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Optimal control theory for unitary transformations
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The dynamics of a quantum system driven by an external field is well described by a unitary transformation
generated by a time-dependent Hamiltonian. The inverse problem of finding the field that generates a specific
unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in
a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal
control theory is used to solve the inversion problem irrespective of the initial input state. A unified formalism
based on the Krotov method is developed leading to a different scheme. The schemes are compared for the
inversion of a two-qubit Fourier transform using as registers the vibrational levels of theX 1Sg

1 electronic state
of Na2. Raman-like transitions through theA 1Su

1 electronic state induce the transitions. Light fields are found
that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by
pulse-shaping techniques of a femtosecond pulse. Of the schemes studied, the square modulus scheme con-
verges fastest. A study of the implementation of theQ qubit Fourier transform in the Na2 molecule was carried
out for up to five qubits. The classical computation effort required to obtain the algorithm with a given fidelity
is estimated to scale exponentially with the number of levels. The observed moderate scaling of the pulse
intensity with the number of qubits in the transformation is rationalized.

DOI: 10.1103/PhysRevA.68.062308 PACS number~s!: 03.67.Lx, 82.53.Kp, 33.90.1h, 32.80.Qk
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I. INTRODUCTION

Coherent control was initiated to steer a quantum sys
to a final objective via an external field@1,2#. If the initial
and final objective states are pure, the method can be ter
state-to-state coherent control. By generalizing, the prob
of steering simultaneously asetof initial pure states to a se
of final states can be formulated. Such a possibility has di
applicability in quantum computing where an algorith
implemented as a unitary transformation operating on a
of states has to be carried out irrespective of the input. In
application both input and output are encoded as a supe
sition of these states@3#.

To implement such a control, the external driving fie
that induces a prespecified unitary transformation has to
found. Different methods have been suggested for this t
Some rely on factorizing the algorithm encoded as a unit
transformation, to a set of elementary gates and then find
a control solution for the elementary unitary evolution of
single gate@3,4#. The inherent difficulty in such an approac
is that in general the field addresses many levels simu
neously. Therefore, when a particular single-gate operatio
carried out other levels are affected. This means that the i
single-gate unitary transformation has to be implemented
that all other possible transitions are avoided. The problem
simpler when each allowed transition is selectively addre
able@5#. However, in general the problem of undesired co
pling has to be corrected. A specific solution has been s
gested@6# but a general solution is not known.

The presence of a large number of levels coupled to
external driving field is especially relevant in the impleme
tation of quantum computing in molecular systems@7–9#.
The use of optimal control theory~OCT! has been propose
as a possible solution@9,10#. In recent years OCT for quan
1050-2947/2003/68~6!/062308~13!/$20.00 68 0623
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tum systems@1# has received considerable attention, lead
to effective methods for obtaining the driving field whic
will induce a desired transition between preselected ini
and final states. To address the control problem of inducin
particular unitary transformation the state-to-state OCT
to be augmented. For example, if the unitary transformat
is to relate the initial statesuw ik& with the final statesuw f k&,
the state-to-state OCT derives an optimal fieldek for each
pair of initial and final states (w ik ,w f k). But the fieldsek

obtained are in general different so that the evolution
duced byek is not appropriate for a different setk8 of initial
and final states. In order to implement a given unitary tra
formation a single fielde that relates simultaneously to a
the relevant pairs (w ik ,w f k) is needed.

Two approaches have been suggested to generalize
for unitary transformations. The first approach is formulat
directly on the evolution operator@11#. An alternative ap-
proach uses the simultaneous optimization of several st
to-state transitions@10,12#. The present paper develops
comprehensive framework for constructing an OCT solut
for the unitary transformation. The study explores vario
approaches. A common framework for an iterative solut
based on the Krotov approach@13# is developed. As a result
the numerical implementation of the methods are alm
identical, enabling an unbiased assessment. The impleme
tion of the Fourier-transform algorithm in a molecular env
ronment is chosen as a case study. The performance o
various OCT schemes is compared in a realistic setup
crucial demand in quantum computing is obtaining high
delity of the solution. The present OCT scheme can
viewed as an iterative classical algorithm which finds a fi
that implements the quantum algorithm. The obvious qu
tions are the following.
©2003 The American Physical Society08-1
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~1! What are the computational resources required to
tain a high fidelity result?

~2! How do these computational resources scale with
number of qubits in the quantum algorithm?

~3! How do the actual physical resources, i.e., the in
grated power of the field scale with the number of qubits
the quantum algorithm?

The paper is organized as follows. In Sec. II the probl
is formulated, introducing different objectives devoted to t
optimization of a given unitary transformation. In Sec. III th
application of the Krotov method of optimization of th
given objectives is described. Expressions obtained for
optimal field are formulated as well as the implementation
the method. The variational method to derive the optimi
tion equations is commented on in Appendix. The results
used to study the implementation of a unitary transformat
in a molecular model in Sec. IV. Finally, in Sec. V the resu
are discussed.

II. IMPLEMENTATION OF A UNITARY
TRANSFORMATION

A. Description of the problem

The objective of the study is to devise a method to fi
the driving field that executes a unitary transformation o
subsystem embedded in a larger Hilbert space. The un
transformation is to be applied in a Hilbert spaceM of di-
mension M, expanded by an orthonormal basis of sta
$um&% (m51, . . . ,M ). The selected unitary transformatio
is imposed on the subspaceN of N levels of the system (N
<M ). In the context of quantum computation, theN levels
correspond to the physical implementation of the qubi~s!
embedded in a larger system. The additional levels (m5N
11, . . . ,M ), considered as ‘‘spurious levels,’’ are only ind
rectly involved in the target unitary transformation.

In any realistic implementation of quantum computin
spurious levels always exist. One reason is that the syste
never completely isolated from the environment. In additi
the control lever, which in the present case is the dip
operator, connects directly only part of the primary leve
An example is the implementation of quantum computat
using rovibronic molecular levels. The transition dipole co
nects two electronic surfaces@11#. The primary states resid
on one surface, so that Raman-like transitions are use
implement the unitary transformation. The advantage of
setup is that the transition frequencies between the electr
surfaces are in the visible region, for which the pulse shap
technology is well developed@14#. Other levels residing on
both of the electronic surfaces become spurious in the s
that any leakage to them destroys the desired final re
However at intermediate times these levels constitute a t
porary storage space which facilitates the execution of
transformation.

The objective is to implement a selected unitary transf
mation in the relevant subspaceN at a given final timeT.
The target unitary transformation is represented by an op
tor in the Hilbert space of the primary system and is deno
by Ô. ForN,M , the matrix representation ofÔ in the basis
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$um&% has two blocks of dimensionN3N and (M2N)
3(M2N). The operatorÔ is block diagonal, therefore the
elements connecting the diagonal blocks are zero. This st
ture means that population is not transferred between the
subspaces at the target timeT, but can take place at interme
diate times. Only theN3N block is relevant for the optimi-
zation procedure, while the other remains arbitrary.

