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A comparison of three widely used time propagation algorithms for the time dependent 
Schrodinger equation is described. A typical evolution problem is chosen to demonstrate the 
efficiency and accuracy of the various methods on a numerical grid using a pseudo-spectral 
(FFT) spatial representation for scattering and bound state evolution. The methods used 
-second-order differencing, split operator propagation, Chebyshev polynomial expan- 
sion-are discussed in terms of their applicability to various classes of dynamic problems. A 
new method is introduced which is based upon a low-order Lancros technique. This method 
appears to offer an accurate and flexible alternative to the existing techniques. Overall the 
Chebyshev method is recommended for time independent potentials and the Lanczos method 
for time dependent potentials. :(’ 1991 Acddemlc Press, Inc. 

I. INTRODUCTION 

Quantum mechanical treatment of molecular processes constitutes an important 
part in the understanding of basic atomic and molecular phenomena. Modeling 
these systems based on first principles is a source of insight into fundamental 
dynamical behavior. The ability to successfully simulate a molecular process is the 
final proof that the phenomena is well understood. Among the methods for quan- 
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turn mechanical calculations, time dependent methods have emerged as an impor- 
tant technique for researchers in this field. The success of these methods can be 
attributed to their natural correspondence to experiment-starting from an initial 
state and following the events through time-naturally generalizing the intuitive 
classical description. Moreover, recent progress in time dependent methods, in par- 
ticular the introduction of grid representations, has made the method competitive 
with other exact quantum mechanical calculations. 

A numerical solution of the time dependent Schrodinger equation basically con- 
sists of two part. The first part is a faithful discrete spatial representation of the 
wavefunction $(x, t). Once such a representation is constructed an initial wavefunc- 
tion can be propagated in time. It is this second propagation stage that is the 
subject of this paper. 

The scope of this paper is limited to methods for which the error can be con- 
trolled, i.e., the error can be reduced indefinitely. This paper is motivated by grid 
methods but the formulation can be extended to other representations. The use of 
grid methods to solve the time dependent Schrodinger equation can be traced back 
to the work of McCullough and Wyatt [ 11. These authors used a finite difference 
scheme to calculate the kinetic energy term and a CrankkNicholson (CN) propaga- 
tion scheme borrowed from a numerical solver for a dissipative parabolic differen- 
tial equation-the heat transport equation. Later it was shown by Askar and 
Cakmak that a second-order differencing propagation scheme has the same order 
accuracy as the CN method with much less numerical effort [2]. A similar scheme 
has been used by Leforestier for collision induced dissociation problems 131. The 
replacement of the finite difference method for calculating the kinetic energy by the 
Fourier method has enhanced the accuracy of the spatial representation, since it 
possesses exponential convergence characteristics in contrast to the power law con- 
vergent finite differencing. This method has been developed by Feit et al. [4] using 
an operator propagation scheme adapted from an approach which they originally 
used for the paraxial equation [5]. An alternative Fourier method using a second- 
order differencing propagation scheme was developed by Kosloff and Kosloff [6] 
adapting a method which was used for the acoustical (Helmholtz) wave equa- 
tion [7]. 

The fast proliferation and wide use of these methods [S] was the driving force 
behind the organization of the CECAM workshop in Orsay in October 1988. 
One of the issues considered was the properties of different propagation schemes 
used to solve the time dependent Schrodinger equation. The purpose of this paper, 
which was initiated in the CECAM workshop, is to compare the most common 
propagation schemes and to introduce a new propagation method. The issues to be 
considered are accuracy, numerical efficiency, and stability. It is hoped that this 
work can clarify the differences among the varying methods and facilitate the 
appropriate choice of propagation method suited for a particular problem. The four 
methods to be considered in this work are the second-order differencing scheme 
(SOD), the split operator scheme (SPO), the short iterative Lanczos propagator 
(SIL) and the Chebyshev scheme (CH). The methods are not always inter- 
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changeable but for the purpose of this comparison, a problem has been chosen in 
which all four methods are applicable. 

The time dependent non-relativistic Schrodinger equation 

ifi W(t) --=A$(t) dt 

where 

A=;+0 

(1.1) 

(1.2) 

is the subject of this investigation. In order to compare the different propagation 
methods, a common spatial representation is used for the description of the 
wavefunction $ and the Hamiltonian operation A$. The method chosen is the 
Fourier method in which the wavefunction $ is represented on an equally spaced 
grid of sampling points in coordinate space. The potential operation 8$ is local in 
this representation and is represented as V,tii for each sampling point i. The same 
is true for any function of the potential, f(T), which becomes .f( Vi) t/ji (pointwise 
multiplication). For example, in the split operator scheme the exponentiation 
e P(ilh)vr$ is required. T he main point in the Fourier method is that the kinetic 
energy operation (P2/2m) $ is also calculated locally. The transformation from the 
discrete coordinate representation to the discrete momentum representation and 
back is done via the fast Fourier transform (FFT) algorithm [9]. It has been 
shown that the representation of a typical wavefunction has exponential con- 
vergence properties with respect to grid size and density [IO]. The algorithm scales 
with the number of grid points as O(Nlog N) compared to O(N’) matrix opera- 
tions for a straightforward discretization method. (It should be noted that in prac- 
tice, all N2 operations are not required-the order enters as the bandedness of the 
discretization method). From a computational point of view the FFT algorithm is 
the most time consuming part of the Hamiltonian operation. Maximizing numerical 
efficiency means minimizing the number of FFT calls per propagation step which 
might include many substeps. 

