the system

can be representedds since[H, H]=0. Eq. (2.4 is a version of the first law of

thermodynamic$®>?1~2written in terms of the time rate of

p=pg®Pyt pc®Pet pi®S, +p ®S_, (2.1 change of the energy and the power

wherep; is the density operator for stajeg, e (g refers to oH

the ground state and to the excited stajethe symbol® P=<W>’ (2.5

denotes the tensor produd?; is a projection operator on

surfacg g, e, and theS. are raising and lowering operators which is the time derivative of the work, and the heat flow
that transfer amplitude from one surface to another. The first 40

two terms in Eq.(2.1) represent the state of the molecules 3= —~—(| ). (2.6)
with population on the ground and excited surfaces, while dt

the last two terms represent the electronic coherence inducggit, these definitions, the power absorbed from the field into
by the radiation field. It is convenient to represent the Hamily,o system becomes

tonian of the system as the sum of internal Hamiltonians,

Ho=H,®Py+H®P,, and a radiative coupling interaction p—_ S Je S E
term which control the transfer of amplitude between the two A ot S ot
electronic manifolds,

Je
Vi=—u®{S, e(t)+S_e* (1)}, (2.2 =-2 Re[<M®S+> E]' 2.7

where . is the transition dipole moment operator aeld) |y £q (2.7), (u®S,) is the expectation value of the instan-
represents a semiclassical time dependent radiation field. It Kneous transition dipole moment; variation of its value pro-

via Contro! of the spectral composmon_, the time profile of thevides the means for controlling the molecular evolution.
field amplitude and the phase of the field that we can control For the two state system under consideration it can be

the evolution of the molecule. When intramolecular couplinggp,o\wn that the flow of population from the ground state sat-
of electronic manifolds is included in the Hamiltonian, radia-

isfies
tionless transitions within the molecule can be included in
the group of dynamical processes to be controlled. dNg i 2
The evolution of the molecule is described by the gen- gt % (n®{S.e=S.e"})= % Im{{u®S,)e}
eralized Liouville—von Neumann equati"t?n (2.8
ap when nonradiative couplings between the ground and excited

at & [H.p]+Lop, (2.3 state surfaces are ignored, ilepPy=0. The flow of energy
from the ground state can also be calculated when it is as-
wherel p is an operator representing the dissipative couplinggymed that the rate of electronic dephasing is small, i.e.,
of the system to background states. Equati&) describes L#P,~0 and/or the rate of pure vibrational dephasing is
the dynamics of an open quantum mechanical system undgmal, i.e.,L5H,~0. These conditions apply when the rate
the assumption that the evolution operator defines a dynamjst rejaxation to equilibrium is small relative to the rate of

cal semigroug’~*The source of the dissipative telmppis  |oss of phase coherence. Under these conditions
the reduction of the combined system and bath dynamics to
the (_1ynam|cs of_tr_le system only._ T_he semigroup formalism %: E IM((uH,®S, ) 2.9
provides an explicit form for the dissipative operaltgy, but dt % 9
we shall not need that detailed form for most of our consid-
erations. Note that the first term in E(.3) describes the 2nd
unitary dynamics supported by the Hamiltonian. o

The mechanism by which control of the dynamical evo- F=2 RE( <&®S+> ) (2.10
lution of our model molecule is achieved is the alteration, by
variation of the external field, of population, and energywherex represents the internal coordinates of the molecule,
transfers between its two electronic states. This mechanisiis the internal force which the electromagnetic field exerts on
is, in a sense, analogous to the control of transformation ofhe molecule.
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5460 Tang, Kosloff, and Rice: Evolution of a molecular system

Molecular transfer processes can be promoted either by Jde
controlling the fielde(t) or its time derivative. We note that P=—2|(u® 5+>|‘ =
the transfer equation®.8) and(2.9) have similar structure,
namely, each contains the imaginary part of a product of gnqg
molecular expectation valuéX) and the fielde. Equation

cos ¢, + b;) (2.12

(2.7) has an analagous structure; transfer is controlled by the dg; 2 )
real part of the product of a molecular expectation value and  ~g; = g|<MHg® Sollelsin(p n+ ¢,), 213
the time derivative of the field. For convenience we rewrite
Eq. (2.8 in the form where g, is the phase angle ¢fH,®S,). We also have
s 2 oS llelsin b, + 6.) (211 9
——=—[{u® glsi &) . o
dt 7 \HE= m F=2‘<5®s+> le|cog b, + ), (2.19

where ¢, is the phase angle of the instantaneous dipole mo-

ment andé¢, is the phase angle of the radiation field. Thewhere ¢,/ is the phase angle ofdu/dx®S,). Equations
overall phase angle in Ed2.11) is the sum of the phase (2.11)—(2.14 clearly show that the sum of the phase angles
angle of the induced polarization of the molecule and thegenerates the following possibilities for control of the dy-
phase angle of the polarization of the light. In a similar waynamics:

¢,+¢.=0 for maximum energy transfer

=7 for maximum energy emission, (215

¢+ ¢, =m/2 for maximum positive population transfer 1
=—q/2 for maximum negative population transfer, (2.19

bunt d.=ml2 for maximum energy transfer to the ground state surface 21
=—q/2 for maximum energy removal from the ground state surface, (217

¢, +¢.,=0 for maximum positive force 21
=7 for maximum negative force. (2.18

|
Control of population transfer using the relation displayed in ¢, +¢.==ml2 for zero force. (2.22
Eqg. (2.16 has been demonstrated experimentally by Sherer o -

et al® In this experiment gaseous was irradiated with two Examination of the control condition$2.19—(2.22

short (femtosecony laser pulses; the first pulse transfers Shows that there are two values of the sum of phase angles
population from the ground state potential energy surface téor which zero transfer occurs. In principle, then, one can
the excited state potential energy surface, thereby creating &tmultaneously block the transfer of, say, the energy, and
instantaneous transition dipole moment. The instantaneoulect the direction of the transfer of the population. One
transition dipole moment is modulated by the molecular vi-particularly interesting case is the definition of the phase
bration on the excited state surface. At the proper instan@ngles for zero total power absorption. Since no energy is
when the instantaneous transition dipole moment expectatioposorbed or emitted from the field these conditions define
value is maximized, a second pulse is applied. The directiofser catalysis?
of population transfer is then controlled by changing the A note of caution must be inserted at this point. It ap-
phase of the second pulse relative to that of the first pulse.pears, at first sight, that there is a meaning which can be
In contrast with the conditionf2.15—(2.18), when we attached to the absolute phase of the field and to the phases

wish to prevent transfer of popu|ati0n or energy the phas@f the molecular eXpeCtation values. However, it must be

angle relations are: remembered that the phase of the molecular quantity is in-
duced by the radiation field prior to the present time. There-
b+ d.==ml2 for zero total energy transfer, fore, all phases must be related to the phase of a previous

(2.19 pulse which synchronizes the molecular clock with the field
clock. With this synchronization it is possible to understand
b,+¢.,=0m for zero population transfer, (2.20 how quantum mechanical interference between events which
are induced in the past propagates and can be used to control
energy and/or population transfer at a later time. From the
experimental perspective, both the amplitude and the phase
state energy, (2.21 of the light must be controlled.

