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A multidimensional interpolatorbasedon convolutionwith the sine function is developed.The interpolator is global in
nature,with all sampleddata contributing to the computation.Preprocessingof the data by partial summationaccelerates
convergenceof the actual interpolation,when repeatedlyinterpolating the same data. Modification of the interpolation
proceduregives an efficient method for numericaldifferentiation. The method is intendedfor bandlimited functionswith
finite support.The interpolatorwas testedfor a classof problemsrelatedto moleculardynamics,including interpolationof
1D. 2D and 3D Gaussianwave packetson a grid; integration of classicaltrajectorieson an interpolatedpotential;and the
transferof a sampledwave function from a polargrid to a Cartesiangrid andback. It wasfound that the interpolatoris very
accuratefor Gaussian-likewavefunctions,and that even for functionswhich arenot bandlimited,suchastheMorsepotential,
a reasonableaccuracycan be obtained.

1. Introduction

A wide class of physical and chemical problems requires not only an accurate but also a rapid
interpolator. Data on functions is often gatheredat discrete and equally spacedsampling points. By
interpolation,the valueof the functionis retrievedat any arbitrarypoint. In manysituations,the sampling
interval between points is relatively large so that the task of generatingan accurateinterpolatoris
challenging. In such casesinterpolation methodsbasedon approximationby polynomials or piecewise
polynomialfunctionslike splines,breakdown becausethey fail to representthe shorterwavelengthsof the
function. In multidimensions,the shortcomingsof polynomialtype interpolatorsbecomemoresevere.This
studyis concernedwith the constructionof a multidimensionalinterpolatorbasedon a global approach,
which performswell on sparselysampleddata. Theadvantagesof sucha global approachare that all of
the known valuesof the function on the samplingpointsare utilized to obtain the interpolatedvalue.

The interpolationschemechosenwasbasedon a convolutionwith the sinc function[1,2]. Becauseof the
slow decayof this function a partial summationprocedurewasused [3] to acceleratethe convergenceof
the interpolator.A multidimensionalinterpolatorwas then developed.An extensionof this interpolation
will give an option of differentiation.

The presentstudywas initiated in order to be able to transforma quantummechanicalwave function
representedon a Cartesiangrid to a polar grid [4]. Becausethis requiredextensiveinterpolation, a rapid
procedurewasneeded.
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The developmentof the interpolationprocedureopenednew applications,suchas simulationof reactive
scatteringby the method of classicaltrajectories.In this simulation the input neededfor integrating the
equationsof motion consistedof the potential energy surfaceand its derivatives. In many casesthis
potential is suppliedon grid points. An accurateand efficient procedureis then requiredto find the
derivativesbetweenthesesamplingpoints.

In section2 the detailsof the sine methodfor interpolationand differentiationare described.In section
3 examplesof theuseof thesine methodaregiven,suchas theinterpolationof Gaussianwave packets;the
direct calculationof a classicaltrajectoryby interpolationof the valueof the potentialandits derivatives;
andthe transferof a quantummechanicalwave function from a Cartesiangrid to a polargrid. In section4
the conclusionsare presented.

2. Descriptionof the method

2.1. The sinc interpolator

TheWhittaker—Kotel’nikov—Shannonsamplingtheorem[1,2] statesthat a bandlimitedfunctionis fully
specified if the function valuesare given in a discrete,sufficiently denseset of equally spacedsampling
points. This implies that, given the values on such a set of points, the value in a point betweenthe
samplingpoints can be interpolatedwith any desiredaccuracy.

The Fourier transformof a function f: R -+ C is definedas the function f: R —~ C with

f(s) =ff(x) e2~dx. (2.1)

Thefunction f is called bandlimited if thereexistsan s~such that f(s) = 0 for I s > S

0. The smallestsuch
values~is sometimesreferredto asthe Nyquist or folding frequency.If thefunction valuesf(x) are known
in pointsx = ndx with samplingdistancedx � 1/2s0 then,accordingto the samplingtheorem,

f(t dx) = ~f(n dx) sinc(t — n), (2.2)

wherethe function sinc is definedassinc(x) = sin ~rrx/~xfor x � 0 andsinc(0)= 1. For conveniencethe
samplingpoints in this sectionare assumedto be at distancedx = 1. In that casethepreviousexpressionis
valid if s~� ~. The expressioncan thenbe rewritten in the form

sin(ii(m-i-6--n))
f(m + 8) = ~f(n) sinc(m+ 6—n) = >f(n) ~(m ±8—n) (2.3)

where m is an integer, and 6 a real number in the closed segment[0,11.The expression(2.3) is a
convolutionof f andthe sine function.

2.2. Acceleratedconvergenceby partial summation

Summationby partsis the finite differenceanalogueof integrationby partsof a definite integraland is
expressedin the formula [3]

N-I N-I

~ F(n)z~G(n)= [F(N)G(N) — F(0)G(0)] — ~ G(n + 1)~F(n), (2.4)
n~O n=O

wherethe finite differenceoperator~ is definedby z~F( n) = F( n + 1) — F( n).



R.H. Bisselinget at. / Multidimensionalinterpolation basedon sincfunction 315

Lanczos[5] and,morerecently,Rosenbaumand Boudreaux[6] haveusedpartial summationto speed
up convergencein a spectralinterpolationformula. The treatmentof interpolationin this paperis similar
to their work except that in the presentcaseinterpolation is done in the time domain and not in the
frequencydomain.