The spatial representation has an important influence on the time propagation. 
The discrete representation of the Hamiltonian operation restricts the energy range 
of the problem. This energy range imposes an upper bound to the high frequency 
components represented in the propagation, ~0~ = AE,,,,/ti. This bound on the 
frequency is common to all methods and therefore can serve as a reference to test 
numerical efficiency. In the discrete Fourier representation, the range of eigenvalues 
for the Hamiltonian operator, AEgrid = E,,, - E,,,, is estimated by adding the 
upper and lower bounds of the kinetic and potential energy represented on the grid 

E nlax = vnlax + Km, (1.3) 
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and 

with 

Emin = Vmm > (1.4) 

where mj and Aq, are the mass and grid spacing of the ith coordinate. 
The common use of the same representation technique for all propagation 

methods places each scheme on an equal footing. Nevertheless, for a particular 
application one should balance the error in the spatial representation with the error 
in the propagation scheme. 

II. TIME PROPAGATION 

The time dependent Schrodinger equation (1.1) has the formal solution 

l)(t) = U(t) i)(O) = T exp( -~~~B(r’)di’)$(O), (2.1) 

where ‘? is the time ordering operator. A simple solution to the time problem is to 
break up the total evolution operator into small increments of duration At in which 
the variation of the Hamiltonian operator is small 

N -- I 
o(t)= fl fr((n+ 1) At, n At), (2.2) 

n=O 

where At = t/N and 

f)( t + At, t) = e - (i/f@(l)+ (2.3) 

In the example used in this paper a time independent Hamiltonian is assumed. 
Therefore there is no restriction on the size of At (time-ordering is irrelevant). The 
differences between the propagation schemes can be traced to the way the exponen- 
tiation in Eq. (2.3) is approximated. 

III. SPECTRAL EFFICIENCY 

The next task is to set guidelines for comparison of the accuracy of the methods 
considered. Rather than calculate the absolute accuracy in any particular situation 
it is more important to obtain a measure of the accuracy with the numerical effort 
required. This viewpoint links the accuracy with the numerical effort needed to 
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achieve it. The problem is somewhat complicated because in most propagation 
methods errors accumulate, therefore one should find the scaling of the accuracy 
with the propagation time. These scaling laws can be used as guidelines for 
choosing the appropriate propagation scheme. 

As was mentioned above the numerical efficiency can be measured in relation to 
typical frequencies in the problem. One such frequency is the maximum frequency 
U, imposed by the discretization scheme. Another natural frequency is determined 
by the energy spread of the wavefunction AE,,,, < dE,,i, which is the energy range 
that contains an overwhelming percentage of the wavefunction o,,, = AE,,,,/h. This 
idea comes from the practical observation that in most time dependent calculations 
the energy spectrum of the wavefunction is concentrated in a band and is not 
equally distributed. The typical choice is a wavepacket which has a Gaussian dis- 
tribution of momentum and coordinate observables. The energy of this wavefunc- 
tion is distributed as 

(3.1) 

In this case AE,,,, is delined by the variance of the momentum CJ,,, the mass m, and 
a tolerance chosen by the probability to be out of the energy band. For other com- 
mon wavefunctions such an energy band is quite typical, or sometimes several 
energy bands dominate the energy spectrum. 

An important issue for an efficient calculation is the balance between wave- 
function frequency o,,. with the frequency supported by the grid a),?. The ratio 

measures the static efficiency of the wavefunction with respect to the grid: a 
measure of the occupied to available phase space on the grid. 

A dynamic frequency which is the actual frequency used by the propagation 
scheme can be defined as 

where N is the number of times the Hamiltonian operation is called per time step. 
(For a fixed global time step this is a constant.) The dynamical efficiency of the 
propagation can be defined as the ratio of the frequencies wR and w,,, to the static 
dynamical frequency 

and 

(3.4) 

581 94!1-5 
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The efficiency measures in Eqs. (3.2) (3.4), and (3.5) will aid in the comparison 
among the different propagation schemes. 

It should be mentioned that a total shift in the energy scale which has no 
measurable consequences (that is, a constant phase shift multiplying the wavefunc- 
tion) can have a significant influence on approximate propagation schemes. This 
property is used for efficient propagation of the SOD and CH schemes. 

The different propagation schemes can also be compared with respect to a list of 
properties which have an important bearing on their applicability. The first of these 
properties is stability. Propagation schemes might not be stable to repeated use 
which is required in Eq. (2.2). The numerical manifestation of this instability is an 
exponential overflow. First-order differencing schemes are examples of methods 
which can be divided into unconditionally stable methods-for which there is no 
limit to the size of the time step-and methods which are conditionally stable-the 
time step is required to be less than some dfstable. Stability is not directly connected 
to accuracy and a stable method can produce inaccurate results. Usually uncondi- 
tionally stable methods are also unitary in the sense that the normalization of the 
wavefunction is preserved. Another issue is that the applicability of the method be 
clear, since not all spatial representations of the Hamiltonian operation can be used 
by all methods. In the sections to follow a description of four propagation schemes 
is presented. 

