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Optimal control theory for unitary transformations
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The dynamics of a quantum system driven by an external field is well described by a unitary transformation
generated by a time-dependent Hamiltonian. The inverse problem of finding the field that generates a specific
unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in
a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal
control theory is used to solve the inversion problem irrespective of the initial input state. A unified formalism
based on the Krotov method is developed leading to a different scheme. The schemes are compared for the
inversion of a two-qubit Fourier transform using as registers the vibrational levels ?&fltﬁé electronic state
of Na,. Raman-like transitions through te'>. ! electronic state induce the transitions. Light fields are found
that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by
pulse-shaping techniques of a femtosecond pulse. Of the schemes studied, the square modulus scheme con-
verges fastest. A study of the implementation of @hqubit Fourier transform in the Nanolecule was carried
out for up to five qubits. The classical computation effort required to obtain the algorithm with a given fidelity
is estimated to scale exponentially with the number of levels. The observed moderate scaling of the pulse
intensity with the number of qubits in the transformation is rationalized.
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[. INTRODUCTION tum systemg1] has received considerable attention, leading
to effective methods for obtaining the driving field which
Coherent control was initiated to steer a quantum systerwill induce a desired transition between preselected initial
to a final objective via an external fie[d,2]. If the initial and final states. To address the control problem of inducing a
and final objective states are pure, the method can be termeguérticular unitary transformation the state-to-state OCT has
state-to-state coherent control. By generalizing, the problento be augmented. For example, if the unitary transformation
of steering simultaneously setof initial pure states to a set is to relate the initial statelsp;, ) with the final state$ey,),
of final states can be formulated. Such a possibility has direahe state-to-state OCT derives an optimal fieldfor each
applicability in quantum computing where an algorithm pair of initial and final statesd,¢s ). But the fieldse,
implemented as a unitary transformation operating on a Sejptained are in general different so that the evolution in-
of states has to b_e carried out irrespective of the input. In thigj,ceq bye, is not appropriate for a different skt of initial
application both input and output are encoded as a SUPerPGpq final states. In order to implement a given unitary trans-

sition 9f these statefs3]. . .., formation a single fielde that relates simultaneously to all
To implement such a control, the external driving f|eIdthe relevant pairsdi , ¢r) is needed
ik » .

that induces a prespecified unitary transformation has to be Two approaches have been suggested to generalize OCT

found. Different methods have been suggested for this tas‘ft)r unitary transformations. The first approach is formulated
Some rely on factorizing the algorithm encoded as a unitary,. y ' PP

transformation, to a set of elementary gates and then findingIrectly on the evqlutlon operatc{ﬂll].. An. alternative ap-
a control solution for the elementary unitary evolution of aProach uses the simultaneous optimization of several state-
single gatd3,4]. The inherent difficulty in such an approach t0-State transition§10,12. The present paper develops a
is that in general the field addresses many levels simulta8®mPrehensive framework for constructing an OCT solution
neously. Therefore, when a particular single-gate operation i the unitary transformation. The study explores various
carried out other levels are affected. This means that the ide@PpProaches. A common framework for an iterative solution
single-gate unitary transformation has to be implemented sbased on the Krotov approagh3] is developed. As a result,
that all other possible transitions are avoided. The problem ithe numerical implementation of the methods are almost
simpler when each allowed transition is selectively addressidentical, enabling an unbiased assessment. The implementa-
able[5]. However, in general the problem of undesired cou-tion of the Fourier-transform algorithm in a molecular envi-
pling has to be corrected. A specific solution has been sugonment is chosen as a case study. The performance of the
gested 6] but a general solution is not known. various OCT schemes is compared in a realistic setup. A
The presence of a large number of levels coupled to therucial demand in quantum computing is obtaining high fi-
external driving field is especially relevant in the implemen-delity of the solution. The present OCT scheme can be
tation of quantum computing in molecular systefi’s-9].  viewed as an iterative classical algorithm which finds a field
The use of optimal control theoYDCT) has been proposed that implements the quantum algorithm. The obvious ques-
as a possible solutiof®,10]. In recent years OCT for quan- tions are the following.
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(1) What are the computational resources required to obf|m)} has two blocks of dimensioNXN and (M —N)

tain a high fidelity result? _ _ X (M—N). The operato is block diagonal, therefore the
(2) How do these computational resources scale with th@|ements connecting the diagonal blocks are zero. This struc-
number of qubits in the quantum algorithm? ture means that population is not transferred between the two

(3) How do the actual physical resources, i.e., the intesypspaces at the target tinfighut can take place at interme-
grated power of the field scale with the number of qubits ingjate times. Only théx N block is relevant for the optimi-
the quantum algorithm? zation procedure, while the other remains arbitrary.

The paper is organized as follows. In Sec. Il the problem  The dynamics of the system is generated by the Hamil-
is formulated, introducing different objectives devoted to the,

optimization of a given unitary transformation. In Sec. Il the tonianH,

application of the Krotov method of optimization of the Ny 2

given objectives is described. Expressions obtained for the H(e)=Ho~pe(V), @)

optimal field are formulated as well as the implementation of ~

the method. The variational method to derive the optimizawhereH, is the free Hamiltoniang(t) is the driving field,

tion equations is commented on in Appendix. The results arand u is a system operator describing the coupling between

used to study the implementation of a unitary transformatiorsystem and field. In the molecular systems, this coupling

in a molecular model in Sec. IV. Finally, in Sec. V the resultscorresponds to the transition dipole operator and the driving

are discussed. field becomes radiation. In some cases more than one inde-
pendent driving field can be considered. An example is when
two components of the polarization of an electromagnetic

Il. IMPLEMENTATION OF A UNITARY field are separately controlléd5]. The generalization of the
TRANSFORMATION formalism in such a case is straightforward.

The system dynamics is fully specified by the evolution
o i ) . operatorU(t,O;e). An optimal field €,,,; induces the target
The objective of the study is to devise a method to find . oA .

- : . . unitary transformatior© at time T when
the driving field that executes a unitary transformation on a
subsystem embedded in a larger Hilbert space. The unitary

A. Description of the problem

transformation is to be applied in a Hilbert spat¢ of di- U(T,0;€0p0 =€ '#M O. 2)
mension M, expanded by an orthonormal basis of states
{lm)} (m=1,... M). The selected unitary transformation gquation(2) implies a condition on only th&lx N block of

is imposed on the subspagéof N levels of the systemN
=<M). In the context of quantum computation, tNelevels
correspond to the physical implementation of the dugpit
embedded in a larger system. The additional levais=(\
+1,... M), considered as “spurious levels,” are only indi-
rectly involved in the target unitary transformation.

