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Semigroup Representations, Site Couplings, and Relaxation in Quantum Systems
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The semigroup formalism permits a general description of relaxation processes in quantum mechanical systems
coupled to Markovian baths. From its definition, the semigroup formalism should be expressed in terms of
the dissipative and relaxation coupling of the eigenstates of the quantum system to the bath modes. Often,
for convenience both in calculation and in physical interpretation, it is more straightforward to couple local
states of the quantum mechanical system to the bath. Within a simple two-site system, we examine the
generalities of these two different coupling schemes, noting situations in which they are the same and situations
for which substantial differences occur.

mechanical system generates a completely positive dynamical
semigroup®=25 Semigroup methods are general enough that

Quantum mechanical systems in which the states are few iny oy are easily extended to include several different kinds of

number generally exhibit multiply periodic dynamics and do
not show irreversible approaches to equilibrium. When such dissipation, energy dephasing
systems interact with dense, multilevel environments (classical ’ .
or quantal), irreversible behavior is seen, and equilibrium is
approached. Many formulations exist for describing this bath-
related relaxatioA=® The various theoretical models for
evaluating the properties of this coupled quantum mechanical
system-bath problem involve a rich and varied list of tech-
nigues. The early theories of relaxation developed by Wang-
sness and Blod? and later extended by Redfiéltigrew out

of applications of time-dependent perturbation theory to the
density matrix formalism. Over the last 20 years, the sophis-
tication and breadth of relaxation theories has blossomed to
include techniques such as Feynman path inte§fspwnian
oscillator modeld%1! generalized master equatiot?d3 and
projection operator techniquéb.Each of these theories has its
own inherent rigor, range of applicability, and interpretation.

Of these relaxation models, perhaps the most widely utilized
in the chemical literature has been Redfield theory. For instance
in condensed phase electron transfer (ET), Redfield theory has
demonstrated the appropriate regime in which Fermi’s Golden
Rule is applicab® and also predicted some intriguing mani-
festations of quantum coherences in ultrafast optical sp&ttra.
While new advances in Redfield theory have expanded the
number of states in the quantum system that can be included in
the reduced density matrix8there still exist several difficulties
in applying it to real chemical systems, including serious
concerns about how to partition properly the degrees of freedom
included in the system from those in the b&thRelying on
the smallness of the systerbath coupling parameters has
inherent dangers, including nonphysical behaviors such as
negative elements in the propagated density matrix.

One of the more flexible and easily applied theories of
relaxation applied to chemical systems is the semigroup
methodology?®>22 The development of semigroup methods
relies on the fact that the time evolution operator of the quantum

system-bath interactions at once; these might include relaxation,
binary collisions, or energy
transfer. Usually, semigroup theory is expressed so that the
equations of motion involve the system operators, instead of
the elements of the reduced density matfix.

The very rapid growth in the sophistication of pump/probe
and multiple-wave mixing methods in optical spectrosédpy
has led to important developments in the formal analysis of
guantal systems interacting with a dissipative environment. Most
of this work has focused on the harmonic oscillator and the
two-level system as simple but illustrative exampiesSig-
nificant differences among the various approaches to this
problem have been noted. The focus, in the semigroup
approach, on positivity (physically, this means that populations
can never become negative) implies that, for the harmonic
oscillator, either the solution must fail to approach equilibrium
properly or it cannot be translationally invarigf€® On the
other hand, other approaches, including Redfield theory, have
'other drawbacks including loss of complete positivity (negative
populations are not physical!). Therefore, it is important to
understand the applicability and general behavior of the different
approaches to quantum dissipation if a useful, general method
for quantum dissipative dynamics is to be obtained.

To be rigorous in applying semigroup techniques, the
operators describing the time evolution of the quantum me-
chanical system should be expressed in their eigenstate repre-
sentatior’® However, for many chemical systems, working in
a noneigenstate basis is often advantageous for several reasons:

(1) For systems with more than two coupled fields and sites,
solving the system eigenvalue problem may be very difficult,
or even impossible analytically. Examples include the spin/
boson picture broadly used for electron-transfer probietg’27.28
and anharmonic multimode molecular vibrational Hamiltonians.