IV. GLOBAL PROPAGATOR: THE CHEBYSHEV SCHEME (CH) 

Global propagators can be defined by their use of very long time steps, some- 
times a single time step completes the calculation. The main idea behind global 
propagators is to use a polynomial expansion of the exponential in the evolution 
operator 

(4.1) 

The problem then becomes the choice of the optimal polynomial approximation. 
The Chebyshev scheme [l l] approaches this problem in analogy to the 

approximation of a scalar function. Consider a scalar function F(x) in the interval 
[ - 1, 11. In this case it is known that the Chebyshev polynomial approximations 
are optimal, since the maximum error in the approximation is minimal compared 
to almost all possible polynomial approximations. 

In the approximation of the evolution operator, the complex Chebyshev polyno- 
mials D,(b) are used, replacing the scalar function by a function of an operator. In 
making this change, one has to examine the domain of the operator and adjust it 
to the range of definition of the Chebyshev polynomials. The range of definition of 
these polynomials is from -i to i. This means that the Hamiltonian operator has 
to be renormalized by dividing by dEgrid = E,,, - Emin. Also, for maximum 
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efficiency, the range of eigenvalues is positioned from - 1 to 1 by shifting the 
Hamiltonian to 

~“Oml = 2 
A -f(dEgrid/2 + Em,n) 

A&,,, . 

(4.2) 

With this definition, the evolution of the wavefunction $ can be approximated as 

where the Qn are the complex Chebyshev polynomials. The first term on the right- 
hand side is a phase shift compensating the shift in the energy scale. The expansion 
coefficients becomes 

= ~J,,(N) (4.4) 

with aO(cr) = J,(a) and CY = AE,,,, . t/2h. Considering the propagation algorithm, the 
use of Eq. (4.3) requires the calculation of the operation of @,,( - ifi,,,,,) on t/(O). 
This is accompanied by the recursion relation of the Chebyshev polynomials 

(4.5 1 

and 4, = @‘,( -ifi,,,,) $(O). The recurrence is started by do = $(O) and 
41 = -ifi,,.,,$(O). In order to save storage, only the vectors which are the result 
of the nth and (n - 1)th operations are saved. The result is accumulated in Ic/. The 
number of expansion terms needed to converge the sum in (4.1) is determined by 
the size of the time-energy phase space volume: CI = AEgrid t/2k Examining the 
expansion coefficients as a function of n, one finds that when n becomes larger than 
CX, the Bessel functions J,(a) decay exponentially. This means that in a practical 
implementation, the maximum order N can be chosen such that the accuracy is 
dominated by the accuracy of the computer. The total number of expansion terms 
will be slightly larger than the theoretical limit AE,,,,r/2k One of the most impor- 
tant aspects of the Chebyshev propagation scheme is that the error is uniformly 
distributed over the entire range of eigenvalues (which can be a corresponding 
disadvantage if the eigenvalues are nor uniformly distributed). The method is not 
unitary but because of its extreme accuracy the deviation from unitarity can be used as 
an accuracy check. For this reason the Chebyshev scheme was chosen as a benchmark 
for the other propagation schemes with a uniform error set to be less than lo- 14. 

One drawback of a global evolution method is that intermediate results, which 
may carry much information, are not obtained. One way to overcome this problem 
is to split the propagation into smaller intervals. The practical lower limit of the 
Chebyshev expansion is approximately 10 terms, The reason is that the extra terms 
above n =c( which are needed to converge the sum begin to dominate, making 
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the approximation inefficient. For example, a IO-term expansion with specified 
accuracy of 10 P5 has an efficiency, R/N, of 20%. For interpretation of intermediate 
results, this time interval is usually enough, but many applications require the 
calculation of correlation functions at very short intervals. The problem can be 
overcome by considering that only the expansion coefficients in (4.3) are time 
dependent. The Chebyshev polynomial operations, d,, = @,,( -iii,,,,) tj(0) which 
require most of the calculation effort, are time independent. This means that the 
expansion coefficients a,, can be recalculated for many intermediate times. For 
example, when the correlation function (t(O)1 8 I$(t’)) is desired at an inter- 
mediate time t’, it can be approximated by 

(4(0)( 6 Irl/(t’)> = t u,, y-y) <i”(O)1 6 IA>. 
II = 0 

(4.6) 

Note that the accumulator which is the left-hand side of Eq. (4.6) is a scalar and 
therefore the storage requirements of the calculation are only slightly increased. It 
should be noticed that the Chebyshev scheme becomes unstable if the energy range 
AE is underestimated. 

The Chebyshev scheme can be used to propagate $ in imaginary time [ 121. This 
method can be useful in obtaining the ground state or thermal states. In order to 
change the propagation scheme an analytic continuation is performed, the expan- 
sion coefficients in Eq. (4.4) are modified to 21,(u), and the recursion relation (4.5) 
is changed to 

4 .+1=2fI ..rnl9n - 4+ 1’ (4.7) 

To conclude, the global Chebyshev polynomial approximation is an extremely 
accurate scheme with very high efficiency in relation to the maximum frequency 
determining the grid cuErid, vDR = 2 when At + cc. The method does not conserve 
norm or energy which can be used to estimate the error. Time reversal symmetry 
is built into the expansion coefficients. The method can work with any functional 
form of Hamiltonian operator provided an estimate of the eigenvalue range can be 
made. If this range is underestimated the method becomes unstable. The method is 
not recommended for time dependent problems and for wavefunctions which 
occupy a very small spectral range in relation to the spectral range of the grid for 
which the efficiency is small, qn < 1. 

