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Reflections or wraparound from boundaries of numerical grids have always presented a dif- 
ficulty in applying discrete methods to simulate physical phenomena. This study presents a 
systematic derivation of absorbing boundary conditions which can be used in a wide class of 
wave equations. The derivation is applied to the Schrodinger equation and to the acoustic 
equation in one and two dimensions. The effectiveness of the absorbing boundary conditions 
can be evaluated apriori on the basis of analytic solutions. ‘(: 1986 Academic Press, Inc. 

I. INTRODUCTION 

In the numerical simulation of wave propagation by spatially discrete methods, 
there is always a need to eliminate spurious events which are generated by the 
boundaries of the numerical grid. These events arise because the numerical mesh 
covers a finite region of space. The boundary effects can appear as reflections as in 
the finite difference method or as wraparound in the Fourier method. These events 
are always extraneous to the real physical events under study so that their 
elimination is desirable. 

In this study a systematic method to eliminate the boundary events through the 
application of absorbing boundaries is presented. The method is applied to the 
Schrodinger and acoustic wave equations. It is based on a simple modification of 
the wave equation so that the wave amplitude becomes attenuated at the grid 
boundary region. This method is an extension of one developed previously on 
empirical grounds for the acoustic and elastic wave equations [l]. In the previous 
study an absorbing boundary was achieved through a gradual elimination of the 
wave amplitude in a strip along the boundary of the grid. The present paper derives 
the absorbing boundaries in a consistent fashion. This allows a quantative analysis 
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of the method and enables to apply it also with implicit and semi implicit time 
integration schemes. 

The importance of absorbing boundaries has been recognized in the past and 
consequently a number of methods have been proposed for constructing absorbing 
boundaries [2-4]. Lysmer and Kuhlemeyer [2] proposed a method based on 
viscous damping on the boundaries of the numerical mesh. A class of methods 
derived more recently is based on replacing the wave equation on the boundary 
grid points by a one way equation which allows energy to propagate in the outward 
direction only [3,4]. This method has proven effective for waves which impinge 
vertically on the boundary, however, the method usually degrades for grazing 
angles of incidence. It is also highly dependent on the type of wave equation and 
the spatial discretization method. For example, it is not obvious how to apply this 
boundary condition or the method described in [2] to spatially periodic methods 
such as the Fourier method used for this study. 

Elimination of amplitude is also important in purely analytical calculations. In 
the field of photophysics and photochemistry for example, the excited state decays 
into the continuum. To describe such a phenomena a complex potential has been 
introduced (optical potential). This potential eliminates the amplitude of the excited 
states. It is later shown that the method of this study as applied to the Schrodinger 
equation is equivalent to introducing a complex negative potential in the absorbing 
region. 

In the next section absorbing boundaries for the Schrodinger equation are first 
derived on an empirical basis. A similar method was used for the acoustic and 
elastic wave equations [ 11. It is then shown that the method can be reformulated as 
a special solution scheme for the Schrodinger equation with a complex optical 
potential. The new formulation is applied to the Chebychev propagation scheme 
[S]. In Section III the same theory is applied to the acoustic wave equation. 

II. ABSORBING BOUNDARIES FOR THE FOURIER SOLUTION METHOD TO 
THE SCHR~DINGER EQUATION 

In quantum mechanics the state of the system is represented by the wave function 
$, while the time evolution is governed by the Schrodinger equation 

where fi is the Hamiltonian of the system: I?= -(?‘/2m) + I? In the Fourier 
method the spatial derivatives are calculated with the use of the FFT algorithm 
[6-S] and the solution is propagated by second-order differencing. 

Use of the Fourier method implies periodic boundary conditions. Figure la 
demonstrates the consequences of this numerical phenomena where the 
wavefunction wraps around and appears at the other side of the grid. Conversely by 
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FIG. 1. A one-dimensional Schriidinger wave equation solution by the Fourier method (a) without 
absorbing boundaries at successive times, (b) with absorbing boundaries. 

using a strong repulsive potential the periodic boundaries are replaced by reflecting 
boundaries. None of these conditions can simulate the physical behaviour of an 
unbounded potential free region. 