In any realistic implementation of quantum computing, . S
spurious levels always exist. One reason is that the system fly operator can always be added to the Ha}mlltoman. When
never completely isolated from the environment. In addition the stategm) correspond to the eigenstatestty, the phase
the control lever, which in the present case is the dipolep1 IS
operator, connects directly only part of the primary levels.

the matrix representation &f. The phases(T) is introduced

to point out that the target unitary transformatincan be
implemented only up to an arbitrary global phase. The phase
¢ can be decomposed into two terngs,(T) + ¢,(T). The
first, ¢4, originates from the arbitrary choice of the origin of
the energy levels. Formally, a term proportional to the iden-

An example is the implementation of quantum computation M

using rovibronic molecular levels. The transition dipole con- 2 EnT

nects two electronic surfacé$l]. The primary states reside by(T)= m=1 &)
. . 1 - 1

on one surface, so that Raman-like transitions are used to M %

implement the unitary transformation. The advantage of this

setup is that the transition frequencies between the electroniﬁhereEm is the energy of the leveh. The phasep, reflects
surfaces are in the visible region, for which the pulse shapingnhe arbitrariness of the unitary transformation for the levels
technology is well developefl4]. Other levels residing on m=N+1, ... M which are not part of the target.
both of the electronic surfaces become spurious in the sense The method to determine the optimal field is based on
that any leakage to them destroys the desired final resulpaximizing a real functional of the field that depends on
However at intermediate times these levels constitute a temyoth the target unitary transformation and the evolution gen-
porary storage space which facilitates the execution of th@rated by the Hamiltonian, fulfilling Eq2). The problem of
transformation. _ _ unitary transformation optimization is then reduced to a
The objective is to implement a selected unitary transforynctional optimization. However a variety of formulations
mation in the relevant subspagé at a given final imeT.  of the problem can be stated, leading to different functionals
The target unitary transformation is represented by an opergmg then, in principle, to different results. In the present con-
tor in the Hilbert space of the primary system and is denotegext two formulations have been proposed, one based on the
by O. ForN<M, the matrix representation @f in the basis evolution operatof11] and the other on simultaneous
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state-to-state transitiori42]. These formulations are closely corresponding final stated|l) (1=1, ... N) [12]. For this
related. A similar optimization procedure is described in Secpurpose the following functional is’defir,]ed:

.

N
B. Evolution operator formulation 2(O;T;e)=Tr Zl OT0(T,0;)[1) (+{O(T,0;€)TOI1) (1]

The optimization formulation is based on the definition of
a complex functionat that depends on the evolution opera-
tor at timeT [11]. The following functional is introduced:

N
=|Zl (11610(T,0;6)|1Y2. (7)

N
7(O;T;e)=Tr{O'0(T,0;¢) Py} = >, (n|OT0(T,0;¢)|n),
n=1

(4)

Note that whiler is defined as the sum of amplitudes,is

defined as the sum of overlaps at the final tilnerhe pa-
rametery is a positive real number and its maximum vaNie
is reached when all the initial statg$ are driven by the field

to the final target state@|l>, except for a possible arbitrary
an orthonormal basis of the subspateAs O is a unitary Phase associated with each transition. The arbitrariness of

transformation in the relevant subspace, the functioriala  these phases implies that the set of initial statpsnust be
complex number restricted to the interior of a circle in thechosen carefully. In order to account for all the possible tran-
complex plane of radiubl centered at the origin. The modu- sitions, the state{si_) have to_ faithfully represent _aII the rel-
lus of 7 is equal toN only for an optimal field fulfilling Eq. ~ €vant subspac#/, i.e., constitute a complete basis set. How-
(2). 7 can then be interpreted as an indicator of the fidelity of€Vel, @ choice of an orthonormal basis could produce
the implementation on the target unitary transformafitj.  undesired results. For example, the ambiguity of using an
When 7 approaches\, the transformation imposed by the orthonormal basig|n)} in theAreIevant subspace and an ar-
field converges to the target objective. bitrary unitary transformatio, diagonal in that basis. The
Sincer is complex, several different real functionals can product® D will also be a unitary transformation. & and
be associated with it. In Reff11] the optimization of the real €op are fields that generalé andOD at timeT, respec-

part of 7, or the imaginary part, or a linear combination of tively, they both will have the same fidelity
both was suggested to find the optimal field. It was found ’ ’

that all these possibilities show a similar performance. For
this reason, the present paper employs the optimization of
the real part chosen as a representative case. The functio
is therefore defined as

©)

The functional reaches its minimum valde,.= —N, when
the driving field induces the target unitary transformation bu
with the additional condition that the phase term exp

. . c
[—igp(T)] is equal to one.

Other functionals based anbut without any condition on
the phase can be defined. In this work the squared modul
of = with a negative sign is studied:

where the projectioPy=3N_, |n)(n| is used{|n)} denotes

®

qﬁf‘uereL denotes thayy was evaluated using an orthonormal
basis. Then any algorithm based on optimizipthat uses an
orthonormal basis could find a solution for the field corre-
sponding to the implementation of an arbitrary unitary trans-

formations of the fornO D. (O is a particular case whe
is the identity operatgr The reason for this discrepancy is
that  is only sensitive to the overlap of each pair of initial

1) and finalO|l) states, leaving undetermined the relative
hases between them. For the optimization procedure to suc-
eed a careful choice of the initial set of states is necessary.
A simple solution is to compose the laststates as a super-
[osition of all states in the basy" ,|n)/\/N, and to keep as
IS the firstN— 1 states of an orthonormal basis. For this set
of states, the maximum condition is achieved only when the
field induces the target unitary transformation up to a pos-
sible global phase.

To summarize the functionat 7 is used,

7,.(0;T;€0)=1,(0; T €0p),

N

Fre=—Re7(0;T;e)]=— RE{ 2, (OO0l

Fom=—17(0;T;¢)|?
N N
=—> > (nO'0(T,0;6)|n) (n'|0(T,0;)"OIn"), i
n=1n=1 FSS:_ﬂ(O,T,é), (9)
with a minimum valueF ;= —N. The optimal field satisfies
Eqg. (2), subject to a choice of the set of stafés which

determines the relative phases.

(6)

with minimum valueF ;= — N2 for any field satisfying Eq.

(2).