V. THE SECOND-ORDER DIFFERENCINC SCHEME (SOD) 

The simplest scheme for propagating equation (1.1) is to expand the evolution 
operator 

8=exp(-ifi At/k) (5.1) 



DIFFERENT PROPAGATION SCHEMES 67 

in a Taylor series 

exp(-iEIdt/h)=l-iAdt/h+ . . . . (5.2) 

It has been found that a numerical algorithm based on this expansion is not 
stable [Z]. The instability comes about because the scheme does not conserve the 
time reversal symmetry of the Schrodinger equation. With a symmetric modification 
of the expansion, stability is obtained. One way to formulate the scheme is to use 
second-order differencing (SOD) to approximate the time derivative in Eq. (1.1). 
Another formulation uses the symmetric relation 

$(t+At)-l)(t-At)= (e--InA~‘h-ern~r~h) G(t) (5.3) 

and then by expanding 8 = exp( --ifi dt/fi) and 8* in a Taylor series, the explicit 
second-order propagation scheme is obtained 

$(t+At)~l/b(t-At)-2iAtA~(t)/h. (5.4) 

If the Hamiltonian operation is Hermitian, the SOD propagation scheme preser- 
ves norm and energy. A good way to investigate this is to write the propagation as 
a discrete mapping 

1 - 4At2 I?‘/h’ 

- 2i At fi/A 
(5.5) 

where n is the index of the time step. The eigenvalues of this propagation matrix 
are 

2, 2 = 1 - 2At2 fI/h’ + 
1)“2, 2A;fi (At;F2 

(5.6) 

The discrete map is area preserving if the determinant of the propagation matrix 
is unity which is equivalent to A1 i2 = 1. This implies norm conservation in the 
adjoint space [6]. The mapping is stable only if the eigenvalues i.,,, are complex. 
Real eigenvalues lead to exponential growth as ;l;t because 3., > 1. This condition 
supplies the stability criterion of the discrete map 

At2 fi’ 
--l-CO 

h’ (5.7) 

which has to be true for all eigenfunctions of the Hamiltonian operator leading to 

h 
At<- 

E ’ max 
(5.8) 

where E,,, is the eigenvalue with largest absolute value of the discrete Hamiltonian 
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operator. If the time step exceeds the stability limit, exponential solutions take over, 
resulting in a numerical overflow. This fact can be used to obtain empirically the 
stability limit [63. 

The norm and energy conservation of the SOD scheme in the adjoint space is a 
consequence of the time reversal symmetry of the scheme and of the Hermitian 
property of the Hamiltonian operator. This can be seen by multiplying Eq. (5.4) by 
G*(t) and multiplying the conjugate equation by t/(t), adding the two equations, 
and summing over all space which leads to 

($(t-Af)l$(f))= ($(f)l$(f+df))=const. (5.9) 

The energy conservation is obtained in a similar way by muitiplying Eq. (5.4) by 
(A$)*. The result is 

(rC/(f -At)1 ii 1$(r)) =const. (5.10) 

It should be noted that in a consistent scheme matrix elements should also be 
calculated at successive times for example (v(t)) = (Il/(t --dt)J 0 Irl/(t)). Also, the 
exact form of norm and energy conservation, for example, (II/(t), $(t)), can be 
monitored as a check of the calculated error, since neither of these values is 
rigorously conserved by the differencing scheme. 

Because of this particular form of norm and energy conservation, the error in 
propagation accumulates in the phase. In order to obtain an estimate of this error, 
consider the propagation of an eigenfunction 4,) with eigenvalue E,,,. The eigen- 
values of the propagation matrix become 

By comparing Eq. (5.11) with the eigenvalue of the exact propagation operator, 

one finds that the error in propagation by the SOD method per time step is 

(5.12) 

Propagating N times accumulates this error N times. First, it should be noticed 
that the error is not uniform and is large for large eigenvalues of $. To minimize 
the error in phase, it is customary to choose a time step, At, five times smaller than 
the stability limit, At < h/(5AEgrid). The resulting error for N steps becomes 
error x N/375 which allows a few hundred propagation steps before errors in inter- 
ference terms become important. One should notice that by shifting the energy, and 
by adding a constant to the Hamiltonian, one can predetermine the region in 
energy with minimum error. Considering the scaling of the numerical effort for a 
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fixed time, the error scales as 0(1/N’), where N is the number of times the 
Hamiltonian operator is called. For a constant error the numerical effort scales as 
O( t3’2). 

Another important consideration is that the SOD scheme is only stable if the 
Hamiltonian operator is strictly Hermitian. This means it cannot be used for 
propagating in imaginary time and that, if an optical potential is used for absorbing 
boundary conditions, a first-order scheme should be used to propagate this part. 

Initializing the SOD 

The SOD scheme requires two initial conditions, in order to start the propaga- 
tion. The initialization scheme should have at least the same accuracy as the rest 
of the propagation. A common method is to start by a first-order scheme for half 
a time step, then use the SOD scheme to propagate another half step, such that the 
two initial conditions $(t) and $(t + At) are obtained. A more symmetric scheme 
in relation to time reversal is to propagate half a step backward and obtain 
$(t - At) and then half a step forward and obtain t+b(t + At). The propagation then 
continues as usual. Intermediate results are obtained by the approximation 

(5.13) 

which is accurate up to second order. 
The method is unitary and conserves norm and energy. The method is condi- 

tionally stable if At < ii/At < #i/E,,, and Vmin > 0. This means that the spatial 
representation should be well balanced with the time propagation a,,,/~, = qn z 1 
otherwise unnecessarily short time steps result. Time reversal symmetry is built into 
the scheme. 

