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A multidimensional interpolator based on convolution with the sinc function is developed. The interpolator is global in
nature, with all sampled data contributing to the computation. Preprocessing of the data by partial summation accelerates
convergence of the actual interpolation, when repeatedly interpolating the same data. Modification of the interpolation
procedure gives an efficient method for numerical differentiation. The method is intended for bandlimited functions with
finite support. The interpolator was tested for a class of problems related to molecular dynamics, including interpolation of
1D, 2D and 3D Gaussian wave packets on a grid; integration of classical trajectories on an interpolated potential; and the
transfer of a sampled wave function from a polar grid to a Cartesian grid and back. It was found that the interpolator is very
accurate for Gaussian-like wave functions, and that even for functions which are not bandlimited, such as the Morse potential,
a reasonable accuracy can be obtained.

1. Introduction

A wide class of physical and chemical problems requires not only an accurate but also a rapid
interpolator. Data on functions is often gathered at discrete and equally spaced sampling points. By
interpolation, the value of the function is retrieved at any arbitrary point. In many situations, the sampling
interval between points is relatively large so that the task of generating an accurate interpolator is
challenging. In such cases interpolation methods based on approximation by polynomials or piecewise
polynomial functions like splines, break down because they fail to represent the shorter wavelengths of the
function. In multidimensions, the shortcomings of polynomial type interpolators become more severe. This
study is concerned with the construction of a multidimensional interpolator based on a global approach,
which performs well on sparsely sampled data. The advantages of such a global approach are that all of
the known values of the function on the sampling points are utilized to obtain the interpolated value.

The interpolation scheme chosen was based on a convolution with the sinc function [1,2]. Because of the
slow decay of this function a partial summation procedure was used [3] to accelerate the convergence of
the interpolator. A multidimensional interpolator was then developed. An extension of this interpolation
will give an option of differentiation.

The present study was initiated in order to be able to transform a quantum mechanical wave function
represented on a Cartesian grid to a polar grid [4]. Because this required extensive interpolation, a rapid
procedure was needed.
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The development of the interpolation procedure opened new applications, such as simulation of reactive
scattering by the method of classical trajectories. In this simulation the input needed for integrating the
equations of motion consisted of the potential energy surface and its derivatives. In many cases this
potential is supplied on grid points. An accurate and efficient procedure is then required to find the
derivatives between these sampling points.

In section 2 the details of the sinc method for interpolation and differentiation are described. In section
3 examples of the use of the sinc method are given, such as the interpolation of Gaussian wave packets; the
direct calculation of a classical trajectory by interpolation of the value of the potential and its derivatives;
and the transfer of a quantum mechanical wave function from a Cartesian grid to a polar grid. In section 4
the conclusions are presented.

2. Description of the method
2.1. The sinc interpolator

The Whittaker—Kotel’'nikov—Shannon sampling theorem [1,2] states that a bandlimited function 1s fully
specified if the function values are given in a discrete, sufficiently dense set of equally spaced sampling
points. This implies that, given the values on such a set of points, the value in a point between the
sampling points can be interpolated with any desired accuracy.

The Fourier transform of a function f: R — C is defined as the function f : R— C with

f(s) =f_°;f(x) e 2" dx. (2.1)

The function f is called bandlimited if there exists an s, such that f (s) =0 for |s| > s,. The smallest such
value s, is sometimes referred to as the Nyquist or folding frequency. If the function values f(x) are known
in points x = ndx with sampling distance dx < 1/2s, then, according to the sampling theorem,

f(tdx)= i f(n dx) sinc(r—n), (2.2)

n=—o0

where the function sinc is defined as sinc(x) = sin mx /mx for x # 0 and sinc(0) = 1. For convenience the

sampling points in this section are assumed to be at distance dx = 1. In that case the previous expression is

valid if s, < 3. The expression can then be rewritten in the form

sin(m(m+ 8 — n))
a(m+8—n)

flm+8)= i f(n)sinc(m+8—-n)= _i: f(n) , (2.3)

n= -

where m is an integer, and 8 a real number in the closed segment [0,1]. The expression (2.3) is a
convolution of f and the sinc function.

2.2. Accelerated convergence by partial summation

Summation by parts is the finite difference analogue of integration by parts of a definite integral and is
expressed in the formula [3]

Nil F(n)AG(n)=[F(N)G(N) - F(0)G(0)] — Ng G(n+1)AF(n), (2.4)

where the finite difference operator A is defined by AF(n) = F(n+ 1) — F(n).
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Lanczos [5] and, more recently, Rosenbaum and Boudreaux [6] have used partial summation to speed
up convergence in a spectral interpolation formula. The treatment of interpolation in this paper is similar
to their work except that in the present case interpolation is done in the time domain and not in the
frequency domain.

