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The semigroup formalism permits a general description of relaxation processes in quantum mechanical systems
coupled to Markovian baths. From its definition, the semigroup formalism should be expressed in terms of
the dissipative and relaxation coupling of the eigenstates of the quantum system to the bath modes. Often,
for convenience both in calculation and in physical interpretation, it is more straightforward to couple local
states of the quantum mechanical system to the bath. Within a simple two-site system, we examine the
generalities of these two different coupling schemes, noting situations in which they are the same and situations
for which substantial differences occur.

I. Introduction

Quantum mechanical systems in which the states are few in
number generally exhibit multiply periodic dynamics and do
not show irreversible approaches to equilibrium. When such
systems interact with dense, multilevel environments (classical
or quantal), irreversible behavior is seen, and equilibrium is
approached. Many formulations exist for describing this bath-
related relaxation.1-3 The various theoretical models for
evaluating the properties of this coupled quantum mechanical
system-bath problem involve a rich and varied list of tech-
niques. The early theories of relaxation developed by Wang-
sness and Bloch4,5 and later extended by Redfield6,7 grew out
of applications of time-dependent perturbation theory to the
density matrix formalism. Over the last 20 years, the sophis-
tication and breadth of relaxation theories has blossomed to
include techniques such as Feynman path integrals,8,9 Brownian
oscillator models,10,11 generalized master equations,12,13 and
projection operator techniques.14 Each of these theories has its
own inherent rigor, range of applicability, and interpretation.

Of these relaxation models, perhaps the most widely utilized
in the chemical literature has been Redfield theory. For instance,
in condensed phase electron transfer (ET), Redfield theory has
demonstrated the appropriate regime in which Fermi’s Golden
Rule is applicable15 and also predicted some intriguing mani-
festations of quantum coherences in ultrafast optical spectra.16

While new advances in Redfield theory have expanded the
number of states in the quantum system that can be included in
the reduced density matrix,17,18there still exist several difficulties
in applying it to real chemical systems, including serious
concerns about how to partition properly the degrees of freedom
included in the system from those in the bath.17 Relying on
the smallness of the system-bath coupling parameters has
inherent dangers, including nonphysical behaviors such as
negative elements in the propagated density matrix.19

One of the more flexible and easily applied theories of
relaxation applied to chemical systems is the semigroup
methodology.20-22 The development of semigroup methods
relies on the fact that the time evolution operator of the quantum

mechanical system generates a completely positive dynamical
semigroup.23-25 Semigroup methods are general enough that
they are easily extended to include several different kinds of
system-bath interactions at once; these might include relaxation,
dissipation, energy dephasing, binary collisions, or energy
transfer. Usually, semigroup theory is expressed so that the
equations of motion involve the system operators, instead of
the elements of the reduced density matrix.26

The very rapid growth in the sophistication of pump/probe
and multiple-wave mixing methods in optical spectroscopy27

has led to important developments in the formal analysis of
quantal systems interacting with a dissipative environment. Most
of this work has focused on the harmonic oscillator and the
two-level system as simple but illustrative examples.28 Sig-
nificant differences among the various approaches to this
problem have been noted. The focus, in the semigroup
approach, on positivity (physically, this means that populations
can never become negative) implies that, for the harmonic
oscillator, either the solution must fail to approach equilibrium
properly or it cannot be translationally invariant.28,29 On the
other hand, other approaches, including Redfield theory, have
other drawbacks including loss of complete positivity (negative
populations are not physical!). Therefore, it is important to
understand the applicability and general behavior of the different
approaches to quantum dissipation if a useful, general method
for quantum dissipative dynamics is to be obtained.