(2) Working in a noneigenstate basis often makes the
comparison between theoretical and experimental results easier,
since many chemists visualize complex systems or molecules
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as being made up of unique pieces whose isolated properties

* Argonne National Laboratory. are known. These same concerns arise when applying other
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density matrix of the system is most conveniently expressed in the second term on the right will be ignored. The last term is

the eigenstate basis. a Liouville operator which formally describes dissipation due
This leads to the purpose of this paper, namely an investiga-to the influence of the bath and the systebath coupling. The

tion of when semigroup techniques can be applied directly to system-bath coupling is further assumed to be of the form

guantum mechanical systems expressed in terms of operators

relating to a local set of sites rather than to eigenstates. In Heg = zriViBi (2.3)

particular, the quantum mechanical system of interest consists T

of a coupled fermion two-site model, which is allowed to interact

with an external thermal bath. The two-site model has become WhereV; is a system operatoB; is a bath operator, and is

one of the workhorses of quantum chemistry, having been usedan interaction strength.

previously to model systems such as coupled spins, coupled From the assumption that eq 2.3 is valid for the system of

bosons, and intervalence electron transfer. interest, semigroup theory derives the following equation for
Although this issue, namely coupling to the environment via the relaxation term&:

eigenstates or local states, might seem merely a formal exercise,

it has substantial physical significance. In the spin/boson

situation, for example, the obvious physical approximation is

to permit dissipation independently in the vibrational and

electronic manifolds (r;ot in the eigenstates, which are not pere they; values are positive, real relaxation amplitudes whose

analytically obtainable}® We study the very simple case of  agnitude can be estimated using perturbation theory, provided
the two-level system because the local states and eigenstategyg phath correlation functions are known3? Equation 2.4

can be trivially interconnected, and their relaxation dynamics poids in general for both Hermitian and non-Hermitian system

can be found from the semigroup equation without further operators. In the specific case whafgis Hermitian, then eq
approximation. Thus this simple system provides an ideal 5 4 simplifies t82

example for the study of the effect of local state versus eigenstate
relaxation. Vi

This paper is organized as follows. In section Il the Lp(Q) = _z_[vi,[vi,g]] (2.5)
semigroup formalism is introduced and then applied to the two- 2
fermion site model, expressed first in the local site basis and
then in the eigenstate basis. The equations of motion arisingwhere the double commutator form is standard for relaxation
in section Il are evaluated, and the results of these calculationsprocesses.
investigated in section Ill. Finally, section IV summarizes the  B. Local Basis: Relaxation Terms and Dynamical Equa-
results of this work, and some conclusions are given. tions. The model system of interest has two fermion sites, of
energy+A, coupled to one another with an interaction strength
mediated by the tunneling matrix elemeht Expressing the
system operators using second quantization allows the system
Hamiltonian to be written as

Lo(@) =Y y|ViQv - gtvivr,szh (2.4)

Il. Theory

A. Semigroup Formalism. The semigroup approach is
applicable to a quantum mechanical system undergoing relax-
ation, dissipation, or sudden perturbations arising from coupling

with an external bath. Semigroup techniques are valid for all _ to .t + t

situations where the systerbath interaction is Markovian; i.e., Hs= A3, — a:3,) + J(@a, + 3,3, (2.6)
the decay of memory effects is instantaneous. The total o , o -
Hamiltonian can be written as eq 2.1, whéte, Hsg, andHg The relaxation in this system is included by defining the

following form for Lp(2)
H=Hg+Hg+ Hg (2.1)

o Lo(Q) = — Zala, [ala, Q)] — “ala,[ala,Q]] +
stand for the system, systerbath, and bath Hamiltonians, Lo(2) Sl [a5a, Q] — S {202, (3,2, 2]
respectively. Just as in density matrix thedfy/33 the " " 1 4+ " "
semigroup analysis transforms the full dynamics to a picture of 72{ aa,Qaa, — E[alazazalygh} + 73{ aaQaa, —
reduced dynamics within the space of the quantum system. The 1+
equations of motion are expressed using the Heisenberg E[azalalazg]—o—} (2.7)
representation of the system operators instead of the density

matrix of the system. Since the expectation values of these g first two terms in eq 2.7 correspond to pure dephasing terms,
operators correspond to experimental observables, the resultgq the Jast two terms describe the population relaxation of the
of the semigroup analysis are amenable to direct comparisonyq sites: in the language of magnetic resonance or vibrational

with experimental results. . relaxation theories these correspond 6 @nd T; processes,
The influence ofHsg and Hg on the quantum mechanical respectively.

system is included in the Heisenberg equation as additional ye four coupled operators whose time-dependent expectation

relaxation-type terms for the system operators. Thus, the gyes describe the dynamics of this two-site system are most