Application of partial summation, eq. (2.4), to accelerate convergence in eq. (2.3) is done as follows:
Suppose [ is a bandlimited function with a finite support, with f(i) =0 for i <0 and for i large enough.
For a given fixed integer m and a fixed & € (0,1) define

F(n)=1/(m—-n+38) (2.5)
and

G(m) =T (-1)'1(). 26)
Then

AF(n)=1/(m—-n+8)(m—n—1+38) (2.7)
and

AG(n)=(-1)"f(n). (2.8)

After simple algebraic manipulation eq. (2.3) can be rewritten as

sin(m(m—n+3))
m(m-—n+38)

f(m+8)= if(n) =(_1)’"Sin 8 i (r;l) f(n)

-n+éd

o0

_ (—1)"Sinm T F(n)AG(n). (2.9)

m
n

Consequently partial summation, according to eq. (2.4), can be applied with N — oo. The term F(N)G(N)
disappears because lim, _ , F(N)=0 and G(N) is a constant function for large enough N. Since
G(0) = 0 the term F(0)G(0) = 0. As a result

m-+-1§i-ﬂ—ﬂ’-6 d G(n+1)

fim+8)=(-1) ™ EO (m—n+8)(m—-n-1+8)’ (2.10)
where
G(n+1)= T (~1)'/(). (1)

The infinite sum in eq. (2.10) converges faster than the original sum in eq. (2.3) because of the quadratic
denominator.

In conclusion, an efficient interpolation of a function f at many points m + 8 can be performed by
preprocessing the sampled data to compute the alternating partial sums of eq. (2.11), storing the results
and using them to compute f(m + 8) by eq. (2.10) for every point m + 8.

Applying this method for interpolation near the grid points gives poor results, because of the
singularities of eq. (2.10) for 8 = 0 and 8 = 1. Instead, use is made of a first order Taylor approximation
fm+8)=f(m)+8f'(m) for §=0, and f(m+8)=f(m+1)+(8—1)f'(m+1) for § =1. The deriva-
tives f'(m) and f'(m + 1) are computed by the method for differentiation on grid points described in
subsection 2.5.
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2.3. Double partial summation
Partial summation can be repeated a number of times to effect a further acceleration of convergence. As

an example, the procedure of double partial summation will be outlined. The same procedure which
speeded up convergence in eq. (2.3), resulting in eq. (2.10), can be applied again. Define

FF(n)=1/(m—n+8)(m—n—-1+38) (2.12)
and

GG(n) = i G(i). (2.13)

i=0

Then

AFF(n)=2/(m—n+8)(m-n—1+8)(m—n—2+38) (2.14)
and

AGG(n)=G(n+1). (2.15)
Eq. (2.10) can now be rewritten as

f(m+‘6)=(—l)m+lsm'ﬁ—mS S—S FF(n)AGG(n). (2.16)

n=0

Here partial summation, eq. (2.4), can be applied with N — co. Note that hm, _, , FF(N)GG(N)=0,
since for large N the factor GG(N) grows linearly with N and FF(N) falls off quadratically. Since
GG(0) =0 the term FF(0)GG(0) = 0. As a result

_ [ qym2sin 78 > GG(n+1)
St 8) = (=) L 8 ) mn— T4 8)(m—n=250)" (2.17)
where
A+l o1
GG(n+1)=3 X (-1)f(J). (2.18)
i=0 j=0

At the initial cost of an additional calculation of partial sums, the convergence is speeded up by an extra
factor of the order 1/(m — n).

The three equations (2.3), (2.10) and (2.17) have the form of a convolution of f with sin mx /mx, resp. G
with sin mx /mx(x — 1), resp. GG with sin mx /mx(x — 1)(x — 2). These functions are shown in fig. 1.

2.4. Multidimensional interpolation

The one-dimensional sampling theorem can be generalized to higher dimensions. For a bandlimited
function f of k variables, sampled at integer grid points (n,,.... n,), the sampling formula is, in analogy
with eq. (2.3),

oC o0
flm, +8,,...,m+8)= Y - Y fln,....n)sinc(m, +8 —n,)

-+ -sinc(m, +8, —n,) (2.19)

for integer m,,...,m, and §,,...,8, €[0,1].
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Fig. 1. The sinc function (solid line) and the functions —sin mx /mx(x — 1) (dashed line) and sin mx /mx(x —1)}(x —2) (dash—-dotted
line). Interpolation with 0, 1, 2, times acceleration is a convolution with these functions, respectively.

Suppose f has a finite support with f(n,....,n,)=0 if one of the n,’s is negative orlarge enough.
Following the same procedure as in eq. (2.9), we rewrite eq. (2.19) as
< e o Y A LIV Y
flm, +8,,....m +8)=C3 -
! ! kK 3 (my=ny+8)---(m,—n,+8,)

n =0 n,=0

0 (__1)”1

c (=D"f(n,,...,n,
. L e} ) o
n =0 (m;—ny+8) n,=0 (my —n, +38,)
where the constant C=(—1)"* " *"q X sin w8, - - - sin w8,. Applying partial summation for the kth
sum gives

z (-
+8,,..., +6,)=~-C 0
f(m, 1 m, +8,) n§0 (m, —n, +9,)

£t

0 (mk—] —n, +8,)

Ry 1=

X( < G(ny,....n;)
pmo (M —n + 8 )(m, —n —1+8,)

)) (2.21)