C. Formulation of the simultaneousN state-to-state transitions

This formulation is based on the simultaneous optimiza-

tion of N transitions between a set of initial statesand the

D. Initial- to final-state optimization

The present formulations of quantum control assume that
the target unitary transformatiod is explicitly known, at
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least in the subspac#’. In most previous applications of the improvement of the objective at the target tilmeSome
optimal control theory, the objective was specified as theéxamples are the local-in-time optimization mettj@8,19,
maximization of the expectation value of a given observabléhe conjugate gradient search methfi2D], the Krotov

at timeT subject to a predefined initial stdt&]. Both mixed ~method[13], and the variational approa¢B1,22. A review

and pure initial states were considefdd,17]. A particular ~ of these common methods can be found in R&f. In the
case is the determination of an optimal field to drive thepresent study the Krotov method has been adopted. A brief
system from a given pure initial state;) to a target pure description of the alternative variational method is given in
final state|e;) at time T. This state-to-state objective opti- Appendix.

mization can be derived from the present formulation if the

target unitary transformation becomes|¢;)=|¢¢). The A. Krotov method of optimization

evolution operator formulation is then obtained by setting the  The Krotov method is utilized to derive an iterative algo-

projectorPy=|;){ ;| in Eq. (4), obtaining the functionat, rithm to minimize a given functional that depends on both
final and intermediate times, cf. R¢R3].

(i, ¢1:Ti€)= (@ U(T,0:€)|@). (10 For convenience, the equations are stated using real func-
, ) tions: am(t) =Re (M| @y(1))] and Brm(t)
The real functional& .= — R 7] andF¢,=—|7|* aretobe = Im[(m|¢g,(t))]. The notationay and By is used to de-

used in the study. As only a state-to-state transition is inscribe theM-dimensional vectors with componenig,, and

volved, the formulation is obtained by choosifig=|¢;). In g, . Using such a notation, the evolution equatidn) be-

this casen=|7|? andF¢=F¢p,. Note that this result is valid comes

only when there is a single term in the sum in E@g.and in

(7). d
&a’k(t):QR(taf)'ak(t)_ﬂl(tve)'ﬁk(t)y

1. OPTIMIZATION

A common optimization procedure for all the functionals %ﬁk(t)=ﬂ,(t,e)~ak(t)+QR(t,e)~Bk(t), (12
F as defined in the preceding section is developed. The no-
tation |n) for the states and, its index, will be used in the
evolution operator formulation. The notatidn and! will be
used in the simultaneou$ state-to-state transitions formula- A . . .
tion. The notation ¢;) andk, wherek=1, ... N, will be Qij_:<'|(_'H/h)|]> yv_h_ere||> a_n_d i) are states from the
used when the results are valid for both cases. An evaluatiop@Sis Setlm)}. The initial conditions are given by the vec-
of any of the functionals requires the knowledge of the state%onré’ Livrﬁgéir?gglﬂggt) (‘)"]f'tt?]:c’arnm%cl’i?j(;‘;; T0m>pozed;:;f}; real

_0 . _A ; Pik) - Ak fk

len(T)= U(T’O’E)lgoik? and | 910 =Ol¢ix). The operation ;00 the vectors corresponding to the amplityadeig ).
of the evolution equatiok(t,0;€)| ¢;) can be calculated by The formalism considersy, B, and the fielde to be

where Qg and Q, are real matrices with the corresponding
components composed of the real and imaginary parts of

solving the time-dependent Schifoger equation independent variables. A necessary consistency between
q ) them will be required in the final step of the algorithm. The
e vectorsf, andf; constitute the right-hand side of E{.2):
— = — ] @ B
dt|<Pk(t)> ﬁH(€)|<Pk(t)>, (11

fo(t, @, B, €)=Qg(t, €) - ay(t) — (L, €)- By(1),
with an initial condition| ¢, (0))=|¢i). SinceH=H(e) the

state evolution will depend on the particular field. An alter- fa(t,ai, Br, €)= (t,€) - ay(t) + Qg(t,€) - Bi(t). (13
native to Eq.(11) is the evolution equation for the unitary . .
transformation itself11]. The vectord,, (f;) are equal to the total time derivative of

The method of optimization depends on the availability of® () only when the state is consistent with the field through
the states of the systefw,(t)) at intermediate timest  the evolution equatiofil2). The dependence af and8 ont
<T. will be made explicit only when necessary. An important

Experimental realizations of OCT are typical examplesProperty of the problems under study is ttigtandf, are
where only initial and final knowledge of the states exist. Forinear in the functionga, B} ande. This choice simplifies
such cases feedback control and evolutionary methods af€ optimization problem, the nonlinear case has been stud-
effective[1]. Such methods however require a large numbefed in Ref.[23]. _ _
of iterations to achieve convergence. A simulation of such a A “process”w=w[t,{a, B}, €] is defined as the s¢tv, B}
process requires repeated propagation ofNfetates by the ©Of N vectors @i and N vectors gy related to the fielde
Schralinger equation. Thus they are computationally inten-through the evolution equations with the initial conditions
sive. ,(0) andB(0). Afunctional of the process can be defined

Computationally more effective methods are based on th@S
knowledge of the statdg,(t)) at intermediate times. Addi- .
tionql_constrains on the eyolution are included th_at aIIovx( a J[W]ZF({a(T),ﬂ(T)})Jrf g(e) dt. (14)
modification of the field at intermediate times consistent with 0
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For the present applicatioriscan be any of the functionals e. The related changes of the states are consistent with the

Fres Fsm» Fssas introduced in Sec. Il. The optimal field is system evolution, Eq(12), and therefore, will not interfere

found by a minimization of the functional. The integral  with the minimization ofL.

term represents additional constraints originating from the (ii) A new field € is derived with the condition of maxi-

evolution equation of the system. For simplicity only the mizing R, decreasing then the value bfwith respect to the

case wherg is a function of the fielde is presented, but a processw!?). In this step the consistency between the new

generalization to the more general case in whgatiepends ~ field and the new states of the systém ), Y} must be

on «(t) and B(t) is straightforward. The particular depen- maintained.

dence ofg on the field will be discussed later. The new fielde™ becomes the starting point of a new
The main idea in the Krotov method is to introduce a newiteration, and stepé) and (ii) are repeated until the desired

functional that mixes the separate dependences on intermeenvergence is achieved.

diate and final times in the original functiondM). Using the

new functional it is possible to derive an iterative procedure 2. The linear problem: Construction ofp to first order

that modifies the field at intermediate times in a way consis-

tent with the minimization of at timeT. The new functional

is defined as

The difficult task in the Krotov method is the construction
of ® so thatL is maximum for{&®, g®}. The maximum
condition onL is equivalent to imposing a maximum @b
L[w,®]=G ), B(T)H)— (0! a(0), B(O and a minimum orR. However, in some cases the maximum
[ ] ({a(T).BTDH (04a(0). A0} and minimum conditions can be relaxed to extreme condi-