To be rigorous in applying semigroup techniques, the
operators describing the time evolution of the quantum me-
chanical system should be expressed in their eigenstate repre-
sentation.30 However, for many chemical systems, working in
a noneigenstate basis is often advantageous for several reasons:

(1) For systems with more than two coupled fields and sites,
solving the system eigenvalue problem may be very difficult,
or even impossible analytically. Examples include the spin/
boson picture broadly used for electron-transfer problems12,16,17,27,28

and anharmonic multimode molecular vibrational Hamiltonians.
(2) Working in a noneigenstate basis often makes the

comparison between theoretical and experimental results easier,
since many chemists visualize complex systems or molecules
as being made up of unique pieces whose isolated properties
are known. These same concerns arise when applying other
relaxation theories, such as Redfield theory, where the reduced
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density matrix of the system is most conveniently expressed in
the eigenstate basis.

This leads to the purpose of this paper, namely an investiga-
tion of when semigroup techniques can be applied directly to
quantum mechanical systems expressed in terms of operators
relating to a local set of sites rather than to eigenstates. In
particular, the quantum mechanical system of interest consists
of a coupled fermion two-site model, which is allowed to interact
with an external thermal bath. The two-site model has become
one of the workhorses of quantum chemistry, having been used
previously to model systems such as coupled spins, coupled
bosons, and intervalence electron transfer.

Although this issue, namely coupling to the environment via
eigenstates or local states, might seem merely a formal exercise,
it has substantial physical significance. In the spin/boson
situation, for example, the obvious physical approximation is
to permit dissipation independently in the vibrational and
electronic manifolds (not in the eigenstates, which are not
analytically obtainable).29 We study the very simple case of
the two-level system because the local states and eigenstates
can be trivially interconnected, and their relaxation dynamics
can be found from the semigroup equation without further
approximation. Thus this simple system provides an ideal
example for the study of the effect of local state versus eigenstate
relaxation.

This paper is organized as follows. In section II the
semigroup formalism is introduced and then applied to the two-
fermion site model, expressed first in the local site basis and
then in the eigenstate basis. The equations of motion arising
in section II are evaluated, and the results of these calculations
investigated in section III. Finally, section IV summarizes the
results of this work, and some conclusions are given.

II. Theory
A. Semigroup Formalism. The semigroup approach is

applicable to a quantum mechanical system undergoing relax-
ation, dissipation, or sudden perturbations arising from coupling
with an external bath. Semigroup techniques are valid for all
situations where the system-bath interaction is Markovian; i.e.,
the decay of memory effects is instantaneous. The total
Hamiltonian can be written as eq 2.1, whereHS, HSB, andHB

stand for the system, system-bath, and bath Hamiltonians,
respectively. Just as in density matrix theory,1,4-7,33 the
semigroup analysis transforms the full dynamics to a picture of
reduced dynamics within the space of the quantum system. The
equations of motion are expressed using the Heisenberg
representation of the system operators instead of the density
matrix of the system. Since the expectation values of these
operators correspond to experimental observables, the results
of the semigroup analysis are amenable to direct comparison
with experimental results.

The influence ofHSB and HB on the quantum mechanical
system is included in the Heisenberg equation as additional
relaxation-type terms for the system operators. Thus, the
Heisenberg equation of motion becomes

In eq 2.2Ω is an arbitrary quantum mechanical system operator,
and the first two terms on the right correspond to the normal
Heisenberg evolution terms. In the remainder of this com-
munication, the system operators will be time-independent and

the second term on the right will be ignored. The last term is
a Liouville operator which formally describes dissipation due
to the influence of the bath and the system-bath coupling. The
system-bath coupling is further assumed to be of the form

whereV i is a system operator,Bi is a bath operator, andΓi is
an interaction strength.

From the assumption that eq 2.3 is valid for the system of
interest, semigroup theory derives the following equation for
the relaxation terms:25

Here theγi values are positive, real relaxation amplitudes whose
magnitude can be estimated using perturbation theory, provided
the bath correlation functions are known.31-33 Equation 2.4
holds in general for both Hermitian and non-Hermitian system
operators. In the specific case whereV i is Hermitian, then eq
2.4 simplifies to22

where the double commutator form is standard for relaxation
processes.