VI. SPLIT OPERATOR METHOD (SPO) 

The split operator method takes advantage of the ease of treating operators in 
their diagonal representations. Its first application [5] was to the paraxial wave 
equation of optics which is mathematically identical to the Schrodinger equation. 
The short time propagator, fJ(At) can be approximated by [4] 

ir(nt)=exp(-ifiAr)=exp(-&RAt) 

xexp(-;9At)exp(--&gAt)+O(At3). 

Here the kinetic energy operator a = 6’/2m is diagonal in momentum space, 
while the potential energy V is diagonal in configuration space. The truncation 
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error is determined by the next higher commutator between the potential and the 
kinetic energy and will vary with the value of these terms. For typical potential 
function choices, this error will be controlled by the fourth derivative of the poten- 
tial function and the cube of the time increment. The error enters in the exponent 
of the propagator and is often smaller in applications than simple upper bound 
estimates indicate. The fast Fourier transform algorithm provides an accurate and 
fast unitary transformation between the two finite representations on grids with N 
points. Thus, the kinetic energy part of 0 can be evaluated by 

(6.2) 

where Zt is a finite Fourier transform with matrix elements of the form ZL.= 
N P1’2 exp(ikr .ri) and T is the diagonal kinetic energy with elements of the form 
t’i2k2/2m. The symmetrized form of fr above is useful for formal discussion; in prac- 
tice, the kinetic energy terms can be merged so that one alternates between full time 
steps of free propagation and potential updating. The method is practical even 
when many plane waves are required, since the fast Fourier transform algorithm 
requires only O(N log N) multiplications, allowing two or three spatial dimensions 
to be handled. 

The grid representation is accurate provided the wavefunction is band-limited 
and of finite support-that is, of finite extent in both configuration and momen- 
tum space. For a time-independent Hamiltonian function, maximum speed is 
achieved by storing the 2N exponential factors of form exp( -(i/h) 8 dt) and 
exp( - (i/19) T At) at the start. A typical computational step then consists of N multi- 
plications by the potential energy factors, a Fourier transform, N multiplications by 
kinetic energy factors, and finally, an inverse Fourier transform. 

This method is unconditionally stable and norm preserving. The former property 
allows one to choose the time step according to the energy range of interest, not 
necessarily that given by the maximum allowable kinetic energy (hn/Ax)2/2m. This 
is particularly true when the bound states are of primary interest and their energies 
are determined from an auto-correlation function. In this case, high energy con- 
tinuum states are out of phase, but this causes no problem with finding the bound 
state energies. The time step is determined by the binding energy. 

This form of the short time propagator is similar to a quantum mechanical 
“kicked rotor”-alternating free propagation with periodic impulses due to the 
potential. It can also be thought of as a Feynman path integral. That is, Eq. (6.1) 
is a second-order approximation to the Trotter product form for the full 
propagator [ 131 

e i(A + B)r = lim, _ ~ (erAl/rzeiBfjn)n (6.3) 

which displays the connection to the Feynman path integral explicitly. Further- 
more, the algorithm extends naturally to higher even power symmetric expansions 
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[14]. It is uncertain whether the gain in accuracy is offset by the numerical effort 
required. The calculations carried out in Ref. [ 141 used a low order finite difference 
scheme for the kinetic energy and this error might dominate the results. The algo- 
rithm cannot handle operators that mix spatial coordinates and momenta. The 
method has been used to treat bound eigenstate determination and wavepacket 
scattering [4]. Time dependent Hamiltonian functions can be treated if the time 
step is chosen small compared to a characteristic time. The scheme does not con- 
serve energy and is limited to Hamiltonian operators which can be split into two 
non-commuting parts with a simple transformation between them. The method is 
recommended for Y]~ < 1. The method has been extended also for propagations in 
imaginary time. 

VII. SHORT ITERATIVE LANCZOS PROPAGATION (SIL) 

The Lanczos algorithm has been developed and applied in several disciplines 
[ 151. It was originally proposed as a reduction technique for linear operators, 
producing matrices in Hessenberg form [16]. As such, it is known to be unstable 
for large orders. On the other hand, its use as a low order scheme for producing a 
convenient tridiagonal operator form should not be underestimated. In particular, 
the algorithm should be useful as a time propagation scheme for the non-relativistic 
Schrijdinger equation. This approach has indeed been pursued for time independent 
Hamiltonian functions using basis set expansion techniques [ 171 and for large time 
step correlation functions [15]. This method should also be effective, in principle, 
for grid methods which could encompass either time dependent or time independent 
Hamiltonian operators. The time independent applications have been investigated 
by Park and Light [18] which motivated the present work. Indeed, the time 
dependent methods reflect a different choice of “basis” set expansion-that is, the 
use of a discrete, local representation; otherwise the grid methods are completely 
analogous to the previous time independent studies. Since it is a short-time 
propagation scheme, the procedure might offer significant advantages in flexibility 
and efficiency: there would be no restriction on the form of the operator; low order 
expansions might be sufficiently accurate; and variable time steps or variable order 
with error control are possible during time propagation. 