éuntéd.,=0,m for zero change in the ground
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Ill. GLOBAL CONTROL OF DYNAMICS approach to obtain a similar equation for optimal control in
) Liouville space has been derived in a different method by
We now seek the optimal strategy for transfer of an ob~5, et 512

servable with minimum power consumption under the re- |, gissinative dynamics, the backwards propagating tar-
striction of zero population transfer_. Consider the following get operator decays into a stationary operator and, therefore,

functional for a ground state quantifp: L*B(—%)=0. This leads to loss of control, as can be seen

d(A®P,) from Eq. (3.5).
O0=—"3""9 w2, (3.0 Thus far we have not made explicit use of the phase
dt constraint which defines the control of a particular dynamical

whereW is a penalty function imposed by the power con- process, e.g., relationshigg.19-(2.23. Although we have

sumption. The globally optimal solution can be obtained byused a constraint on the energy while minimizing, via the

varying the ground state quanti§y=(A,) at a specific final variationgl CaICUIudA9®PG>_ on the gr"“f‘d surface, this pro-
time t; with the following constraints: cedure yields only the variational solution for the amplitude

(@ The evolution of the system is governed by theof electric field; the variational solu_tion_for the fiel_d phase is
Liouville—von Neumann equatiof2.3). lost. .I-.|owever, the phase of the field is constrame_d by the
(b) There is zero population transfer sbl;=0. cond|.t|on on_d Ng(dt’ through Eq.(?.ZO). In Qe”erf"" if the
(© The power consumption is bounded b§ g_oal is to minimize some dynamical function without con-

sideration of the changes of any other observables, then we
=féf|s|2 dt. do not need to explicitly specify any of the phase relation-

Taking account of the constraints by the method ofShipS exhibited by the field.

Lagrange multipliers, the functional to be minimized takes We now examine the formalism needed _to eXp“C't!y in-
the form clude a constraint on the phase of the field in the optimiza-

tion procedure.
tf ap Consider the case where we try to minimize the ground
0* =Tr{As® ng(tf)}+f Tr[ (E_ LP) B+7\|8|2] dt, surface energy under the condition of zero population trans-
0 (3.2 fer, for which we have the phase relation

whereB is an operator Lagrange multiplier akds a scalar b+ ¢,=0. (3.6
Lagrange multiplier. The variation @* is with respect tg
and|e|. The conditiondNy/dt=0 determines the phase of To incorporate Eq(3.6) as a constraint in the variational
through Eq(2.20. It therefore is omitted from the variation. calculation of the optimal field, we represent the electric field
Taking the variation of Eq(3.2) and integrating by parts ase(t) = A,(t)e'?:(, and the objective functional as
leads to the following equations:

(a) A forward equation for the density operator,

t
5 9*:Tr{Hg®ng(tf)}+fofTr[ Z—f—Lp)B]dt
P, 3.3
ot t; t¢
+x1f A? dt+)\2f (do+,)% dt, (3.7
subject to the initial conditiop=p(0). 0 0
(b) A backward equation for the Lagrange operdBor
whereB is the operator Lagrange multiplier introduced ear-
B L*B 3.4 lier and\, \, are two scalar Langrange multipliers. We note
ot ' 34 that the time average ab,+ ¢, vanishes but the time aver-
age Of(gz’)g-i-(;bﬂ)z is positive definite, hence the form that
subjectto the final conditioB(t;) = Ay ® Py. The dissipative  appears in Eq(3.7).

part of Eq.(3.4) is symmetric in time, meaning that dissipa- Taking the variation oB* with respect to, A, , and ¢,
tion takes place in the forward as well as in the backwardeads to the following equation for the phase, in addition to
evolution. the Eqs.(3.3—(3.5 for p(t), B(t) andA_(t):
(c) A condition on the field
1 dLp
1 dLp(t) 1 /dL*B(t) b+ b =—Tr( B(t)}. (3.9
= — - - (- 7 & y2
le(t)] N Tr[ 7] B(t)] o < el | 2\, | 9,

39 Equation(3.8) explicitly describes how the time evolution of
Equation(3.5) can be interpreted as the scalar product of ahe phase angles must vary so as to minimize the value of
forward moving density and a backward moving time- (¢S+¢M)2 to satisfy the constraint of zero population transfer
dependent operator. The optimal field at titnie determined  between potential energy surfaces. Note that control of the
by a time-dependent objective function propagated from thdield phase is critically influenced by the backward propaga-
target timet; backwards to time. A first order perturbation tion of the target functiorB(t).
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5462 Tang, Kosloff, and Rice: Evolution of a molecular system

WITH MORE THAN TWO ELECTRONIC SURFACES P=-

Isi<js

IV. THE TRANSFER EQUATIONS FOR A SYSTEM
A Hi ®

de _, de*
Si ot TS
There are several different ways one can view the dy-
namics in a system with states. For example, thre states — 9 Re( (i ®S) ‘9_8)
could represent the electronic potential energy surfaces in a 1={Tj<n T T ot
molecule with an arbitrary number of degrees of freedom.
Alternatively, then states could be a skeleton spectrum rep- =_2 (i ®S))]|ecog b, + by), (4.3
resentation in which each level corresponds to a particular 1<i<j=n .

set of quantum numbers of a many degree of freedom sysgnd that the flow of population from the ground stéte 1)
tem. We shall use, for the most part, thestate molecule g the rest of the electronic statés>1) is, with neglect of

view, but the reader should keep in mind the other view.  the dissipative coupling of the-state system to the bath
Consider, then, a molecule with electronic states. For giates,

the purpose of deducing the control conditions we will ex- .

