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A new method is presented for the solution of the time dependent Schrodinger equation, 
expressed in polar or spherical coordinates. The radial part of the Laplacian operator is com- 
puted using a Fast Hankel Transform. An algorithm for the FHT is described, based on the 
Fast Fourier Transform. The accuracy of the Hankel method is checked for the two- and 
three-dimensional harmonic oscillator by comparing with the analytical solution. The Hankel 
method is applied to the system H + H, with Delves hyperspherical coordinates and is com- 
pared to the Fourier method. 6 1985 Academic Press, Inc. 

1. INTRODUCTION 

In recent years substantial research has been carried out on the numerical 
solution of partial differential equations. Equations like the Schriidinger 
equation [ 11, acoustic equation [2], elastic equation [3], Navier-Stokes 
equation [4], KDV-equation [S], and the diffusion equation [6] have great 
importance in physics and are the basis for modeling and simulation of actual 
experiments. Much of the progress in this field can be attributed to the Fourier or 
the pseudo spectral method [7] which enables a good representation of the 
Laplacian operator. This means a great reduction in grid size compared to finite 
difference methods. On the other hand the Fourier method is restricted to Cartesian 
coordinates, a rectangular grid, equidistant sampling points, and periodic boundary 
conditions. In many problems symmetry considerations decouple the problem, 
resulting in lower dimensionality and a different geometry, so that the Fourier 
method is not applicable. In this paper the use of the Fast Hankel Transform 
(FHT) will be demonstrated for the following cases: the solution of partial differen- 
tial equations with radial or spherical symmetry and also an application with 
Delves hyperspherical coordinates. 

The Hankel method is similar to the Fourier method in that it uses a double 
transform to calculate differential operators. In the FHT we calculate the radial 
part of the Laplacian operator. As can be expected the boundary conditions and the 
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sampling points are the ones appropriate for the radial problem. Although this 
paper concentrates on the Schrodinger equation, the methods developed are 
applicable to other equations. 

In quantum mechanics the state of the system is represented by the wave 
function II/, and the time evolution is governed by the Schrodinger equation 

where H is the Hamiltonian operator of the system and H = T + V. T is the kinetic 
energy operator equal to ( - 1/2m) V2, where m is the mass and V2 the Laplacian. V 
is the potential. (In this work atomic units are used in which #r = 1 and the mass is 
given in units of the electron mass.) 

The central idea behind the numerical solution is to discretize the space and time 
coordinates of the problem. The Hilbert space of square-integrable wave functions 
of the problem is thus represented by a new Hilbert space of square-integrable wave 
functions on the spatial grid. Hermitian operators in the original Hilbert space are 
represented as Hermitian operators in the discrete Hilbert space. Representing the 
potential operator V poses no problem since it is merely a local multiplication of 
tj(r, t) by V(r, t) and is represented as a multiplication at every grid point. The 
main problem is the representation of the kinetic energy operator T = - (1/2m) V2, 
since it is nonlocal and cannot be represented as a local multiplication. 

In Cartesian coordinates T is equivalent to a Fourier transform, followed by a 
multiplication by - k2 (k is the coordinate vector in momentum space), followed by 
an inverse Fourier transform. The representation of T in the discrete space is then 
the Discrete Fourier Transform followed by a local multiplication by -k* and an 
inverse Discrete Fourier Transform. A fast algorithm to compute the Discrete 
Fourier Transform is the Fast Fourier Transform algorithm [S, 91. 

The transform to momentum space in polar coordinates in the radial direction is 
the Hankel transform. A fast algorithm for the discrete approximation of the 
Hankel transform is demonstrated in this paper. 

In polar coordinates the Laplacian operator is separated into radial and angular 
parts: 

(1.2) 

In spherical coordinates the Laplacian is 

V”*= f$r2~+&&.sin3~+ 
[ 

1 a2 t/9. as r2@ 1 (1.3) 

The FHT is used to calculate the radial part of the Laplacian operator by applying 
a Hankel transform, multiplying by - k2 and applying the Hankel transform again. 
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For the time integration a second order explicit differencing method is used. As an 
alternative the semi-implicit Chebychev propagation method has also been used for 
the time propagation [lo]. 

The paper is divided as follows: Section II describes the FHT and the calculation 
of the radial part of the Laplacian. Section III solves the Schradinger equation 
numerically for examples which have analytical solutions. By this the accuracy of 
the method is checked. Section IV compares the method to results obtained on a 
square grid by the Fourier method. Section V gives the conclusions. 