Gi(ny,...on )= (=1)"flny.ony, dy) (2.22)
)

where
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and hence

1
(me—n+8)(m —n, —1+38;)

f(m +8,,....m+8)=-CY

n,=0
Xl

0 -1 ny s} —~1 "A—)G el !
Z (-1 Z (-1 1(n ny) ] (2.23)

n,=0 (m,—n, +38,) ng =0 (M = nm +8,.4)
The expression inside the square brackets of eq. (2.23) has the form of the right-hand-side of eq. (2.20)
(with k — 1 variables instead of k) and hence the procedure above can be repeated. After performing this

procedure k times, defining successively functions G,, G,....,G,. the interpolation formula obtained is
P~ s 1
m+8,....m +8)=(-1)'C -
f( ! ! i A) ( ) Z::O ,,AZ:O (m1_n1+81)(m1_n1_1+61)
. ! G, ) (2.24)
(my—n +8)(m,—n—1+8) " e .
where
Go(npooooun)=% - T (=D T ) (2.25)
iy =0 =0
and
C=(-1)"""""a *sinmd, ---sin us,. (2.26)

Eqgs. (2.24)—(2.26) are the multidimensional analogue of egs. (2.10)-(2.11). As in the one-dimensional case,
f is interpolated efficiently by first preparing alternating partial sums by eq. (2.25), storing them and using
the results to compute f(m; + 8,,..., m, + 8,) by eq. (2.24) for the points (m, + §,,....m, + 8,).

2.5. Differentiation

Functions that can be interpolated efficiently by the sinc method can also be differentiated efficiently in
a similar way. Two cases of differentiation will be considered in this subsection: (i) on grid points; (i1)
between grid points.

The class of functions to be differentiated is the same as before: bandlimited functions with finite
support and with function values that are known in equidistant grid points. Here the grid distance is
supposed to be one, and f is supposed to be zero for ; <0 or i large.

The differentiation formula is provided by differentiation of the sinc interpolation expression: Differ-
entiation of eq. (2.3) gives

f(im+8)= Y f(n)sinc'(m—n+8§), (2.27)
where m is an integer, and 8§ a real number in the segment [0,1]. Here
cos mx  sin mx

sinc’(x) = —x‘ - >
mX

for x#0 (2.28)
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and
sinc’(0) = 0. (2.29)

(i). The derivative of f in grid points m, f’(m), is computed from the known values f(#), as follows:
Setting 8 = 0 in eq. (2.27) gives

fmy= ¥ 1(n) sinc(m—n)

cos(m(m—n)) sin(n(m—n))

+ f(m) sinc’(0)

5 0

o 7T 'rr(m—né_
- 3 S-S (230

n=
n+m

This expression has the by now familiar form which allows partial summation. Care has to be taken to sum
over all n # m. This is done by defining

F(n)={1/(m~n) iLnsm. (2.31)
0 ifn=m,
and defining G(n) as usual (eq. (2.6)). Then

1
AF(n)=(m_n)(’.n_n_1) for n#m—1,m (2.32)

and
AF(m—1)=AF(m)=—1. (2.33)

Eq. (2.30) can now be rewritten as

Fim)=(~1)" £ Fn)AG(m) =(~1)""' T Gln+1)AF(n)
—(—1)"" n% (m_%("r:_l)n_l) —G(m)—G(m+1)|, (2.34)
where
G(n+1)=§": (=1)'F(i). (2.35)

An efficient differentiation of the function f at many points m can be performed by first computing the
partial sums in eq. (2.35), storing the results and using them to compute f’(m) by eq. (2.34) for every point
m. As in the case of interpolation it is possible to repeat the acceleration procedure.

(ii). The function f can be differentiated in a point m + 8 between the grid points » (i.e., with 8 # 0,1).
One way to proceed is to combine eqs. (2.27) and (2.28) and then apply partial summation to speed up
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convergence. Another, equivalent, way is to differentiate the accelerated result of partial summation, eq.
(2.10). This gives

me1 SiN T8 G(n+1)
T Ty (m—n+8)(m-—n—-1+39)

[m+8) =25 (1)

_(_ n+1 x G(I’l+1)
=(=1) [COS'WSHEO(m—n+8)(m—n—1+6)

N sin w6 i G(n+1)(1-2(m—n+3d)) J (2.36)

n=0(m—i1-4-6)2(rr1—n~1+(‘3)2

where the partial sums G(#n) are defined as before, eq. (2.35).
This procedure can also be applied on the doubly accelerated formula eq. (2.17). This results in

/ IV % GG(n+1)
f(m+8)=(-1) [2905'”8";0(m—n+8)(m—n—1+3)(m“”“2+8)
_2sir1'rT3 i GG(n+1)(3(mvn+3)h_6(m_”+8)+2)}, (2.37)

T o (m—n+8Y(m—n—1+8) (m—n—2+8)

where GG (n + 1) is defined in eq. (2.18).

For the special case of midpoint differentiation (8 = }) the formulae (2.36) and (2.37) provide even
faster differentiators. This is because cos w8 =0 for 8 = 1, leaving only the second sum in the formula,
thereby speeding up convergence by an extra factor of the order 1/(m — n).

Note that instead of differentiating the accelerated interpolation formula eq. (2.10) we can integrate it,
in a similar way, obtaining a formula for numerical integration of a function.

2.6. Generalization
The sinc interpolation formula, eq. (2.3), is a particular case of the formula given by Schwartz [7] for the

interpolation of analytic functions.

u{x) 1

f(X)=Zf(X,,)( (2.38)

X = 'Xll) u,(-'xﬂ) .