Background 

The iterative Lanczos reduction scheme entails the construction of a three-term 
recurrence relation within the Krylov subspace generated by the linear operator. 
The Kryiov subspace is defined by the action of a linear operator on an initial vec- 
tor t/(O); thus the Krylov subspace of order (N- 1) generated from a Hamiltonian 
operator is 

u, = A+)(O), (7.1) 

where the set of vectors U, spans a projected or reduced subspace of the original 
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infinite dimensional space. Note that this cyclic subspace is, in general, a complex 
vector subspace. The Lanczos recurrence generates a set of orthogonal polynomials 
lying within the subspace which represents a finite polynomial approximation to the 
operator. If the linear operator is itself finite dimensional, then the method is exact, 
since every N-dimensional linear operator satisfies its Nth-order characteristic poly- 
nomial equation (Cayley-Hamilton theorem). The algorithm thus has the very 
attractive feature of reducing to an exact technique for finite dimensions which 
in turn suggests that a suitably projected infinite dimensional space might be 
accurately approximated therein. 

An unusual feature of this algorithm is its dependence on both the linear 
operator and upon the initial approximating vector. That is, the polynomial set 
generated wili depend upon the initial vector chosen to generate the Krylov sub- 
space. In the specific case of the non-relativistic Schrbdinger equation, the unitary 
evolution propagator, 8(t), expressed as in Eq. (4.1), 

O(t) = e--“‘*)*~z 1 a,,P,( - (pi) fit). (7.2) 
,1= 1 

This expression clearly depends upon the order of the polynomial approximation 
(the choice of N), the linear operator A, and, for the Lanczos scheme, the initial 
vector chosen will influence the expansion coefficients a,,. This is in contrast to the 
Chebyshev approach, for example, where the coefficients a, are known, fixed quan- 
tities (integral order Bessel functions) which are generated initially for all time. 
Furthermore, the order of the expansion (number of Bessel functions used) depends 
only on the energy range and time step chosen. The Lanczos method, on the other 
hand, tailors the approximating polynomial set to both the operator and initial 
vector. Since this is an orthogonal set, Gaussian quadrature accuracy of order 
2n - 1 is expected for n points. 

The Lanczos tridiagonal construction is initialized by 

40 = 4w) 

and 

fi,, = go40 + POYl 

and given generally by 

where the coefficients are 

(7.3a) 

(7.3b) 

(7.4a) 

(7.4b) 

and 

Pi - 1 = (4J 19 RJ. 
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The inner product implied by this notation is the usual complex Hilbert space 
inner product. The projected subspace representation of the Hamiltonian operator 
has the tridiagonal form 

i 

%l fi() 0 . . . . 0 

p. u, /?, 0 “’ ‘.’ 0 

j-g = 0 PI 22 82 0 .” 0 
N . . . . 

. :: 

. . 0 
j .:. . . . -1 BN-3 . @v-2 p,v- 
0 . . . . . ... /L-2 UN- 

The approximate unitary propagation operator becomes 

1. 
(7.5) 

2 I 
and 

Il/(f4t) = QVW) $(O). (7.7) 

The propagation of the initial wavefunction is now described in the projected 
subspace by a tridiagonal Hamiltonian operator. Diagonalization of this operator 
can be efficiently performed so that practical evaluation of the propagation is given 
by 

I^J(dt) = zte-(i/h)D,vdrz, (7.8) 

where the unitary matrix Z diagonalizes fr, (Zt is the Hermitian transpose of Z), 
and D,,, is the diagonal matrix of eigenvalues. For emphasis, the propagated 
wavefunction becomes 

(7.9) 

Error estimates follow from the magnitude of the first vector, q,,,(dt), lying out- 
side of the Krylov space. This magnitude, IqN(dt)l, could then be used as a 
tolerance parameter in a variable time step or variable order determination. The 
calculated error can be approximately evaluated, following Park and Light [ 181, as 
the product of the off-diagonal elements 

(7.10) 

or more directly by explicit calculation during the evaluation of the wavevector 
components. Another source of error is produced from the orthogonalization proce- 
dure in Eq. (7.3). It is for this reason that the method is restricted to short time 
steps and relatively low order. 
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To conclude, the method is unitary and conserves norm and energy. The scheme 
is unconditionally stable and therefore can be used for unbalanced spectral range 
when qn< 1. 

VIII. NUMERICAL RESULTS 

The purpose of this section is to gain insight into the numerical behavior of the 
propagation schemes using a physical example [ 191. A one-dimensional Morse 
potential with the mass and potential parameters describing the ground electronic 
and vibrational state of H, was chosen. A grid of 256 points with Ax = 0.1 was used 
for the spatial representation. A time step of At = 12.0 was selected for the genera- 
tion of the reference (“exact”) wavefunction. Table I summarizes the potential grid 
and propagation parameters used. These parameters define a grid frequency of 
oR = 1.016. The calculations were carried out for two initial states. In the first mode 
a scattering event was simulated by positioning the initial wavefunction in the 
asymptotic region with negative average momentum. A Gaussian wavefunction was 
used which allowed o,,. to vary by changing the width of the wavefunction. For a 
width of 2 a.u. and a tolerance of 10m5, the wavefunction frequency o,,. is 0.05. The 
second mode simulated a completely bound wavefunction (not an eigenfunction) 
which oscillates in the bound part of the potential. 