II. THE FHT AND ITS USE IN THE CALCULATION OF THE RADIAL PART 
OF THE LAPLACIAN 

1I.a. The FHT Algorithm 

The Hankel transform of order v of a real or complex function f on the interval 
(0, 00) is defined by 

f(k)=jOmrf(r)Jv(kr)dr fork>O, (2-1) 

where J, is the Bessel function of the first kind of order v. In this paper v is assumed 
to be real and nonnegative. The Hankel transform is its own inverse. 

The calculation of the FHT is performed using a logarithmic change of variables, 
as described by Siegman [ll] and Talman [12, 133. An outline of the method is 
given below. 

Substitution of r = r,e-” and k = k,,eX in (2.1) gives 

(2.2) 

The expression on the right-hand side is a convolution of the functions 
eCzyf(rOe-y ) and riJv(r,,kOex), for which there exists an efficient convolution 
algorithm based on the Fast Fourier Transform (FFT, see [8,9].) 

The function f is sampled in N points, where N is a power of two. The variables x 
and y are discretized at equal distances 6: x, y = j 6 for j= O,..., N- 1. The discrete 
approximation of the Hankel transform off is then given by 

N-l 

f(kOejd) x ri 6 m’, e-2m6f(r0e-m6) J,(r,k,e(~-m’6). (2.3) 

The use of the discrete (circular) Fourier transform to compute the continuous 
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(noncircular) convolution requires padding of the values off with IV zero’s. This is 
done by setting 

b,= ’ 
i 

for m = -N,..., - 1, 
-2m6f(rOe-m6) for m = O,..., N- 1, (2.4) e 

and 
cj = rg 6J,(rokoei6) 

The resulting expression 

for j= -N,..., N- 1. (2.5) 

is a 2Wterm discrete circular convolution. 
The well-known convolution theorem states that the Fourier transform of the 

convolution of b and c, b * c, equals the product of their Fourier transforms. Hence 
b * c can be computed by performing 2Wpoint FFTs on b and c, multiplying the 
results and performing an inverse FFT. The first N values of the result are discar- 
ded, and the N values uj =T(k,ej’) forj = O,..., N - 1 are the approximated values of 
the Hankel transform off: 

The Fourier transform of c is computed and stored in a table, thus saving com- 
putation time, when computing the Hankel transform many times with the same 
parameters. 

I1.b. Choosing the Parameters 

The parameters N, 6, rO, and k0 have to be chosen according to certain criteria, 
as detailed below. The parameter r0 = rmax is the maximum value of r in the r- 
domain. Let r,,,i,, = roe --(N--1)6 be the minimum value of r. The parameter k. = kmin 
is the minimum value of k in the k-domain. Let k,,, = koe(N-‘)6 be the maximum 
value of k. 

The parameters 6, ro, k. should be chosen such that the truncated intervals 
(rmin T rmax ) and (k,i,, k,,,) contain the functions f (resp. 3) in the r- (resp. k- 
domain.) The values rmaX and k,,, are determined based on properties off, where 
the accuracy that can be obtained depends on the space-bandwidth product 
r k max max’ 

One restriction while truncating is avoiding undersampling of the Bessel function 
J,,(rokoe”). The Bessel function J, has zeros at distances approximately equal to K. 
For adequate sampling at least one sampling point between two successive zeros is 
required. This leads to 

or, approximately, 

Iroko(ecN- ‘I6 - ecNe2j6)1 < TC (2.7) 

rokoecN- ‘j6 6 < 71, (2.8) 
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which can be formulated as 

r k max max 6<n (2.9) 

giving a criterion for 6. As for the Bessel function the sampling of the function f 
should be sufficiently dense. The distance between two sampling points of f is 
le Pms - e-(“‘+ ‘)‘l, This distance should be less than x/k,,, , the minimum distance 
between two zeros offrepresented on the logarithmic grid. It is easily seen that this 
condition leads to the same criterion (2.9) for the adequate sampling off(r,e-.“). 

A rule of thumb for finding a minimum cut-off is given by the need to choose the 
first grid point closer to the origin than the minimum distance between two zeros of 
frepresented on the grid 

n 
rmin <p. 

k max 
(2.10) 

11.~. Computation of the Radial Part of the Laplacian 

The radial part of the 2-dimensional Laplacian operator in polar coordinates 
(r, cp) as given by eq. (1.2) is (l/r)(a/&) r(a/&) and can be computed using the 
following theorem (cf. Sneddon [14].) 