amine the extreméand unlikely case in which every pos- ﬁ: ! ([H,Py1])

sible pair of these electronic states is connected via the ra- dt % ik

diation field and a nonzero transition dipole moment. If the i

molecule is coupled to a radiation field which is a superpo- =—— > (pi1®S)e—(ui®Sy)e*)

sition of individual fields, each of which is resonant with a hi1<T=n

dipole allowed transition between two surfaces, the density

2
operator of the system can be represented in the form =% Im({1;®Syi)e)
1<i=n
n
p=2 pii®Pi+ X p®S; 2 :
2= TR P L RPN Kr1i®S)llelsin(,, + ¢.). (4.9

Finally, the flow of energy from the ground state is

i; Pi®PiI+ 2, n(Pii®3j+Pﬁ®ST), (4.2)

<i<j=< dE 2
~_9_= .
where p; is the projection operator onto surface dt A 15%, IM((p1iH1® S1)e)
ie (1,...',n) :n(lj) thgsjfazd S{ are Iov;eriqg aréd_ raising op- )
erators in the basis of the connected stataadj. _“ Her clsi n
The Hamiltonian of then-state system is h 15%n (i@ S )l ]S B iy, T o),

n (4.5
H= H0+Vt:izl Hii ® P and the internal force which the radiation field exerts on the
molecule takes the form

— . . T o* i
2, kiBlSie(M ST (1) - Re( » < M ®s,->e)
1=<i<j=<n | X
4.2 5
where w;; is the transition dipole moment between states =2 Z %@Sj |elcog ¢, + o). (4.6
andj and €(t) is the semiclassical representation of the ra- 1<i<j=n | oX Y
diation field. The phase angle conditions for control of the system
We find that the power absorbed from the field by thedynamics follow directly from the above. For example, the
system is analogues of Eq42.15—(2.18 are
|
¢ﬂij+</>eij:0 for maximum energy absorption 4
¢Mij+¢-€ij=w for maximum energy emission (4.7
for 1<i<js<n, whereg; is the resonant electric field component between siateslj;
¢M1i+¢61i:7T/2 for maximum positive population transfer 4.8

¢//'1i+ ¢>eli=—w/2 for maximum negative population transfer
for 1<i=<n, whereg; is the resonant field component between the ground state and excitet} state

DuyHy, T ¢fli:77/2 for maximum energy transfer to ground state surface

Gyt ¢Eli:—7-r/2 for maximum energy removal from ground state surface (4.9
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for 1<i=n; is the transition dipole matrix element. Of course,
& +d. =0 _ N Unk= Meifn, Wheref,, = fdruf(r)uc(r) is the Franck—
iy e for maximum p05|t|ye force 0 Condon factor between electronic surfacesand k.22 The
¢Lij+¢eij=ﬂ for maximum negative force *™ resonant continuous electric fiek(t) can be written in the
. form
for l=si<j=n.
The above relations define the conditions for concurrent Eo it iy
: =— it+e~!7ity, .
control of population and energy transfers between all of the E() 2 1Sj2<ign (e7i+e ) .3

states of the system which are connected by dipole allowed

transitions. It is unlikely that a situation that complicated will Adopting the rotating wave approximatigRWA) and intro-
ever be encountered. In thestate molecule view, which has ducing the detuning frequenc o, = w,— yn¢ and the
been emphasized above, typically, not all pairs of states ar@abi frequencW = — (unEo)/ (%), we find the following
connected with nonzero transition dipole moments. In theequations of motion:

skeleton spectrum view, there is usually a small subset of K£n
states(doorway statesconnected by transition dipole mo- c ; _

t)+i M k() Cy(t) =0, 5.4
ments to the ground state, and a dense background of states () ke(lZ,...,n) () ©49

that either have zero transition dipole moments or very small

transition dipole moments with ground state, with the door-Where the M (t) are the elements of thexn time-

way states and the background states only weakly couplecﬁi.ependent matrix

In both cases, when only some pairs of states are coupled 0 Mpe bzt ..M, e idont
with nonzero transition dipole moments the appropriate con- M@l ozt ! i iAot
trol conditions are simplified. 1| & 0 -Mgpe 8o
M(t)= =
2 :
V. REDUCTION OF THE DYNAMICS OF AN n-STATE M, eidont  Mpge!denzt -0
SYSTEM TO THE DYNAMICS OF AN EQUIVALENT (5.5

SMALLER SYSTEM
) ) . ] For the case of zero detuning of the radiation fieNgi(t)
There is an interesting analogy between the analysis presecomes time-independent

sented in this section and the optics of thin films. In thin film

optics, Herpin's theorefi states that a symmetrical 0 Mg, My,

multilayer stack is equivalent to a single layer with an effec- 1l My, 0 My,

tive refractive indexcalled the Herpin indexand an effec- M=-| . ) ) (5.6)
tive phase thickness. We shall develop a representation of the 2| | ;

population dynamics of am-state system in terms of the Mp My  ---0

properties of a surrogate system with fewer states. The states ) ) ) o
of the surrogate system must, of course, be defined in ternfd the equation of motion for the population coefficient of
of then states of the full system, so we are really developingth® nth electronic state is given by

an alternative representation of thestate system. However, k#n

we expect the formal relations which define the reduction of ¢ (t)+i > M, C.(t)=0. (5.7)
n to, say,m states to be of value in guiding the generation of ke(L...n)

accurate approximations to the dynamics of the fulitate

If all of the states of the system are equally strongly

system. . )
The reduction procedure can be defined using the SchrocoUpled to each other, the system dynamics can only be de

: ' . scribed by completely-solving the above equations. How-
dinger representation of the dynamics of thstate system. ! y P y-soving ve equat W

The molecular wave function of the-stat tem can b ever, it is common(especially in ann-state systemthat
€ molecular wave function ot the-state system can be o pairs of states are strongly coupled and other pairs of
written as a superposition of the electronic eigenfunction

. . States are weakly coupled. Then we expect that the popula-
{un(r)}, which yields tion transfers among strongly coupled states dominate the
ot system dynamics, and that it should be possible to study the
Y,y = ; Ca(Dup(rje en. (5.3) n-state system dynamics in the subspace of strongly coupled

_ _ ) ) _ states with a correction from the influence of the weakly
Insertion of Eq.(5.1) into the Schrodinger equation yields coypled states.

the following equations of motion for the coefficier@s :*” The reduction scheme we use to define the surrogate
_ i _ fewer state system follows the method proposed by Sfore.
Cn(t)=—% > C() Ve ekt (5.2  The scheme has a compact form when we introduce two
. orthogonal projection operator®, and Q, and work in the
whereV, = {(u,|V|uy) and wy,= 0 — o, . frequency domain instead of the time domain. The time evo-

We assume that the molecule-field coupling is dominatedution matrix for then-state system dynamictl(t), and its
by the dipole transition interactiod,,= — u,E, whereu,,  Fourier transformG(w), satisfy the following equations:
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d
—+iM

at u()=0

(5.9
(0wl —=M)G(w)=1,

wherew is the frequency domain variable ahds thenXxn
unit matrix.