The first set of runs was chosen to study the accumulated error in each method. 
Figure 1 displays this error as a function of time. The SOD results for the scattering 
initial state are given in Fig. la. A linear dependence of the accumulated error is 
found which is expected for a stepwise integrator. The graph also shows the con- 
vergence of the method as the time step decreases. Similar error relationships hold 
for the bound initial state choice. The same behavior is observed in the overlap 
phase error which is defined as the phase of the overlap between the reference 
wavefunction and the approximate one (tiCH(t), IJ?,,,~,,(~)). Figure lb shows the 
scaling relation of the accumulated overlap error with respect to time for the SPO 
technique. The convergence properties of the method are very different from the 
SOD scheme: the large time step calculations have an oscillatory behavior in time. 
This behavior is a consequence of the non-uniform behavior of the commutation 

TABLE1 

Potential, grid, and Propagation Parameters Used 
(Atomic Units Throughout) 

a = 1.0144 bohr -~’ 
D = 0.1744 hartree 
Y, = 1.40 bohr 

At= 12.0 
A.x=O.lO 
N & = 256 
N tnne\ = 7000 

Scattering Bound 

.x0 = 14.0 x0 = 5.0 
po= -10.0 pQ= -1.0 
0.25 CT= 1.0 
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FIG. 1. (a) SOD initial scattering state. Logarithm, base IO, of the accumulated overlap amplitude 
error as a function of logarithmic time for the SOD propagation method. The overlap error is defined 
to be l-l(l//cH(/), tjsoo(t))l; the four plots display different choices of time step: Al = 0.12, 0.08, 0.04, and 
0.03. The Chebyshev wavefunction with a uniform error of 1OV” was used as the reference. The initial 
conditions correspond to a scattering event. (b) SPO bound initial state. Logarithm of the accumulated 
amplitude error as a function of logarithmic time for the split operator propagation method. The error 
calculations are the same as Fig. la. The initial condition corresponds to a bound state. (c) SPO scattering 
initial state. Same as Fig. lb for the overlap phase error for a scattering initial state for the split operator 
propagator. The phase error is defined to be the phase of the overlap (+kCH(/), tispo(t)). (d) SIL bound 
initial state. The overlap phase error as a function of logarithmic time for a bound initial state for the 
SIL propagation. The four plots display different orders (3, 5, 7, and 9) of interpolating polynomial over 
the fixed time step. 

relations as a function of the average position of the wavefunction. Recall that the 
source of error in the SPO is the neglect of high order commutators. The converged 
results do possess a linear accumulation of error with time. Figure lc displays 
the overlap phase error for the scattering state calculation. Strongly nonlinear 
dependence is observed for all time step sizes. The STL propagation results are given 
in Fig. Id for a bound state evaluation with different powers of interpolating poly- 
nomial. The third order polynomial has a quadratic overlap amplitude error 
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accumulation while the higher order polynomials have the expected linear 
dependence. The error saturates rapidly using higher orders. Similar results were 
seen for the higher order polynomials in the phase error but the third-order polyno- 
mial showed cubic error accumulation which indicates that the phase error grows 
more rapidly than the amplitude error. For comparison purposes, it should be 
noted that the Chebyshev scheme has a constant error scaling with respect to time. 

The next series of computations evaluated the scaling of the error for fixed total 
propagation time. Figure 2a displays this relation for the SOD. Note the overall 
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FIG. 2. (a) SOD bound initial state. The logarithm of the amplitude error as a function of the 
logarithm of the numerical effort for the SOD propagation. The numerical effort is measured by the 
number of FFT calls, at a fixed time. Results for four times-600, 1200, 1800, and 2400 atomic units 
-are shown for the bound initial state with the earliest time in the leftmost plot. The linear fits have 
an approximate slope of -2, and the fixed error accumulates in time as t3j2. (b) SPO bound initial state. 
Same as Fig. 2a for the split operator propagator phase error. The linear tits have a slope of -2 which 
is expected from a second-order method. (c) SPO bound initial state. A comparison between phase and 
amplitude error for the SPO propagator for two times: 600 and 2400 atomic time units. The lower plots 
correspond to the amplitude error; the upper plots correspond to the phase error. (d) SIL bound initial 
state. Same as Fig. 2a for the SIL propagator amplitude error. Results for three polynomial orders-3. 5. 
and ‘T-are shown for 2400 atomic time units. 
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cubic dependence of the error upon numerical effort which holds for both initial 
states and for both phase and amplitude errors. There is an exceptional case for 
intermediate runs where the error decreases in amplitude, as shown in Fig. 2a, but 
increases for the phase (not plotted). Figures 2b contains the same information for 
the split operator phase error. Notice the quadratic convergence of the error with 
respect to numerical effort, as expected for a second-order method. Figure 2c com- 
pares the amplitude and the phase error of the split operator method. There are 
several orders of magnitude difference in these two errors. Figure 2d shows the con- 
vergence of the different orders of the SIL propagation scheme. No simple linear 
relation fits the data which implies faster than power law convergence. Eventually, 
the error saturates with numerical effort indicating that the roundoff errors in the 
STL procedure begin to accumulate. 