Application of partial summation,eq. (2.4), to accelerateconvergencein eq. (2.3) is done as follows:
Supposef is a bandlimitedfunctionwith a finite support,with f(i) = 0 for i <0 and for i largeenough.
For a given fixed integerm anda fixed 6 E (0,1) define

F(n)=1/(m—n+6) (2.5)

and

n—I

G(n)= ~ (-1)7(i). (2.6)
i=O

Then

AF(n)=1/(m—n+6)(m—n—1 +8) (2.7)

and

L~G(n)= (—1)7(n). (2.8)

After simplealgebraicmanipulationeq. (2.3) can be rewritten as

f(m + 8) = ~ f(n) sin(1T(m— n + 8)) ~ sin rr8 (—1)7(n)
n~O ‘rr(m—n+8) n=O m—n+8

=(_1)m5mn
6~F(n)~G(n). (2.9)

Consequentlypartial summation,accordingto eq. (2.4), canbeappliedwith N —s ci~.The term F(N)G(N)
disappearsbecauselimN~ F(N) = 0 and G(N) is a constantfunction for large enough N. Since
G(0) = 0 the term F(0)G(0) = 0. As a result

f(m+6)=(_1)m+l S~fl~6 G(n + 1) , (2.10)

,rr ~
0(m—n+8)(m—n—1+6)

where

G(n + 1) = ~(-1)’f(i). (2.11)

The infinite sumin eq. (2.10) convergesfaster than the original sum in eq. (2.3) becauseof the quadratic
denominator.

In conclusion,an efficient interpolationof a function f at many points m + 8 can be performedby
preprocessingthe sampleddatato computethe alternatingpartial sumsof eq. (2.11), storing the results
and usingthem to computef(m + 8) by eq. (2.10)for every point m + 8.

Applying this method for interpolation near the grid points gives poor results, becauseof the
singularitiesof eq. (2.10) for 6 = 0 and 8 = 1. Instead,useis madeof a first order Taylor approximation
f(m + 8) =f(m) + 8f’(m) for 6 0, and f(m + 8) =f(m + 1) + (B — 1)f’(m + 1) for B 1. The deriva-
tives f’(m) and f’(m + 1) are computed by the method for differentiation on grid points describedin
subsection2.5.
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2.3. Doublepartial summation

Partial summationcanbe repeateda numberof timesto effect a further accelerationof convergence.As
an example, the procedureof double partial summationwill be outlined. The same procedurewhich
speededup convergencein eq. (2.3), resultingin eq.(2.10),can be applied again. Define

FF(n)=1/(m—n+8)(m—n—1 +6) (2.12)

and

GG(n) = ~G(i). (2.13)

Then

L~FF(n)= 2/(m — n + 6)(m — n—I + 6)(m — n —2 + 8) (2.14)

and

L~GG(n)= G(n + 1). (2.15)

Eq. (2.10) cannow be rewritten as

f(m+8)=(—1)”~’
6~FF(n)~GG(n). (2.16)

Here partial summation,eq. (2.4), can be applied with N —~ ~. Note that limN~ FF(N)GG(N) = 0,
since for large N the factor GG(N) grows linearly with N and FF(N) falls off quadratically.Since
GG(0)=0 the term FF(0)GG(0) = 0. As a result

2 sin rr6 GG ( n + 1)
f(m+8) =(—1) n=0 (m—n+8)(m—n— I +6)(m—n—2+6)’ (2.17)

where

n+I i—I

GG(n+1)= ~ ~ (-1)’f(j). (2.18)
i==0 j=O

At the initial cost of an additionalcalculationof partial sums, the convergenceis speededup by an extra
factor of the order 1/(m — n).

The threeequations(2.3), (2.10)and(2.17) havethe form of a convolutionof f with sin ~rrx/~rrx,resp. G
with sin rrx /.rrx(x — 1), resp.GG with sin ‘rrx /.rrx(x — 1)(x — 2). Thesefunctions areshownin fig. 1.

2.4. Multidimensionalinterpolation

The one-dimensionalsamplingtheoremcan be generalizedto higher dimensions. For a bandlimited
function f of k variables,sampledat integergrid points (n i,..., nk), the samplingformulais, in analogy
with eq. (2.3),

f(m
1+81,..., mk+8k)=~ ~f(n1 nk)sinc(mi+8l —n1)

sinc(mk+6k—nk) (2.19)

for integerm1,..., mk and 6~
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Fig. 1. The sinefunction (solid line) andthe functions —sin ‘ITX/’rrx(x —1) (dashedline) and sin lTx/lTx(x —1)(x —2) (dash—dotted
line). Interpolationwith 0, 1, 2, timesaccelerationis a convolution with thesefunctions,respectively.

Supposef hasa finite support with f(n i,..., n
5)=0 if one of the n,’s is negativeorlarge enough.

Following the sameprocedureas in eq. (2.9), we rewrite eq. (2.19) as

+flkf( nk)
f(m1+61 mk+8k)=C~ ... _______________

n1O n5=0 (m1 —n1 +6~). . . (m—n+6)

(-I)” ~ ~ (~1)”Af(n ,nk) \\
=C~ (2.20)

n1=0 (m1 ‘~t +6~)~ n~=0 (mk—nk+6k) ))
where the constantC = (— 1)”~’+ ~ ~ sin ~

6k~ Applying partial summationfor the kth
sumgives

f(m]+6I,...,mk+6k)=—C~
~.=o (m

1 — n1 + 6~)

(—I)~’
fl_O (m~1 ak—i +6k_i)

G1(n1 nk) . .