Heisenberg equation of motion becomes conveniently expressed as the Hermitian operators

daQ _ i 0Q

— = 3[HsQ] + ==+ L () (2.2) t

dt ot Q =aa
In eq 2.2Q is an arbitrary quantum mechanical system operator, +
and the first two terms on the right correspond to the normal Q,=a3,

Heisenberg evolution terms. In the remainder of this com- + +
munication, the system operators will be time-independent and Qs =aa, + aa
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Q,=i(ala, — aja,) (2.8) Hs=E(ala, —a'a) (2.15)
Using these system operators and the fermion commutationHere the labels- and— refer to the eigenstates with eigenvalues
relations +E and —E, respectively. Denoting the quantum mechanical
system operators in this basis with the laBeand including
[a;r,af]+ =[a.8].=0 (2.9) the same types of relaxation terms as were present in the local
basis gives amp(0) of
t _
Sal. =0 2.10
(a8l =0 (2.10) _ Gt T €1t T
_ _ Lo(0) = — Slaa[aa,. 0] — laca [aca 6]l +
the equations of motion become
0 62{ a:rraﬁaia+ - %[aia,aim,@h} + 63{aia+¢9a1a_ —
1
d[€|_ 1o+t
al .|~ 2[a_a+a+a_,¢9]+} (2.16)
Q,

At this point the equations of motion in the eigenstate basis
V2 Vs 0 —J could be written down by defining an analogous set of system

Y2 V3 0 J Q, operators as in eq 2.8 and just inspecting the equations of motion
(yo+ 79 Q, in the local basis. However, since the results from doing the

0 0 —y,— 2 2A Q, (2.11) relaxation in the eigenstate basis must be transformed back to
Q the local basis for comparison with eq 2.11, it is actually

+
2) =2 —2A -y, — w advantageous to work with a non-Hermitian set of system
operators in the eigenstate basis. The exact procedure followed

In any relaxation theory of the system/bath type, the system o going these basis transformations is outlined in the Appendix,
should approach, asymptotically in time, the appropriate thermal ith the result given as follows

equilibrium population distribution (physically, the system

should assume the temperature of the bath). Within the system’s Q, A—B A+B C —-J |2
own evolution, this temperature dependence must be required, ¢(Q, —-A+B—-A—-B —-C J Q,
usually via proportionality requirements on the relaxation Q, “|lp+c D-Cc F+G 2A Q, (2.17)
parameters. These requirements arise, physically, because it is Q, 2] —2] —2A G-F|\Q,

the dynamics of the bathsg andHg in eq 2.1) that determine

; : " - where
this dependence (a simple case occurs for competitive first-

order chemical kinetics schemes, where expG°/RT) = A

kilko, wWith AG®, R, k;, and k, respectively the free energy AZE(GB_ <)

difference, gas constant, and forward and backward first-order

rate constants). A2 P J
Within the semigroup approach, it can be useful to require B= SE? + = (3 €)+ 2_Ez€l

thermal equilibration, and in previous work, thermal effects have

been introduced in a variety of ways. One example is the ad JA JA

hoc addition of constant terms to the equations of motion, so at C=- 4_EZ(€3 +e) + 2_E2 €

long times the expectation values approach their Boltzmann

averages®?® In this work, temperature will be included via J

the relaxation coefficients. At a sufficiently long time, a steady D= 2_E(€3 —€)

state between sites 1 and 2 should be established, so®At d

dt = 0. Hence, from eq 2.11 Na NG

F=-—"(te)t+t 56

.82, +y,Q,—JQ,=0 (2.12) 4E 2E

Averaging eq 2.12 over a canonical ensemble, and realizing 5 — _(A2 + F +1-)(63+ ) — (A_2+ 1)61 (2.18)
4 2 '

that [©2,[0= 0 gives the following relationship between and 4_E2 2_I52 2

V3
The procedure for introducing thermal equilibrium into these
9,0 equations of motion is similar to that in eq 2.14 and is outlined
V3= ) DVz (2.13) in the Appendix with the final result
2
— . o 2E
If we now require a Boltzmann distribution if2,92,[] this €3=€6¢€ (2.19)
yields [ll. Computations and Results
Y3 =75 e A (2.14) From the form of the eigenvalues in this two-site system, it
seems reasonable that the magnitude of the tunneling intégral
wheref = (ksT)~! andkg is the Boltzmann constant. will control how well the local site relaxation equations model
C. Eigenvector Basis: Relaxation Terms and Dynamical the “exact” or transformed eigenstate equations. Whes
Equations. The eigenvalues of eq 2.6 are denotedtds = small compared ta\, then the two sets of equations should