T tions for G and R, which simplifies the problem.
- J; R(t.{a,B},€) dt, (15 The extreme conditions fdR with respect tof &/®, g}
are given hy
where R
J
SUa(T) BATD=F (T ATH+& T o) BT, dag e B0}, e1=0,
and R (119, 6O, =0, (18)
9D 7B
R(t.{a.B} €)= —g(e) + W(t’{a'ﬂ}) The following vectors are introduced:
Nood IP
+ 2 T tlaBh futacbee N0 =5, (01, B,
S0P Id
+ 2, o, ) Tt Bie). 8= 55 ({0, ). (19
(17)

v and &, are only functions of, as the partial derivatives
®(t,{a,B}) denotes an arbitrary continuously differentiable are evaluated in the specific ge{?, 8°)}. Using Eq.(12)
function. The partial derivatives @b, 9®/day anddd/ 9By, the extreme conditions can be written as
form a vector withm components. In the following, « and
B are considered to be independent variable$in d C aT (0 T (0)

When{a, B} and the field are related by E(L2), R can i D=~ Qr(L ™) %) — O (1, e7) - 4(1),
be written aR= —g+d®d/dt. Introducing this result in Eq.
(15), it can be showm23] that for any scalar functio® and d
any processv, L[w,®]=J[w]. Then the minimization o3 a,sK(t)zan(t,ew))- (1) — QL(t,e®). §(1), (20)
is completely equivalent to the minimization bf

1. lterative algorithm to minimizeL where QT denotes the transpose of the matf& The ex-

I _ treme conditions folG are
The advantage of the definition of the functional

L{w] is the complete freedom in the choice @f. This G
property is wused to derive from an arbitrary
process WOt {al? O} ] a new process Jai(T)
Wt {aV, BV}, eM] such thatL[w®,d]<L[w®, ®]. G
The procedure can be summarized as follows. 0 0 _

(i) @ is constructed so that the functiona]w(®)] is a aﬂk(T)[{a( (M.AM)]=0. (21)
maximum with respect to any possible choice of the set
{a,B}. This condition gives a complete freedom to changeUsing Eqgs.(16) and (19),

[{aO(T),pO%T)}]=0,
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3. Dependence on F

WT)=— o m[{a(O)(T) BT,

The dependence oB* on F can be made explicit by
introducing®* and using Eqs(23) and (16),

JF
&(T)== 75 ml{a®MBAM). (22

G*({eAT), BMN=F{a(T),B(T)})— 2 a(T)

1 e (T
The above conditions at timg, together with Eq(20), de- a( )’
termine completely the ség/(t), &(t)}. As they are defined JF
as the partial derivatives @b with respect towy, and Bym, + BT Bu(T). (29

@ is expanded to first ordédenoted ash*),
WhenF is linear in{a,B} G*=0 and thenA,=0. In this
O* (t{a, B}) = ) au(t) + 6.(1)- BT, (23 case all the improvement towards the original objective in
(i) 21 [n(V)- O+ a(0)-AV]- (239 the iteration is due to the term,(t). WhenF is nonlinear in
_ . _ . . {a, B} the conditionA; =<0 must be checked in each case.
By employing®*, the functionsG* and R* can also be An additional difficulty is that the condition&l9) for y

constructed to first order using Eqd6) and (17), respec-  and & depend on the particular choice Bf In all the cases
tively. This completes the first step in the iterative algorithm.ynder study F,., Fsy, andFsd,

To accomplish the second st&pis maximized with re-

spect to the field. Again in some cases the maximum condi- Y(T)=c, az(T),
tion can be relaxed to the extreme condititi/ 9e=0. Us-
ing the expression foR* leads to a(T)=d, Bs(T), (30)
N _
19_9(6(1) 2 k(t) e, of (1) ﬁ“) () where the coefficientsc, and d, depend on the sets

= {aO(T),BO(T)} and {as,B;}. Defining the vectorsy,
=c, *y and §=d, ' &, the conditions(22) for all the
+Z @(t) _k t a(l) ﬂﬁl) ). (24) cases under consideration are

W(T)=ap(T),
Equation(24) is used to derive the new field® in each n(T)=an(T)

iteration. This equation must be solved in a way consistent ~

with Eq. (12) describing the system dynamics. o(T) = Bri(T). (3D
Due to the use of extreme instead of maximum or mini- -

mum conditions, it must be checked that the new proces§heir evolution is given by Eq20). Changingy andé'to ¥

w® improves the original objective in each iteration andd Eqg. (24) can be written as

JwO]—=Jw]=0:

N
~ of
IWOT= W] =L[w ), 0% ] L[wD, *] <e<1> 2 o) 5o (LD B, )
T
:A1+f Ay(t) dt, (25 N of
0 +2 B L ta g0 D).

where (32)

* (0) 0) * (1) 1)
=G (@M. FAMH -6 (D). £ (T)})26) The different choices of imply different coefficients ¢
andd,) and a possible different set of initigp; ) and final
Ay(1)=R*(t,{aV, B}, e —R* (1 { oV, B}, €©)). |os) States. Nevertheless, the iterative procedure is identical
(270 in all the cases.

The above relation is obtained whépandf, are linear in 4. Dependence on @)
{e Bl A delicate point is the choice of the functiog(e) in
R*(t,{a,ﬁ},e(o))z —g(t, e, (28) J[w]. The time integral in the functional should be bounded
from below, otherwise the additional constraint will domi-
for any value of{ e, B}. nate over the original objectivE in the functionallJ. In

A sufficient condition for JJw(®]—-J[w)]=0 is addition A,(t)=0 is required in order to guarantee the
A1,A,(t)=0. A, depends on the choice &fandA,(t) on  monotonic convergence of the optimization method.
the choice ofj so that each case must be analyzed separately. A consequence of the linear dependencd aff,;, and
These conditions imply that the Krotov iterative algorithm Eq. (32) is that the functiorR* for the new procese/!) has
converges monotonically to the final objective. the simple form

062308-6



OPTIMAL CONTROL THEORY FOR UNITARY ... PHYSICAL REVIEW A68, 062308 (2003

Jg fications in the field in each iteration. This is equivalent to a
R*(t,{atD, gV}, M) = —g(eD) + (M)~ 6(0));(6(1))- bold search strategy where large excursions in the functional
(33) space of the field take place with each iteration. Large values
of \q imply small modifications in the field in each iteration,
Using this expression together with E@8) leads to slowing the convergence process. Using large values, @
a conservative search strategy which is advantageous when a
good initial guess field can be found. A possible mixed strat-
egy is to initially use a bold optimization with small values
(34) of Ay. This leads to a guess field for a new optimization with
a large value oh g [25].