In the previous work [l] it was found that an absorbing boundary can be 
obtained by a gradual reduction of amplitude at the end of each time step. This 
reduction takes place in a strip of grid points surrounding the mesh. The reduction 
factor has the largest value on the grid boundary and it tapers gradually towards 
the center of the grid. This gradual tapering is necessary to eliminate reflections. A 
similar procedure can be applied to the Schrodinger equation. 

Let vl, denote the wavefunction at the time step n. The following steps describe 
the propagation scheme for the Schrodinger equation which includes the absorbing 
part. 

(a) Calculate the Hamiltonian operation filu, by using the FFT algorithm to 
calculate spatial derivatives. Next calculate the potential operation by multiplying 
Y” by the potential I? 
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(b) Time step according to 

Yf,“J-l=!P,m ,+2idtfiY n, with i=fi. 

(c ) Amplitude reduction 

Y nt, =(I -ydt) croup!, 

(2.2) 

(2.3) 

with y denoting the reduction function. 

Steps (a) and (b) have been used previously for solving the Schrodinger equation 
without absorbing boundaries [7,8]. Step (c) is an additional forward differencing 
step for the amplitude elimination. Empirically it was found that for efficient 
absorption the derivative of y should be kept as small as possible to avoid reflec- 
tions. On the other hand, the value of y should be large enough to eliminate trans- 
mission. In this work the following spatial dependence for y was chosen, 

y = U,/cosh*(a . n), (2.4) 

where U, is a constant, CI is a decay factor and n denotes the distance in number of 
grid points from the boundary. The effect of the absorbing boundary is apparent in 
Fig. lb which shows the same wavepacket propagation as in Fig. la but with the 
absorbing boundary. The wavepacket is completely eliminated, effectively mimicing 
an infinite region. 

Close examination of the above empirical absorbing scheme, reveals that the 
function y plays a similar role to a complex negative potential added to the 
Hamiltonian. The amplitude reduction step c can be derived from the equation 

ay 
at- - -yY 

with a first-order time propagation scheme. When Eq. (2.5) is added to the original 
Schrodinger equation (2.1), it becomes apparent that the absorbing function y is 
merely a complex potential. In principle therefore, the absorbing boundary can be 
incorporated into one equation with a complex potential. However, a careful choice 
of a time integration scheme is required to ensure numerical stability. 

Using the idea of a complex potential one can examine analytically the features 
needed for a good absorption. The one-dimensional Schrodinger equation with the 
potential 

P(x) = U,/cosh*(ax) (2.6) 

with V. real, is a well-known model potential for which the transmission and reflec- 
tion coefficients have been worked out analytically [9]. For a complex potential 
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one can analytically continue the solutions to obtain the values of the transmission 
and reflection coefficients as a function of the wavenumber k, 

and 

R= T.,,@j~,/~/(&&$%j) 

(2.7) 

with 

S= 3 [Jl - (8miJ0/cr2)]. 

The constant U0 in 2.7 is pure imaginary. 
One should notice that in this case [RI + 1 TI < 1. By varying U, and CI in (2.6) 

one can optimize the absorbing potential. In this optimization a balance is chosen 
between the number of grid points used for the absorbing region, and a sufhcient 
reduction of the amplitude for the wavenumbers contained in the wavepacket. 
Figure 2 displays the transmission and reflection coefficients as a function of 
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FIG. 2. Reflection and transmission coefficients of the absorbing region as a function of wavenumber 
for the complex potential (a) c( = 0.18 and U,, = 0.02 used in Fig. lb, (b) a = 0.5 U0 = 0.001. 
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FIG. 3. A one-dimensional Schriidinger wave equation solution by the Fourier method with absorb- 
ing boundaries with the parameters of Fig. 2b. 

wavenumber k for the potential given in (2.6). Figure 2a displays R and T for the 
absorbing parameters used in Fig. lb. Conversely Fig. 2b examples a poor choice of 
absorbing parameters with the transmission coefficient too high. Figure 3 shows 
results of propagation with this poor choice of parameters. These simple one- 
dimensional examples show the important features of the absorbing boundary. 
Similar results are also found in physically more interesting multidimensional 
problems. 

Once the absorbing boundary has been identified as a complex potential it can 
also be used to set up absorbing boundaries for semi implicit propagation schemes. 
The Chebychev propagation scheme [5] has been found stable, provided the com- 
plex contribution to the eigenvalues of the Hamiltonian are relatively small. This 
fact has important significance since the semi-implicit Chebychev method has 
proven to be very accurate and efficient for scattering problems with static poten- 
tials [S, lo]. 