(A2 + 3912 and the system Hamiltonian becomes, in the yield similar results since ak— 0 the local sites and local site
eigenvector basis, energies become the eigenstates and eigenvalues of the two-
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Figure 1. Time dependence of the population located on site 1, in the Figure 2. A plot similar to Figure 1, except; ande; have decreased
nonadiabatic regime, as predicted by relaxation applied in the two by an order of magnitude to 0.1. There is no discernibfed€pendence
different system bases. The parameters for the two models have theof the population dynamics in the lowregime.

unitless valueg = 0.1,A =1.0,J=0.1,y1 = 1.0=¢;, andy, = 0.1

= ¢,. Notice that the dynamics are the same in the two bases. 1.0 T T T T T T T
I B=0.1

site system. AsJ increases, clearly the local sites and the 0.9 J=01 7
eigenstates begin to differ and the corresponding expectation o8l A=1.0 |
values of the system operators should begin to diverge between ' 71=1.0
the two equations of motion. 0.7 i 7, =0.01 ]

The equations of motion, eqs 2.11 and 2.18, are solved
numerically using the fourth-order RungKutta algorithm ;‘j 061 7
supplied with the software package MathG4dt is found that vV oosk 7
convergence of the results over a period of 50 arbitrary time :
units requires a 5000-point grid and consumes &8 s of real 0.4 h
time on a 75 MHz pentium processor. A system of arbitrary 0.3 | — Eigenstate Basis |
units is used for all variables in the equations of motion, since R Local Basis
only the qualitative behavior of these two models is of concern o2l e e -
here. 0 10 20 30 40 50

The initial conditions of the quantum system are alw@ys Time

(t=0)0= 1.0 and [R,(t=0)J= 0.0 forn = 2, 3, or 4, Figure 3. The evolution of the model two-site system when= e,
corresponding to all of the fermion population located on site = 0.01, with all other parameters as in Figure 1. Note the slower rate
1 at the beginning of the dynamics. Since neither of the model of thermalization when the iftype fluctuations are decreased.
Hamiltonians includes terms which remove population from the dynamics resembles simple tunneling with the electron popula-
guantum system into a fermion “sink”, then the total population tion undergoing damped oscillations across the barrier repeatedly
is conserved an@?;[0+ [Q2,0= 1.0 at all times. until a steady state is established between the donor and acceptor

A. Weak Coupling Regime. When 2 is much less than  populations. An analogous population fluctuation shows up in
ksT (and other relevant parameters), an ET system is in a both the local and eigenstate relaxation model3 m&reases,
nonadiabatic regime. In nonadiabatic ET, the rate is propor- as seen in Figure 4. The period of the fluctuations is slightly
tional to the squared electron tunneling matrix element betweenlonger in the local site basis (as measured by the peak to peak
the donor and acceptor potential wells, so (if the bath coupling separation), and2; reaches thermal equilibrium faster. The
is effective) the site populations are usually monotonically damping of the coherent transfer of population between sites 1
decaying with time and lack the oscillatory structure that can and 2 is stronger in the eigenstate basis, since the expectation
characterize adiabatic ET. Figure 1 shows the time-dependentvalue ofQ; becomes a smooth function earlier than in the local
population of site 1, and the smooth, monotonic decay is evident basis. The thermal equilibrium population on site 1 for the two
in both the eigenstate and local site relaxation calculations. More relaxation models varies because of the large difference between
importantly, the evolution of the population on site 1 is the eigenvalues and the local site energies in this regime.
essentially identical for the two relaxation schemes. Decreasing Not only can there be a discrepancy in the population transfer
the magnitude of the eigenstate and local site energy fluctuationdynamics in the eigenstate versus the local bases, but the phase
relaxation {1 ande;) does little to the population dynamics of information carried in the operato€®; andQ,4 can also be very
Q, (Figure 2). However, lowering’; and e, dramatically different. Figure 5A is a plot of the expectation value<f
lengthens the decay time 6f; (Figure 3); essentially, the;T versus time in the same parameter regime as was used in Figure
type process reduces the effective strength of the cougling 4. Evolution under local basis coupling displays damped
Again, the dynamics from introducing relaxation in the eigen- oscillations, which return to zero after each recurrence, at short
state basis and the local site basis are the same, with a minotimes, followed by longer time asymptotic decay. In the
difference in the population distributions due to slightly different eigenstate basi&23> 0 untilt > 9, followed by an asymptotic
thermal factors, when the coefficients ande; are decreased.  approach to a negative valuéRs[in the eigenstate basis does