J
Ag(t)= = gl eM) +9(£®) + (V- @) 2L ().

A choice ofg(e) fulfilling the requirementA,(t)=0 is
B. Application to the functionals F ¢, Fg,, and Fg

=N(t)[e(t)—€(t)]?, 35
g(e)=MULe(t) ~e(t)] 39 Based on the derivation of the Krotov method it is pos-

sible to connect directly the minimizatidf., Fg,,, andFgg
to the correction to the field. Equatid@20) corresponds to
the evolution of a set of statdby,(t))},

wheree is a reference field ankl(t) is a positive function of
t. Using Eq.(34) and for any fielde

Ay(t)=ND[Ae(1)]?=0, (36) d i
N 0 _ a|Xk(t)>=_gHT(G(O))|Xk(t)>, (38
where Ae(t)=e®(t) — €%(t). The method therefore will

converge monotonically. Using Eg82) and(35) the field in

the new iteration becomes with the conditions(31), |Xk(T)>_=|<pfk). The formal solu-

tion of the equation is given by |x(t))
B 1 N B o, =0(t,T; e 0| ¢iy). Using Eq.(37) the correction to the
eD(t)=e(t)+ 220 kzl kck (1) E(t,a(kl),ﬁ(kl) 1) field in each iteration becomes

- f sty [
+dkak<t>-%(t,aa”,ﬁ&”,em)j. @) Ae=—gim 2 ae®)

The result of the iterative algorithm depends strongly on the
choices of the reference fiekdand on the function (t).
Two possible choices of are analyzed. The first choice, (39)

'€=0, is the one commonly used in OCT applicati¢hf In

this case, the additional constraintJpw] has the physical The coefficientsa, will depend on the particular choice of
meaning that the total energy of the field in the time intervalthe functionalF and are related to, andd defined in Eq.
[0,T] is limited. This however presents a problem when the(19). ForF . andFg,, the stateg|¢;)} denote an orthonor-
iterative procedure reaches the optimal field. The iterativenal basis{|n)} of the relevant subspac#’. For F, the
method is found to reduce the total objecti¥dy reducing coefficients are, ,=1/2, and as this functional is linear on
the total pulse energy, slowing and even spoiling the converthe states\, .=0. ForFg, the coefficients are

gence toward the original objecti¥e The usual remedy is to

stop the iterative algorithm before this difficulty is reached. N - N A

However, such a procedure could prevent the optimization an,sm= E (n'[0(0,T; ) On"), (40)
algorithm from obtaining high fidelity. n=l

A different possibility ise=€® can avoid this problem and then are equal for all the states in the basisVofin
[10,16,23. In this iterative algorithme(®) must be interpreted addition,
as the field in the previous iteration. Now the additional con-
straint inJ[w] has the physical interpretation that the change N . . .
of the pulse energy in each iteration is limited. When the  Arsm=| 2, ([[U(T,0:¢)—0(T,0;¢*)10|n)| .
iterative procedure approaches the optimal solution the =t (41)
change in the field vanishes. Therefore, the convergence to
the original objective is guaranteed. In the rest of the StUdyI'herefore,AlsmBO. For theF functional the sef|;)}
e=€® was chosen. for which the states are denoted fiy)} the coefficients,

The function\ (t) introduces the shape functiasft), i.e., are
N(t)=Ng/s(t). The purpose of(t) is to turn the field on
and off smoothly at the boundaries of the interi@d]. \ is a ss=(110(0,T; €)1, (42)

a scaling parameter which determines the optimization strat-
egy. When\ is small the additional constraint on the field in depending on the indeixcorresponding to each state. In this
the functional becomes insignificant, resulting in large modi-case

X (@i | OTUT(1,T; @) uU(1,0;¢M) [ @y) |-

2
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N The phase sensitivity of the functiong), can be demon-
Arse= >, [([O(T,0;€®)—0(T,0;¢®)]0|1)|?, (43  strated in the state-to-state optimization. The iterative algo-

=1 rithm in this case will converge to a field that drives the
system to the final state | @) or —|¢;), while the optimi-
zation of F 4, or F45 will converge to the final state up to an
arbitrary global phase. There is @opriori advantage how-
\ever to any of the three functionals in the convergence rate or
in the simplicity of the solution. The solutions are physically
equivalent since they differ only in a global phase.

and thenA; 0.

The resultsA ;=0 andA,(t)=0 guarantee the monotonic
convergence of the iterative algorithm based on the Krotov
method for the three functionals.

C. The optimal field In addition to the desired optimal fields, the algorithm
The optimal field has the property that the field correctioncould also generate spurious solutions. An example is given
in the next iteration Eq(39) should vanish. Defining by the functionalFg, employed to implement a unitary

transformationOp, with a matrix representation diagonal in
g " the basis of the free Hamiltonian eigenstd&®g. In such a
Cy Ot T )
C(t;e)=Im gl a(€)(¢i|O"U'(L,T; ) mU(1,0;€) [ i) |, caseC(t,e=0) is proportional to the diagonal matrix ele-
(44) ments(en|[4|en). When these matrix elements are zeeo,
B =0 is a solution of the iterative algorithm, but it does not
when € is an arbitrary solution of the iterative algorithm implement the desired unitary transformation. A simple rem-
C(t;€)=0. edy to overcome this difficulty is to use a different initial
The first question to be addressed is whether any optimdJuess to start the algorithm.
field, defined by Eq(2), is a possible solution of the iterative

algorithm.?opt denotes a field that generates the target uni- D. Discrete implementation of the optimization algorithm

N

tary transformation up to a global phase|(T,0;€0p0) A numerical solution of the iterative optimization algo-
=e~'?0, using the relation rithm requires a discretization scheme for the time axes. The

correction to the fieldAe is implicit and appears on both

U(t,0;e)=U(t,T;e) U(T,0;¢). (45) sides of Eq.(39). To implement the procedure, two inter-

o leaved grid points in time were used. The first grid was used
In addition, the relatiofW (t))= 0(taT;Eopt)é| o) imply-  to propagate the states. The second grid was used to evaluate

; - ; P the field. The grid describing the states Hdst+1 points
that the term{ W (t) | u| ¥ (t | lifies Eq(44
ing that the tern{(£)| s'¥,(1)) is real, simplifies Eq(44) separated byAt=T/N;, fromt=0 tot=T. The grid repre-

0 senting the field hall; points separated hit and starting at
- N - _ t=At/2. The initial set of statelp; ) was used for the target
C(t;eopt):kZl (U (0| () IM[ Ay (€opre 1. unitary transformatiorO optimization with the functionals
46) Fie, Fsm, OF Fgs. The numerical implementation of the al-

gorithm follows.