Let P be the projection operator onto the subspace com:
posed of the states having stronger couplings within whic

we try to approximate the system dynamics, and)die the
projection operator onto the remaining states. Then

P+Q=1, P?=P, Q?=Q, and PQ=QP=0. (5.9

We are interested in evaluating the matrix element& @b)

within the subspace oP states in the frequency domain.

Multiplying both sides of the equation f&@(w) in Eq. (5.8
by P+ Q=1 we find
(0l =M)PG(w)+ (0l —M)QG(w)=P+Q.  (5.10

Further multiplying byP from the right andQ from the left
yields

Q(wl—M)PG(w)P+Q(wl—M)QG(w)P=0, (5.1)
from which we obtain
QG(w)P=Q[Q(wl—M)Q] 'QMPG(w)P. (5.12

Note that we require the inverse of the matiik—M within
the Q subspace. Now multiplying both sides of Ef.10 by
P, we find

P(wl—M)PG(w)P+P(wl—M)QG(w)P=P. (5.13
SubstitutingQ G(w) P from Eq.(5.12) into Eq.(5.13 yields
P(ol =M)PG(w)P—PMQ[Q(wl—M)Q]~*

XQMPG(w)P=P, (5.14
and multiplying Eq.(5.14 by P on both sides yields

P{wl—PMP—-PMQ[Q(wl—M)Q] QMP}

XPG(w)P=P. (5.15
We now write
I\7I(w)=PMP+PMQ[Q(wI—M)Q]‘1QMP, (5.19

Tang, Kosloff, and Rice: Evolution of a molecular system

gquency variablev in I\7I(w) in Eq.(5.16 by a typicalP-space
eigenfrequency, saw?. We thereby obtain the frequency-
independent effective operator

M=PM P+PMQ[Q(wll—M)Q] 'QMP. (5.18

Note that the original matrix elemenPM P associated with
the P-space state population dynamics have to be modified

fo include the influence d@-space states. Viewed in the time

domain, the replacement M (w) by M washes out the de-
tails of the time variation withirQ space. For this approxi-
mation to be useful all strongly coupled states should be
included in theP space and th® space should not include
any states that couple strongly to tRespace. We now find
that the population dynamics of thma levels within theP
subspace is governed by the equations of motion
k#m
Cr(h+i X
ke(1,...m)
Although we have phrased the preceding argument in terms
of the dynamics of a complicated molecule witldegrees of
freedom, it also applies to a molecule embedded in a solvent.
We now connect the analysis given above with the equa-
tion of motion displayed in Eq(2.3). That equation of mo-
tion follows from subdivision of a system into an open sub-
system S, with Hamiltonian Hg, and a complementary
reservoirR with Hamiltonian Hg, such that the complete
system HamiltoniarH is given by

M i Ci(t) =0. (5.19

H=HS®IR+IS®HR+HSR' (52@

When the coupling betweehandR is weak the evolution of
the open systers, due to the internal dynamics &fand the
interaction with the reservoiR, can be described in density
matrix form by

which generates a representation of the frequency domain

time evolution operator withif® space

PG(w)P=P[wl—M(w)] *P. (5.17

dps(t) i
ot :Lps(t):—%[HSaPs]*'LD(Ps) (5.2

as stated in Sec. Il. Now writing

ps(t)=Aps(0) (5.22
we find

A=e€", t=0 (5.23
which we require to satisfy the semigroup conditioi?

AtAT: AH—T' (524)

HencelL is a semigroup generator.
Returning to the formal reduction procedure described at

From PG(w)P we can get the time evolution operator the beginning of this section, we note again that the operator
PU(t)P by use of a Fourier transform. These localized op-M (w), which is a function of the frequency variablg in-
erators permit the construction of those portions of the timecorporates all of the dynamics associated with evolution of

evolved state vectors that lie within the subspac® states.

The influence of the remaining staté® state$ occurs
through the action of the operatbt(w).

then-state system, and the formalism merely reorganizes the
exact representation of the-state population transfer dy-
namics. The formalism, as such, does not demand thahthe

The preceding analysis is just a transformation of onestates in theP subspace are strongly coupled to each other
representation of tha-state problem to another representa-and that the f—m) states in theQ subspace are weakly
tion. To be useful, the new representation must admit the useoupled to those in thé& subspace. The use of a typical
of simplifying approximations not suggested by the originalunperturbed eigenfrequency of tlie subspacegw?, to re-
representation. One such approximation is to replace the frgslace the variable frequeneyin M (w), by virtue of washing
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out the details of the time variation within th@ subspace, state surface and the second excited state surface, denoted 3,
generates the separation of the total system into a strongljpe condition for maximum positive population transfers
coupled subsystem which is weakly coupled to a reservoir. Ifrom the ground state surface is
general, we expect this approximation will lead to a loss of
time reversibility, hence can be used to explore an explicit ¢, .+ ¢61:7T/2’
form for the operatot . (6.1)

Given Eq.(5.19), it is straightforward to obtain the cor- ¢M13+ ¢€2: w2,
responding density matrix form of the equation of motion.
The density matrix element for thath state population in - and the condition for maximum negative population transfers
the P subspacep,, is defined byp,,=C,Ch, from g
which we find the time variation

. . b, b, =72,
CrCintCiCry (6.2
¢,u13+ ¢62: - 77/21

9Pmm_
ot

- _'Ek Mk Pkm = Pmid wheree, ande, are the fields generating the-2 and 2-3
transitions, respectively.