Figures 4ae demonstrates the application of such absorbing boundaries for 
simulating the reactive scattering of H + H,. The propagation scheme used was the 
Chebychev method [S]. The width of the absorbing strip was twenty grid points. 
The absorbing boundary eliminated the amplitude of the reactive part, mimicing an 
infinite scattering region. Figure 4f displays the same propagation event without 
absorbing boundaries. The result is that the wave reaches the boundary and is 
reflected from the repulsive potential connected through the periodic boundary con- 
ditions. 

III. ABSORBING BOUNDARY CONDITION FOR THE ACOUSTIC WAVE EQUATION 

An absorbing boundary for the acoustic wave equation can be derived by the 
same steps used for the Schrodinger equation. For the sake of brevity, derivation 
using the empirical approach is not repeated since it was previously described [ 11. 
We now can proceed to describe the modified absorbing acoustic equation. Con- 
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FIG. 4. A two-dimensional SchrGdinger wave equation for the collinear reaction H + H, with absor- 
bing boundaries propagated by the Chebychev scheme at successive times. (f) The snapshot at time 
t = 5000 without absorbing boundaries. 

sider a two-dimensional acoustic medium with a variable density p(x, y) and 
acoustic velocity c(x, y). Wave motion in the medium is governed by the acoustic 
wave equation given by 

(3.1) 

P represents the pressure, S is a source term, and x, y are Cartesian coordinates. To 
follow the same steps used for the Schriidinger equation, Eq. (3.1) is rewritten as 
two coupled first-order differential equations in time, 

with s’ = pc2S. 
The first equation in (3.2) expresses the relation V= ap/at, whereas the second 
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equation is identical to (3.1). In analogy to the Schrodinger equation, the absorbing 
boundary condition is achieved by replacing (3.2) with the system 

The parameter y plays the role which the optical 
Schrijdinger equation. The first-order system (3.3) can 

potential played in the 
;erve as a basis for time 

integration. For the absorbing boundary the parameter y(x, y) differs from zero 
only in a strip of nodes surrounding the numerical mesh. As with the Schrodinger 
equation, the spatial dependence of y is chosen to achieve the best amplitude 
elimination. 

[;]+[J. (3.3) 

In constructing numerical schemes it sometimes may be more convenient to work 
with a single second order equation. This equation is obtained from (3.3) after 
elimination of the variable V giving 

(3.4) 

Equation (3.4) can be integrated in time with a suitable stable time differencing 
scheme. 

The success of the absorbing boundary can be understood by considering one- 
dimensional wave propagation when all the variables are constant in space, and the 
source term is zero. Equation (3.4) then reads 

a2P 2 8% ap 
-p=c s-wp’P. (3.5) 

This equation possesses a general solution of the form 

p(x, t) = Af,(x - cl) eC(7/‘)r + Bf2(x + ct) e(y’c)i (3.6) 

with A and B arbitrary constant and fi and f2 arbitrary twice differentiable 
functions. This solution represents travelling waves which are exponentially 
attenuated in space. All frequency components are equally attenuated because the 
decay factor y/c is frequency independent. This fact has important significance, as a 
propagating pulse containing a frequency band will gradually attenuate without 
changing shape or undergoing dispersion. 

When the decay factor y is spatially variable, Eq. (3.4) can be solved by the 
propagator matrix method (Appendix). The effectiveness of the absorbing region 
can thus be evaluated numerically. Consider one-dimensional wave propagation in 
a region - 00 <x < co. The acoustic velocity is uniform and the absorbing coef- 
ficient y differs significantly from zero only in the region a <x < b. A sinosoidal 
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FIG. 5. Reflection and absorbing coefficients of the absorbing region for the acoustic wave equation 
with c = 2000 mjsec, a = 0.18 U0 = 40. 

wave exp(i(wt - kx)) in the region - cc <x < a, and with w/k = c creates a reflected 
wave R exp(i(wt + kx)) for x < a, and a transmitted wave T exp(i(wt - kx)) for 
b < x. When the spatial dependence of y is chosen properly, the magnitude of T and 
R can be kept small thus effectively ensuring that no energy is reflected or transmit- 
ted from the absorbing region. 