The dynamics of the system is generated by the Ham
tonianĤ,

Ĥ~e!5Ĥ02m̂ e~ t !, ~1!

whereĤ0 is the free Hamiltonian,e(t) is the driving field,
andm̂ is a system operator describing the coupling betwe
system and field. In the molecular systems, this coupl
corresponds to the transition dipole operator and the driv
field becomes radiation. In some cases more than one i
pendent driving field can be considered. An example is wh
two components of the polarization of an electromagne
field are separately controlled@15#. The generalization of the
formalism in such a case is straightforward.

The system dynamics is fully specified by the evoluti
operatorÛ(t,0;e). An optimal field eopt induces the targe
unitary transformationÔ at timeT when

Û~T,0;eopt!5e2 if(T) Ô. ~2!

Equation~2! implies a condition on only theN3N block of
the matrix representation ofÛ. The phasef(T) is introduced
to point out that the target unitary transformationÔ can be
implemented only up to an arbitrary global phase. The ph
f can be decomposed into two terms,f1(T)1f2(T). The
first, f1, originates from the arbitrary choice of the origin o
the energy levels. Formally, a term proportional to the ide
tity operator can always be added to the Hamiltonian. Wh
the statesum& correspond to the eigenstates ofĤ0, the phase
f1 is

f1~T!5

(
m51

M

Em T

M \
, ~3!

whereEm is the energy of the levelm. The phasef2 reflects
the arbitrariness of the unitary transformation for the lev
m5N11, . . . ,M which are not part of the target.

The method to determine the optimal field is based
maximizing a real functional of the field that depends
both the target unitary transformation and the evolution g
erated by the Hamiltonian, fulfilling Eq.~2!. The problem of
unitary transformation optimization is then reduced to
functional optimization. However a variety of formulation
of the problem can be stated, leading to different function
and then, in principle, to different results. In the present c
text two formulations have been proposed, one based on
evolution operator@11# and the other on simultaneousN
8-2
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OPTIMAL CONTROL THEORY FOR UNITARY . . . PHYSICAL REVIEW A68, 062308 ~2003!
state-to-state transitions@12#. These formulations are closel
related. A similar optimization procedure is described in S
III.

B. Evolution operator formulation

The optimization formulation is based on the definition
a complex functionalt that depends on the evolution oper
tor at timeT @11#. The following functional is introduced:

t~Ô;T;e!5Tr$Ô†Û~T,0;e!P̂N%5 (
n51

N

^nuÔ†Û~T,0;e!un&,

~4!

where the projectionP̂N5(n51
N un&^nu is used.$un&% denotes

an orthonormal basis of the subspaceN. As Ô is a unitary
transformation in the relevant subspace, the functionalt is a
complex number restricted to the interior of a circle in t
complex plane of radiusN centered at the origin. The modu
lus of t is equal toN only for an optimal field fulfilling Eq.
~2!. t can then be interpreted as an indicator of the fidelity
the implementation on the target unitary transformation@11#.
When t approachesN, the transformation imposed by th
field converges to the target objective.

Sincet is complex, several different real functionals c
be associated with it. In Ref.@11# the optimization of the rea
part of t, or the imaginary part, or a linear combination
both was suggested to find the optimal field. It was fou
that all these possibilities show a similar performance.
this reason, the present paper employs the optimizatio
the real part chosen as a representative case. The funct
is therefore defined as

Fre52Re@t~Ô;T;e!#52ReF (
n51

N

^nuÔ†Û~T,0;e!un&G .

~5!

The functional reaches its minimum value,Fre52N, when
the driving field induces the target unitary transformation
with the additional condition that the phase term e
@2if(T)# is equal to one.

Other functionals based ont but without any condition on
the phase can be defined. In this work the squared mod
of t with a negative sign is studied:

Fsm52ut~Ô;T;e!u2

52 (
n51

N

(
n851

N

^nuÔ†Û~T,0;e!un& ^n8uÛ~T,0;e!†Ôun8&,

~6!

with minimum valueFsm52N2 for any field satisfying Eq.
~2!.

C. Formulation of the simultaneousN state-to-state transitions

This formulation is based on the simultaneous optimi
tion of N transitions between a set of initial statesu l & and the
06230
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corresponding final statesÔu l & ( l 51, . . . ,N) @12#. For this
purpose the following functional is defined:

h~Ô;T;e!5TrH (
l 51

N

Ô†Û~T,0;e!u l & ^ ł uÛ~T,0;e!†Ôu l & ^ l uJ
5(

l 51

N

^ l uÔ†Û~T,0;e!u l &u2. ~7!

Note that whilet is defined as the sum of amplitudes,h is
defined as the sum of overlaps at the final timeT. The pa-
rameterh is a positive real number and its maximum valueN
is reached when all the initial statesu l & are driven by the field
to the final target statesÔu l &, except for a possible arbitrar
phase associated with each transition. The arbitrarines
these phases implies that the set of initial statesu l & must be
chosen carefully. In order to account for all the possible tr
sitions, the statesu l & have to faithfully represent all the rel
evant subspaceN, i.e., constitute a complete basis set. Ho
ever, a choice of an orthonormal basis could produ
undesired results. For example, the ambiguity of using
orthonormal basis$un&% in the relevant subspace and an a
bitrary unitary transformationD̂, diagonal in that basis. The
productÔ D̂ will also be a unitary transformation. IfeO and
eOD are fields that generateÔ and Ô D̂ at time T, respec-
tively, they both will have the same fidelityh,

h'~Ô;T;eO!5h'~Ô;T;eOD!, ~8!

where' denotes thath was evaluated using an orthonorm
basis. Then any algorithm based on optimizingh that uses an
orthonormal basis could find a solution for the field corr
sponding to the implementation of an arbitrary unitary tra
formations of the formÔ D̂. (Ô is a particular case whenD̂
is the identity operator!. The reason for this discrepancy
that h is only sensitive to the overlap of each pair of initi
u l & and final Ôu l & states, leaving undetermined the relati
phases between them. For the optimization procedure to
ceed a careful choice of the initial set of states is necess
A simple solution is to compose the lastN states as a super
position of all states in the basis( l 51

N un&/AN, and to keep as
is the firstN21 states of an orthonormal basis. For this s
of states, the maximum condition is achieved only when
field induces the target unitary transformation up to a p
sible global phase.

To summarize the functional2h is used,

Fss52h~Ô;T;e!, ~9!

with a minimum valueFss52N. The optimal field satisfies
Eq. ~2!, subject to a choice of the set of statesu l & which
determines the relative phases.