(i) Using an initial guess field(®), the statesps, are
propagated in reverse froh=T to t=0 to determine
U(t, T; €9 O| @;) on the time grid of states.

(i) The new field is determined in the interleaved grid

ointt=At/2 using the approximation

Using Eq. (40) for the functional Fg, leads toa, sn
=Nexpi¢) in Eg. (44). A similar result is found for the
functional Fg, a, ss=exp(¢), given by Eq.(42). Therefore
any field generating the target unitary transformation is
possible solution of the iterative algorithm based on any o
the functionald~,, andFg. This result does not imply that ( )
when initializing the different iteration schemes with the Ae(At/2)~—
same guess field the same solution will be obtained. Noh

The analysis is more complex for the functiofgl, . The
coefficients are now real, ,o=1/2, and are independent of X 10(0,0;eM)| @i) |
the state index. This leads to C,=Im[exp

(—ig) =N (W, (1) ;| (t)). The sum is generally different
from zero and the solutions to the algorithm are fields with ayte thatU(O 0 6(1))|<P|k>—|90|k> Then the new field in the

phase term expfi$)=*1. Only the case- 1 minimizes the  first field time grid point is obtainede™(At/2)=(©
original functionalF,., but the relaxation to extreme condi- + A¢(At/2), and used to propagate; (t=0)) to the next
tions in the Krotov method allows one to obtain other physi-state grid point=At. The same process is used to obtain the
cally valid solutions. In the special case in which the unitarynew field €*) in the next field time grid pointt=At
transformation is imposed on all the Hilbert spadd ( +At/2, evaluating the correction with the already known
=M), any optimal field is a possible solution regardless ofstates in the state grid poit# At. The process is repeated to
the global phase. The reason is that the sunCjnis zero  obtaine™® in all the field time grid points.

sinceiz is a traceless operator. (iii ) The new fielde'™) is used as input to the new iteration

N

Im| Y a(e@)(ey|OT0T(0,T;e®)
=g

(47)
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where |G) and |E) are the ground and excited electronic

states andH, and H, are the corresponding vibrational
Hamiltonians. The electronic surfaces are coupled by the
transition dipole operatoﬁ, controlled by the shaped field
e(t).

The present model is a simplification of the Ndilbert
space restricting the number of vibrational levels. On the
groundX 'S electronic state the first 40 vibrational levels
selected out from the 66 bound states are used. In the excited
A3 state, the lowest 20 vibrational states are used out of
the 210 bound levels. The vibrational Hamiltonians become
therefore

40 20
ﬂg:; Eqilgi(ail: ﬂezzl Eejlej(el. (49

Ra.u) For Na the 00 transition frequency between the ground vi-
brational levels of each surface iSQ=Eq—Eg
FIG. 1. Schematic representation of a molecular model based or-0.066 01 a.u. 1.8 eV). A transition dipole operator in-

the vibrational levels in thX 'Y (lowen) andA "X (uppe) elec-  gependent of the internuclear distarRevas consideredg

t_rolnichurfaces r?f .the molleculzlglaAtom_irch units are c(:jhoseh f:,U«o(|G><E|+|E><G|)- This model is sufficient for the il-
=1.Rdenotes the internuclear distance. The arrows indicate two ofirative purpose of demonstrating the execution of an algo-
the possible transitions induced by the driving field between arbi-

trary levels in the lower and upper surfaces. On the right is a magl:lthm n a mglepular setting. .
nified view of some of the energy levels involved and transitions The N=2 first Ievel.s of the grounq electron!c surface
between them. are chosen as the registers representingQhgubits. The
unitary transformation implemented is a Fourier transform
(e@=€M) and the process is repeated until the required27] invoked on theN levels on theX 'S | electronic state
convergence is achieved. representing the quli§). The unitary transformation is
More elaborate methods to deal with the implicit time implemented through transitions between the two electronic
dependence of Eq39) have been developed. For example, manifolds, cf. Fig. 1.
approximating the dynamics in between grid points by the An implementation of the iterative algorithm is chosen
free evolution withf, [22]. The simple procedure, which is Where theg;)®|G) and|e;)® |E) eigenstates are used as the
able to keep the monotonic behavior of the optimizationbasis{|m)}. The N=2@ first states in the lower surface are
method, was found sufficient. used as the basign)} of the relevant subspace. The first
The present implementation is based on a forward timéN—1 energy levels plus the linear combinat®f_ ,|n)/ N
propagation. Using the same formalism, the optimization caare used as the sgf for the state-to-state formulation. The
be accomplished also by a backward time propagation. It isvavefunction propagations were carried out by using a New-
also possible to combine both cases, and to perform the oen polynomial integratof28]. The final time for the imple-
timization in the forward and backward propagationsmentation isT=4.5x10% a.u. (=1 ps). In all the cases a
[22,26]. In the current studies, these other procedures werE&aussian shape functics(t) =exp{—32(t/T—1/2)?} and a
found to be inferior, slowing down the convergence rate. guess fieldeges{t) = €,S(t)cos(dt) were chosen.
The implementation of the Fourier transform in two qu-
IV. THE FOURIER TRANSFORM EXAMPLE bits (N=4) embedded in the set of 60 levels is used for
IN A MOLECULAR MODEL comparing the performance of the methods. Figure 2 shows

. . . . . . the change in the normalized functional, definedJasn,
As an illustration the implementation @-qubit Fourier —JIN for F, andFe,, andJ., - =J/N2 for Fo., with the

tsr:lré?;%m::i'nu?etvilos'ﬁl)evsgc;n'scéﬁg:]aagisvrigs\:egfu;a:nrggglelb;V;B;ogression of the iterative algorithm. In all the cases the
- 19 rget value of the normalized functional is1. A large

on the electronic manifolds of Ma reduction in the value of the functionals is accomplished in a