THEOREM. Let L, he the operator ((l/t-)(8/&) r(iT/&)) - (v2/r2) and H, the 
Hankel transform of order v, then 

L, = H,( -k2) H,. (2.11) 

Applying therefore the operator (l/r)(a/&) r(a/ar) is equivalent to applying a 
Hankel transform of order 0, multiplying by -k* and again applying a Hankel 
transform of order 0. A Hankel transform of order v can be used if terms of the 
form -(v2/r2) are present. Such terms are introduced when symmetry con- 
siderations decouple a two- or three-dimensional problem. 

For the computation of L,tj a total of four 2N-point FFTs are performed. The 
number of arithmetic operations needed for this computation grows with N as 
O(N log N). 

The case of spherical coordinates can be reduced to a case similar to the one 
described above. The radial part of the 3-dimensional Laplacian operator in 
spherical coordinates (r, 9, cp) is (l/r’)(a/&) r’(a/&). Substitution of t&r, 8, rp, t) = 
r”‘$(r, 9, cp, t) leads to 

ia a 
[ 

ia a i -- r*-*=rp’12 
r2 ar ar ;;ii;'z-4r2 $9 1 (2.12) 

the right-hand side of which can be computed using the FHT method with order 1. 
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III. EXAMPLES FOR WHICH ANALYTICAL SOLUTIONS EXIST 

1II.a. The Hankel Transform Method 

The numerical solution of the time dependent Schrodinger equation (1.1) is as 
follows: 

The solution starts with an initial wave function $“. $’ is calculated from $” 
using a second order Runge-Kutta scheme. $ is propagated in time by second 
order differencing. Ifi” + ’ is computed from its two predecessors by 

ti n+1=$n-‘-2iAtH@‘, (3.1) 

where At is the time step and $” the wave function at time t = n At. The 
Hamiltonian of t+Q is computed by H$ = ( - 1/2m) V’+ + V$. The radial part of the 
Laplacian of $ is computed by using the FHT. If necessary, remaining terms of the 
Laplacian are computed by other methods (e.g., the Fourier method). The wave 
function Ic/ is discretized on a spatial grid. In the radial direction the spacing is 
logarithmic, as described in Section II. 

For practical purposes limitations on computer time and memory have to be 
taken into account when determining the parameters, such as the spatial grid con- 
stants, the number of grid points, and the time step At. The procedure of chasing 
the parameters for the radial direction is as follows: 

N, 6, and the truncation intervals (Tmin, rmax) and (k,i,, k,,,) are chosen as in 
Section 1I.b. The value k,,, can physically be interpreted as the maximum momen- 
tum kax in the radial direction. The best value for k,,, can either be calculated 
from physical data, or empirically found by performing an FHT. Equation (2.9) is 
equivalent to the physical uncertainty relation pmax Ar < R. 

The last parameter to be determined is the time step. If At is chosen too large the 
solution will grow exponentially out of bounds. The stability limit AtCrit can be 
found empirically or estimated as described below. Artificial numerical dispersion is 
avoided when the time step is chosen as At = 0.2 AtCrit (see [ 11.) An estimation of 
the stability limit can be derived as in [ 11, giving 

1 
““it x (k&,/2m) + V’ (3.2) 

where I/ is the maximum potential difference represented in the problem. (The 
above formula is valid for the case that only radial momentum is present, but it can 
easily be adjusted for other situations.) 

1II.b. The Two-Dimensional Harmonic Oscillator 

The problem of the two-dimensional harmonic oscillator can be solved 
analytically. Comparison of the exact and the numerical solution is a check on the 
accuracy of the Hankel transform method. Two checks are performed: First, the 
(known) energy is compared to the approximated value 1 (II/H$ ) 1, where H is the 
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discrete Hamiltonian operator, the radial part of which is computed using the 
Hankel method. (Here the Dirac symbol (fg) denotes the scalar product off and 
conjugate g integrated over the grid.) Second, an eigenfunction of the Hamiltonian 
is entered as an initial wave function and propagated in time. Since the wave 
function is stationary its discrete approximation should stay stationary in time and 
especially should have an overlap I( IC/rll/o)l = 1 at all times during the propagation 
of the wave function. 