D. Initial- to final-state optimization

The present formulations of quantum control assume
the target unitary transformationÔ is explicitly known, at
8-3
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least in the subspaceN. In most previous applications o
optimal control theory, the objective was specified as
maximization of the expectation value of a given observa
at timeT subject to a predefined initial state@1#. Both mixed
and pure initial states were considered@16,17#. A particular
case is the determination of an optimal field to drive t
system from a given pure initial stateuw i& to a target pure
final stateuw f& at time T. This state-to-state objective opt
mization can be derived from the present formulation if t
target unitary transformation becomesÔuw i&5uw f&. The
evolution operator formulation is then obtained by setting
projectorP̂N5uw i&^w i u in Eq. ~4!, obtaining the functionalt,

t~w i ,w f ;T;e!5^w f uÛ~T,0;e!uw i&. ~10!

The real functionalsFre52Re@t# andFsm52utu2 are to be
used in the study. As only a state-to-state transition is
volved, the formulation is obtained by choosingu l &[uw i&. In
this caseh5utu2 andFss5Fsm. Note that this result is valid
only when there is a single term in the sum in Eqs.~4! and in
~7!.

III. OPTIMIZATION

A common optimization procedure for all the functiona
F as defined in the preceding section is developed. The
tation un& for the states andn, its index, will be used in the
evolution operator formulation. The notationu l & andl will be
used in the simultaneousN state-to-state transitions formula
tion. The notationuw ik& and k, wherek51, . . . ,N, will be
used when the results are valid for both cases. An evalua
of any of the functionals requires the knowledge of the sta
uwk(T)&5Û(T,0;e)uw ik& and uw f k&5Ôuw ik&. The operation
of the evolution equationÛ(t,0;e)uw ik& can be calculated by
solving the time-dependent Schro¨dinger equation

d

dt
uwk~ t !&52

i

\
Ĥ~e!uwk~ t !&, ~11!

with an initial conditionuwk(0)&5uw ik&. SinceĤ5Ĥ(e) the
state evolution will depend on the particular field. An alte
native to Eq.~11! is the evolution equation for the unitar
transformation itself@11#.

The method of optimization depends on the availability
the states of the systemuwk(t)& at intermediate times 0,t
,T.

Experimental realizations of OCT are typical examp
where only initial and final knowledge of the states exist. F
such cases feedback control and evolutionary methods
effective@1#. Such methods however require a large num
of iterations to achieve convergence. A simulation of suc
process requires repeated propagation of theN states by the
Schrödinger equation. Thus they are computationally inte
sive.

Computationally more effective methods are based on
knowledge of the statesuwk(t)& at intermediate times. Addi
tional constrains on the evolution are included that allow
modification of the field at intermediate times consistent w
06230
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the improvement of the objective at the target timeT. Some
examples are the local-in-time optimization method@18,19#,
the conjugate gradient search method@20#, the Krotov
method@13#, and the variational approach@21,22#. A review
of these common methods can be found in Ref.@1#. In the
present study the Krotov method has been adopted. A b
description of the alternative variational method is given
Appendix.

A. Krotov method of optimization

The Krotov method is utilized to derive an iterative alg
rithm to minimize a given functional that depends on bo
final and intermediate times, cf. Ref.@23#.

For convenience, the equations are stated using real f
tions: akm(t)[Re@^muwk(t)&# and bkm(t)
[ Im@^muwk(t)&#. The notationak and bk is used to de-
scribe theM-dimensional vectors with componentsakm and
bkm . Using such a notation, the evolution equation~11! be-
comes

d

dt
ak~ t !5VR~ t,e!•ak~ t !2VI~ t,e!•bk~ t !,

d

dt
bk~ t !5VI~ t,e!•ak~ t !1VR~ t,e!•bk~ t !, ~12!

whereVR and VI are real matrices with the correspondin
components composed of the real and imaginary parts
Vi j 5^ i u(2 i Ĥ/\)u j & where u i & and u j & are states from the
basis set$um&%. The initial conditions are given by the vec
torsak(0) andbk(0) with components composed of the re
and imaginary part of the amplitudes^muw ik&. af k and bf k
denote the vectors corresponding to the amplitudes^muw f k&.

The formalism considersak , bk , and the fielde to be
independent variables. A necessary consistency betw
them will be required in the final step of the algorithm. Th
vectorsfa and fb constitute the right-hand side of Eq.~12!:

fa~ t,ak ,bk ,e![VR~ t,e!•ak~ t !2VI~ t,e!•bk~ t !,

fb~ t,ak ,bk ,e![VI~ t,e!•ak~ t !1VR~ t,e!•bk~ t !. ~13!

The vectorsfa (fb) are equal to the total time derivative o
a (b) only when the state is consistent with the field throu
the evolution equation~12!. The dependence ofa andb on t
will be made explicit only when necessary. An importa
property of the problems under study is thatfa and fb are
linear in the functions$a,b% and e. This choice simplifies
the optimization problem, the nonlinear case has been s
ied in Ref.@23#.

A ‘‘process’’ w5w@ t,$a,b%,e# is defined as the set$a,b%
of N vectors ak and N vectors bk related to the fielde
through the evolution equations with the initial conditio
ak(0) andbk(0). A functional of the process can be define
as

J@w#5F„$a~T!,b~T!%…1E
0

T

g~e! dt. ~14!
8-4
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For the present applicationsF can be any of the functional
Fre , Fsm, Fss as introduced in Sec. II. The optimal field
found by a minimization of the functionalJ. The integral
term represents additional constraints originating from
evolution equation of the system. For simplicity only th
case whereg is a function of the fielde is presented, but a
generalization to the more general case in whichg depends
on a(t) and b(t) is straightforward. The particular depen
dence ofg on the field will be discussed later.

The main idea in the Krotov method is to introduce a n
functional that mixes the separate dependences on inte
diate and final times in the original functional~14!. Using the
new functional it is possible to derive an iterative proced
that modifies the field at intermediate times in a way con
tent with the minimization ofF at timeT. The new functional
is defined as

L@w,F#5G„$a~T!,b~T!%…2F„0,$a~0!,b~0!%…

2E
0

T

R~ t,$a,b%,e! dt, ~15!

where

G„$a~T!,b~T!%…5F„$a~T!,b~T!%…1F„T,$a~T!,b~T!%…,
~16!

and

R~ t,$a,b%,e!52g~e!1
]F

]t
~ t,$a,b%!

1 (
k51

N
]F

]ak
~ t,$a,b%!•fa~ t,ak ,bk ,e!

1 (
k51

N
]F

]bk
~ t,$a,b%!•fb~ t,ak ,bk ,e!.

~17!

F(t,$a,b%) denotes an arbitrary continuously differentiab
function. The partial derivatives ofF, ]F/]ak and]F/]bk ,
form a vector withm components. In the following,t, a and
b are considered to be independent variables inF.

When $a,b% and the field are related by Eq.~12!, R can
be written asR52g1dF/dt. Introducing this result in Eq
~15!, it can be shown@23# that for any scalar functionF and
any processw, L@w,F#5J@w#. Then the minimization ofJ
is completely equivalent to the minimization ofL.