B. Strong Coupling Regime. As the magnitude of] not asymptotically approach zero because it is simply the
increases, the coupled fermion system begins to resemble ardifference in the eigenstate thermal equilibrium populations.
adiabatic ET model. In underdamped adiabatic ET, the systemFigure 5B shows the corresponding results @[] For this
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Figure 4. Comparison of the results from relaxation applied in the Figure 6. The results for the strongly coupled two-site model when
local state basis versus the eigenstate basis in the strong couplingy: ande; are decreased from 1.0 to 0.1. The decrease in these relaxation
regime. The parameters in this plot were given the vafies0.1, A coefficients results in significant underdamping of the -sgie
=1.0,J=18,y1= e =1.0, andy, = ¢, = 0.1. population fluctuations. Also, the dynamics arising from the two models
become very similar in the high-temperature regime where the coupling

8 coefficients are of the same magnitude.
LA
0.7 4 B=01 4 10— 77— ———
0.6 J=18 ] B=0.1
i 09} J=18 A
0-5 A:1.0_ A=1.0
0.4 v, =0.1] 0.8 =10 -
A 03¢ v, = 0.1 : o7k 12=0.01 ,
] ] .
v 02} E A |
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0ol i, TrrlocalBasis 0.5 i,
04 y 0all — Eigenstate Basis]
02l et e e Local Basis
0 10 20 30 40 50 03'A L ) )
Time "o 10 20 30 40 50
Time
. Figure 7. Effect of lowering the site/eigenstate energy dephasing by
0.8k B B=0.1 l an order of magnitude wheh= 1.8. The results are less dramatic in
’ T the strong coupling limit than in the lowregime (Figure 3).
0.6 J=1.81
_ the eigenstate and the local site population damping (a decrease
0.4 A=1.0] , ; Poputatic
] in €1 or v4, respectively), the oscillations in both bases become
0.2} ¥, = 0.1 significantly more underdamped; this behavior is a direct
A, 0.0 =01 manifestation of the pure dephasing nature;adndy;. When
¢ - : the systembath coupling of the transfer matrix element is
'0'2_” ] decreased, there is little change in the local site dynamics,
-0.4 4 whereas there is an increase in the lifetime of the eigenstate
06l —— Eigenstate Basis basis decay. Notice that in the strong coupling reganand
- Local Basis - y2 have a much weaker effect on the population evolution than
2ol S LT they did in the weak coupling limit, but their influence still
0 10 20 30 40 50 manifests itself in the dynamics of the eigenstate basis results.

In Figures 4 and 7, it is evident that the dynamics of fermion
transfer are different when relaxation is imposed in the eigenstate
Figure 5. Evol_ution of @he expectation \_/alues of the operators which 5sis or in the local site basis. In Figure 6, however, the two
convey phase information for our two-site mode (A) and <, (B). sets of equations seem to give rise to similar dynamics, with a
The model parameters have the same values as in Figure 4. - . !

slight offset between the two decay curves arising from different
operator, both coupling regimes lead to similar dynamics, thermal factors. The cause of the agreement between the two
displaying dampened oscillations at short times and a constantrelaxation treatments is not the decrease in the magnitude of
value close to zero at longer times. The main difference the energy relaxation coefficients, as seen in Figure 8 where
between the local and eigenstate results for this operator is theandy; are reduced to 0.5 and the relaxation dynamics are still
larger amplitudes of successive recurrences in the local basisdissimilar between the two models. The identical dynamics

The influence of the relaxation coefficients on the system arise in a regime where the system is placed in the high
dynamics, in the strong coupling regime, is shown in Figures 6 temperature (smaff) limit, and the two independent relaxation
and 7. When the systenabath coupling becomes weaker for coefficients in each basisy{ and y, or ¢; and ¢;) are of

Time
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Figure 8. Coupled two-site model wheh= 1.8, = 0.1, A = 1.0,
y1= 0.5= ¢, andy, = 0.1 = ¢,. These results illustrate that it is not
simply the decrease iy ande; which is responsible for the relaxation
in the two bases yielding similar dynamics in Figure 5.
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Figure 9. The decrease ¢f from 0.1 to 0.01 (with all other parameters

J. Phys. Chem. A, Vol. 102, No. 47, 1998365

diagonal in the local states, rather than in the eigenstates, are
coupled to the Markovian bath using the semigroup analysis.