Using a two-dimensional Cartesian coordinate system the problem could be 
solved by applying the Fourier transform method (Kosloff and Kosloff Cl].) Since 
the problem has radial symmetry the use of polar coordinates reduces the dimen- 
sionality. In general the Hankel scheme will reduce the dimensionality for any 
radially symmetric potential. 

The potential of the harmonic oscillator is 

V(r) = V(r, cp) = $r’. 

The variables can be separated setting 

$(r, cp, t) = R(r, t) eimrp. 

(3.3) 

(3.4) 

The time dependent Schrodinger equation (1.1) then reduces to 

1 la 

[ [ 

8 m2 
-2 --arrar-r2 1 1 +V(r) R(r, I)=ig(r, t) 

(the mass is 1.) The eigenfunctions of the harmonic oscillator are 

tjnm(r, q) = N,,e-‘2’2r’m’L/~l ,m,),2(r2) eimq, (3.6) 

(3.5) 

where n =O, 1, 2 ,..., and m = -n, -n + 2 ,..., n - 2, n. The N,,, are normalization 
constants, and the LT are the generalized Laguerre polynomials (see Abramowitz 
and Stegun [ 11 I.) The energy eigenvalues are 

E,=n+l forn=0,1,2 ,.... 

The eigenfunctions and eigenvalues satisfy 

Wnm = &$nw 

(3.7) 

(3-g) 

The discrete Hamiltonian is checked by comparing the exact energy E, with the 
approximated value I ( $,,mH+,,m ) I. 

The second check of the method is done by taking an eigenfunction as initial 
wave function and integrating it in time. If the discrete wave function is stationary 
then the overlap I (1+9”1c/~) 1’ should stay equal to unity, during the integration of the 
wave function. 

Table I shows the energy, overlap, and norm for several values of the quantum 
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TABLE I 

Accuracy of the Hankel Transform Method for the Two-dimensional 
Harmonic Oscillator after 10,000 Time Steps (dt =O.OOOl, N = 128) 

Quantum Maximum relative error 
numbers Order Truncation intervals (in 10d6) 

of 
n m FHT r,in I,,, kmin mar k Energy Overlap Norm 

0 0 0 O.OOOol 4 0.00001 4 1.0 0.9 0.4 
1 1 0 0.03 4.5 0.11 16.5 loo0 w@ 1.4 
1 1 1 0.03 4.5 0.11 16.5 0.1 1.8 0.9 
2 0 0 0.00005 5 0.00005 5 0.6 1.2 0.5 
2 2 0 0.05 6 0.05 6 0.1 1.0 0.5 
3 1 0 0.02 4.8 0.0625 15 1200 11,000 1.0 
3 1 1 0.02 4.8 0.0625 15 1.9 1.5 0.8 
3 3 0 0.025 6.5 0.04 10.4 1.0 3.1 0.7 
4 0 0 0.00005 5 0.00005 5 0.7 8.8 0.5 
4 2 0 0.02 6 0.02 6 0.8 1.5 1.1 
4 4 0 0.04 8 0.035 7 1.0 2.3 1.2 

numbers n and m. For most functions an accuracy of lop6 can be achieved, during 
an integration period up to one atomic time unit. The required truncation intervals 
depend on the properties of tinrn and can be found empirically, for example by 
plotting t/j and $ as in Fig. 1. For optimal accuracy the intervals should contain as 
much as possible of rj and 6, while satisfying (2.9) and (2.10). A uniform time step 
At = 0.0001 was chosen for all functions. 

The term -(m’/r*) in Eq. (3.5), which entered the equation because of the 
separation (3.4), can either be included in the computation of the effective potential 
(when using an FHT of order 0), or in the computation of the Laplacian (when 
using an FHT of order m). Table I contains examples of both methods and 
indicates that the last method is preferable. 

Results for several values of IZ and m were obtained using a Hankel transform of 
order 0. If $(r) converges slowly to 0 for r + 0 and m # 0, then the singularity at 0 
of - (m2/r2) disturbs the computation. This is clearly visible in the case m = 1, 
where the Hamiltonian and hence the energy are not represented very accurately, 
resulting in a steadily decreasing overlap. Using a Hankel transform of order 1 
improves the accuracy very much. 

In all cases the method conserves norm and energy almost within the accuracy of 
the computer. 