The Hamlltor_nan of the system describes a ground an%ma” number of iterations. Note the behavior of the simul-
excited electronic potential-energy surface coupled by a tran. Leous state-to-state formulatiéf,, with an insufficient

sition dipole operator: choice of the statefl). The algorithm finds a minimum of

N . ~ the objective, but, as shown in Fig. 4, the fidelity saturates at
H=H;®|G){G|+H®|E)}E|—p®(|GXE : g
o®|CNCI+Hew [E)E|~ ua (IG)(E a very low value meaning that this field does not generate the
+|E)G|)e(t), (48)  target unitary transformation.
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FIG. 2. Normalized functional,,,, vs the number of iteration: o ) )
F.. (squares Fq, (circles, Fqs (triangles up for implementing a FIG. 4. Logd 1 (fidelity)] of the implementation of the two-
fast Fourier transform in four levels. The line with triangles point- 9uPit Fourier transform vs the number of iteratidig for the op-
ing down corresponds 1, functional when{|1)} is chosen as the ~fimization in Fig. 2. The lines correspond . (squares Fp
orthogonal basig|n)}. The objective is reached whedom= (circles, andF g (triangles up. Fy,, (triangles dowi denotes the

—1. \o=1C ande,=5x10"2 a.u. in all the cases. case whgn the séfl)} is chosen as the orthogonal ba§is)} for
the functionalF ;.

Figgre 3 shows the valge. af for the field obtain.ed N yased orF . finds a solution with a phase factor exfi¢)
each iteration. The same initial guess was used in all the

cases which constituted the starting point for all the iterative ' . .
optimizations. However, the final results depend on the par; For the purpose of quantum computing the target unitary

ticular functional used. As discussed before the methoéransformatlon has to achieve high accuracy. The fidelity

unctional
4 g Sy (fidelity) =| 7|?/N2 (50)
/// \\\\
3 i L“\‘) NG is used to indicate the quality of the solution. Figure 4 shows
yd N the improvement of the fidelity versus the iteration. The
/ \ square modulus function#l,, [Eqg. (6)] shows a faster con-
2 \ .
/ \ \ vergence rate than the other two functionals.
/ In Fig. 5 the Fourier transform of the field for each of the
1
8
P_ 0 Fss Fsm
6
- .
-2 ’:'; 2
s
-3 _ - 0
‘\\’/ ’/// % 6 Fre FpOp
4t L. ff—¥-ff - —
-4 -3 -2 0 1 2 3 4 4
T
R 2
FIG. 3. Evolution of the optimization in the complexplane for

the case in Fig. 2 The lines correqund Fme .(circles, Fre 8_025 0.05 0075 0025 0.05 0.075 o1
(squarey andF ¢ (triangles up. The open circle indicates the value ® (a_u,)

of 7 for the common guess field. The dashed black line is the circle

|7|=N indicating the target of the methods. The arrows mark the FIG. 5. Fourier transform of the optimal field result of the opti-
direction of convergence. The insert enlarges the region corresponddization in Fig. 4 for the functionalk,., Fg,, andFgs. Atomic
ing to the real axes close to the circumference. units are chosefi=1. The casd is also shown.
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00 S P V. DISCUSSION
\ T T T T e I
'\‘ farte An implicit assumption in the optimization procedure is
-05 '| 3 qubts that the system is controllable. This means that a fek)
= : exists which implements the unitary transformation up to a
3 10 \ prespecified tolerance. The problem of controllability has
% \ 2 ubis been the subject of several studj@9—-33. In the context of
% s \\ unitary transformations it has been shoy80] that if the
9 AN commutators of the operatok$, and s generate the com-
- N plete Lie group SUNY), the system is completely control-
-20 \‘\\_\ lable. In more concrete terms addressing the Madel, it is
TS L expected to be completely controllable. The reason is that the
-25 it energy levels are nondegenerate and in addition each transi-
0 20 40 60 80 100 120 . N .. . .
iteration tion is distinct, characterized by a different Frank-Condon

FIG. 6. Logg1- (fidelity)] vs the number of iterations for factor(ej|/u|gi>. This controllability property will be true in

implementing a Fourier transform in 2dashed-dotted line 4 almost any nqnsymmetrl(_: mplecular system. )
(circles, 8 (solid line), 16 (dashed ling and 32(dotted ling levels. Afar feafih'ng Con_CIUSIO_n IS the“_':‘fore that for any unitary
transformation contained in the Hilbert space of the mol-

L . ecule, there is a driving field that implements the transforma-
optimization procedures is shown. The large peak at the freﬁon in one step. In a molecular system this task could be

quency(), seen in all cases, is the result of the choice of theachieved in a time scale of a picosecond. Since a field that

guess field. Besides, a similar width in frequencies is founOIexecutes such a unitary transformation exists, how difficult is

However, the fidelity reached by the solution correspondingy v, i it> Does this optimal field have reasonable intensity
to the square modulus functionBl, is significantly better and bandwidth?

than in the other cases for the same number of iterations.

. The OCT scheme can be considered as a classical algo-
The molecular model is also used to compare the converisnm employed for the inverse problem of finding the field
gence of the unitary transformation with the sixeof the

| b . h he i - hthat generates a predefined unitary transformation. The diffi-
relevant subspace. Figure 6 shows the improvement in thg, i of the inversion process is related to the scaling prop-
fidelity versus the number of iterations for implementing agtieg of the numerical effort with respect to the number of

Fo(ljmser trg_r;sform n 2t 4|’ ?h 16, and 32 Ievel; (1, t2 3t “/levels N. The best OCT algorithm based on thg,, func-
an qubits, respectivalyThe convergence characteristics tional is then used for estimating the scaling.

in the initial iterations strongly depends on the initial guess Simulating the quantum evolution is the major numerical

_and the p_aramet@ro. For ex?mp'e the _initia_l QUESS SEEMS 145k of the algorithm implementing OCT. The basic step is a
inappropriate for the one-qubit case which displays an initia ingle vector matrix multiplication which represents the op-

very slow convergence uniil after .25 ite.rations the right traCkeration of the Hamiltonian on the wave function. This task
is found. Aft.er a large numbgr of iterations the CONVErgenCe oles agO(M?) for direct vector-matrix multiplication or
characteristics settled meaning that each new iteration gav@(MlogM) for grid methods based on fast Fourier transform

O e DI 0. A= % 7834) T tme propagalon e ieps which scale s
P 9 (TAE), whereAE is the energy range of the problem.

o e s D o o e e ot vk propagaton scales a5 (CosP(ZM-TAE) . This scaing
9 elity . . ! ’ q relation is consistent with the fact that a classical simulation
by continuing to 600 iterations. The results allow one to