B. Local Basis: Relaxation Terms and Dynamical Equa-
tions. The model system of interest has two fermion sites, of
energy(∆, coupled to one another with an interaction strength
mediated by the tunneling matrix elementJ. Expressing the
system operators using second quantization allows the system
Hamiltonian to be written as

The relaxation in this system is included by defining the
following form for LD(Ω)

The first two terms in eq 2.7 correspond to pure dephasing terms,
and the last two terms describe the population relaxation of the
two sites; in the language of magnetic resonance or vibrational
relaxation theories these correspond to T2* and T1 processes,
respectively.

The four coupled operators whose time-dependent expectation
values describe the dynamics of this two-site system are most
conveniently expressed as the Hermitian operators

H ) HS + HSB + HB (2.1)

dΩ
dt

) i
p
[HS,Ω] + ∂Ω

∂t
+ LD(Ω) (2.2)
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Using these system operators and the fermion commutation
relations

the equations of motion become

In any relaxation theory of the system/bath type, the system
should approach, asymptotically in time, the appropriate thermal
equilibrium population distribution (physically, the system
should assume the temperature of the bath). Within the system’s
own evolution, this temperature dependence must be required,
usually via proportionality requirements on the relaxation
parameters. These requirements arise, physically, because it is
the dynamics of the bath (HSB andHB in eq 2.1) that determine
this dependence (a simple case occurs for competitive first-
order chemical kinetics schemes, where exp(-∆G°/RT) )
kf/kb, with ∆G°, R, kf, and kb respectively the free energy
difference, gas constant, and forward and backward first-order
rate constants).

Within the semigroup approach, it can be useful to require
thermal equilibration, and in previous work, thermal effects have
been introduced in a variety of ways. One example is the ad
hoc addition of constant terms to the equations of motion, so at
long times the expectation values approach their Boltzmann
averages.20,29 In this work, temperature will be included via
the relaxation coefficients. At a sufficiently long time, a steady
state between sites 1 and 2 should be established, so that dΩ1/
dt ) 0. Hence, from eq 2.11

Averaging eq 2.12 over a canonical ensemble, and realizing
that 〈Ω4〉 ) 0 gives the following relationship betweenγ2 and
γ3

If we now require a Boltzmann distribution in〈Ω1〉/〈Ω2〉, this
yields

whereâ ) (kBT)-1 andkB is the Boltzmann constant.
C. Eigenvector Basis: Relaxation Terms and Dynamical

Equations. The eigenvalues of eq 2.6 are denoted as(E )
(∆2 + J2)1/2, and the system Hamiltonian becomes, in the
eigenvector basis,

Here the labels+ and- refer to the eigenstates with eigenvalues
+E and-E, respectively. Denoting the quantum mechanical
system operators in this basis with the labelθ and including
the same types of relaxation terms as were present in the local
basis gives anLD(θ) of

At this point the equations of motion in the eigenstate basis
could be written down by defining an analogous set of system
operators as in eq 2.8 and just inspecting the equations of motion
in the local basis. However, since the results from doing the
relaxation in the eigenstate basis must be transformed back to
the local basis for comparison with eq 2.11, it is actually
advantageous to work with a non-Hermitian set of system
operators in the eigenstate basis. The exact procedure followed
for doing these basis transformations is outlined in the Appendix,
with the result given as follows

where

The procedure for introducing thermal equilibrium into these
equations of motion is similar to that in eq 2.14 and is outlined
in the Appendix with the final result

III. Computations and Results

From the form of the eigenvalues in this two-site system, it
seems reasonable that the magnitude of the tunneling integralJ
will control how well the local site relaxation equations model
the “exact” or transformed eigenstate equations. WhenJ is
small compared to∆, then the two sets of equations should
yield similar results since asJ f 0 the local sites and local site
energies become the eigenstates and eigenvalues of the two-
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site system. AsJ increases, clearly the local sites and the
eigenstates begin to differ and the corresponding expectation
values of the system operators should begin to diverge between
the two equations of motion.