1. Iterative algorithm to minimizeL

The advantage of the definition of the function
L@w# is the complete freedom in the choice ofF. This
property is used to derive from an arbitra
process w(0)@ t,$a(0),b(0)%,e (0)# a new process
w(1)@ t,$a(1),b(1)%,e (1)# such thatL@w(1),F#<L@w(0),F#.
The procedure can be summarized as follows.

~i! F is constructed so that the functionalL@w(0)# is a
maximum with respect to any possible choice of the
$a,b%. This condition gives a complete freedom to chan
06230
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system evolution, Eq.~12!, and therefore, will not interfere
with the minimization ofL.

~ii ! A new fielde (1) is derived with the condition of maxi-
mizing R, decreasing then the value ofL with respect to the
processw(0). In this step the consistency between the n
field and the new states of the system$a(1),b(1)% must be
maintained.

The new fielde (1) becomes the starting point of a ne
iteration, and steps~i! and ~ii ! are repeated until the desire
convergence is achieved.

2. The linear problem: Construction ofF to first order

The difficult task in the Krotov method is the constructio
of F so thatL is maximum for$a(0),b(0)%. The maximum
condition onL is equivalent to imposing a maximum onG
and a minimum onR. However, in some cases the maximu
and minimum conditions can be relaxed to extreme con
tions for G andR, which simplifies the problem.

The extreme conditions forR with respect to$a(0),b(0)%
are given by

]R

]ak
@ t,$a(0),b(0)%,e (0)#50,

]R

]bk
~ t,$a(0),b(0)%,e (0)!50. ~18!

The following vectors are introduced:

gk~ t !5
]F

]ak
~ t,$a(0),b(0)%!,

dk~ t !5
]F

]bk
~ t,$a(0),b(0)%!. ~19!

gk and dk are only functions oft, as the partial derivatives
are evaluated in the specific set$a(0),b(0)%. Using Eq.~12!
the extreme conditions can be written as

d

dt
gk~ t !52VR

T~ t,e (0)!•gk~ t !2VI
T~ t,e (0)!•dk~ t !,

d

dt
dk~ t !5VI

T~ t,e (0)!•gk~ t !2VR
T~ t,e (0)!•dk~ t !, ~20!

whereVT denotes the transpose of the matrixV. The ex-
treme conditions forG are

]G

]ak~T!
@$a(0)~T!,b(0)~T!%#50,

]G

]bk~T!
@$a(0)~T!,b(0)~T!%#50. ~21!

Using Eqs.~16! and ~19!,
8-5
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gk~T!52
]F

]ak~T!
@$a~0!~T!,b(0)~T!%#,

dk~T!52
]F

]bk~T!
@$a(0)~T!,b(0)~T!%#. ~22!

The above conditions at timeT, together with Eq.~20!, de-
termine completely the set$g(t),d(t)%. As they are defined
as the partial derivatives ofF with respect toakm andbkm ,
F is expanded to first order~denoted asF* ),

F* ~ t,$a,b%!5 (
k51

N

@gk~ t !•ak~ t !1dk~ t !•bk~ t !#. ~23!

By employing F* , the functionsG* and R* can also be
constructed to first order using Eqs.~16! and ~17!, respec-
tively. This completes the first step in the iterative algorith

To accomplish the second stepR is maximized with re-
spect to the field. Again in some cases the maximum co
tion can be relaxed to the extreme condition]R/]e50. Us-
ing the expression forR* leads to

]g

]e
~e (1)!5 (

k51

N

gk~ t !•
]fa

]e
~ t,ak

(1) ,bk
(1) ,e (1)!

1 (
k51

N

dk~ t !•
]fb

]e
~ t,ak

(1) ,bk
(1) ,e (1)!. ~24!

Equation~24! is used to derive the new fielde (1) in each
iteration. This equation must be solved in a way consist
with Eq. ~12! describing the system dynamics.

Due to the use of extreme instead of maximum or mi
mum conditions, it must be checked that the new proc
w(1) improves the original objective in each iteratio
J@w(0)#2J@w(1)#>0:

J@w(0)#2J@w(1)#5L@w(0),F* #2L@w(1),F* #

5D11E
0

T

D2~ t ! dt, ~25!

where

D15G* ~$a(0)~T!,b(0)~T!%!2G* ~$a(1)~T!,b(1)~T!%!,
~26!

D2~ t !5R* ~ t,$a(1),b(1)%,e (1)!2R* ~ t,$a(1),b(1)%,e (0)!.
~27!

The above relation is obtained whenfa and fb are linear in
$a,b%,

R* ~ t,$a,b%,e (0)!52g~ t,e (0)!, ~28!

for any value of$a,b%.
A sufficient condition for J@w(0)#2J@w(1)#>0 is

D1 ,D2(t)>0. D1 depends on the choice ofF andD2(t) on
the choice ofg so that each case must be analyzed separa
These conditions imply that the Krotov iterative algorith
converges monotonically to the final objective.
06230
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3. Dependence on F

The dependence ofG* on F can be made explicit by
introducingF* and using Eqs.~23! and ~16!,

G* „$a~T!,b~T!%…5F„$a~T!,b~T!%…2 (
k51

N
]F

]ak~T!
•ak~T!

1
]F

]bk~T!
•bk~T!. ~29!

When F is linear in $a,b% G* [0 and thenD1[0. In this
case all the improvement towards the original objective
the iteration is due to the termD2(t). WhenF is nonlinear in
$a,b% the conditionD1<0 must be checked in each case

An additional difficulty is that the conditions~19! for g
andd depend on the particular choice ofF. In all the cases
under study (Fre , Fsm, andFss),

gk~T!5ck af k~T!,

dk~T!5dk bf k~T!, ~30!

where the coefficientsck and dk depend on the set

$a(0)(T),b(0)(T)% and $af ,bf%. Defining the vectorsg̃k

5ck
21 gk and d̃k5dk

21 dk , the conditions~22! for all the
cases under consideration are

g̃k~T!5af k~T!,

d̃k~T!5bf k~T!. ~31!

Their evolution is given by Eq.~20!. Changingg andd to g̃

and d̃ Eq. ~24! can be written as

]g

]e
~e (1)!5 (

k51

N

ck g̃k~ t !•
]fa

]e
~ t,ak

(1) ,bk
(1) ,e (1)!

1 (
k51

N

dk d̃k~ t !•
]fb

]e
~ t,ak

(1) ,bk
(1) ,e (1)!.

~32!

The different choices ofF imply different coefficients (ck
anddk) and a possible different set of initialuw ik& and final
uw f k& states. Nevertheless, the iterative procedure is iden
in all the cases.

4. Dependence on g„e…

A delicate point is the choice of the functiong(e) in
J@w#. The time integral in the functional should be bound
from below, otherwise the additional constraint will dom
nate over the original objectiveF in the functionalJ. In
addition D2(t)>0 is required in order to guarantee th
monotonic convergence of the optimization method.