Here the analytic function f is sampled at the grid points x, (not necessarily at equal distances) and it is
approximated using an analytic function u(x) with simple zeros at the grid points. Taking u(x) = sin @x
and x, = n in eq. (2.38) reduces the expression to eq. (2.3).

The method of partial summation to accelerate convergence can aiso be applied in the more general
case. This results in

f(x)=ZG(n+l)(x_xb;Ei)_x X (2.39)
where
Gn+1)=(x,—x,,,) ) f(x"). (2.40)

i=0 u,(xi)
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The sampled data are preprocessed to calculate the values G(n+ 1) and after that, in the actual
interpolation, the expression (2.39) is evaluated.

2.7. Error analysis

It is an idealization to assume that a function is bandlimited and has a finite support. Since there exists
an uncertainty relation AxAs>1/4m, (cf. ref. [2], chap. 8) between the width of a Fourier integrable
function and the width of its Fourier transform, both assumptions are only approximately correct. This
gives rise to two kinds of errors, as outlined below.

The error analysis performed here is due to Schwartz [7}, who gave the analysis for the non-accelerated
case. There are two competing errors (neglecting round-off): the truncation error € caused by assuming
finite support and cutting off the infinite sums, and the approximation error €, caused by the assumption
of bandlimitedness. Optimal efficiency is obtained when both errors are about equal.

The approximation error is equal to

1 f(z) sin @x
€= Zwifr L P (2.41)

z— X sin mz

(cf. [7]) where the contour I' in the complex plane encloses all the grid points.

The effect of the acceleration procedure is to reduce the truncation error €.

For Gaussian wave functions, f(x)= e ¢<", Schwartz found an exponential decrease of the error, as
e "N/2 where for a given number of grid points N the grid distance d x was chosen such that €, = €. The
acceleration introduced here changes the relation between the two errors, by decreasing € and increasing
€. For a given accuracy, acceleration decreases the computational effort.

3. Examples
3.1. Gaussian wave packets

The Gaussian wave packet [8] is an important example of a quantum mechanical wave function. It
describes the probability of a free particle being present in a certain point of space at a given time. A
normalized Gaussian wave packet in dimension one has the form

1 1/4
Yo (x) =( )2) eikr e (x/280)7, (3.1)

2a(Ax

where x is the space coordinate, & the momentum, and Ax the width of the wave packet. Recently, a basis
of Gaussian wave packets has been used by Heller et al. in semiclassical time dependent wave packet
propagations with many degrees of freedom [9,10]. Gaussian wave packets have also been used in full
quantum simulations of dynamical processes such as the H* + H, reaction [11], and atom-surface
scattering for the He-W system [12].

The Gaussian wave packet possesses properties which permit successful application of sinc interpola-
tion and differentiation. The Fourier transform of a Gaussian function is again a Gaussian. Since the tails
of a Gaussian function fall off rapidly, both the Gaussian and its Fourier transform have, approximately, a
finite support. This implies that in a good approximation Gaussian wave functions are bandlimited
functions with a finite support. These are precisely the properties which enable the use of the sinc method.
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Table 1
Accuracy and computation time of interpolation of the one-dimensional Gaussian wave packet f(x)=e"~ /2
Total Number of Single acceleration Double acceleration
nu.;nbelj Olf potr}llls M used maximum CPU-time maximum CPU-time
grid points fn e . absolute (ms) absolute (ms)
N interpolation
error error
16 16 0.147081 29 0.2117930 3.6
32 16 0.003602 34 0.0097140 42
32 0.002436 5.3 0.0090885 6.8
64 16 0.001501 1.8 0.0002495 2.1
32 0.000354 3.1 0.0000254 3.7
64 0.000086 5.7 0.0000029 6.6
128 16 0.001424 1.7 0.0002341 2.0
32 0.000336 2.9 0.0000239 3.6
64 0.000081 5.9 0.0000027 6.7
128 0.000020 10.9 0.0000003 13.1
256 16 0.001287 1.8 0.0002469 2.2
32 0.000332 3.2 0.0000236 3.7
64 0.000080 5.7 0.0000027 7.0
128 0.000020 11.0 0.0000003 13.2
256 0.000005 20.8 0.0000002 25.0

The accuracy and efficiency of the sinc method were checked by interpolating and differentiating one-,
two- and three-dimensional Gaussian wave packets. For simplicity the momentum was chosen as k =0
and the width as Ax =1/v2, and the function was renormalized giving the form

Yo(x)=e 7 (3.2)

in dimension one and, e.g.,

Yo (x, y, z) =e THiHahn (3.3)
in dimension three.

Table 1 presents the results for interpolation of a one-dimensional Gaussian wave packet. The wave
packet was entered into an equidistant grid with N grid points, numbered 0, 1,..., N — 1, at distance dx.
While N was varied, the length of the grid Ndx was kept constant at Ndx = 32. The wave packet was
shifted and its peak was placed in the center of the grid. The wave function was then interpolated in a set
of points m+8 (m=0,1,..., N—2 and 8§ =0.5), and the results were compared with the exact values,
giving the absolute errors. Comparison of the maximum absolute error, which is shown in the table, with
the maximum function value, f(0) =1, gives a measure of the accuracy of the interpolation. The CPU-time
shown is the computation time necessary to perform an interpolation in one point m+8 on a VAX
11/750 computer. This time does not take into account the time needed for preparation of the partial
sums (e.g. 8 ms for 256 points). Since this preparation is done only once, before the actual interpolations,
its computation time is negligible.