The conditions stated in Eq4$6.1) and (6.2) induce
population transfers int@ut of) the ground state surface that
have the same direction. We can also generate two-way
+i2 (PMQ)mn[Q(wE—M)Q]n’f population transfers, e.g., a maximum positiv_e populatiop

K, transfer between state 1 and state 2, and a maximum negative
population transfer between state 1 and stat€ol vice
versa. The necessary conditions are

= _iZk (PMP) mid Pkm— Pmi)

X(QMP) 11 (pPmk— Pxm) - (5.29

A comparison of Eqs(5.295 and(5.21) yields
¢,u12+ ¢61: 77/21
07Pmm_

i
= 7 2 LHYmokm— P H9)kml + Lo (0)mim, (6.3
K bu gt be,=— 2.

(5.26
where, in the rotating wave approximatidn, has the rep- Clearly, there are interesting opportunities for the control of
resentation the population transfer dynamics in a three state system.
We now examine the Schrodinger representation of the
L =i PM 0_M -1 dynamics of a three state system. The equations of motion
o(P)mm kzn,l( Qmd Qw1 JQlns for the population coefficients are, according to Eg7),
X(QM P)lk(pmk_pkm)- (527) |C1(t): % [M12C2(t)e_iAw21t+M13C3(t)e_iAw3lt],

VI. THE TRANSFER EQUATIONS FOR A SYSTEM g . Aot Cideat
WITH THREE ELECTRONIC STATES iCa(t)= 2 [M1Cy(t)e' 228+ MCy(t)e'2%2], (6.4

. As an example of'the formah'sm. outlined in Sec. IV, in iCa(t)= 1 [MysCy(t) €293t + M,oCo(t) el 2032 ].
this section we examine the excitation dynamics of a mol-
ecule with three electronic states coupled to a radiation
field 223132 The results obtained from this analysis will be A. Analytical solution for a partially decoupled three
used as the benchmark for a test of the reduced dynamigdate system
formalism described in Sec. V. We note that the three level |t s gifficult to obtain a general analytic solution to the
system is of interest in its own right, e.g., to analyze theget of equationg6.4). However, when one transition dipole

two-step excitation of a molecule through an intermediate,oment is zero an analytic solution can be found. Let
electronic state. M,3=0. Then

Using the Heisenberg representation it is straightforward 2
to extend the formalism set out in Sec. Il to a molecule with .~ _1 —iAwoqt —iAwaqt
three electronic states. The result of the analysis is a set of 1C1()=2[M1Lalt)e #+MiCa(t)e =l
multiple phase relationships, each involving the phase angle . . Aot
of the individual transition dipole moment and the phase 1C2(1)= 2z M0 Cy(1) (6.9
angle of the coupled radiation field. _

For example, if we assume electric dipole transitions are  iC4(t)= 3 M;3e'2“3'Cy(1).
allowed between the ground state surface, denoted 1, and the
first excited state surface, denoted 2, and between the grounifdwe substitute the trial solutions
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5466 Tang, Kosloff, and Rice: Evolution of a molecular system

Cy(t)=Cle I\ FAwartAwgyti2 come ordinary differential equations. When the detunings are
O i(nt Awrt Awgptl2 nonzero the dynamics can be studied using perturbation

Cy(t)=Cse = VM, (6.6) theory.

Cg(t):Cgefi()HrAwﬂwaBl)t/Z Suppose that the initial conditions a@;(0)=1 and

_ ) _ _ _ C,(0)=C4(0)=0, i.e., the system is in the ground state at
into Eq. (6.5), we obtain the following algebraic equations: tjme t=0. Then the equations of motig6.4) become

()\+Aw21+Aw3 C0+ M12C0+ M13C0:0,
1 2 3

iC1(1)=0,
M1 CI+ (N —Awy+Aws)CI=0, (6.7 _
H _ 1 iAwoqt
M1sCo+ (A + Awpy— Awy) CI=0. 1C2(D)= 2 Mo, 613
The set of equation&.7) define an eigenvalue problem. In iCa(t)= 1 M doat,
the special case whebw,;=Awz;=Aw the eigenvalues are
found to be which can be solved by iteration. To second order we find
A=0; Ci()=COt)+CP(t)+CP (1)
)\2’3=—Awi R, (68) M§_2+M§_3
where R=\Aw?+M?{,+ M3, After normalization, which =1+, (e +iAwt—1),
imposes the conditionC3|?+|C9%+|C3|?°=1, the null ei-
genvector is found to be My, M,3M 45 )
~_ _ —© iAot __ —iAwt | ; _
o 1 C,(1) 2Aw(e 1)+ AA 2 (e +idwt—1)
(C1,C3,C3)= = (0,—My3,Myy), (6.9 (6.14
VM1, +Mi;
; ; M . M oM .
while the other two eigenvectors are found to be ~_ 13 iAwt_ 127723 idwt_ 112
Cs(t) A (e 1)+ 8A w2 (e 1)
_ RiA(,l) M 12 M13
*N 2r J2R(R=Aw) V2R(R*Aw), Note that the perturbation parameter is the ratio of the Rabi

(6.10 frequencyM , to the detuning frequencw.
— . N ) The temporal evolution of the populations of the three
The phys_lcal Interpretations O.f the situations these €19€Nstates of the system are displayed in Fige)1We note that
modes describe are very interesting. The first eigenmode “Ofhe induced resonant transitions oscillate with approximately

responds to tran;fer of all of the grOL_md_ state amphtugie he detuning frequenciw and that the first excited state is
the other two excited states, and the distribution of amplitud opulated more than is the second excited state. In Fix. 1

between the two excited states is unusual in that the stronger

. . ; . e show the change of population of the first excited state as
the dipole coupling of an excited state with the ground statgy o detuning frequency is raised. It can be seen that the popu-
the less populated it is. To interpret the situations describe

. ._lation decreases rapidly as the detuning increases, which jus-
by the other two eigenmodes we note that when the detunlngfies the use of the rotating wave approximation

frequencyAw approaches zero, the probabilities
(Ici2]cil?cal?)
(RiAw M%z Mis ) VII. MOLECULE-LASER PULSE INTERACTION

1 ) (6.11)
2R ' 2R(R*Aw)’ 2R(R*Aw) In this section we report a numerical study of the popu-
converge to lation transfer dynamics induced by the interaction of a three
(1 1 M;lzz 1 M§3 state molecule with a short pulse of radiation.