A consequence of the linear dependence offa , fb , and
Eq. ~32! is that the functionR* for the new processw(1) has
the simple form
8-6
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R* ~ t,$a(1),b(1)%,e (1)!52g~e~1!!1~e (1)2e (0)!
]g

]e
~e (1)!.

~33!

Using this expression together with Eq.~28! leads to

D2~ t !52g~e (1)!1g~e (0)!1~e (1)2e (0)!
]g

]e
~e (1)!.

~34!

A choice ofg(e) fulfilling the requirementD2(t)>0 is

g~e!5l~ t !@e~ t !2 ẽ~ t !#2, ~35!

whereẽ is a reference field andl(t) is a positive function of
t. Using Eq.~34! and for any fieldẽ

D2~ t !5l~ t !@De~ t !#2>0, ~36!

where De(t)[e (1)(t)2e (0)(t). The method therefore wil
converge monotonically. Using Eqs.~32! and~35! the field in
the new iteration becomes

e (1)~ t !5 ẽ~ t !1
1

2l~ t ! (
k51

N H ck g̃k~ t !•
]fa

]e
~ t,ak

(1) ,bk
(1) ,e (1)!

1dk d̃k~ t !•
]fb

]e
~ t,ak

(1) ,bk
(1) ,e (1)!J . ~37!

The result of the iterative algorithm depends strongly on
choices of the reference fieldẽ and on the functionl(t).

Two possible choices ofẽ are analyzed. The first choice
ẽ50, is the one commonly used in OCT applications@1#. In
this case, the additional constraint inJ@w# has the physica
meaning that the total energy of the field in the time inter
@0,T# is limited. This however presents a problem when
iterative procedure reaches the optimal field. The itera
method is found to reduce the total objectiveJ by reducing
the total pulse energy, slowing and even spoiling the con
gence toward the original objectiveF. The usual remedy is to
stop the iterative algorithm before this difficulty is reache
However, such a procedure could prevent the optimiza
algorithm from obtaining high fidelity.

A different possibility isẽ5e (0) can avoid this problem
@10,16,23#. In this iterative algorithme (0) must be interpreted
as the field in the previous iteration. Now the additional co
straint inJ@w# has the physical interpretation that the chan
of the pulse energy in each iteration is limited. When t
iterative procedure approaches the optimal solution
change in the field vanishes. Therefore, the convergenc
the original objective is guaranteed. In the rest of the stu
ẽ5e (0) was chosen.

The functionl(t) introduces the shape functions(t), i.e.,
l(t)5l0 /s(t). The purpose ofs(t) is to turn the field on
and off smoothly at the boundaries of the interval@24#. l0 is
a scaling parameter which determines the optimization s
egy. Whenl0 is small the additional constraint on the field
the functional becomes insignificant, resulting in large mo
06230
e

l
e
e

r-

.
n

-
e
e
e
to
y

t-

i-

fications in the field in each iteration. This is equivalent to
bold search strategy where large excursions in the functio
space of the field take place with each iteration. Large val
of l0 imply small modifications in the field in each iteration
slowing the convergence process. Using large values ofl0 is
a conservative search strategy which is advantageous wh
good initial guess field can be found. A possible mixed str
egy is to initially use a bold optimization with small value
of l0. This leads to a guess field for a new optimization w
a large value ofl0 @25#.

B. Application to the functionals F re , F sm , and F ss

Based on the derivation of the Krotov method it is po
sible to connect directly the minimizationFre , Fsm, andFss
to the correction to the field. Equation~20! corresponds to
the evolution of a set of states$uxk(t)&%,

d

dt
uxk~ t !&52

i

\
Ĥ†~e (0)!uxk~ t !&, ~38!

with the conditions~31!, uxk(T)&5uw f k&. The formal solu-
tion of the equation is given by uxk(t)&
5Û(t,T;e (0))Ôuw ik&. Using Eq. ~37! the correction to the
field in each iteration becomes

De~ t !52
s~ t !

l0 \
ImF (

k51

N

ak~e (0)!

3^w ikuÔ†Û†~ t,T;e (0)!m̂Û~ t,0;e (1)!uw ik&G .

~39!

The coefficientsak will depend on the particular choice o
the functionalF and are related tock anddk defined in Eq.
~19!. ForFre andFsm, the states$uw ik&% denote an orthonor-
mal basis$un&% of the relevant subspaceN. For Fre the
coefficients arean,re51/2, and as this functional is linear o
the statesD1,re50. ForFsm the coefficients are

an,sm5 (
n851

N

^n8uÛ~0,T;e (0)!Ôun8&, ~40!

and then are equal for all the states in the basis ofN. In
addition,

D1,sm5U(
n51

N

^nu@Û~T,0;e (0)!2Û~T,0;e (1)!#Ô un &U2

.

~41!

Therefore,D1,sm>0. For theFss functional the set$uw ik&%
for which the states are denoted by$u l &% the coefficientsal
are

al ,ss5^ l uÛ~0,T;e (0)!Ôu l &, ~42!

depending on the indexl corresponding to each state. In th
case
8-7
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D1,ss5(
l 51

N

u^ l u@Û~T,0;e (0)!2Û~T,0;e (1)!#Ôu l &u2, ~43!

and thenD1,ss>0.
The resultsD1>0 andD2(t)>0 guarantee the monotoni

convergence of the iterative algorithm based on the Kro
method for the three functionals.

C. The optimal field

The optimal field has the property that the field correct
in the next iteration Eq.~39! should vanish. Defining

C~ t;e!5ImF (
k51

N

ak~e!^w ikuÔ†Û†~ t,T;e!m̂Û~ t,0;e!uw ik&G ,

~44!

when ē is an arbitrary solution of the iterative algorithm
C(t; ē)[0.

The first question to be addressed is whether any opti
field, defined by Eq.~2!, is a possible solution of the iterativ
algorithm. ēopt denotes a field that generates the target u
tary transformation up to a global phase,Û(T,0;ēopt)
5e2 i f̄ Ô, using the relation

Û~ t,0;e!5Û~ t,T;e! Û~T,0;e!. ~45!

In addition, the relationuCk(t)&5Û(t,T; ēopt)Ôuw ik& imply-
ing that the term̂Ck(t)um̂uCk(t)& is real, simplifies Eq.~44!
to

C~ t; ēopt!5 (
k51

N

^Ck~ t !um̂uCk~ t !&Im@ak~ ēopt!e
2 i f̄#.

~46!

Using Eq. ~40! for the functional Fsm leads to an,sm

5N exp(if̄) in Eq. ~44!. A similar result is found for the
functionalFss, al ,ss5exp(if̄), given by Eq.~42!. Therefore
any field generating the target unitary transformation is
possible solution of the iterative algorithm based on any
the functionalsFsm andFss. This result does not imply tha
when initializing the different iteration schemes with th
same guess field the same solution will be obtained.