Examining the results in table 1, it is clear that there are three causes of errors: undersampling,
truncation of the sum and machine round-off.

For a small number of grid points (e.g. N =16 or 32) the function is undersampled, since it has
frequencies outside the band represented on the grid. In this range, the error €, (cf. subsection 2.7) is
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Table 2

_ . o . . . _ 2 . . .
Accuracy and efficiency of differentiation of the one-dimensional Gaussian wave packet f(x)=e~* /2. The computation is twice
accelerated by partial summation

Total Number of §=0 8 =10.25 8§=0.5
ngmber' of Points M used maximum maximum CPU-time maximum
grid points N in the o absolute absolute (ms) absolute
differentiation error error error
64 16 0.0019563 0.0010617 4.0 0.0002132
32 0.0001767 0.0001110 6.9 0.0000102
64 0.0000189 0.0000126 12.8 0.0000006
128 16 0.0036695 0.0019926 3.9 0.0003991
32 0.0003329 0.0002092 6.8 0.0000191
64 0.0000358 0.0000239 12.5 0.0000011
128 0.0000043 0.0000040 24.4 0.0000003
256 16 0.0075659 0.0042253 4.1 0.0007535
32 0.0006576 0.0004137 7.1 0.0000378
64 0.0000709 0.0000474 13.0 0.0000021
128 0.0000083 0.0000075 243 0.0000007
256 0.0000015 0.0000075 48.2 0.0000007

dominant. Note that an extra acceleration increases the total error. This is explained by the fact that
€1 << €,, and hence the decrease in e caused by extra partial summation is irrelevant. On the other hand,
the undersampling error ¢, is enlarged, because of the accumulation of undersampling errors in each
partial sum term. This effect sets a limit to the number of partial accelerations that is worthwhile to
perform for each given set of data.

If N is large enough (N > 64), increasing N further does not improve accuracy. Accuracy for such N is
mainly determined by the number M of terms that are included in the computation of the sum of eq.
(2.10), resp. (2.17), and by the number of accelerations applied. In this range the error ¢ is dominant.
Doubly accelerated interpolation, eq. (2.17), is much more accurate than singly accelerated interpolation,
eq. (2.10). The error approximately decreases with M as M™% (single acceleration), M > (double
acceleration), respectively.

When the error becomes very small the precision of the computer (0.6 X 10~ 7) becomes the dominant
factor. The error is then determined by the accumulation of round-off errors.

The CPU-time grows linearly with M, with not more than 20% additional CPU time for double
acceleration.

Table 2 shows the results for doubly accelerated differentiation of a one-dimensional Gaussian wave
packet. The wave function was entered in the grid as above. The function was differentiated in a set of
points m+8(m=20,1,..., N —2) for three different cases: in grid points (8 = 0), in midpoints (8 = 0.5),
and in points which are neither grid points nor midpoints (e.g. 8§ = 0.25). The maximum absolute error
given in the table should be compared with the maximum value of the derivative | f(£1)| = 0.607.

The differentiation in midpoints is clearly very accurate, its error decreasing rapidly with M as M4,
until the accuracy limit of the computer is reached. The error in the other cases (8§ =0 and 8 = 0.25) grows
with M as M °. The error in all three cases grows proportionally with N. This can be explained as
follows: Formulae (2.34), (2.36), (2.37) are valid for grid distance one. For grid distance d x the expressions
on the right-hand-side should be divided by dx. This also divides the error by dx, or multiplies it with a
factor proportional to N, since N dx was kept constant.

The table shows the CPU-time needed for differentiation in the case 8 = 0.25 which represents the
general case. The special case of midpoint differentiation is much more accurate than the general case, and
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Table 3

Accuracy and efficiency of interpolation of the two-dimensional Gaussian wave packet f(x, y)= e~ (72, Interpolation is
performed in midpoints, i.e., points (m, + 8,, m, + 8,) exactly in between grid points (8, = 8, = 0.5). The computation is accelerated
once by partial summation

Total Number of Maximum CPU-time

number of points M = M, X M, absolute (ms)

grid points used in the error

N=N, XN, interpolation

64 < 64 8x8 0.006807 9

1616 0.001455 33
32x32 0.000343 121
32x64 0.000343 382
64 64 0.000083 462

128 %128 8x8 0.008806 9
16 %16 0.001449 32
32x32 0.000333 124
64 x 64 0.000081 476

it needs about 25% less CPU-time, because only one sum has to be computed. The differentiation on grid
points is somewhat less accurate than the general case but its computation is about 50% faster, because of
the simpler code.

Tables 3 and 4 show the results for singly accelerated interpolation of a two- and three-dimensional
Gaussian wave packet. The interpolation was performed in conditions similar to those in table 1. The
length and width (and height) of the grid were kept constant at Ny dx=N, dy (=N, dz)=32. The
accuracy was obtained by comparing the maximum absolute error with the maximum of the wave function
f(0,0)=1 and f(0, 0, 0) = 1, respectively.