2’ 2 M2+ M%) 2 M2+ M2,
which implies that half of the probability amplitude is  The equations of motion for the probability amplitudes
trapped in the ground state while the other half is share@® obtained as before, with the interaction term now of the

between the two excited states according to the magnitudd8™m
of their coupling with ground state surface. For nonzero de- Vo= — B () = — 2, Sy (D) E (€704 @ 170id)

(6.12 A Single pulse dynamics

tuning, one eigenmode describes the situation with more than 7.1
half of the probability amplitude in the ground state while
the other eigenmode describes the opposite effect. whereS, (t) is the shape function of pulse B, its amplitude

and v, is the carrier frequency. We choose for the shape
function S, (t) =exp(— (t—7)%0%), whereo is the width of

An analytic solution for the dynamics of a fully coupled the pulse. As before, we choose the initial conditions
three state system can only be obtained when all of the dez,(0)=1 andC,(0)=C3(0)=0. A direct application of first
tunings are zero, in which case the equations of motion beerder perturbation theory yields

B. Solution for the fully coupled three state system

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996

Downloaded-15-Sep-2002-t0-132.64.1.37.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



Tang, Kosloff, and Rice: Evolution of a molecular system 5467

To study the influence of detuning of the radiation field
on the temporal evolution of the excited state population, we
1 \/_\_/ apply a pulse withr;=1 and;=1 and three different detun-
ol ing frequenciesiAw,;=1, 2, and 3. The time evolution of the
' excited state population is displayed in FighR As ex-
os | | pected, the population decreases rapidly as the detuning in-
creases and its asymptotic value drops to near zero for large
o4} 1 detuning. Furthermore, the course of the time evolution of
the excited state population is different for different detun-
ings. WhenAw is small the excited state population rises
smoothly to its asymptotic value. However, whien is large
the excited state population does not rise monotonically. For
smallt the population growth follows the radiation field in
almost the same manner as wh&mw is small but at later
time the system starts to diminish the overshooting portion of
population. In the extreme case whaAw is very large the
population of the excited state after interaction of the system
with the radiation pulse is essentially zero, but it is not zero
during the interaction with the pulse. In this case the excited
state plays the role of a virtual state.

The influence of pulse width on the excited state popu-
lation can be studied by applying to the three state system
radiation pulses which have same amplitude but different
widths. The temporal evolutions of the state populations are
displayed in Fig. &). Clearly, our narrowest pulse generates

(b) time an increase in the excited state population to its asymptotic
value without overshoot, but the wider pulses generate, at
FIG. 1. The probability profiles for three state system coupled with mono-some intermediate time, an overshoot in the excited state

chromatic flelds,_ on ground state surfdee), first excited state surfade--) population as a function of time. This result arises as follows.
and second excited state surfdee). All M, are made equal to a constant

M and M/Aw=1/4. (b) The probability profile on the first excited state Let t—o and supp_qse tPS pUIse is not present priow:t@.
surface as detuning frequency increases flam;=1 (—) t0 Awy;=2 (---). Under these condition€3™’(t) becomes

cih(n - 122 lf ;{ S ) eitvar dr,
| E -
Cil(t) = 22 1f p( —2—( ™) +|Aw217-)d (7.4)
This integral is, apart from the factoryg,1E;)/(2%), the Fou-

probability

02 |

(a) time

probability

unEq T oiAwd rier transform of the pulse shape function
- ﬁ —” 01 exp — +|A(1)21’T]_
2 2 F{ (T_ 7'1)2
) i exp ————|,
f( 0'1Aw21—2lrl) g1
X| erfif ————
204 which illustrates that what matters in producing lasting exci-

tation is the magnitude of the Fourier component of the pulse
, (7.2 shape function at the detuning frequenky,,. Because the
spectral content of a pulse is inversely proportional to its

where erfi@), the Comp|ex error integraL is defined as temporal width, short duration pulses generate greater as-
ymptotic excitation than do long pulses.

( oiAwy—2i(t— 1)
—erfi
20'1

iz

erfi(z)=— — e dx. (7.3
\/— B. Double pulse dynamics
We note that erfif)=—ierf(iz) with erf(@ Tannor and Ric&proposed the use of two pulses, with a
= 2/\/—f§,e‘X dx, the standard error integral. Variants of variable separation, to enhance the formation of a selected
(7.2) have been published by several investigators. product in a branching chemical reaction. Schezeal®

A typical temporal evolution of the population of the have developed “wave packet interferometry” to control, in
first excited state is displayed in Fig(@®, where the central addition to the time delay, the relative phase shift between a
peak time, the width of the pulse and the detuning frequencpair of femtosecond pulses, thereby fully exploiting the co-
are all set to be 1. Note that the population of the excitecherence properties of laser light. In this subsection we will
state saturates in about two time units, i.e., in a time which istudy two examples of the response of a molecule to two
about twice the pulse width. radiation pulses.
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2 T T T T (1) _ iMZlEl ft
C5(b) Y . ex

[( (7— 7'1)2>
-7
0

[( (7— 7'2)2)
+exp ————
g3

Consider two pulses, one centeredrgt1 and the other at
=2 or 7,=3. The excited state population for this case is
displayed in Fig. &), which shows that the population trans-
fer is larger forA7=1 than forA7=2. In fact, the asymptotic
population of the excited state is a periodic function of the
delay between the pulses, as shown in Figh).3For the

0 L 1 L ! parameters we have used, the excited state population has
maxima atA7=0.25 and 6.5 and a minimum atr=3.25.
Figure 3b) also can be interpreted as an interference pattern
with variable pumping and dumping as the delay time be-
tween the pulses is changed.

g'hear dr, (7.5

probability
T

(a) time

2. Nonzero relative phase shift between two pulses

Suppose there is a relative phase skifbetween two
Gaussian pulses that interact with a molecule. Then

i to1Eq jt (1—71)°
Dity= = —
C57(1) 7 . ex;{ —2—01

—7)2
+ex;(——(7 22) —i¢)
g

2

probability

g'hea dr, (7.6

time

© For simplicity, we assume that,=o,=1. First consider the
3 . i . . situation whem w,;=0. In this case it can be shown that the

excited state population is proportional to efasi.e., that
there is constructive interference @at2n+ and destructive
£ interference atp=(2n+1)7. The excited state population is
2| i | displayed in Fig. &) for various¢. Note that whenp= the

i Yoo T excited state acts like a virtual state.