. ; . : o of a quantum unitary transformation scales exponentially
compare the integrated intensity of the optimal field: with the number of qubits.
The numerical cost of the OCT iterative algorithm used
T for inversion can now be examined. The crucial question is
I=J | moe(t)|dt. (51 how many iterations are required to obtain the field that
0 implements the unitary transformation up to a specified fi-
delity. For this discussion it is convenient to introdute
=log,{1— (fidelity)}. The analysis of the results of Sec. IV
The initial integrated intensity for all cases was identical.show that only the initial iterative steps are very sensitive to
The optimization procedure changé&ddepending on the the choice of the initial guess field. Eventually an asymptotic
number of qubits. The converged results show a moderateehavior is reached where the rate of changé loécomes
increase ofZ with the number of levels starting frori  inversely proportional to the number of the iterations steps.
=42 for one qubit toZ=54 for two qubits andZ=78 for  In addition, cf. Fig. 6, the rate of convergence is also in-
three qubits. versely proportional to the number of levels. This relation
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implies that the number of iteratiom$; required to achieve tions the physical resources scale moderately with the num-
the specified fidelity becomes ber of qubits in the transformation.

(3) The inversion problem of finding the field that induces
a unitary transformation seems to be a hard numerical prob-
lem scaling unfavorably with the number of levels in the
transformation.

where the coefficienta andb are positive. The data confirm
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Quantum control is based on interferences between manjelpful discussions.

distinct pathwayg1]. State-to-state coherent control finds a

constructive interferenqe which leads echusjver to th(=T fjnal APPENDIX: THE VARIATIONAL METHOD

state. The controllability depends on having a sufficient

amount of interference pathways. Implementing a unitary An alternative to the Krotov method of optimization is the

transformation by interferences is more complex. In this caswariational method1,21]. This method has been used previ-

the interference pathways from one state to another have wusly in the simultaneoull state-to-state transitions formu-

avoid other interference paths which connect other statesation [12] and for the evolution operator formulation using

The possible number of interference pathways becomes thitee functional F,. [11]. In the last case the variational

crucial resource that allows one to generate the transformawnethod was generalized in terms of the evolution equation

tion. for the unitary transformation. Unlike the Krotov method the
For weak fields, the number of pathways connecting twovariational method does not offer a direct algorithm to mini-

states in the subspace is linearly related to the number ahize Fg,,. For simplicity only the optimization of the func-

auxiliary states on the excited surface. Practically the bandtional F4 is discussed.

width of the pulse determines this number. This means that The variational method is based on the functigril]

the bandwidth in a weak-field implementation of a unitary

transformations has to increase exponentially when the num- K({i ,tri ) Ae)

ber of levelsN increases. The picture is completely altered

when the intensity is allowed to increase. Rabi cycling in- N Az [T Ao )

creases the number of interference pathways exponentially. :Zl g (T O1)|*~ fo E|A€| dt

The number of Rabi cycles can be estimated from the inte-

grated intensitylg.pi~Z/27, cf. EQ.(51), which leads to an N R

estimation of the number of interference pathways -2 RE{E (i (T O[1)

O(M7Rab) ~ O(MP27) . This estimation is consistent with =1

N, ~be??lfl/a (52

the results of Sec. IV where only a moderate increasg in T d ..

was observed when the number of qubits in the transforma- xf <¢ﬂ(t)|(—+ —H(e+Ae)>|¢/i,(t))},
tion increased. The estimated number of Rabi cycles changed 0 dt #

from Jgapi~6 for Q=1 to Jgapi~8 for Q=2 to Jrapi—12 (A1)

for Q=3. This means that the increase in resources of imple-

menting a unitary transformation with Q qubits in a molecu—With the additional conditior|; (t=0))=]). The set of

lar environment will scale with a low power GfAE, where . A .
AE is the pulse energy. states{|l)} and the target unitary transformati@were in-

In summary, we note the following points. troduced in Sec. Il{|; (t)} denotes the initial states driven

(1) A unified approach for obtaining the field that imple- by the field to the final state®|l). The terms|¢(t)) are
ments a unitary transformation has enabled the assessmentiBterpreted as Lagrange multipliers used as a constraint to
various formulations. In addition, a algorithm based on thdmpose the Schdinger equation. The two first terms are
square modulus of was developed. This scheme was found€duivalent to the functiondlL4) of the Krotov method. The
to have superior convergence properties with respect to thearameter\, is now interpreted as a Lagrange multiplier.
number of iterations. The functional(Al) differs from the common formulation of

(2) A unitary transformation could be implemented in a OCT in the form of the field terne+Ae. ¢ is a reference
molecular environment in a time scale of picoseconds witlfield and Ae must be interpreted as the correction used to
reasonable bandwidth and intensity. For intense field condieonverge to the optimal field that implements the target uni-
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tary transformation. Setting=0 and interpreting\ e as the
field the common form is re-attained.

By applying the calculus of variations, requirid@K =0,
with respect to each element of the &gt (t)}, the evolution
equations are reconstructed,

d iAo~
Slm)=- FAGEHAlpD), (A2

with the condition |;(t=0))=|lI) and formal solution

|4 (1))=U0(t,0;e+A€)|l). The variations with respect to
the set{ 4 (t)} gives

d iAo~
Glon)=—FAGE+Aalnm), (A

with the condition| ¢ (t=T))=0|l). The formal solution is
| (1))=U(t,T;e+Ae)O|l). Finally, variations with re-
spect toA e lead to the correction to the field

PHYSICAL REVIEW A68, 062308 (2003

N
Ae(t):—%lm IEI b, (I|OTUT(t,T;e+Ae)
O =
X nU(t,0e+Ae)|l) ], (A4)
with
b=(1|07(T,0;e+Ae)O|l). (A5)

The correction to the fieldA4) is the starting point of the
iterative algorithm to find the optimal field. In such a case
the correction to the field is implicit in the backward and
forward propagation of the states ihe. Several iterative
methods have been propod&?]. In the simplest approach,
a guess field(® is used to evaluatd e, which will be used

to obtain the input field in the next iteration. Usually it does

not converge. An alternative procedy@2] is to evaluatd)'
in Eq. (A4) using the field in the previous iteration and then
to simultaneously obtain the correction to the field and evalu-

ateU with the new field. This iterative algorithm is identical
to the one obtained from the Krotov method in Sec. Ill. A
study comparing different iterative algorithms based on the
Krotov and variational methods for the problem of state-to-
state optimization is described in Rg26].
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