The equations of motion, eqs 2.11 and 2.18, are solved
numerically using the fourth-order Runge-Kutta algorithm
supplied with the software package MathCad.34 It is found that
convergence of the results over a period of 50 arbitrary time
units requires a 5000-point grid and consumes 30-45 s of real
time on a 75 MHz pentium processor. A system of arbitrary
units is used for all variables in the equations of motion, since
only the qualitative behavior of these two models is of concern
here.

The initial conditions of the quantum system are always〈Ω1

(t)0)〉 ) 1.0 and 〈Ωn(t)0)〉 ) 0.0 for n ) 2, 3, or 4,
corresponding to all of the fermion population located on site
1 at the beginning of the dynamics. Since neither of the model
Hamiltonians includes terms which remove population from the
quantum system into a fermion “sink”, then the total population
is conserved and〈Ω1〉 + 〈Ω2〉 ) 1.0 at all times.

A. Weak Coupling Regime. When 2J is much less than
kBT (and other relevant parameters), an ET system is in a
nonadiabatic regime. In nonadiabatic ET, the rate is propor-
tional to the squared electron tunneling matrix element between
the donor and acceptor potential wells, so (if the bath coupling
is effective) the site populations are usually monotonically
decaying with time and lack the oscillatory structure that can
characterize adiabatic ET. Figure 1 shows the time-dependent
population of site 1, and the smooth, monotonic decay is evident
in both the eigenstate and local site relaxation calculations. More
importantly, the evolution of the population on site 1 is
essentially identical for the two relaxation schemes. Decreasing
the magnitude of the eigenstate and local site energy fluctuation
relaxation (γ1 andε1) does little to the population dynamics of
Ω1 (Figure 2). However, loweringγ2 and ε2 dramatically
lengthens the decay time ofΩ1 (Figure 3); essentially, the T1-
type process reduces the effective strength of the couplingJ.
Again, the dynamics from introducing relaxation in the eigen-
state basis and the local site basis are the same, with a minor
difference in the population distributions due to slightly different
thermal factors, when the coefficientsγ2 andε2 are decreased.

B. Strong Coupling Regime. As the magnitude ofJ
increases, the coupled fermion system begins to resemble an
adiabatic ET model. In underdamped adiabatic ET, the system

dynamics resembles simple tunneling with the electron popula-
tion undergoing damped oscillations across the barrier repeatedly
until a steady state is established between the donor and acceptor
populations. An analogous population fluctuation shows up in
both the local and eigenstate relaxation models asJ increases,
as seen in Figure 4. The period of the fluctuations is slightly
longer in the local site basis (as measured by the peak to peak
separation), andΩ1 reaches thermal equilibrium faster. The
damping of the coherent transfer of population between sites 1
and 2 is stronger in the eigenstate basis, since the expectation
value ofΩ1 becomes a smooth function earlier than in the local
basis. The thermal equilibrium population on site 1 for the two
relaxation models varies because of the large difference between
the eigenvalues and the local site energies in this regime.

Not only can there be a discrepancy in the population transfer
dynamics in the eigenstate versus the local bases, but the phase
information carried in the operatorsΩ3 andΩ4 can also be very
different. Figure 5A is a plot of the expectation value ofΩ3

versus time in the same parameter regime as was used in Figure
4. Evolution under local basis coupling displays damped
oscillations, which return to zero after each recurrence, at short
times, followed by longer time asymptotic decay. In the
eigenstate basis,〈Ω3〉 > 0 until t > 9, followed by an asymptotic
approach to a negative value.〈Ω3〉 in the eigenstate basis does
not asymptotically approach zero because it is simply the
difference in the eigenstate thermal equilibrium populations.
Figure 5B shows the corresponding results for〈Ω4〉. For this

Figure 1. Time dependence of the population located on site 1, in the
nonadiabatic regime, as predicted by relaxation applied in the two
different system bases. The parameters for the two models have the
unitless valuesâ ) 0.1,∆ ) 1.0,J ) 0.1,γ1 ) 1.0) ε1, andγ2 ) 0.1
) ε2. Notice that the dynamics are the same in the two bases.