When the detuning frequency is not zero the interference
condition becomes more complicated, and the population
maxima and minima no longer occur at exacfly:2n# and
¢=(2n+1)m, respectively. The excited state population
whenAw,;=1 is shown in Fig. &). For this particular de-
tuning the excited state population can be shown to be pro-
portional to co¥1— )/(2), hence has a maximum &i=1,
accidentally equal tdw at this detuning frequency. We note
that wheng= 1 the population increases following the onset
FIG. 2 (@ The population prqfile on the first excited state surface inducedof each of the pulses.

g 1s |CIO(0) 1 dided by a constant fackdpim /21 whih s smi. 1N general, when the detunings are nonzero in magni-

larly applied in all the following graphgb) The excited population profiles tUde, no simple relationships betweamw and ¢ are found.

by a single pulse with various detuning frequendes,;=1 (—), Aw,,=2

(---) andAw,;=3 (---). (c) The excited population profiles by a single pulse

(7,=3 andAw,;=1) with different widthsoy,=1 (—), 0,=2 (---) and o;,=3

(-=-). VIIl. REDUCTION OF A THREE STATE SYSTEM TO AN
EFFECTIVE TWO STATE SYSTEM

probability

(c) time

In this section we use the reduction of a three state sys-
tem to a surrogate two state system as an example to illus-
If the two pulses that interact with the molecule have notrate the formalism outlined in Sec V.
relative phase shift, the probability amplitude on the first  The equations of motion for the proability amplitudes in
excited state surface is a three state system for the case of zero detuning are

1. Zero relative phase shift between two pulses
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FIG. 3. (a) The population profiles on first excited state surface by double Gaussian pulses with deldy-tihé—) andAr=2 (---) between them. Two
pulses have same width @t=1 and detuning frequency is Atv,;=1. (b) The population interference pattern when varying delay time between double pulses.
The parameters for the pulses are the same &.ific) The excited population profiles by double pulses at zero detuning with relative phas¢=sBift—),
¢=ml2 (---) and = (---). (d) The excited population profiles by double pulses at nonzero detdning=1 with relative phase shitp=0 (—), p=m/2 (---),

¢=7 (), =1 (), andp=m+1 (---).

iCl(t)z M 1,Co(t) +M15Ca(t)], FoIIowmg the_: formalism outlined in Sec. ¥ is chosen
] to be the projection operator onto the subspace composed of
iCy(t)=3[M1,.Cq(t)+MpCs(t)], (8.1)  state 1 and state 2, aqalthe projection operator onto state 3.

- 1 The first term inM [see Eq5.18] is
iC3(t) =3[ M13Cy(t) +M23Cyo(1) ],

which we cast into matrix form PMP= E (MO M012>’
k#n 2 \ My,
Cn(t)+ik:2123 MnCi()=0 (8.2 which is a submatrix describing the system dynamics in the
_ o absence of state 3. The second termPisIQ [ Q(wl
with — M)Q] *QMP, which describes the correction to the sub-
0 My, My system dynamics arising from the coupling to state 3. We
M=1 M, O Mol note that in this casEMQ=%(m?,QM P=3(M13M ), and
Mz Moy O [Q(wl —M)Q]™* =1/w. The frequency domain variable

. . can be replaced by a typical eigenfrequency of Fheub-
Suppose, for the model system under consideration, that o
state 3 is weakly coupled with states 1 and 2. Then we expe%tp ace, which isMy, here. Therefore, for surrogate two state

. ‘System we have
that population transfer between state 1 and state 2 wi Y W v

dominate the dynamics, with only a small contribution from M2 M M

) . 13 13Vi23
population transfer to and from state 3. Under such circum- 1 Mo 12t Y
stances, the three state system can be reduced to a two state M = = '\;2 M M2 12
system with a correction to the dynamics from the influence M g+ 172l =
of the third state. M1, M1,
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To see how good this approximation is, we supply a ;

simple numerical demonstration. Suppose the coupling of

state 3 with states 1 and 2 is one-tenth of the coupling be- 08 |

tween state 1 and state 2, i.eMi3=M,3=(M,/10)

=—(1/10. Then the exact system dynamics is governed by o4l

the coupled equations of motion for the three states, i.e., E
C,(t)=0.5[C,(t)+0.1C4(1)], Ty
C,(t)=0.5[C(t)+0.1C4(1)], (8.3 oz}
Ca(t)=0.5[0.1C;(t) +0.1C,(t)], ,

and the approximate system dynamics is governed by the (a)
two coupled equations of motion for the two surrogate states,
ie., !

Cl(t)=i[0.00531(t)+0.50532(t)] os |
(8.9

C,(t)=i[0.505,(t)+0.00%,(1)].

The values of C,(t)|? and|C,(t)|? obtained from Egs.
(8.3) and (8.4) are compared in Figs.(d and 4b). The
amplitudes and periods of the temporal evolution predicted
by the two approaches to the system dynamics are seen to o2 f
agree quite well. The differences seen in the amplitudes are a
consequence of the replacement of the exact eigenfrequen- o
cies of the Rabi frequency matrix with a typical eigenfre- (b)
guency from theP subspace.

06

probability

04

N
3 6

time

FIG. 4. (a) The probability|C,(t)|? on ground state surface from solving
exact three state dynami¢s-) and effective two state dynami¢s-). The
IX. DISCUSSION initial condition is C,(0)=1 and C,(0)=C4(0)=0. (b) The probability

. C,(t)|? on first excited state surface with the same notations 4a)in
We have dispersed our comments about the forma'l (V)] %)

analysis throughout the text so there remain only a few re-

marks to be added. It is important to re-emphasize that all ofhermodynamic analysis leads to the identification of pro-
the control processes we have studied are based on quant@sses which transfer energy without transfer of mass and
mechanical interference phenomena. Interference is a globglce versa. An interesting consequence of the analysis is the
phenomenon which, in the context of a time dependent deprediction that it should be possible to build a pulsed laser
scription, implies that events in the past interfere with eventsyith an active medium which does not require population
in the present. However, it is easier to understand the chajnyersion. The next step in the development of this analysis
acter of a control mechanism using a local time descriptionjs the formulation of a quantum theory of the control of the
since one can then optimize the transfer of the desired quargiynamics of an arbitrary system which includes a consistent
tity. The links between the local and global pictures are thehermodynamic description of the system; this formalism

phases of the molecular expectation values, the most impogould provide a thermodynamic guide to the control of mo-
tant of which is the nonvanishing instantaneous transitionecular dynamics.

dipole moment{(u®S,), which itself shows that a crutial
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phase relation between amplitude on the ground and excited

state potential energy surfaces. Any degradation of that phase It is pleasure to thank our collaborators Allon Bartana,
coherence reduces the efficiency of the control procedurdavid Tannor, and Sandy Ruhman for active participation in
The most important dephasing mechanism will be deterihe work we have described. This research was Supported by
mined by the backward propagation of the target functiorgrants from the U.S.—Israel Binational Science Foundation
B(t) [Egs. (3.7—(3.89]. We note that, in general, achieve- and the U.S. National Science Foundation. The Fritz Haber

ment of control requires the use of two components of thékesearch Center is supported by the Minerva Gesellschaft
dipole operator. fur die Forschung, GmbH Mhchen, FRG.