(2.21)
~ (mk—nk+Bk)(mA —nk—l +

6k) ))
where

nk

G
1(n1 nk)— ~ (~~I)hkf(ni ~ 1k) (2.22)

1~=0
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andhence

1
n

5=0 (mk — nk +
6k )(mk — nh — I + 6k)

~[(~ (mH~ô) (~~ns~=o(-1Y G~n~ nh))) (2.23)

The expressioninside the squarebracketsof eq. (2.23) has the form of the right-hand-sideof eq. (2.20)
(with k — I variablesinsteadof k) andhencethe procedureabovecanbe repeated.After performingthis
procedurek times, defining successivelyfunctions G

1, G2 Gk, the interpolation formula obtainedis

f(m1+81,..., mk+6k)=(—l) C ~ ... 1
~ ~0 (m~— n~+ 61)(m1 — n1—i + 6~)

I
Gk(n~ ak)’ (2.24)

(mA — ~A + 6k)(mk — ~k —1 + 6k)

where

nl

Gk(ni,..., n~)= ... ~ (—1)”~ ~ ‘A) (2.25)
i~=0 ~k°

and

~‘“~ —k

C=(—1) rr stn’rr6~..•sin~i~6 (2.26)
Eqs.(2.24)—(2.26)are the multidimensionalanalogueof eqs.(2.10)—(2.11).As in the one-dimensionalcase,
f is interpolatedefficiently by first preparingalternatingpartial sumsby eq.(2.25),storing them andusing
the results to computef(m1 + 6~,...,mk +

6k) by eq. (2.24) for the points (m
1 + 8... mA +

6k).

2.5. Differentiation

Functionsthatcanbe interpolatedefficiently by the sinemethodcanalsobe differentiatedefficiently in
a similar way. Two casesof differentiationwill be consideredin this subsection:(i) on grid points; (ii)
betweengrid points.

The class of functions to be differentiatedis the sameas before: bandlimited functions with finite
support and with function valuesthat are known in equidistantgrid points. Here the grid distanceis
supposedto be one,andf is supposedto be zero for i <0 or i large.

The differentiation formula is providedby differentiationof the sine interpolationexpression:Differ-
entiationof eq. (2.3) gives

f’(m + 6) = ~f(n) sinc’(m — n + 8), (2.27)

where m is an integer,and 6 a real numberin the segment[0,1]. Here

cos ~rrx sin rrx
stnc’(x) = ______ — 2 for x ~ 0 (2.28)

x
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and

sinc’(O) = 0. (2.29)

(i). The derivativeof f in grid points m, f’(m), is computedfrom the known valuesf(n), as follows:
SettingB = 0 in eq.(2.27) gives

~ f(n)sinc’(m-n)

= ~f(n)[ cos(~(rn-n)) - sin(~(m- ~ J +f(m) sinc’(O)
n~&m

= ~ f(n) = (_1)m ~ ~ (2.30)
n#m n=O

n#m

This expressionhasthe by now familiar form which allowspartial summation.Carehasto be takento sum
over all n 4 m. This is doneby defining

F(n)=[1~m~ ifn~m, (2.31)
if n=m,

anddefining G(n) asusual(eq. (2.6)). Then

L~F(n)= 1 for n~m—1,m (2.32)
(m-n)(m-n-1)

and

L~F(m—l)=L~F(m)=—1. (2.33)

Eq. (2.30) cannow be rewritten as

f’(m) = (—1)
m~F(n)~G(n)= (_l)m~~G(n + 1)~F(n)

= (— i)”’~ ~ G(n + 1) — G(m) — G(m + 1) , (2.34)
~ (m—n)(m—n—l)

n#,n~I, m

where

G(n + 1) =~(-l)’f(i). (2.35)

An efficient differentiation of the function f at many points m can be performedby first computingthe
partial sumsin eq. (2.35),storingtheresults andusingthem to computef’(m) by eq.(2.34)for every point
m. As in the caseof interpolation it is possibleto repeatthe accelerationprocedure.

(ii). The function f canbe differentiatedin a point m + B betweenthe grid points n (i.e., with 6 s~’0,1).
One way to proceedis to combineeqs.(2.27) and (2.28) and then apply partial summationto speedup
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convergence.Another, equivalent,way is to differentiate theacceleratedresult of partial summation,eq.
(2.10). This gives

8 ,,,+~ sin ~rrô G(n + I)
f(m+6)=—(-I)

86 ~rr ~
0(m—n+6)(m—n—-1+6)

G(n+1)
=(—i) cos~6~

~=o (m — n + 6)(m — n—I + 6)

+ sin ~6 G(n + 1)(I — 2(m — n + 6)) (2.36)
~ n=o(m—n+6)(m—n—1+6)

where the partial sumsG(n) aredefinedasbefore, eq. (2.35).
This procedurecanalso be appliedon the doubly acceleratedformula eq. (2.17). This results in

GG(n+1)
f’(m+6)=(—1) 2cos~6~

n~0 (m — n + 6)(m — n—I + 6)(m — n —2 + 6)

2sin~6~GG(fl+I)(3(mn+6)_6(m_t1+6)+2) (237)

n~0 (m—n+6)
2(m—n—1+6)2(m—n—2+6)2

whereGG(n + I) is definedin eq. (2.18).
For the special caseof midpoint differentiation (6 = ~) the formulae (2.36) and (2.37) provide even

fasterdifferentiators. This is becausecos ~rr6= 0 for 6 = ~, leaving only the secondsum in the formula,
therebyspeedingup convergenceby an extra factor of theorder I /( m — n).

Note that insteadof differentiating theacceleratedinterpolation formula eq. (2.10) we can integrate it,
in a similar way, obtaining a formula for numerical integrationof a function.