Finally, the sensitivity of initial state choice for the Lanczos method was 
investigated for the same initial conditions for scattering with a variation in the 
width of the initial wavepacket. Figures 3a and b display the variance of initial con- 
dition choice for the scattering initial conditions using the split-operator and the 
SIL algorithms. In these plots, the width of the wavefunction (the parameter a) was 
varied from 0.15 to 0.30, which corresponds to a variance in energy of 1.24 x 10 4 
to 4.94 x lo- 4. The error in the overlap amplitude clearly indicates the sensitivity 
of these algorithms to the spectral range of the initial choice. There is a pronounced 
difference in the phase error between the two methods, much less so for the 
amplitude error. The Lanczos phase error is very sensitive to the choice of initial 
state, whereas the split operator has no analogous sensitivity. Both methods show 
similar behavior for the amplitude error. Note also that the error scaling with time 
is constant for the narrow widths while a linear dependence holds for the broader 
widths. 
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FIG. 3. (a) Phase error dependence of the SPO propagator as a function of time for different choices 
of the initial scattering state wavefunction. Four choices of width (parameter a) were made: 0.15, 0.20. 
0.25, and 0.30. The time step was 0.04 atomic units. (b) Same as Fig. 3a for the SIL propagator. A fifth- 
order interpolating polynomial was used. 
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IX. DISCUSSION 

A few general conclusions about the error scaling relationships for the different 
methods can be drawn from the simple case studied above. These conclusions 
corroborate numerically the brief theoretical analysis given previously. The methods 
are briefly compared in Table II. From Fig. la, it is apparent that the SOD error 
accumulates linearly with the number of steps with the error per step scaling as 
(dt)3 (Eq. (5.12)); the accumulated error scales as the inverse square of the number 
of time steps as demonstrated in Fig. 2a. Also, the error in the phase and amplitude 
have similar behavior and are approximately equal. 

The split operator technique possesses the same quadratic dependence in the 
error as the SOD, since they are both second-order methods (Fig. 2b). On the 
other hand, there is a remarkable discrepancy in the amplitude and phase errors: 
they differ by approximately live orders of magnitude. This observation indicates 
that discretion must be used when accuracy is required for the phase of the 
wavefunction. For example, in time dependent problems, the method should be 
used as a second-order method for consistency; the half-step must be calculated 
whenever the potential is updated otherwise the algorithm becomes a first-order 
scheme. 

The most striking feature of the SIL is the rapid convergence of the algorithm as 
a function of interpolating order and time step. The error made in the phase and 
amplitude are approximately equal and have the same trend. The error saturates 
faster than power law dependence. Sensitivity of the method to the spectral range 
of the initial wavefunction choice was observed (Fig. 3b). Finally, the CH method 
is unique in the sense that it has no accumulated error. The amplitude and phase 
error are approximately equal. 

The phase error as a function of time calculated by each of the techniques is plot- 
ted in Fig. 4. There is a general linear dependence of the stepping propagation 
method. The relative ordering of the accuracy of each of the methods is obvious. 
A striking demonstration of the scaling of the error with numerical effort is shown 
for the four methods in Fig. 5. The exponential convergence of the CH method is 

TABLE II 

Comparison of the Algorithms 

Method SPO SOD Chebyshev Lanczos 

Norm 
Energy 
Stability 
Error type 
Error scaling 
Hamiltonian 

Storage arrays 

Unitary Unitary Not unitary Unitary 
Not conserved Conserved Not conserved Conserved 
Stable Unstable Unstable Stable 
Commutator Accuracy (E,,/dt)’ Arbitrary accuracy Arbitrary accuracy 
Quadratic Quadratic Exponential High order 
No mixed terms No restriction Time independent No restriction 

(.f(-*I ‘0)) 
2 3 4 Order + 1 
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FIG. 4. A comparison of the phase error as a function of time for three propagators with bound 
initial state conditions. 

clearly superior to all other methods for this calculation. The second best choice 
would be the SIL, with its fast convergence with numerical effort. The SPO is 
definitely superior to the SOD by about a factor of ten which has been noted 
empirically by several researchers. For a different choice of phase or increase in the 
spectral range, the CH results would be shifted to the right in Fig. 5, while the SIL 
and SPO are intensive to this change. The implication is that for problems with 
extremely large spectral range, the SIL will become more efficient than the CH 
scheme. 

The three older methods (SOD, SPO, and CH) have been successfully applied to 
multi-dimensional problems and non-Cartesian coordinate choices. Parenthetically, 
after the initiation of this research, another interpolating polynomial method has 
been developed which has similar properties to the SIL [20]. Also it could be men- 
tioned that methods based upon the Krylov subspace scheme can be extended to 
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variable time step algorithms which can offer a significant advantage for explicitly 
time dependent operators. 

In conclusion, each method has its merits and demerits. For convenience, 
Table II lists some of the more important features in the comparison of the different 
algorithms. Specific problems will of course have different requirements for the 
appropriate propagator choice and, as always, the potential user must use discre- 
tion in making this choice. The overall conclusion appears that for generality, 
flexibility, and accuracy the Chebyshev method should be the method of choice for 
explictly time independent Hamiltonian operators. For explictly time dependent 
operators or problems with large spectral range, the Lanczos algorithm offers great 
accuracy and efficiency for a broad class of potentials. 
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