The description of the interaction of light with a system
with two electronic surfaces which we have developed is in's. A. Rice, Scienc@58,412 (1992.
many senses analogous to the thermodynamic description G- Sggpi{g?azrl\gsg Brumer, J. Chem. Phg4, 4103(1986; Acc. Chem.

H H €S.272, .

two systems W.hIS:h can t.ranSfer mass and erjergy via ext.erna.l'; Brumer and M. Shapiro, Annu. Rev. Phys. Chd®).257 (1992.
work. Indeed, it is possible to develop versions of the first, «5 m.park, s.-P. Lu, and J. Gordon, J. Cheém. PB¢s8622(1991; S.-P.
second, and third law of thermodynamics for this casEhe Lu, S. M. Park, Y. Xie, and R. J. Gordoihid. 96, 6613(1992.

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996

Downloaded-15-Sep-2002-t0-132.64.1.37.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



Tang, Kosloff, and Rice: Evolution of a molecular system 5471

5L. Zhu, V. Kleiman, X. Li, S.-P. Lu, K. Trentelman, and R. J. Gorden, °E. B. Davis, Quantum Theory of Open Systerfcademic, London,

Science270, 77 (1995. 1976.
8D. Tannor and S. A. Rice, J. Chem. Phg8, 5013(1985; D. Tannor, R.  ?'R. Kosloff, J. Chem. Phys30, 1625(1984.
Kosloff, and S. A. Ricejbid. 85, 5805(1986. 22E. Geva and R. Kosloff, J. Chem. Phgs 3054 (1992); 97, 4398(1992);

’T. Baumet, R. Thalweiser, V. Weiss, and G. Gerber,Fiemtosecond Phys. Rev. &9, 3903(1994.
Chemistry edited by J. Manz and Ludger &t (Verlag Chemie, Berlin,  2*For a survey of the fields present state deiaite Time Thermodynamics

19949. and Thermoeconomig8dvances in Thermodynamics, Vol. 4, edited by S.
8N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero- Sieniutycz and P. SalamafTaylor and Francis, City, 1991and refer-
Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, J. Chem. PB§s. ences therein.

1487 (1997). 24T, Seiderman and M. Shapiro, J. Chem. P88.5525(1988.
9S. Shi, A. Woody, and H. Rabitz, J. Chem. Phg8, 6870(1988; S. Shi 25Y. Yan, R. E. Gillian, R. W. Whitnell, K. Wilson, and S. Mukamel, J. Phys.
and H. Rabitz, Comput. Phys. Commu@8, 71 (1992). Chem.97, 2320(1993.

10A. P. Peirce, M. A. Dahleth, and H. Rabitz, Phys. ReB7A4950(1988; 2A. Herpin and N. J. Cabannes, C. R. Acad. S5, 182 (1947; H. A.
42, 1065(1990; P. Gross, D. Neuhauser, and H. Rabitz, J. Chem. Phys. Macleod, Thin Film Optical Filters(Hilger, London, 1968

96, 2834(1992. 2’M. Sargent Ill, M. O. Scully, and W. E. Lamb, JrLaser Physics
1R, Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, and D. J. Tannor, Chem. (Addison-Wesley, Reading, 1974
Phys.139 201(1989. 2R. D. Taylor and P. Brumer, Faraday Discugs, 117 (1983.
128, Amstrup, R. J. Carlson, A. Matro, and S. A. Rice, J. Phys. Cta8n.  2°B. W. Shore,The Theory of Coherent Atomic Excitatidol. 2 (Wiley,
8019(1991). New York, 1990.
18R, Kosloff, A. Hammerich, and D. Tannor, Phys. Rev. L&, 2172  *°R. Kosloff and S. A. Rice, J. Chem. Phy&2, 4591(1980.
(1992. 31For the work on three level system coupled with radiation, see, for ex-
14K. Nelson, inMode Selective Chemistrgdited by J. Jortner, Jerusalem ample, C. E. Carrol and F. T. Hioe, Phys. Rev38, 724 (1987, and
Symposium on Quantum Chemistry and Biochemistdy 527 (Kluwer references therein as well as F. T. Hioe and J. H. Eberly, Phys. Rev. Lett.
Academic, 1991 47, 838 (1981); M. Sargent Ill and P. Horwitz, Phys. Rev. 13, 1962
15A. Bartana, R. Kosloff, and D. Tannor, J. Chem. P88, 196 (1993. (1976; P. M. Radmore and P. L. Knight, J. Phys.1B, 561 (1982.
163. von NeumannMathematical Foundations of Quantum Mechanics *2For molecular control in three state system, see R. Kosloff and A. D.
(Princeton University, Princeton, 1965 Hammerich, Faraday Discusl, 239(1991); E. D. Potter, J. L. Herek, S.
17G. Lindblad, Commun. Math. Phy48 119 (1976. Pedersen, Q. Liu, and A. H. Zewail, Natufleondon 355, 66 (1992; D.
18\ Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. Gruner, P. Brumer, and M. Shapiro, J. Phys. Chég).281 (1992; P.
821(1976. Gross, D. Neuhauser and H. Rabitz, J. Chem. P&§s2834(1992.
19R. Alicki and K. Landi,Quantum Dynamical Semigroups and Applications *3M. Shapiro, inMode Selective Chemistredited by J. Jortner, R. D. Le-
(Springer, Berlin, 198) vine, and B. PullmartKluwer Academic, The Netherlands, 1991

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996

Downloaded-15-Sep-2002-t0-132.64.1.37.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