2.6. Generalization

The sineinterpolationformula, eq. (2.3), is a particularcaseof the formula givenby Schwartz[7] for the
interpolation of analytic functions.

f(x) =~f(x,
1) u(x) I (2.38)

,~ (x — x,) u (x,,)

Here the analyticfunction f is sampledat the grid pointsx,~(not necessarilyat equaldistances)and it is
approximatedusingan analytic function u(x) with simplezerosat the grid points. Taking u(x) = sin iix
and x, = n in eq. (2.38) reducestheexpressionto eq. (2.3).

The method of partial summationto accelerateconvergencecan also be applied in the more general
case.This results in

f(x)=~G(n+I) u(x) , (2.39)
(x—x,,)(x—x,,~,)

where

f(x1)
G(n + 1) = (x,, — ~ ~ , . (2.40)

i~O u (x,)
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The sampled data are preprocessedto calculate the values G(n + I) and after that, in the actual
interpolation,the expression(2.39) is evaluated.

2.7. Error analysis

It is an idealizationto assumethat a function is bandlimitedandhasa finite support.Sincethereexists
an uncertaintyrelation ~x~s � l/4’rr, (cf. ref. [2], chap. 8) betweenthe width of a Fourier integrable
function and the width of its Fourier transform,both assumptionsare only approximatelycorrect. This
gives rise to two kinds of errors,as outlinedbelow.

The error analysisperformedhere is due to Schwartz[71,who gave the analysisfor the non-accelerated
case.There are two competingerrors (neglectinground-off): the truncationerror CT causedby assuming
finite supportandcuttingoff the infinite sums,andthe approximationerror ~A causedby the assumption
of bandlimitedness.Optimal efficiency is obtainedwhenboth errorsare aboutequal.

Theapproximationerror is equal to

CA_f. dz, (2.41)2~rri~zx sin i~z

(cf. [7]) wherethe contour F in the complexplaneenclosesall the grid points.
The effect of the accelerationprocedureis to reducethe truncationerror
For Gaussianwave functions, f(x) = e_~x2,Schwartzfound an exponentialdecreaseof the error, as

e~”~2,wherefor a given numberof grid points N thegrid distancedx waschosensuchthat ~A CT. The
accelerationintroducedherechangesthe relationbetweenthe two errors,by decreasingCT andincreasing
CA. Fora given accuracy,accelerationdecreasesthecomputationaleffort.

3. Examples

3.1. Gaussianwavepackets

The Gaussianwave packet [8] is an important exampleof a quantummechanicalwave function. It
describesthe probability of a free particlebeing presentin a certain point of spaceat a given time. A
normalizedGaussianwave packetin dimensiononehas the form

1/4

= 1 2 e~’e_/2~~2, (3.1)

2r(~x)

wherex is the spacecoordinate,k the momentum,and~x the width of the wavepacket.Recently,a basis
of Gaussianwave packetshas been used by Heller et a!. in semiclassicaltime dependentwave packet
propagationswith many degreesof freedom [9,10]. Gaussianwave packetshavealso beenused in full
quantum simulations of dynamical processessuch as the H~+ H

2 reaction [11], and atom—surface
scatteringfor the He—W system[12].

The Gaussianwave packetpossessespropertieswhich permit successfulapplicationof sine interpola-
tion anddifferentiation.The Fourier transformof a Gaussianfunction is againa Gaussian.Sincethe tails
of a Gaussianfunction fall off rapidly,both the Gaussianandits Fourier transformhave,approximately,a
finite support. This implies that in a good approximation Gaussianwave functions are bandlimited
functionswith a finite support.Thesearepreciselythe propertieswhich enablethe useof the sinemethod.
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Table I
Accuracyandcomputationtime of interpolationof theone-dimensionalGaussianwave packetf(x) = e_~

2/2

rotal Numberof Singleacceleration Double acceleration
numberof pointsM used .

maximum CPU-time maximum CPU-time
grid points in the

absolute (ms) absolute (ms)
N interpolation error error

16 16 0.147081 2.9 0.2117930 3.6

32 16 0.003602 3.4 0.0097140 4.2
32 0.002436 5.3 0.0090885 6.8

64 16 0.001501 1.8 0.0002495 2.1
32 0.000354 3.1 0.0000254 3.7
64 0.000086 5.7 0.0000029 6.6

128 16 0.001424 1.7 0.0002341 2.0
32 0.000336 2.9 0.0000239 3.6
64 0.000081 5.9 0.0000027 6.7

128 0.000020 10.9 0.0000003 13.1

256 16 0.001287 1.8 0.0002469 2.2
32 0.000332 3.2 0.0000236 3.7
64 0.000080 5.7 0.0000027 7.0

128 0.000020 11.0 0.0000003 13.2
256 0.000005 20.8 0.0000002 25.0

Theaccuracyandefficiency of the sinemethodwerecheckedby interpolatinganddifferentiatingone-,
two- and three-dimensionalGaussianwave packets.For simplicity the momentumwas chosenas k = 0
andthe width as ~x = I/V~,and the function wasrenormalizedgiving the form

~G(x)—e (3.2)

in dimensionone and,e.g.,

y, z) = e_22~2C2 (3.3)

in dimensionthree.
Table 1 presentsthe results for interpolationof a one-dimensionalGaussianwave packet.The wave

packetwasenteredinto an equidistantgrid with N grid points,numbered0, 1 N — 1, at distancedx.
While N wasvaried, the length of the grid Ndx waskept constantat Ndx = 32. The wave packetwas
shiftedandits peakwasplacedin the centerof the grid. The wave functionwasthen interpolatedin a set
of points m + 6 (m = 0, 1 N — 2 and B = 0.5), and the results were comparedwith the exact values,
giving the absoluteerrors.Comparisonof themaximum absoluteerror, which is shownin the table,with
the maximumfunctionvalue, f(0) = I, givesa measureof the accuracyof theinterpolation.The CPU-time
shown is the computation time necessaryto perform an interpolation in one point m + 6 on a VAX
11/750 computer.This time does not takeinto accountthe time neededfor preparationof the partial
sums(e.g. 8 ms for 256 points).Sincethis preparationis done only once, beforethe actualinterpolations,
its computationtimeis negligible.