In this study the spatial dependence of y, given in (3.4) was again chosen. The 
choice has proven successful although other relations may work out equally well. 
The magnitude of the reflection coefficient R and the transmission coefficient T, for 
different wavenumbers is shown in Fig. 5. The calculations were based on the 
results of the Appendix. The parameters for the calculations were C = 2000 m/set, 
U,, = 40 set-’ and o! = 0.18 rn-‘. Figure 5 shows that the magnitude of T and R are 
small for this choice of parameters except at the extremes of small and large 
wavenumbers. For the small wavenumber range, the width of the absorbing region 
is on the order of a wavelength and the result therefore is not surprising. For the 
large wavenumber range the wavelength is on the order of a few grid sizes which is 
also the order of the discretization interval of the parameter OZ. In actual calculation 
which use band limited sources which do not contain wavelengths in the extreme 

2000 m/set 

2000 dsec 

FIG. 6. The velocity field and the source in the two-dimensional acoustic problem. 
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regions, the absorbing boundary condition can be taylored and made highly effec- 
tive. 

To test the effectiveness of the absorbing boundary, two-dimensional accoustic 
wave propagation is considered. The problem consisted of a planar layer embedded 
in a uniform region with contrasting velocity (Fig. 6). A temporarily band limited 
point source was excited in the uniform region at a small distance from the layer. 
The calculations used a grid size of 64 x 64 with dx= dy= 20 m. The acoustic 
velocities were 2000 and 1200 mjsec for the exterior region and the layer, respec- 
tively. The density in this problem was constant. The point source had a Ricker 
wavelet time history with a highcut frequency of 40 Hz. The absorbing region 
surrounded the numerical mesh and had parameter values of U, = 40 set ’ and 
c1= 0.18 m--I. Its effective width became fifteen grid points. The equations of motion 
(3.3) were solved numerically by the Fourier method [ 111, with a time integration 
based on the semi implicit method of Tal-Ezer [S]. For early times when the source 
term S(x, y, t) was still active the time integration of (3.3) was carried out by 
second order differencing. (The semi implicit method applies directly only to 
homogeneous equations with no time dependent source terms). 

Figure 7a-f shows amplitude snapshots at progressive times. As the figure 
indicates, when the waves impinge on the boundary region, they are eliminated 
without noticeable reflection or wraparound. For comparison, Figure 7g shows an 
amplitude snapshot for the same problem but without the absorbing boundaries. 
There the wraparound events clutter the picture completely. 

FIG. 7 (a)-(f) Amplitudes at progressive times for acoustic propagation with absorbing boundaries 
in a region containing a thin layer. (g) A snapshot at time f = 0.6 set without absorbing boundaries. 
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IV. CONCLUSIONS 

We have presented a numerical method for achieving absorbing boundaries for 
the Schrodinger equation and for the acoustic equation. These absorbing boun- 
daries enable an expansion of the applicability of discrete methods to simulate 
physical phenomena. 

An area of research in physical chemistry for which the absorbing boundary con- 
ditions may have special significance is in the direct simulation of time of flight 
experiments. In such experiments a pulsed beam of particles is scattered from a 
target which can be a surface or a laser beam or another beam of particles. Dif- 
ferent inelastic scattering events reach the detectors at different times. By placing 
the absorbing boundary at the location of the detectors, a direct numerical 
simulation of these experiments can be achieved. 

The second significant application is in the calculation of lifetimes and resonances 
or rates of desorption. These simulations require very long integration times and 
without the absorbing boundaries the wraparound or boundary reflection would 
clutter the picture completely. 

Absorbing boundaries have already proven to be important in acoustic and 
elastic forward modeling for petroleum exploration. In effect the absorbing region 
allow the simulation in a finite mesh of wave propagation through the earth, 
obtaining semi-infinite space results. The importance of the scheme gains added 
significance in three-dimensional calculations for which boundary effects can be 
very pronounced and for which economical considerations induce the use of as 
small a grid as possible. 

The method of this study for constructing absorbing boundary conditions is not 
based on specific equations and therefore it can also be applied to other types of 
wave propagation problems. Since it is not dependent on the Fourier method it can 
also be applied equally well to finite difference or finite element methods. The 
systematic approach presented for the calculation of reflection and transmission 
coefficients of the absorbing region, can aid in finding the optimal parameters of a 
given poblem. 