Figure 2. A plot similar to Figure 1, exceptγ1 andε1 have decreased
by an order of magnitude to 0.1. There is no discernible T2* dependence
of the population dynamics in the lowJ regime.

Figure 3. The evolution of the model two-site system whenγ2 ) ε2

) 0.01, with all other parameters as in Figure 1. Note the slower rate
of thermalization when the T1-type fluctuations are decreased.
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operator, both coupling regimes lead to similar dynamics,
displaying dampened oscillations at short times and a constant
value close to zero at longer times. The main difference
between the local and eigenstate results for this operator is the
larger amplitudes of successive recurrences in the local basis.

The influence of the relaxation coefficients on the system
dynamics, in the strong coupling regime, is shown in Figures 6
and 7. When the system-bath coupling becomes weaker for

the eigenstate and the local site population damping (a decrease
in ε1 or γ1, respectively), the oscillations in both bases become
significantly more underdamped; this behavior is a direct
manifestation of the pure dephasing nature ofε1 andγ1. When
the system-bath coupling of the transfer matrix element is
decreased, there is little change in the local site dynamics,
whereas there is an increase in the lifetime of the eigenstate
basis decay. Notice that in the strong coupling regimeε2 and
γ2 have a much weaker effect on the population evolution than
they did in the weak coupling limit, but their influence still
manifests itself in the dynamics of the eigenstate basis results.

In Figures 4 and 7, it is evident that the dynamics of fermion
transfer are different when relaxation is imposed in the eigenstate
basis or in the local site basis. In Figure 6, however, the two
sets of equations seem to give rise to similar dynamics, with a
slight offset between the two decay curves arising from different
thermal factors. The cause of the agreement between the two
relaxation treatments is not the decrease in the magnitude of
the energy relaxation coefficients, as seen in Figure 8 whereε1

andγ1 are reduced to 0.5 and the relaxation dynamics are still
dissimilar between the two models. The identical dynamics
arise in a regime where the system is placed in the high
temperature (smallâ) limit, and the two independent relaxation
coefficients in each basis (γ1 and γ2 or ε1 and ε2) are of

Figure 4. Comparison of the results from relaxation applied in the
local state basis versus the eigenstate basis in the strong coupling
regime. The parameters in this plot were given the valuesâ ) 0.1, ∆
) 1.0, J ) 1.8, γ1 ) ε1 ) 1.0, andγ2 ) ε2 ) 0.1.

B

A

Figure 5. Evolution of the expectation values of the operators which
convey phase information for our two-site model,Ω3 (A) andΩ4 (B).
The model parameters have the same values as in Figure 4.

Figure 6. The results for the strongly coupled two-site model when
γ1 andε1 are decreased from 1.0 to 0.1. The decrease in these relaxation
coefficients results in significant underdamping of the site-site
population fluctuations. Also, the dynamics arising from the two models
become very similar in the high-temperature regime where the coupling
coefficients are of the same magnitude.

Figure 7. Effect of lowering the site/eigenstate energy dephasing by
an order of magnitude whenJ ) 1.8. The results are less dramatic in
the strong coupling limit than in the lowJ regime (Figure 3).
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comparable magnitude. Asâ f 0, thenε2 ) ε3 andγ2 ) γ3.
Also, if ε2 ) ε1, then the elements in the relaxation matrix of
eq 2.17 becomeB ) ε1, G ) -2ε1, andA ) C ) D ) F ) 0.
A comparison of these equations of motion with eq 2.11, when
γ2 ) γ1, shows that the two approaches will have an identical
population evolution. In Figure 9,â has been lowered from
0.1 to 0.01, and one can see that the eigenstate and local basis
results are identical.