Examining the results in table 1, it is clear that there are threecausesof errors: undersampling,
truncationof the sumandmachineround-off.

For a small number of grid points (e.g. N = 16 or 32) the function is undersampled,since it has
frequenciesoutsidethe band representedon the grid. In this range,the error CA (cf. subsection2.7) is
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Table2
Accuracyand efficiencyof differentiationof the one-dimensionalGaussianwavepacketf(x) = e~

2’~.Thecomputationis twice
acceleratedby partial summation

Total Numberof 8 = 0 8 = 0.25 8 = 0.5
numberof points M used maximum maximum CPU-time maximum
grid points N in the absolute absolute (ms) absolute

differentiation error error error

64 16 0.0019563 0.0010617 4.0 0.0002132
32 0.0001767 0.0001110 6.9 0.0000102
64 0.0000189 0.0000126 12.8 0.0000006

128 16 0.0036695 0.0019926 3.9 0.0003991
32 0.0003329 0.0002092 6.8 0.0000191
64 0.0000358 0.0000239 12.5 0.0000011

128 0.0000043 0.0000040 24.4 0.0000003

256 16 0.0075659 0.0042253 4.1 0.0007535
32 0.0006576 0.0004137 7.1 0.0000378
64 0.0000709 0.0000474 13.0 0.0000021

128 0.0000083 0.0000075 24.3 0.0000007
256 0.0000015 0.0000075 48.2 0.0000007

dominant. Note that an extra accelerationincreases the total error. This is explainedby the fact that
CT << CA, andhencethe decreasein CT causedby extrapartial summationis irrelevant.On the otherhand,
the undersamplingerror CA is enlarged,becauseof the accumulationof undersamplingerrors in each
partial sum term. This effect sets a limit to the numberof partial accelerationsthat is worthwhile to
perform for eachgiven setof data.

If N is largeenough(N � 64), increasingN further doesnot improveaccuracy.Accuracyfor such N is
mainly determinedby the numberM of terms that are included in the computationof the sum of eq.
(2.10), resp. (2.17), and by the numberof accelerationsapplied.In this rangethe error CT is dominant.
Doubly acceleratedinterpolation,eq. (2.17), is much more accuratethansingly acceleratedinterpolation,
eq. (2.10). The error approximately decreaseswith M as M2 (single acceleration), M3 (double
acceleration),respectively.

Whenthe error becomesvery small the precisionof the computer(0.6 x I0~)becomesthe dominant
factor. Theerror is thendeterminedby the accumulationof round-offerrors.

The CPU-time grows linearly with M, with not more than 20% additional CPU time for double
acceleration.

Table 2 shows the results for doubly accelerateddifferentiation of a one-dimensionalGaussianwave
packet. The wave function was enteredin the grid as above.The function was differentiatedin a set of
points m + 6(m= 0, 1 N — 2) for threedifferent cases:in grid points (6 = 0), in midpoints(B = 0.5),
and in points which are neithergrid points nor midpoints(e.g. B = 0.25). The maximum absoluteerror
given in the tableshouldbe comparedwith themaximumvalueof the derivative I f’( ±1)1 0.607.

The differentiation in midpoints is clearly very accurate,its error decreasingrapidly with M as M4,
until the accuracylimit of the computeris reached.Theerror in the othercases(B = 0 andB = 0.25)grows
with M as M3. The error in all three casesgrows proportionally with N. This can be explainedas
follows: Formulae(2.34), (2.36), (2.37) are valid for grid distanceone. Forgrid distancedx the expressions
on the right-hand-sideshouldbe dividedby dx. This also dividesthe error by dx, or multiplies it with a
factor proportionalto N, since N dx waskept constant.

The table shows the CPU-time neededfor differentiation in the case 8 = 0.25 which representsthe
generalcase.Thespecialcaseof midpoint differentiationis much moreaccuratethanthe generalcase,and
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Table 3
Accuracy and efficiency of interpolationof the two-dimensionalGaussianwave packet f(x, y) = e~ ~ ~ Interpolation is
performedin midpoints, i.e., points(m

1+ 8~,m2 + 82) exactly in betweengrid points(61 = 62 = 0.5).The computationis accelerated
once by partial summation

Total Numberof Maximum CPU-time
number of points M = M1 >< M2 absolute (ms)
grid points usedin the error
N = Ni x N2 interpolation

64x64 8x8 0.006807 9
16x16 0.001455 33
32x32 0.000343 121
32x64 0.000343 382
64x64 0.0d0083 462

128x128 8x8 0.008806 9
16><16 0.001449 32
32x32 0.000333 124
64x64 0.000081 476

it needsabout25% less CPU-time,becauseonly onesumhas to be computed.Thedifferentiationon grid
points is somewhatless accuratethan the generalcasebut its computationis about 50% faster,becauseof
the simpler code.

Tables3 and 4 show the results for singly acceleratedinterpolationof a two- and three-dimensional
Gaussianwave packet. The interpolationwas performedin conditions similar to those in table I. The
length and width (and height) of the grid were kept constantat N~ dx = N2 dy (= N~dz) = 32. The
accuracywasobtainedby comparingthe maximumabsoluteerror with the maximumof the wave function
f(0, 0) = I andf(0, 0, 0) = 1, respectively.