APPENDIX: DERIVATION OF REFLECTION AND 
TRANSMISSION COEFFICIENTS FOR THE ONE-DIMENSIONAL ACOUSTIC WAVE EQUATION 

In this Appendix the generalized reflection and transmission coefficients for the l- 
D acoustic propagation are derived. The derivation is based on considering a 
sinosoidal wave which impinges on a region with a variable amplitude reduction 
parameter y(X). 

Consider again the modified acoustic wave equation, in one dimension with con- 
stant density, 

3% 2 a*~ ap 
at’=” Q4Y-p2P~ 

581,63,2-9 
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in which c is constant and the variable y differs from zero; only in the region 
a<x< b and can assume arbitrary values there. A plane sinosoidal wave 
exp(i(wt - kc)) in the region x < a generates a reflected wave R exp(i(wt + kx)) 
upon reflection at the boundary at x = a. The reflection coefficient R is generally 
complex. In the region b < x only the transmitted wave T exp(i(wt - kx)) 
propagates with T denoting the generalized transmission coefficient. 

The calculation of the coefficients R and T can be performed with the propagator 
matrix method [ 121. The region a < x < b is divided into small intervals: a = x0 < 
xl <x2< ... <Xn=b. In each xj<x<xi+, the parameter y is approximated to be 
constant yi. Excluding the common factor exp(iwt), the solution to the modified 
acoustic wave equation in each interval 1 is given by 

A; exp( - ik,(x - x,)) + B; exp(ik,(x - x,)), (A.2) 

or alternatively 

AT exp(-%(x-x,+ ,))+B: exp(ik,(x-x1+,)). (A.3) 

k, is equal to (w - iyl)/c, whereas A, or A: and B; or B,? are as yet undetermined 
coefficients which give amplitudes of waves traveling to the right and to the left, 
respectively. The coefficients A,- and By can be related to A,? and B: by equating 
the amplitudes in (A.2) and (A.3) at the point x=x,+ 1. This gives 

A,+ = A; exp( - ik,(x,+ i - x,)), 

B,? = B;~ exp(ik,(x,+, +x1)), 

(A.4) 

(A.5) 

or in matrix notation 

exp( -&(x,+ 1 - xd 0 A,- 
0 exp(~k~(x~+ I - xJ) I[ 1 B,- ' 

(A.61 

Equation (A.6) relates the amplitude coefficients in solutions which are, respec- 
tively, expanded from the left and from the right boundaries of the region 
X,dX<X[.,. In addition to relating coefficients within a region, a relation express- 

~ ing A,;,, 4+, in terms of A: B: at a boundary separating two regions is required. 
This relation is obtained by requiring continuity of P and dp/dx on the boundary. 
Using (A.2) and (A.3) this gives 

A:+B:=A,,+B,+, (A.7) 

and 

ik/(-A:+B:)=ik,+,(-AI,,+B;+,). (A.8) 
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Solving for A;+ I and B;+ I yields, 

A, Jr+, +hA+ +k,+,+k,B- 
2k 2k / 

Ifi /+ 1 

and 

B,,= 
ki+,+kiB++L+k,Be 

2k ! 2k i . 
if I If1 

(A.9) 

(A.lO) 

A combination of (A.6) with (A.9) and (A.lO) gives 

k/+ 1 + kl /id.Y,k, 
2k 

kL+ I + k, l-id,yfkj 
/+ 1 2k if 1 k/+l+k,tdx,k, k,+l+k,/-i~~,~, 

2k If I 2k Ii I 1 (A.1 1) 

with dx, = xI+ , -x1. Equation (A.1 1) relates the amplitude coefficients in the Ith 
region to the corresponding coeffkients in the I+ 1 region. A successive application 
of (A. 11) will yield a connection between the coefficients of any two regions. In par- 
ticular since the coefficient at x=x0 = a and x=x, = b are respectively, given by 

1 [I R 
and [ Td;/c) “1, 

we obtain 

(A.12) 

The matrix (T,, T,, T2, Tz2) is formed from products of the individual matrices in 
(A.1 1) in each region. The generalized reflection coefhcient can be solved from 
(A.12) giving 

R = -T,,/Tn (A.13) 

and 
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