111.~. The Three-Dimensional Harmonic Oscillator 

The potential of the three-dimensional harmonic oscillator is 

V(r)=V(r 9 q)=$r*. 3 > (3.9) 
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FIG. 1. (a) The square absolute value of the eigenfunction tid2 of the two-dimensional harmonic 
oscillator (atomic units). (b) The square absolute value of the Hankel transform of $42 

The variables can be separated setting 

e-9 8, VI t) = Nr, t) Y;“(& cp), (3.10) 

where Y;l is a spherical harmonic function. The time dependent Schradinger 
equation (1.1) then reduces to 

[ -- 2 1 [ f;?;‘Z- 1 a *a Z(1+1) r2 1 + V(r) 1 R(r, t) = ig (r, t) (3.11) 

(the mass is 1.) The eigenfunctions of the harmonic oscilator are 

ti,dr, 8 cp) = Nkle -r2’2r’L$1/2(r2) Y;1($, cp), (3.12) 
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where k=O, 2,4 ,..., 1= 0, 1, 2 ,..., and m = -1, -I+ l,..., 1. The Nkl are normalization 
constants, and the Lh are the generalized Laguerre polynomials (see Abramowitz 
and Stegun [ 111.) The energy eigenvalues are 

E,,=k+l+; for k = 0, 2, 4 ,..., and 1= 0, 1, 2 ,.... (3.13) 

The eigenfunctions and eigenvalues satisfy 

W kl,,, = Ekdk,m. (3.14) 

The integration was done after replacing II/ by r’12$ in the computation of the 
Laplacian, as described in Section 11.~. 

Table II shows the energy, overlap, and norm for several values of the quantum 
numbers k and 1. Like in the two-dimensional case an accuracy of low6 can be 
achieved for most wave functions. 

The terms -1(Z+ l)/r2 from eq. (3.11) and (- 1/4r2) from the substitution (2.12) 
give together a term -(I+ $)‘/r’. When using a Hankel transform of order 0, the 
singularity at 0 of this term disturbs the computation for wave functions $(r) which 
do not converge fast to 0 for r + 0. This can be observed for I = 0 and, to some 
lesser extent, for I= 1. The difficulty can be solved by using a Hankel transform of 
higher order. In Table II this is done for Z= 0, with the same parameters, so that the 
two methods can be compared. 

TABLE II 

Accuracy of the Hankel Transform Method for the Three-Dimensional 
Harmonic Oscillator after 10,000 Time Steps (dr =O.OOOl, N = 128) 

Quantum Maximum relative error 
number Order Truncation intervals (in 10e6) 

of 
k I FHT rllll” rmar k Ill," k max Energy Overlap Norm 

0 0 0 0.008 4.5 0.024 13.5 16000 46000 1.4 
0 0 0.5 0.008 4.5 0.024 13.5 0.6 1.1 0.7 
0 1 0 0.02 4.4 0.075 16.5 29 85 0.9 
2 0 0 0.007 4.8 0.0185 12.69 llooo 92000 0.8 
2 0 0.5 0.007 4.8 0.0185 12.69 0.7 1.8 0.8 
0 2 0 0.06 8 0.07 9.33 67 20 0.5 
2 1 0 0.025 5 0.075 15 48 525 0.7 
0 3 0 0.025 6.5 0.04 10.4 1.1 1.1 1.2 
4 0 0 0.009 5.3 0.02 11.78 10000 150000 0.5 
4 0 0.5 0.009 5.3 0.02 11.78 0.7 1.3 1.2 
2 2 0 0.025 5.5 0.06 13.2 1.1 16 0.6 
0 4 0 0.05 9 0.04 7.2 0.8 1.7 0.5 
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From the results of Tables I and II the general conclusion may be drawn that it 
is preferable to include terms of the form -(v2/r2) in the computation of the 
Laplacian, using a Hankel transform of order v. 

IV. COMPARISION WITH A FOURIER METHOD SOLUTION FOR THE REACTION H+H, 

The Fourier method on a rectangular grid has been used before to simulate 
collinear reactive collisions A + BC + AB + C [ 163. In such a simulation an initial 
wave function is entered, representing the asymptotic position of an atom A far 
away moving in the direction of a molecule BC consisting of two atoms B and C, 
which are vibrating close together. The wave function is propagated in time and the 
reaction products are examined after enough time has elapsed. The fact that a reac- 
tion has taken place is represented by the configuration of A and B close together 
and C far away. The potential is represented as a function of the interatomic distan- 
ces R,, and RBc. 