The analysis is more complex for the functionalFre . The
coefficients are now realan,re51/2, and are independent o
the state index. This leads to Cre5Im@exp
(2if̄)#(n51

N ^Ck(t)u m̂ uCk(t)&. The sum is generally differen
from zero and the solutions to the algorithm are fields wit
phase term exp(2if̄)561. Only the case11 minimizes the
original functionalFre , but the relaxation to extreme cond
tions in the Krotov method allows one to obtain other phy
cally valid solutions. In the special case in which the unita
transformation is imposed on all the Hilbert spaceN
5M ), any optimal field is a possible solution regardless
the global phase. The reason is that the sum inCre is zero
sincem̂ is a traceless operator.
06230
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The phase sensitivity of the functionalFre can be demon-
strated in the state-to-state optimization. The iterative al
rithm in this case will converge to a field that drives th
system to the final state1uw f& or 2uw f&, while the optimi-
zation ofFsm or Fss will converge to the final state up to a
arbitrary global phase. There is noa priori advantage how-
ever to any of the three functionals in the convergence rat
in the simplicity of the solution. The solutions are physica
equivalent since they differ only in a global phase.

In addition to the desired optimal fields, the algorith
could also generate spurious solutions. An example is gi
by the functionalFsm employed to implement a unitar
transformationÔD with a matrix representation diagonal i
the basis of the free Hamiltonian eigenstatesuen&. In such a
caseC(t,e50) is proportional to the diagonal matrix ele
ments ^enum̂uen&. When these matrix elements are zero,e
50 is a solution of the iterative algorithm, but it does n
implement the desired unitary transformation. A simple re
edy to overcome this difficulty is to use a different initi
guess to start the algorithm.

D. Discrete implementation of the optimization algorithm

A numerical solution of the iterative optimization algo
rithm requires a discretization scheme for the time axes.
correction to the fieldDe is implicit and appears on both
sides of Eq.~39!. To implement the procedure, two inte
leaved grid points in time were used. The first grid was us
to propagate the states. The second grid was used to eva
the field. The grid describing the states hasNt11 points
separated byDt5T/Nt , from t50 to t5T. The grid repre-
senting the field hasNt points separated byDt and starting at
t5Dt/2. The initial set of statesuw ik& was used for the targe
unitary transformationÔ optimization with the functionals
Fre , Fsm, or Fss. The numerical implementation of the a
gorithm follows.

~i! Using an initial guess fielde (0), the statesw f k are
propagated in reverse fromt5T to t50 to determine
Û(t,T;e (0))Ôuw ik& on the time grid of states.

~ii ! The new field is determined in the interleaved gr
point t5Dt/2 using the approximation

De~Dt/2!'2
s~Dt/2!

l0 \
ImF (

k51

N

ak~e (0)!^w ikuÔ†Û†~0,T;e (0)!

3m̂Û~0,0;e (1)!uw ik&G . ~47!

Note thatÛ(0,0;e (1))uw ik&5uw ik&. Then the new field in the
first field time grid point is obtained,e (1)(Dt/2)5e (0)

1De(Dt/2), and used to propagateuw ik(t50)& to the next
state grid pointt5Dt. The same process is used to obtain t
new field e (1) in the next field time grid pointt5Dt
1Dt/2, evaluating the correction with the already know
states in the state grid pointt5Dt. The process is repeated t
obtaine (1) in all the field time grid points.

~iii ! The new fielde (1) is used as input to the new iteratio
8-8
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OPTIMAL CONTROL THEORY FOR UNITARY . . . PHYSICAL REVIEW A68, 062308 ~2003!
(e (0)5e (1)) and the process is repeated until the requi
convergence is achieved.

More elaborate methods to deal with the implicit tim
dependence of Eq.~39! have been developed. For examp
approximating the dynamics in between grid points by
free evolution withĤ0 @22#. The simple procedure, which i
able to keep the monotonic behavior of the optimizat
method, was found sufficient.

The present implementation is based on a forward t
propagation. Using the same formalism, the optimization
be accomplished also by a backward time propagation.
also possible to combine both cases, and to perform the
timization in the forward and backward propagatio
@22,26#. In the current studies, these other procedures w
found to be inferior, slowing down the convergence rate.

IV. THE FOURIER TRANSFORM EXAMPLE
IN A MOLECULAR MODEL

As an illustration the implementation ofQ-qubit Fourier
transform in a two-electronic-surfaces molecular model w
studied. Figure 1 shows a schematic view of a model ba
on the electronic manifolds of Na2.

The Hamiltonian of the system describes a ground
excited electronic potential-energy surface coupled by a t
sition dipole operator:

Ĥ5Ĥg^ uG&^Gu1Ĥe^ uE&^Eu2m̂^ ~ uG&^Eu

1uE&^Gu!e~ t !, ~48!

FIG. 1. Schematic representation of a molecular model base
the vibrational levels in theX 1Sg

1 ~lower! andA 1Su
1 ~upper! elec-

tronic surfaces of the molecule Na2. Atomic units are chosen\
51. R denotes the internuclear distance. The arrows indicate tw
the possible transitions induced by the driving field between a
trary levels in the lower and upper surfaces. On the right is a m
nified view of some of the energy levels involved and transitio
between them.
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where uG& and uE& are the ground and excited electron

states andĤg and Ĥe are the corresponding vibrationa
Hamiltonians. The electronic surfaces are coupled by

transition dipole operatorm̂, controlled by the shaped field
e(t).

The present model is a simplification of the Na2 Hilbert
space restricting the number of vibrational levels. On
groundX 1Sg

1 electronic state the first 40 vibrational leve
selected out from the 66 bound states are used. In the ex
A 1Su

1 state, the lowest 20 vibrational states are used ou
the 210 bound levels. The vibrational Hamiltonians beco
therefore

Ĥg5(
i 51

40

Egiugi&^gi u; Ĥe5(
j 51

20

Ee juej&^ej u. ~49!

For Na2 the 00 transition frequency between the ground
brational levels of each surface isV[Ee12Eg1
'0.066 01 a.u. (;1.8 eV). A transition dipole operator in
dependent of the internuclear distanceR was considered,m̂
5m0(uG&^Eu1uE&^Gu). This model is sufficient for the il-
lustrative purpose of demonstrating the execution of an a
rithm in a molecular setting.

The N52Q first levels of the ground electronic surfac
are chosen as the registers representing theQ qubits. The
unitary transformation implemented is a Fourier transfo
@27# invoked on theN levels on theX 1Sg

1 electronic state
representing the qubit~s!. The unitary transformation is
implemented through transitions between the two electro
manifolds, cf. Fig. 1.

An implementation of the iterative algorithm is chose
where theugi& ^ uG& anduej& ^ uE& eigenstates are used as t
basis$um&%. The N52Q first states in the lower surface ar
used as the basis$un&% of the relevant subspace. The fir
N21 energy levels plus the linear combination(n51

N un&/AN
are used as the setu l & for the state-to-state formulation. Th
wavefunction propagations were carried out by using a Ne
ton polynomial integrator@28#. The final time for the imple-
mentation isT54.53104 a.u. ('1 ps). In all the cases a
Gaussian shape functions(t)5exp$232(t/T21/2)2% and a
guess fieldeguess(t)5e0s(t)cos(Vt) were chosen.