Examining the results, it is found that the accuracy obtained is approximately the same as in the
equivalent one-dimensional case (cf. table 1). The results for an N X N two-dimensional grid using
M X M-point interpolation are very similar to the results for an N-point one-dimensional grid using
M-point interpolation. The error is determined by the maximum of the errors in each direction (e.g.,
compare in table 3 the M = 32 X 32 case with the M = 32 X 64 case). The error decreases as (min(M,)) 2.
The CPU-time is proportional to M, the total number of points used in the interpolation. Each additional
dimension multiplies the CPU cost with a constant factor of about 1.4,

Table 4

Accuracy and efficiency of interpolation of the three-dimensional Gaussian wave packet f(x, y, z) = e (xriash Interpolation
is performed in midpoints, i.e., points (m,+ §,, m, +8,, m;+ 8;) exactly in between grid points (8, =8, =8,=0.5). The
computation is accelerated once by partial summation

Total Number of Maximum CPU-time

number of points M = M, X M, X M, absolute (ms)

grid points used in the error

N=N/ XN, XN, interpolation

16 X16x 16 8X8X38 0.1915 84
16X16x16 0.1522 643

32x32x32 8x8x8 0.0075 86

16 X16X16 0.0042 548
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3.2. Classical trajectories

The classical trajectory method is one of the most frequently used simulations of elementary molecular
dynamics [13,14]. In this method the coordinates and momenta of the atoms involved are integrated by
using Hamilton’s equations of motion. In order to apply the method the potential energy surface has to be
supplied. The most accurate potentials are those supplied by ab initio calculations. If they are not available
semi-empirical potentials are used.

Ab initio calculations provide the value of the potential and its derivatives at discrete grid points.
Present trajectory methods fit this data to a continuous functional form in order to be able to integrate the
trajectories. This fitting procedure is difficult and is a main source of error. Some use of spline
interpolation for these potentials has been reported but the discontinuity of high order derivatives in this
procedure causes trouble in the use of high order integration procedures. Semi-empirical potentials may
also become numerically expensive to use in obtaining the values of the potential and its derivatives at the
integration points. For example, the DIM potential [15] requires a matrix diagonalization procedure each
time the potential is calculated.

In situations when a large batch of trajectories is needed, computation time can be saved by calculating
and storing the potential on grid points, for later use when integrating the trajectories.

Two methods exist for obtaining the derivatives of the potential needed for integrating the trajectory,
application of which depends on the existence of the potential derivatives on the sampling points. If these
derivatives are supplied one can use the interpolator to obtain the values of the derivatives along the
trajectory. If only the value of the potential is supplied the interpolator can be used to supply numerical
derivatives on the trajectory path.

In general the potential energy function is a difficult function to interpolate because of its strong
singularities arising when the interatomic distances become small. Nevertheless, it will be shown that this
problem can be overcome.

The equations of motion of the classical trajectory are Hamilton’s equations:

99 _9H _p dp_ _3H _ ¥ (3.4)
¢ dp m’ Ot dq aq -’ )
A fourth order Runge-Kutta fixed step integrator was used to integrate these equations.

As a first demonstration the Morse oscillator was used to show the various applications of the
interpolating procedure for classical trajectories.

The Morse potential is

V(g)=D(1—e )" - D, (3.5)
where a and D are constants. The analytical derivative of the Morse potential is
V/3g=2Da(l —e ) e 9, (3.6)

First, this exact derivative was used for the integration. The time step was chosen so that the analytical
solution [16] for the amplitude coincided with the integrated solution up to six digits for 1000 integration
steps. This result was then used to check the interpolation.

The Morse potential grows exponentially for negative ¢ and becomes asymptotically zero for large
positive g. Because of this exponential growth the Morse potential is not a bandlimited function with a
finite support. This problem was solved by starting the grid at positive ¢ where the potential is small.
Starting at negative ¢ causes the propagation of large errors through the grid by the partial summation
procedure.
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Table 5
Classical trajectory of the one-dimensional Morse oscillator. The parameters are D = 0.1, a = 1.0, initial momentum p(0) = 0, initial
amplitude ¢(0) = —0.6, and mass m = 1.0. The total number of grid points is N = 800

Number of Average error Relative error after &
points M used of interpolation integration steps
in interpolation or differentiation % =100 % = 1000

or differentiation

Interpolation 15 0.00017 0.00012 0.014
50 0.0000033 0.0000061 0.00037
Differentiation 15 0.11 0.028 1.7
50 0.00026 0.0019 0.0044

For the calculation a grid of N =800 points was used with Ag = 0.0045, extending from ¢ = —1.2 to
g = 2.4. On this grid the potential and its derivative were calculated on the grid points and stored for
interpolation. The trajectory was then integrated using both the interpolated derivative (cf. subsection 2.3)
and the numerical derivative (cf. subsection 2.5). A double partial summation was used for both cases.