The kinetic energy operator in the coordinates (RAB, R,,) is not separable. To 
separate the kinetic energy operator it is customary to transform to mass-weighted 
(skewed) coordinates [17]. The mass-weighted coordinates are then used as the 
basis for the Fourier method, which needs a rectangular grid. Examining the poten- 
tial in these coordinates it is found that a large portion of the grid is devoted to 
coordinate values for which no dynamical configuration of the three atoms can 
exist. (See Fig. 3.) It is therefore desirable to transform to polar coordinates for 
which only allowable configurations are represented, i.e., configurations which have 
an angle between 0 and the skewing angle qmax. These mass-weighted polar coor- 
dinates (r, cp) are called Delves hyperspherical coordinates. Recently it has been 
shown that these coordinates have computational advantages in describing 
triatomic collinear collisions [18] and potential energy surfaces [19]. The Hankel 
method allows a direct calculation of the reactive collision in these coordinates. 

In this section a reactive collision is simulated using both rectangular and Delves 
hyperspherical coordinates. In the case of rectangular coordinates the Fourier 
method [16] is used and in the case of hyperspherical coordinates the Hankel 
method is used for the radial part and a modified Fourier method for the angular 
part. 

The system chosen is the reaction of a hydrogen atom with a hydrogen molecule 
H + H, + H, + H, which has a skewing angle of qmax = 60”. The potential, which is 
shown in Fig. 2, was adopted from the work of Agmon and Levine [20]. As the 
initial wave packet a Gaussian wave was chosen for the translation of the atom 
towards the molecule and a v = 0 wave for the intramolecular vibration (for details 
see [ 161.) This initial wave packet was propagated for 1500 atomic time units (atu) 
using both methods. For the Fourier method a grid of 64 x 64 was used. For the 
Hankel method the grid contained 128 x 64 points. 

The Hankel method for the system H + H, + H, + H was applied as described in 
Section 1II.a. A few additional details for this specific case are given below. 
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FIG. 2. Perspective view of the potential surface of the system H + H2. The grid has logarithmic 
spacing in the radial direction. The grid points are at equal distances in the angular direction, from 0” up 
to the skewing angle 60”. 

The wave function $ was discretized on a two-dimensional grid, with N, = 128 
points for the radial direction and N, = 64 points, at equal distances from O-60”, 
for the angular direction. The logarithmic step width 6 for the radial direction was 
chosen as in Section II. The step width in the angular direction is Aq = 
(x/3)/(N, - 1). The resulting discretization was 

Il/ik = t,!f(r = rj= r,,,i,,d’, cp = qk = k Aq) (4.1) 

for j= 0, l,..., N, - 1 and k = 0, l,..., N, - 1. 
The Laplacian of tj, V’$ has radial and angular parts (Eq. (1.2).) For every angle 

(Pi the radial part (l/r)(a/&) r(a/&) $ was computed using the Hankel method. 
For every radius rj the angular part (l/rj)(a2/arp2) II/ was computed using the 
Fourier method and multiplying by l/r:. The terms were added at every point giv- 
ing the Laplacian. 

The truncation interval of the Hankel transform in the r-domain was chosen as 
rmin = 0.2, rmax = 10. In the transform domain the choice was kmin =0.17 and 
k max = 8.5. 

The time step was chosen as At = 0.5. The time step, as stated in III.a., is influen- 
ced by the maximum potential difference represented on the grid. To keep the time 
step reasonable the potential, which has a minimum value of -0.1744 was set to 0 
for values greater than 0. A second factor that influences the time step is the 
maximum momentum represented on the grid. This momentum k,,, = n/(An2) is 
inversely proportional to the square of the distance between grid points. For the 
angular part of the Laplacian (lir,r)(~Y*/~Ycp*) the grid distance between points gets 
smaller when r approaches the ongm. This means that very high momentum values 
are represented on the grid in the angular direction close to the origin. The 
maximum value of represented angular momentum is chosen as 31.5 and points of 
the Hankel transform of $ for k-values beyond this are set to zero. This means that 
the cut-off in angular momentum is a function of r. 