The implementation of the Fourier transform in two q
bits (N54) embedded in the set of 60 levels is used
comparing the performance of the methods. Figure 2 sh
the change in the normalized functional, defined asJnorm
[J/N for Fre andFss, andJnorm[J/N2 for Fsm, with the
progression of the iterative algorithm. In all the cases
target value of the normalized functional is21. A large
reduction in the value of the functionals is accomplished i
small number of iterations. Note the behavior of the sim
taneous state-to-state formulationFss with an insufficient
choice of the statesu l &. The algorithm finds a minimum o
the objective, but, as shown in Fig. 4, the fidelity saturate
a very low value meaning that this field does not generate
target unitary transformation.
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i-
g-
s
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J. P. PALAO AND R. KOSLOFF PHYSICAL REVIEW A68, 062308 ~2003!
Figure 3 shows the value oft for the field obtained in
each iteration. The same initial guess was used in all
cases which constituted the starting point for all the iterat
optimizations. However, the final results depend on the p
ticular functional used. As discussed before the meth

FIG. 2. Normalized functionalJnorm vs the number of iteration
Fre ~squares!, Fsm ~circles!, Fss ~triangles up! for implementing a
fast Fourier transform in four levels. The line with triangles poin
ing down corresponds toFss functional when$u l &% is chosen as the
orthogonal basis$un&%. The objective is reached whenJnorm5
21. l05103 ande05531023 a.u. in all the cases.

FIG. 3. Evolution of the optimization in the complext plane for
the case in Fig. 2. The lines correspond toFsm ~circles!, Fre

~squares!, andFss ~triangles up!. The open circle indicates the valu
of t for the common guess field. The dashed black line is the ci
utu5N indicating the target of the methods. The arrows mark
direction of convergence. The insert enlarges the region corresp
ing to the real axes close to the circumference.
06230
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based onFre finds a solution with a phase factor exp(2if)
'11.

For the purpose of quantum computing the target unit
transformation has to achieve high accuracy. The fide
functional

~fidelity!5utu2/N2 ~50!

is used to indicate the quality of the solution. Figure 4 sho
the improvement of the fidelity versus the iteration. T
square modulus functionalFsm @Eq. ~6!# shows a faster con
vergence rate than the other two functionals.

In Fig. 5 the Fourier transform of the field for each of th

le
e
d-

FIG. 4. Log10@12(fidelity)# of the implementation of the two-
qubit Fourier transform vs the number of iterationsNit for the op-
timization in Fig. 2. The lines correspond toFre ~squares!, Fsm

~circles!, andFss ~triangles up!. Fpop ~triangles down! denotes the
case when the set$u l &% is chosen as the orthogonal basis$un&% for
the functionalFss.

FIG. 5. Fourier transform of the optimal field result of the op
mization in Fig. 4 for the functionalsFre , Fsm, andFss. Atomic
units are chosen\51. The caseFpop is also shown.
8-10
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OPTIMAL CONTROL THEORY FOR UNITARY . . . PHYSICAL REVIEW A68, 062308 ~2003!
optimization procedures is shown. The large peak at the
quencyV, seen in all cases, is the result of the choice of
guess field. Besides, a similar width in frequencies is fou
However, the fidelity reached by the solution correspond
to the square modulus functionalFsm is significantly better
than in the other cases for the same number of iteration

The molecular model is also used to compare the con
gence of the unitary transformation with the sizeN of the
relevant subspace. Figure 6 shows the improvement in
fidelity versus the number of iterations for implementing
Fourier transform in 2, 4, 8, 16, and 32 levels (1, 2, 3,
and 5 qubits, respectively!. The convergence characteristi
in the initial iterations strongly depends on the initial gue
and the parameterl0. For example the initial guess seem
inappropriate for the one-qubit case which displays an ini
very slow convergence until after 25 iterations the right tra
is found. After a large number of iterations the convergen
characteristics settled meaning that each new iteration g
only a slight improvement on the previous one. As the ite
tion proceeds the rate of convergence decreases in all c
scaling approximately as the inverse of the number of ite
tions. Comparing the rate of convergence for the differ
number of qubits after a large number of iterations the r
seems to be inversely proportional to the number of lev
High fidelity was obtained for one-, two-, three-qubit cas
by continuing to 600 iterations. The results allow one
compare the integrated intensity of the optimal field:

I5E
0

T

um0e~ t !udt. ~51!

The initial integrated intensity for all cases was identic
The optimization procedure changedI depending on the
number of qubits. The converged results show a mode
increase ofI with the number of levels starting fromI
542 for one qubit toI554 for two qubits andI578 for
three qubits.

FIG. 6. Log10@12(fidelity)# vs the number of iterations fo
implementing a Fourier transform in 2~dashed-dotted line!, 4
~circles!, 8 ~solid line!, 16 ~dashed line!, and 32~dotted line! levels.
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V. DISCUSSION

An implicit assumption in the optimization procedure
that the system is controllable. This means that a fielde(t)
exists which implements the unitary transformation up to
prespecified tolerance. The problem of controllability h
been the subject of several studies@29–33#. In the context of
unitary transformations it has been shown@30# that if the

commutators of the operatorsĤ0 and m̂ generate the com
plete Lie group SU(N), the system is completely contro
lable. In more concrete terms addressing the Na2 model, it is
expected to be completely controllable. The reason is that
energy levels are nondegenerate and in addition each tra
tion is distinct, characterized by a different Frank-Cond

factor ^ej um̂ugi&. This controllability property will be true in
almost any nonsymmetric molecular system.

A far reaching conclusion is therefore that for any unita
transformation contained in the Hilbert space of the m
ecule, there is a driving field that implements the transform
tion in one step. In a molecular system this task could
achieved in a time scale of a picosecond. Since a field
executes such a unitary transformation exists, how difficu
it to find it? Does this optimal field have reasonable intens
and bandwidth?

The OCT scheme can be considered as a classical a
rithm employed for the inverse problem of finding the fie
that generates a predefined unitary transformation. The d
culty of the inversion process is related to the scaling pr
erties of the numerical effort with respect to the number
levels N. The best OCT algorithm based on theFsm func-
tional is then used for estimating the scaling.

Simulating the quantum evolution is the major numeric
task of the algorithm implementing OCT. The basic step i
single vector matrix multiplication which represents the o
eration of the Hamiltonian on the wave function. This ta
scales asO(M2) for direct vector-matrix multiplication or
O(M logM) for grid methods based on fast Fourier transfo
@34#. The time propagation requiresNt steps which scale a
O(TDE), whereDE is the energy range of the problem.

The simulation of a unitary transformation in the releva
subspace turns out to beN times more costly. Summarizing
the numerical cost of the classical simulation of the quant
propagation scales as (Cost);O(2QM2TDE). This scaling
relation is consistent with the fact that a classical simulat
of a quantum unitary transformation scales exponentia
with the number of qubits.