IV. Conclusions
The semigroup analysis offers an attractive way to discuss

relaxation dynamics in a quantum mechanical system. It fits
easily within a Heisenberg description of the evolution of the
system operators, whose average can then be used to deduce
actual dynamical observables.

The formal derivation of the semigroup holds for a diagonal
operator set, corresponding to the eigenstates of the quantum
system, coupled to a Markovian bath. As long as one deals
with a simple system, finding these eigenstates is straightforward
and therefore the relaxation can be carried out in a rigorous
fashion. For more complex systems (such as the spin-boson
system), however, finding the system’s eigenstates is itself a
major task. Moreover, those system eigenstates are not neces-
sarily easily interpreted in an intuitive fashion. It then becomes
relevant to consider how large the error might be if operators

diagonal in the local states, rather than in the eigenstates, are
coupled to the Markovian bath using the semigroup analysis.

We have analyzed a simple two-site model and have
examined the systematics of the relaxation and thermalization
processes. We find two conditions under which the dissipative
and relaxation coupling to the local states is a good approxima-
tion to the coupling to the eigenstates. The first and more
obvious of these is when the intersite coupling parameter, which
we callJ, is small. Under this condition, the system eigenstates
essentially are local states, and therefore one is not surprised to
find similar relaxation behavior. The other, less intuitive
situation occurs in the high-temperature limit when the site
energy dephasings are roughly equal to the dephasings of the
transfer element itself. Then, essentially, all dynamical variables
relax uniformly, and the relaxation/evolution equations become
identical.

Like the Redfield analysis, to which it is closely related,28

the semigroup analysis in principle makes no arguments about
the perturbative nature of the substate coupling within the
system. Indeed, if one can solve for the eigenstates of this
system, one has a general analysis of the dynamics, including
both causal evolution within the system and bath-induced
relaxation.

As a practical matter, it is still probably most appropriate to
minimize the interactions between subsystems within the
quantum mechanical space and then to use quantum or
semiclassical propagation35 to describe the evolution; the
semigroup can then completely and appropriately describe the
relaxation processes.
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Appendix

By using the non-Hermitian operator basis

the equations of motion in the eigenstate operator basis become

Introducing the requirement that the expectation values ofθ1

andθ4 approach thermal equilibrium at long times is done in
an analogous way as in the local site basis. At steady state
dθ1/dt ) 0, and averaging the equation of motion forθ1 over a
canonical ensemble yields the following relationship forε2 and

Figure 8. Coupled two-site model whenJ ) 1.8, â ) 0.1, ∆ ) 1.0,
γ1 ) 0.5 ) ε1, andγ2 ) 0.1 ) ε2. These results illustrate that it is not
simply the decrease inγ1 andε1 which is responsible for the relaxation
in the two bases yielding similar dynamics in Figure 5.

Figure 9. The decrease ofâ from 0.1 to 0.01 (with all other parameters
as in Figure 5) results in the local site basis and the eignestate basis
giving the exact same dynamics, even though the two-site model is in
the strong coupling regime. θ1 ) a+

† a+, θ2 ) a+
† a-, θ3 ) a-

† a+, θ4 ) a-
† a- (A1)

d
dt(θ1

θ2

θ3

θ4
))

(-ε2 0 0 ε3

0 2iE - ε1 +
(ε2 + ε3)

2
0 0

0 0 -2iE - ε1 +
(ε2 + ε3)

2
0

ε2 0 0 -ε3

)
(θ1

θ2

θ3

θ4
)≡ Â(θ1

θ2

θ3

θ4
) (A2)
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ε3

The transformations between the local basis operators and
the eigenstate basis operations have the following forms

where

and

So, to transform the equations of motion given in eq A2, the
matrix B̂ÂĈ is evaluated and then rearranged into the Hermitian
local site basis of eq 2.6.
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