Examining the results,it is found that the accuracyobtained is approximatelythe same as in the
equivalentone-dimensionalcase (cf. table 1). The results for an N x N two-dimensional grid using
M x M-point interpolation are very similar to the results for an N-point one-dimensionalgrid using
M-point interpolation.The error is determinedby the maximum of the errors in each direction (e.g.,
comparein table3 the M= 32 x 32 casewith the M= 32 X 64 case).The error decreasesas (min(M1))

2.
The CPU-timeis proportionalto M, the total numberof points usedin the interpolation.Eachadditional
dimensionmultiplies the CPU cost with a constantfactorof about1.4.

Table4
Accuracyandefficiency of interpolationof the three-dimensionalGaussianwave packetf( x, y, z) = e- 2 2 * 2/2 Interpolation
is performed in midpoints, i.e.. points (mi + 6~,m

2 + 62, m3 + 63) exactly in betweengrid points (6~= 82 = 61 = 0.5). The
computation is accelerated once by partial Summation

Total Number of Maximum CPU-time
number of points M = M1 x M2 x M3 absolute (ms)
grid points usedin the error
N = Ni x N2 x N3 interpolation

16x16x16 8x8x8 0.1915 84
16x16><16 0.1522 643

32x32x32 8x8x8 0.0075 86
16x16x16 0.0042 548
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3.2. Classical trajectories

The classicaltrajectorymethod is oneof the most frequently usedsimulationsof elementarymolecular
dynamics[13,14].In this method the coordinatesand momentaof the atomsinvolved are integratedby
usingHamilton’s equationsof motion. In order to apply the methodthe potentialenergysurfacehasto be
supplied.Themostaccuratepotentialsare thosesuppliedby ab initio calculations.If they arenot available
semi-empiricalpotentialsare used.

Ab initio calculationsprovide the value of the potential and its derivativesat discrete grid points.
Presenttrajectorymethodsfit this datato a continuousfunctional form in orderto be ableto integratethe
trajectories.This fitting procedureis difficult and is a main source of error. Some use of spline
interpolationfor thesepotentialshasbeenreportedbut the discontinuityof high order derivativesin this
procedurecausestrouble in the useof high order integrationprocedures.Semi-empiricalpotentialsmay
also becomenumericallyexpensiveto usein obtainingthe valuesof the potentialandits derivativesat the
integrationpoints.For example,the DIM potential [15] requiresa matrix diagonalizationprocedureeach
time the potential is calculated.

In situationswhena largebatchof trajectoriesis needed,computationtime canbe savedby calculating
andstoring the potential on grid points, for laterusewhenintegrating the trajectories.

Two methodsexist for obtaining the derivativesof the potential neededfor integrating the trajectory,
applicationof which dependson the existenceof the potentialderivativeson the samplingpoints. If these
derivativesare supplied one can use the interpolator to obtain the values of the derivativesalong the
trajectory.If only the valueof the potential is suppliedthe interpolatorcanbe used to supply numerical
derivativeson the trajectorypath.

In generalthe potential energy function is a difficult function to interpolatebecauseof its strong
singularitiesarisingwhenthe interatomicdistancesbecomesmall. Nevertheless,it will be shownthat this
problemcan be overcome.

Theequationsof motion of the classicaltrajectoryare Hamilton’s equations:

8q3Hp 8p 8H 8V 34
8t8pm’ Bt 0q 8q~ (.)

A fourth order Runge—Kuttafixed stepintegratorwasused to integratetheseequations.
As a first demonstrationthe Morse oscillator was used to show the various applications of the

interpolatingprocedurefor classicaltrajectories.
The Morsepotential is

V(q) = D(1 — e~)2— D, (3.5)

where a and D are constants.The analyticalderivativeof the Morsepotential is

8V,/8q= 2Dcs(1— e~~)~ (3.6)

First, this exact derivativewas usedfor the integration.The time step was chosenso that the analytical
solution [16] for the amplitude coincidedwith the integratedsolution up to six digits for 1000 integration
steps.This result was thenused to checkthe interpolation.

The Morse potential grows exponentiallyfor negative q and becomesasymptoticallyzero for large
positive q. Becauseof this exponentialgrowth the Morsepotential is not a bandlimitedfunction with a
finite support.This problemwas solved by starting the grid at positive q where the potential is small.
Starting at negativeq causesthe propagationof largeerrors through the grid by the partial summation
procedure.
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Table 5
Classical trajectory of theone-dimensionalMorse oscillator. The parametersare D = 0.1, 0=1.0, initial momentum p(O) = 0, initial

amplitude q(0) = —0.6, and mass m 1.0. The total number of grid points is N = 800

Number of Average error Relative error after k

points M used of interpolation integration steps
in interpolation or differentiation k = 100 1< = 1000

or differentiation

Interpolation 15 0.00017 0.00012 0.014
50 0.0000033 0.0000061 0.00037

Differentiation 15 0.11 0.028 1.7
50 0.00026 0.0019 0.0044

For the calculationa grid of N = 800 points was usedwith ~q = 0.0045, extendingfrom q = — 1.2 to
q = 2.4. On this grid the potential and its derivativewere calculatedon the grid points and stored for
interpolation.Thetrajectorywasthen integratedusingboth the interpolatedderivative(cf. subsection2.3)
and the numericalderivative(cf. subsection2.5). A doublepartial summationwasused for bothcases.

Table 5 comparesthe resultsof the different methods. Fig. 2 displays the amplitude of the Morse
oscillator obtainedby the different methods.Examiningfig. 2 andtable5 one finds that the interpolation
procedurefor obtaining the derivativesconvergesmore rapidly than the differentiation procedure.The
results show that it is possible to integratewith sufficient accuracy classical trajectories for many
integrationsteps,despitethe fact that the Morsepotential is not bandlimitedand despitethe fact that
errorsin classicaltrajectoryintegration accumulate.