The parameters of the Fourier method solution were: Ax = 0.125, Ay = 0.125, and 
At=l. 
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b, 

Time-O.5 

Time= 1001 Time= 1501 

Time= 1000 Time= 1500 

FIG. 3. Snapshots of the square absolute value of the wave function for the H+HZ system. The 
energy is E= -0.157 and the initial vibration is v=O. The continuous line is the contour of equal 
probability of the wave function and the dashed line is the contour of the potential surface. 
(a), (c), (e) are snapshots at time f = 2, 1001, 1501 of the wave function propagated by the Fourier 
method. (b), (d), (f) are snapshots at time t =0.5, 1000, 1500 of the wave function propagated by the 
Hankel method. Contour lines of the normalized wave function are at 0.03, 0.31, 0.60, 0.88, 1.16. Con- 
tour lines of the potential are at -0.147, -0.120, -0.092, -0.065, -0.037, -0.010. 

The initial wave packet that was used in both methods was placed at 6.5 a.u. 
from the origin, having a translational width of 1.5 and a momentum of 4.0 towards 
the origin. The vibrational level was the ground level. 

Figure 3 compares the propagated wave function for both methods. It can be 
seen that the center of the wave packet propagates at the same rate for both 
methods. Figure 4 shows a stereoscopic view of the wave packet at time t = 1500. 
An additional comparison of the propagation for both methods was made by com- 
puting the overlap of the wave packet propagated by the hybrid Hankel/Fourier 
method and the wave packet propagated by the Fourier method. To do this the 
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FIG. 4. Perspective view of the wave function at time t = 1500, after propagation by the Hankel 
method. 

wave packet of the Fourier method was interpolated and transferred to the radial 
grid, where the overlap was computed. The result should stay close to unity during 
the entire integration. At t = 0 the overlap was 0.9999, at t = 1000 it was 0.9732, and 
at t = 1500 it was 0.9577. 

A typical time step for the Fourier method on a 128 x 64 grid takes 11 set on a 
VAX 750 computer, whereas a typical time step of the Hankel method takes 26 sec. 
A comparison of the efftciency of both methods for the system H + Hz shows that 
they are of the same order of efficiency, where the Fourier method is superior. It 
can be expected that for different systems which have small skewing angles and 
where the coupling between the radial and angular parts is weak as in the system 
Cl + HI, the Hankel method will be superior. 

V. CONCLUSIONS 

In this work an extension of the Fourier or the pseudo spectral method for the 
solution of the time dependent Schrodinger equation was presented. The main goal 
was to demonstrate the flexibility of a pseudo spectral method to be adapted to dif- 
ferent geometries and therefore different differential operators. 

Two main conclusions can be drawn from this work. First, higher accuracy is 
achieved when as much as possible of the Hamiltonian is included in the operator 
which is calculated by the transform. In this case this means using a higher order 
FHT to include the ( -v2/r2) term. 

Second, using a different geometry causes the spacing of the sampling points to 
be nonequidistant. In this method stability of the time integration depends on the 
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spatial geometry, therefore changing the geometry can seriously affect the time step 
At. Tapering, i.e., filtering out of high frequency components can solve this problem. 

At this point a review of alternatives should be made. An obvious alternative is to 
use a large basis-set and to diagonalize the Hamiltonian, finding eigenvalues and 
eigenfunctions and using these to propagate in time. For the radial part the 
polynomials of Laguerre would be an obvious choice. For comparable accuracy the 
number of basis functions would be of the order of the number of grid points used 
in the Hankel method. For two-dimensional problems a few hundred to a few thou- 
sand basis functions would be needed. From a numerical point of view the CPU- 
time of diagonalization techniques grows as O(N3), where N is the number of basis 
functions. As compared to this the numerical effort of the Fourier and Hankel 
methods grows as O(Nlog N), where N is the number of grid points. In addition to 
this, when energy is increased the number of basis functions grows at least linearly, 
so CPU-time of diagonalization methods grows as O(E3). However, for the Fourier 
and Hankel methods the number of grid points increases proportional to the 
increase in momentum (hence as O(E”*)) and the time step decreases as 0( Ep ’ ), 
therefore the numerical effort grows as O(E3’*). 

Summarizing, for small systems and low energy diagonalization methods are 
superior, since the minimum number of grid points required will be much larger 
than the number of basis functions. When increasing dimensionality and energy 
there is a point where the spectral methods take over and become more efficient. 

Eventually the decision to use the FHT method depends on the existence of alter- 
natives. For the exploitation of radial symmetry in a spectral method there is no 
alternative and the Hankel method is superior since it reduces dimensionality. It 
has been shown above that in the case of Delves hyperspherical coordinates the 
Hankel method provides a viable alternative to other methods. 
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