Table 5 compares the results of the different methods. Fig. 2 displays the amplitude of the Morse
oscillator obtained by the different methods. Examining fig. 2 and table 5 one finds that the interpolation
procedure for obtaining the derivatives converges more rapidly than the differentiation procedure. The
results show that it is possible to integrate with sufficient accuracy classical trajectories for many
integration steps, despite the fact that the Morse potential is not bandlimited and despite the fact that
errors in classical trajectory integration accumulate.

A more realistic example is the integration of the molecular system of H; . This integration is a three
body three-dimensional calculation. By using conservation of momentum in the center of mass system the
remaining problem consists of a 12-dimensional phase space. Since the molecular forces and the potential
are functions of the three interatomic distances, a three-dimensional interpolation procedure was needed.
For this system the DIM potential [15] was chosen. The same Runge—Kutta integrator as above was used
with a time step of 0.1 atomic time units.

First, a trajectory was run with the original DIM potential and afterwards it was compared to
trajectories in which the derivatives were calculated by interpolation. Three derivatives were needed and
these were calculated and stored on a three-dimensional grid for later interpolation. In order to obtain a
more bandlimited function for the interpolation, the derivatives of the potential were multiplied by a raper
function T

V'(R,, Ry, R;) V(R,, R,, R;) r
9R T IR,

i i

(R, R,, R;), (3.7)

where R,, R, and R, are the interatomic distances and:

[44 [44 [44

(Rl—,B)S-i—a (Rz—,8)8+a (R3—,8)8+a’

T(Ry, Ry, R;) = (3.8)

where « and B are positive constants. After the interpolation the derivatives were recovered by inverting
the procedure. Table 6 summarizes the parameters used for the grid and the taper function.

Table 7 compares the results of the trajectories calculated by interpolation to the trajectory calculated
by using the original DIM potential and derivatives. Fig. 3 displays the trajectory as a projection on the
R, R, plane. In constructing the 3D interpolation it was found that the main consideration of computer
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Fig. 2. Classical trajectory of the one dimensional Morse oscillator as a function of time. (a) The analytical trajectory (solid line), the
trajectory computed by interpolation of the derivative (X----X line) and the trajectory computed by numerical differentiation
(+----+ line). The number of points used in the calculation was M =15. (b) The same as for (a), but with M = 50 points.

efficiency was storage. On the VAX 11 /750 computer the six grids of derivatives and partial sums of size
60 X 60 X 60 exhausted the maximum available memory size for a program. Also, the method of storage
was not optimal for trajectory calculations, because the partial sum coefficients of the 3D grid were not
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Table 6
Parameters of grid and taper function for the representation of the DIM potential of the three-dimensional H -system
Grid size N= 40 x40 x40 60 X 60 <60
Grid distance dR,=dR,=dR,= 0.02 0.015
Starting point of grid Rig=R,3=R;,= 0.61 0.59
Taper constants a= 0.0002 0.0002
B= 1.01 1.04
Table 7
Accuracy of the sinc interpolation method for classical trajectories of the three-dimensional HY system
Number of Number of Average error Relative error after &
grid points N points M of interpolation integration steps
used in the k=100 k —1000 k — 1900
interpolation
40 x40 x40 8x8x8 0.0011 0.0012 0.005 -
60 % 60 X 60 8x8x8 0.00023 0.00058 0.002 0.009
12x12x12 0.00013 0.00020 0.003 0.002

stored consecutively in the memory of the computer. Therefore it is not surprising that the calculation by
interpolation took longer than the direct calculations using the DIM potential.

As a conclusion, efficient storage is a key factor in using interpolation schemes for classical trajectories.
A larger grid would make it possible to represent a larger fraction of the potential, including the
dissociation plateau. This would permit the elimination of the taper function by starting the computation
of the partial sums from the dissociation plateau.

Re

R1

Fig. 3. Projection on the R, R, plane of a classical trajectory for the H} system computed by different methods: The classical
trajectory for the original potential (solid line). The classical trajectory using the interpolated derivatives of the potential for:
N=40x40x40 and M =8X8X8 (—---- line); N = 60x60X60 and M =8x8Xx8 (dashed line); N =60x60X60 and M =16 x
1616 (- - - — line).
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Fig. 4. (a) The original wave function ¢ on an N =64x64 Cartesian equidistant grid. (b) The wave function obtained by
interpolation into an N =64x64 polar grid, with equal distance in the angular direction and exponential scaling in the radial
direction. (¢) The original wave function y (solid line), compared with the wave function ¢/, obtained by transferring ¢ to the polar

grid and back to the Cartesian grid. The interpolation used M = 8 X 8 points (dash—dotted line, undistinguishable from the original)
or M = 4 X4 points (dashed line). (d) Perspective view of (b).
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3.3. Grid to grid transfer

The transfer of a function between (partly) overlapping grids with different geometries can be done
efficiently by using the sinc interpolator. As an example the transferral of a wave function from a
Cartesian grid to a polar grid will be shown. The need for such a transferral occurred [4] when a wave
packet, which was computed on a Cartesian grid, had to be entered into a grid with polar coordinates to be
propagated in time. (The wave packet propagation simulated the 2D collinear hydrogen exchange reaction
H+H,—-H,+H)

The geometries of the grids are as follows: The Cartesian grid is defined by

x;=idx for i=0,1,...,N —1, yy=jdy for j=0,1.....N, -1, (3.9)

and the wave function ¢ on the grid is given by the values ¥, =¢(x=x, y=y). The polar grid is
defined by

re=rye*¥ for k=0,1,...,N—-1, ¢,=1de¢ for 1=0,1,....N,—1, (3.10)

with exponentially increasing grid distance in the radial direction. The wave function on the polar grid is
represented by the values ¢*' =y (r=r,, ¢ =¢,)=y(x=r, cos ¢, y =r, sin ¢,).