A more realistic exampleis the integrationof the molecularsystemof H~.This integration is a three
body three-dimensionalcalculation.By usingconservationof momentumin the centerof masssystemthe
remainingproblemconsistsof a 12-dimensionalphasespace.Sincethe molecularforcesand the potential
are functionsof the threeinteratomicdistances,a three-dimensionalinterpolationprocedurewas needed.
For this systemthe DIM potential [15] waschosen.The sameRunge—Kuttaintegratoras abovewasused
with a time stepof 0.1 atomic time units.

First, a trajectory was run with the original DIM potential and afterwards it was compared to
trajectoriesin which the derivativeswere calculatedby interpolation.Threederivativeswere neededand
thesewerecalculatedandstoredon a three-dimensionalgrid for later interpolation. In order to obtain a
morebandlimitedfunction for theinterpolation,the derivativesof the potentialwere multiplied by a taper
function T:

0V’(R1, R2, R3) — av(R1, R2, R3) T R R R 37

0R, —~ ( 1’ 2’ 3)’ ( . )

whereR1, R2 and R3 are the interatomicdistancesand:

a a a
T(R~,R2, R3) = , (3.8)

(R1—$)
8+a (R

2—~)
8+a (R

3—$)
8+a

where a and$ are positiveconstants.After the interpolation the derivativeswere recoveredby inverting
the procedure.Table6 summarizesthe parametersusedfor thegrid andthe taperfunction.

Table7 comparesthe results of the trajectoriescalculatedby interpolation to the trajectorycalculated
by using the original DIM potentialand derivatives.Fig. 3 displaysthe trajectoryas a projection on the
R

1R2 plane. In constructingthe 3D interpolation it was found that the main considerationof computer
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Fig. 2. Classicaltrajectoryof theonedimensionalMorseoscillatorasa function of time. (a) Theanalyticaltrajectory(solid line), the
trajectorycomputedby interpolation of the derivative (x ----1< line) and the trajectorycomputedby numerical differentiation
(+ ---- + line). The number of points used in the calculation was M 15. (b) Thesameasfor (a), but with M = 50 points.

efficiency was storage.On the VAX 11/750computerthe six grids of derivativesandpartial sumsof size
60 X 60 X 60 exhaustedthe maximum availablememory size for a program.Also, the method of storage
was not optimal for trajectorycalculations,becausethe partial sumcoefficientsof the 3D grid were not
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Table 6
Parametersof grid and taperfunction for therepresentationof the DIM potential of thethree-dimensionalH~-system

Gridsize N= 40x40x40 60><60x60
Grid distance dR

1 = dR2 = dR3 = 0.02 0.015
Starting point of grid R10= R20= R30= 0.61 0.59
Taperconstants a= 0.0002 0.0002

1.01 1.04

Table 7
Accuracy of the sine interpolation method for classical trajectories of the three-dimensional H~system

Numberof Numberof Averageerror Relativeerrorafterk

grid points N points M of interpolation integration steps
usedinthe k=100 k=1000 k=1900
interpolation

40x40x40 8x8<8 0.0011 0.0012 0.005
60x60x60 8x8x8 0.00023 0.00058 0.002 0.009

12x12x12 0.00013 0.00020 0.003 0.002

storedconsecutivelyin the memoryof the computer.Thereforeit is not surprising that the calculationby
interpolationtooklongerthan the direct calculationsusingthe DIM potential.

As a conclusion,efficient storageis a key factor in usinginterpolationschemesfor classicaltrajectories.
A larger grid would make it possible to representa larger fraction of the potential, including the
dissociationplateau.This would permit the elimination of the taperfunction by startingthe computation
of the partial sumsfrom the dissociationplateau.

‘T~fl;T
RI

Fig. 3. Projectionon the R
1R2 plane of a classicaltrajectory for the H~systemcomputedby different methods:The classical

trajectory for the original potential (solid line). The classical trajectoryusing the interpolatedderivatives of the potential for:
N=40X40X40and M=8x8X8 (—-—-— line); N=60x60x60 and M=8x8x8 (dashedline); N=60x60X60 and M=16x
16X16(—--— line).
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d ___

Fig. 4. (a) The original wave function s~on an N = 64>< 64 Cartesian equidistant grid. (b) The wave function obtained by
interpolation into an N = 64 x 64 polar grid, with equal distance in the angular direction and exponentialscaling in the radial
direction. (c) The original wave function i~ (solid line), comparedwith thewave function s//. obtainedby transferrings/~to the polar
grid and back to theCartesiangrid. The interpolationusedM = 8 x 8 points (dash—dotted line, undistinguishable from the original)
or M = 4x4 points(dashedline). (d) Perspectiveview of (b).
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3.3. Grid to grid transfer

The transferof a function between(partly) overlappinggrids with different geometriescan be done
efficiently by using the sine interpolator. As an examplethe transferral of a wave function from a
Cartesiangrid to a polar grid will be shown.The needfor such a transferraloccurred[4] when a wave
packet,which wascomputedon a Cartesiangrid, had to be enteredinto a grid with polarcoordinatesto be
propagatedin time. (The wave packetpropagationsimulatedthe 2D collinearhydrogenexchangereaction
H + H2 -s H2 + H.)