We have analyzed a simple two-site model and have
examined the systematics of the relaxation and thermalization
processes. We find two conditions under which the dissipative
and relaxation coupling to the local states is a good approxima-
tion to the coupling to the eigenstates. The first and more
obvious of these is when the intersite coupling parameter, which
we callJ, is small. Under this condition, the system eigenstates
essentially are local states, and therefore one is not surprised to
find similar relaxation behavior. The other, less intuitive
situation occurs in the high-temperature limit when the site
energy dephasings are roughly equal to the dephasings of the
transfer element itself. Then, essentially, all dynamical variables
relax uniformly, and the relaxation/evolution equations become
identical.

Like the Redfield analysis, to which it is closely relaféd,
the semigroup analysis in principle makes no arguments about
the perturbative nature of the substate coupling within the
system. Indeed, if one can solve for the eigenstates of this
system, one has a general analysis of the dynamics, including
both causal evolution within the system and bath-induced
relaxation.

As a practical matter, it is still probably most appropriate to
minimize the interactions between subsystems within the
guantum mechanical space and then to use quantum or
semiclassical propagati#h to describe the evolution; the
semigroup can then completely and appropriately describe the
relaxation processes.
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Appendix

as in Figure 5) results in the local site basis and the eignestate basis By using the non-Hermitian operator basis

giving the exact same dynamics, even though the two-site model is in
the strong coupling regime.

comparable magnitude. A&— 0, thene; = ez andy, = ys.
Also, if e = €1, then the elements in the relaxation matrix of
eq 2.17 becomB = ¢;, G= —2¢;,andA=C=D=F =0.

A comparison of these equations of motion with eq 2.11, when
y2 = y1, shows that the two approaches will have an identical
population evolution. In Figure 93 has been lowered from
0.1 to 0.01, and one can see that the eigenstate and local bas
results are identical.

IV. Conclusions

The semigroup analysis offers an attractive way to discuss
relaxation dynamics in a quantum mechanical system. It fits
easily within a Heisenberg description of the evolution of the

9,=ala, 6,=ala, O,=a'a, 6,=aa_(Al)

the equations of motion in the eigenstate operator basis become

91
afo.|_
dt 93

is \74

_62 O
(e, €3)

0 2IE—¢ + 5

0 0

system operators, whose average can then be used to deduc
actual dynamical observables.

The formal derivation of the semigroup holds for a diagonal
operator set, corresponding to the eigenstates of the quantum
system, coupled to a Markovian bath. As long as one deals
with a simple system, finding these eigenstates is straightforward 3
and therefore the relaxation can be carried out in a rigorous 4
fashion. For more complex systems (such as the spin-bosonintroducing the requirement that the expectation valueg;of
system), however, finding the system’s eigenstates is itself aand 6,4 approach thermal equilibrium at long times is done in
major task. Moreover, those system eigenstates are not necesan analogous way as in the local site basis. At steady state
sarily easily interpreted in an intuitive fashion. It then becomes dé@,/dt = 0, and averaging the equation of motion farover a
relevant to consider how large the error might be if operators canonical ensemble yields the following relationshipdpand

€, 0

1

2

0
_.]e
=Al,

(A2)

)
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€3

€= ¢, e ¥E

(A3)

The transformations between the local basis operators and

the eigenstate basis operations have the following forms

Q)
2 |_
3
A
022 —sincos? —sin%cos®  sime
2 2 2 2 2 2
sinZcos?  cogl —sit%  —sin%cost
2 2 2 2 2 2
sinZcos?  —site 02 —sin%cos2
2 2 2 2 2 2
st sincos?  sinZcos2 cog 2
2 2 2 2 2 2
01 91
0, .o,
0. [EBlo | A9
0, 0,
0,
92 —
05|
94
cosz% sin%cos% sin%cos% sinz%
—sin%cos?  cogl —sit?  sin%cos2
2 2 2 2 2 2
—sin%cos?  —sit e o sinZcost
2 2 2 2 2 2
sifrs  —sinZcos? —sinZcos®  cogl
2 2 2 2 2 2
Q) Q)
Q,| .|
o [= | @)
Q, Q)
where

Q) =aja, Q=aa, A=aa, Q=aa, (A6)
and

tana = JA (A7)

So, to transform the equations of motion given in eq A2, the
matrix BAC is evaluated and then rearranged into the Hermitian
local site basis of eq 2.6.
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