The wave function is transferred from the Cartesian to the polar grid by interpolating the values *' in
the Cartesian points (x = r, cos ¢, y=r, sin ¢;) from the known values ¢,; in the Cartesian grid points
(x;, y;). It is also possible to transfer back to the Cartesian system by interpolating the wave function
values y, , in the polar points (r = (x} + y7)/?, ¢ = arctan( y,/x,)) from the known values in the polar grid
points (r,, ¢,).

Fig. 4 shows (a) a wave packet { on the Cartesian grid; (b) the same function transferred to a polar
grid; and (c) the result ' of transferring ¢ to a polar grid and back, compared with the original function
Y. Fig. 4d shows the wave function on the polar grid in a perspective view. The wave function represents a
collinear system of an H atom approaching an H, molecule in the v =2 vibrational mode. The wave
function ¢ is normalized such that [ |¢(x, y)|* dxdy=1.

Table 8
Accuracy of the repeated transferral back and forth of a wave function from an N = 6464 Cartesian grid to an N = 64 X 64 polar
grid

Number of Number of Relative Overlap
points M used transferrals error
in the back and forth
interpolation
8x8 1 0.0097 0.9979
0.0172 0.9962
5 0.0456 0.9911
1616 1 0.0017 1.002
2 0.0035 1.0005
3 0.0053 1.0007
4 0.0070 1.0010
5 0.0088 1.0013
10 0.0175 1.0025
20 0.0346 1.0049
30 0.4092 1.0071

40 7.9300 1.0081
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Fig. 5. The increase in error after many grid transferrals back and forth. The wave function is the same as in fig. 4, except for the
vibrational mode, which is v = 0 in this case.

Fig. 4a and b clearly show the different geometries of the grids. Grid parameters are N, =N, =N, =N,
=64, dx =0.188, dy = 0.108, dr = 0.04, d¢ = 0.0166 and r, = 0.8. The comparison in fig. 4c shows that
the contour lines of the original and the transferred wave function are almost indistinguishable, except for
the lowest contour line which represents a value of 3% of the maximum value of |¢|2. A comparison of ¥
and ¢’ gives a measure of the accuracy of a (double) grid transferral. Two criteria for the error are useful:
the maximum of the difference |y —y’| over the grid (divided by max |y | to normalize) and the overlap
K 1) = [d*(x, y)¥'(x, y)ydx dy| which should be unity for perfect transferral. A repeated
transferral back and forth shows the error propagation. Results are shown in table 8 and fig. 5. The error
after one transferral back and forth for the N = 64 X 64 grid is comparable to the error shown in table 3. It
is found that the relative error grows linearly until a point where it starts growing out of bounds
exponentially.

4. Conclusion

This work used a global approach to interpolation. Such an approach assumes that the interpolated
function and its derivatives up to a high order are continuous. As a result, all sampled data contribute to
the reconstruction of the interpolated value. It has been shown that this method is easily adaptable to
multidimensional interpolation. When using such a global approach care should be taken of local errors in
the initial data because such errors will be propagated through the whole grid. This restricts the choice of
problems for which such an interpolator is suited.

The basic interpolation formula based on the sinc function assumes that the interpolated function is
bandlimited and has a finite support, this being an idealization. Common interpolated functions are only
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approximately bandlimited. Nevertheless, it has been demonstrated in the present work that a practical
accurate interpolation can be obtained for functions which are very far from the restriction of refs. [1,2].
As an example the Morse potential varies a few orders of magnitude in the interpolated interval, is
definitely not bandlimited and still good interpolated results were obtained.

An interesting 1ssue is the acceleration of convergence by the partial summation procedure. By this
procedure the global data is compressed to the vicinity of the interpolated point. It would seem that this
acceleration procedure could be carried out indefinitely. A careful examination reveals that errors from the
boundary are propagated to the interior. Because the interpolated functions are never strictly bandlimited,
residual errors always exist at the boundary. This puts a practical limit to the number of accelerations by
partial summation which can be used.

An important extension of the interpolation procedure is the calculation of numerical derivatives. As
expected, derivatives are more sensitive to imperfections of the interpolated function. An important issue
is the character of the eigenvalues of the approximate derivative operator on a finite grid. The analytic
derivative operator has purely imaginary eigenvalues. Repeated use of the numerical differencing proce-
dure revealed that the eigenvalues of the approximate derivative have a real component. This means that
repeated use in a propagation scheme [17] leads to exponential divergence of the propagated solution. A
similar situation has been found in the repeated use of the interpolator in the grid to grid transfer where
after a repeated back and forth use the errors grow exponentially.

Accurate interpolation has many important applications in chemistry and physics. The accelerated
multidimensional sinc interpolator was found to be of practical use in computations in these fields.
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