The numerical cost of the OCT iterative algorithm us
for inversion can now be examined. The crucial question
how many iterations are required to obtain the field th
implements the unitary transformation up to a specified
delity. For this discussion it is convenient to introducef
5 log10$12(fidelity)%. The analysis of the results of Sec. I
show that only the initial iterative steps are very sensitive
the choice of the initial guess field. Eventually an asympto
behavior is reached where the rate of change off becomes
inversely proportional to the number of the iterations ste
In addition, cf. Fig. 6, the rate of convergence is also
versely proportional to the number of levels. This relati
8-11
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implies that the number of iterationsNit required to achieve
the specified fidelity becomes

Nit'be2Qu f u/a , ~52!

where the coefficientsa andb are positive. The data confirm
that the coefficienta is independent of the number of leve
N. A consequence of Eq.~52! is that the numerical resource
required on a classical computer in order to implement
proposed scheme scale exponentially with the number of
els N. Finding the field that implements in a single step
large unitary transformation is therefore prohibitively expe
sive. Thus fields that achieve high fidelity are only feasi
for unitary transformations with a small relevant subspa
The limiting case would be the one-dimensional state
state optimization.

Quantum control is based on interferences between m
distinct pathways@1#. State-to-state coherent control finds
constructive interference which leads exclusively to the fi
state. The controllability depends on having a sufficie
amount of interference pathways. Implementing a unit
transformation by interferences is more complex. In this c
the interference pathways from one state to another hav
avoid other interference paths which connect other sta
The possible number of interference pathways becomes
crucial resource that allows one to generate the transfor
tion.

For weak fields, the number of pathways connecting t
states in the subspace is linearly related to the numbe
auxiliary states on the excited surface. Practically the ba
width of the pulse determines this number. This means
the bandwidth in a weak-field implementation of a unita
transformations has to increase exponentially when the n
ber of levelsN increases. The picture is completely alter
when the intensity is allowed to increase. Rabi cycling
creases the number of interference pathways exponent
The number of Rabi cycles can be estimated from the in
grated intensityJRabi;I/2p, cf. Eq. ~51!, which leads to an
estimation of the number of interference pathwa
O(MJRabi);O(M I/2p). This estimation is consistent wit
the results of Sec. IV where only a moderate increase iI
was observed when the number of qubits in the transfor
tion increased. The estimated number of Rabi cycles chan
from JRabi;6 for Q51 to JRabi;8 for Q52 to JRabi;12
for Q53. This means that the increase in resources of im
menting a unitary transformation with Q qubits in a molec
lar environment will scale with a low power ofTDE, where
DE is the pulse energy.

In summary, we note the following points.
~1! A unified approach for obtaining the field that impl

ments a unitary transformation has enabled the assessme
various formulations. In addition, a algorithm based on
square modulus oft was developed. This scheme was fou
to have superior convergence properties with respect to
number of iterations.

~2! A unitary transformation could be implemented in
molecular environment in a time scale of picoseconds w
reasonable bandwidth and intensity. For intense field co
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tions the physical resources scale moderately with the n
ber of qubits in the transformation.

~3! The inversion problem of finding the field that induc
a unitary transformation seems to be a hard numerical p
lem scaling unfavorably with the number of levels in th
transformation.
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APPENDIX: THE VARIATIONAL METHOD

An alternative to the Krotov method of optimization is th
variational method@1,21#. This method has been used prev
ously in the simultaneousN state-to-state transitions formu
lation @12# and for the evolution operator formulation usin
the functional Fre @11#. In the last case the variationa
method was generalized in terms of the evolution equa
for the unitary transformation. Unlike the Krotov method th
variational method does not offer a direct algorithm to mi
mize Fsm. For simplicity only the optimization of the func
tional Fss is discussed.

The variational method is based on the functional@12#

K~$c i l ,c f l%,De!

5(
l 51

N

u^c i l ~T!u Ô u l &u22E
0

T l0

s~ t !
uDeu2 dt

22 ReF(
l 51

N

^c i l ~T!u Ôu l &

3E
0

T

^c f l~ t !uS d

dt
1

i

\
Ĥ~ ẽ1De! D uc i l ~ t !&G ,

~A1!

with the additional conditionuc i l (t50)&5u l &. The set of
states$u l &% and the target unitary transformationÔ were in-
troduced in Sec. II.$uc i l (t)% denotes the initial states drive
by the field to the final statesÔu l &. The termsuw f l(t)& are
interpreted as Lagrange multipliers used as a constrain
impose the Schro¨dinger equation. The two first terms ar
equivalent to the functional~14! of the Krotov method. The
parameterl0 is now interpreted as a Lagrange multiplie
The functional~A1! differs from the common formulation o
OCT in the form of the field termẽ1De. ẽ is a reference
field andDe must be interpreted as the correction used
converge to the optimal field that implements the target u
8-12
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tary transformation. Settingẽ50 and interpretingDe as the
field the common form is re-attained.

By applying the calculus of variations, requiringdK50,
with respect to each element of the set$c i l (t)%, the evolution
equations are reconstructed,

d

dt
uc i l ~ t !&52

i

\
Ĥ~ ẽ1De!uc i l ~ t !&, ~A2!

with the condition uc i l (t50)&5u l & and formal solution
uc i l (t)&5Û(t,0;ẽ1De)u l &. The variations with respect to
the set$c f l(t)% gives

d

dt
uc f l~ t !&52

i

\
Ĥ~ ẽ1De!uc f l~ t !&, ~A3!

with the conditionuc f l(t5T)&5Ôu l &. The formal solution is
uc f l(t)&5Û(t,T; ẽ1De)Ôu l &. Finally, variations with re-
spect toDe lead to the correction to the field
l

-

it

.

R.

s

06230
De~ t !52
s~ t !

l0 \
ImF(

l 51

N

bl ^ l uÔ†Û†~ t,T; ẽ1De!

3m̂ Û~ t,0;ẽ1De!u l &G , ~A4!

with

bl5^ l uÛ†~T,0;ẽ1De!Ôu l &. ~A5!

The correction to the field~A4! is the starting point of the
iterative algorithm to find the optimal field. In such a ca
the correction to the field is implicit in the backward an
forward propagation of the states inDe. Several iterative
methods have been proposed@22#. In the simplest approach
a guess fielde (0) is used to evaluateDe, which will be used
to obtain the input field in the next iteration. Usually it do
not converge. An alternative procedure@22# is to evaluateÛ†

in Eq. ~A4! using the field in the previous iteration and the
to simultaneously obtain the correction to the field and eva
ateÛ with the new field. This iterative algorithm is identica
to the one obtained from the Krotov method in Sec. III.
study comparing different iterative algorithms based on
Krotov and variational methods for the problem of state-
state optimization is described in Ref.@26#.
or,
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