The geometriesof the grids are as follows: The Cartesiangrid is definedby

x=idx for i=0,l Nv—I, y~=jdy for j=0,I N5—1, (3.9)

and the wave function S/i on the grid is given by the values i/it, i/i(x = x1, y =y1). The polar grid is
defined by

r~=,~3e for k=0,I Nr~1~ 4,=/d4 for /=0,1 N4—1, (3.10)

with exponentiallyincreasinggrid distancein the radial direction.The wave function on the polar grid is
representedby the valuesI/f’ i/I(r = rA, 4. = i/,) = i/i(x = rA cos~,, y = rk sin 4,).

The wave function is transferredfrom the Cartesianto the polar grid by interpolatingthe values i/i~’~in
the Cartesianpoints(x = rk cos I/is y = rA sin I/,) from the known values i/I~~.in the Cartesiangrid points
(x,, y1). It is also possibleto transferback to the Cartesiansystemby interpolating the wave function
values‘4i,~in the polarpoints (r = (x~+ ~•2~I /2 = arctan(y,/x,)) from the known valuesin the polargrid
points (r5, 4,).

Fig. 4 shows(a) a wave packet ~/ion the Cartesiangrid; (b) the samefunction transferredto a polar
grid; and(c) the result i/i’ of transferringi/i to a polar grid andback,comparedwith the original function
i/i. Fig. 4d showsthe wave function on the polar grid in a perspectiveview. Thewave function representsa
col!inear systemof an H atom approachingan H2 molecule in the v = 2 vibrational mode.The wave
function i/i is normalizedsuchthat ff1 i/J(x, y) 2 dx dy = 1.

Table8
Accuracyof the repeatedtransferralback andforth of a wave function from an N = 64 x 64 Cartesiangrid to an N = 64 x 64 polar
grid

Numberof Number of Relative Overlap
points M used transferrals error
in the backand forth
interpolation

8 x 8 1 0.0097 0.9979
2 0.0172 0.9962
5 0.0456 0.9911

16x16 1 0.0017 1.002
2 0.0035 1.0005
3 0.0053 1.0007
4 0.0070 1.0010
5 0.0088 1.0013

10 0.0175 1.0025
20 0.0346 1.0049
30 0.4092 1.0071
40 7.9300 1.0081
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Fig. 5. The increasein errorafter many grid transferralsback andforth. The wave function is the sameas in fig. 4, exceptfor the
vibrational mode,which is v = 0 in this case.

Fig. 4a andb clearly show the different geometriesof the grids. Grid parametersare = N
1, = Nr = N1,

= 64, dx = 0.188, dy = 0.108, dr = 0.04, dI/ = 0.0166 and r0 = 0.8. The comparisonin fig. 4c shows that
the contourlines of the original andthe transferredwave function are almostindistinguishable,exceptfor
the lowest contourline which representsa valueof 3% of themaximum valueof I 2 A comparisonof i/i

and i1li’ gives a measureof the accuracyof a (double)grid transferral.Two criteria for the error are useful:
the maximumof the difference I ‘P — 4” overthe grid (divided by max I i/i to normalize)andthe overlap

I (4’ I 4”) I = fftp*(x, y)4i’(x, y) dx dy I which should be unity for perfect transferral. A repeated
transferralbackandforth shows the error propagation.Resultsare shownin table8 and fig. 5. The error
afterone transferralbackandforth for the N = 64 x 64 grid is comparableto the errorshownin table3. It
is found that the relative error grows linearly until a point where it starts growing out of bounds
exponentially.

4. Conclusion

This work used a global approachto interpolation.Such an approachassumesthat the interpolated
function andits derivativesup to a high order are continuous.As a result, all sampleddatacontributeto
the reconstructionof the interpolatedvalue. It has been shown that this method is easily adaptableto
multidimensionalinterpolation.Whenusing sucha global approachcareshouldbe takenof local errorsin
the initial databecausesuch errorswill be propagatedthrough the whole grid. This restrictsthe choiceof
problemsfor which such an interpolatoris suited.

The basicinterpolation formula basedon the sine function assumesthat the interpolatedfunction is
bandlimitedandhasa finite support,this being an idealization. Commoninterpolatedfunctionsare only
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approximatelybandlimited.Nevertheless,it has beendemonstratedin the presentwork that a practical
accurateinterpolationcanbe obtainedfor functionswhich are very far from the restriction of refs. [1,2].
As an example the Morse potential varies a few ordersof magnitudein the interpolatedinterval, is
definitely not bandlimitedandstill good interpolatedresultswereobtained.

An interestingissue is the accelerationof convergenceby the partial summationprocedure.By this
procedurethe global datais compressedto the vicinity of the interpolatedpoint. It would seemthat this
accelerationprocedurecouldbe carriedoutindefinitely. A carefulexaminationrevealsthat errorsfrom the
boundaryare propagatedto the interior. Becausethe interpolatedfunctionsare neverstrictly bandlimited,
residualerrorsalways exist at the boundary.This puts a practicallimit to the numberof accelerationsby
partial summationwhich canbe used.

An importantextensionof the interpolationprocedureis the calculationof numericalderivatives.As
expected,derivativesare moresensitiveto imperfectionsof the interpolatedfunction. An importantissue
is the characterof the eigenvaluesof the approximatederivativeoperatoron a finite grid. The analytic
derivativeoperatorhas purely imaginary eigenvalues.Repeateduse of the numericaldifferencingproce-
dure revealedthat the eigenvaluesof the approximatederivativehavea realcomponent.This meansthat
repeateduse in a propagationscheme[17] leadsto exponentialdivergenceof the propagatedsolution. A
similar situation hasbeenfound in the repeateduseof the interpolatorin the grid to grid transferwhere
after a repeatedback andforth use the errorsgrow exponentially.

Accurate interpolation has many important applicationsin chemistry and physics. The accelerated
multidimensionalsine interpolatorwasfound to be of practicaluse in computationsin thesefields.
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