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ABSTRACT

Measuring a quantum system disturbs its evolution. A pump-probe exper-

iment is designed to monitor the autonomous dynamics of a quantum system

between consecutive measurements. Modeling the evolution of observables in

the pump-probe experiment is an essential ingredient of research in quantum

dynamics.To be of practical importance the models should be amenable to effi-

cient simulations on contemporary computers. This dissertation deals with the

problem of efficient simulation of the pump-probe experiment.

The number of independent observables of a quantum system having the effec-

tive Hilbert space dimension N grows as N2. In physically interesting applications

that number of observables can be neither measured nor calculated. Therefore,

a small subset of observables should be in the focus of an efficient dynamical

simulation scheme.

Commonly, the distinguished subset of observables considered in the context

of efficient simulations is the subalgebra of local observables with respect to a

given partition. The main obstacle on the way of efficient simulation of local dy-

namics is quantum entanglement. An initial pure state of a composite quantum

system generically develops entanglement in the course of its unitary evolution.

We propose and analyze two possible routes for quantum dynamics without en-

tanglement: i) the initial mixed state unitary evolution and ii) an open system

evolution of the composite system coupled locally to dephasing environment.

Sufficient mixing of an initial state, measured by its temperature, is shown to

result in the evolution with vanishing entanglement. Critical temperature for the

crossover to the no-entanglement dynamical regime is calculated. An outline of

the computation scheme for efficient simulation of the corresponding mixed state

dynamics is presented.

Coupling to local environment is believed to be generally detrimental to quan-

tum entanglement. We have found that this view is incorrect. Certain types of

local system-bath interactions can have a negligible effect on entanglement on the

characteristic time-scale of the composite system purity decay. This is typical to

an evolution of open systems, subjected to the Poissonian noise. On the other

hand, local Gaussian noise is shown to be destructive to quantum entanglement.

A local Gaussian noise has effect equivalent to a weak measurement of local ob-

servables of the composite quantum system. The destructive effect of the weak

measurement on quantum entanglement can be attributed to the large time-scale

separation between the decoherence of the density operator in a local basis and

the dephasing of the composite system. In this sense the states in the correspond-

ing local basis can be termed robust states. The robust states are suggested to
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be an appropriate computational basis for the simulation of the corresponding

open system evolution.

We have developed a computational scheme incorporating the foregoing ob-

servations into a more general mathematical framework. This is the framework of

the generalized coherent states, associated with a given Lie-algebra of observables.

The primary focus in our work has been on compact semisimple subalgebras of

observables which generalizes the local subalgebras case.

The relation of the theory of the generalized coherent state to the problem of

efficient simulation of quantum dynamics can be established by two independent

approaches.

The first one is a generalization of the concept of entanglement to a gen-

eral Lie-algebraic setting. The passage to the generalized coherent states as a

preferred computational basis for efficient simulation of quantum dynamics is ob-

tained as a generalization of the common use of products states for simulation of

local observables of quantum many-body systems.

The second approach follows a direct argument based on the following defi-

nition of an efficient simulation. The simulation of a Lie-algebra of observables

is defined as efficient if the necessary computational resources do not depend on

the Hilbert space representation of the algebra. In other words, the simulation

is efficient if it can be performed group-theoretically. This definition leads to the

choice of the spectrum-generating algebra (SGA) of observables as a distinguished

set for efficient simulations and the associated generalized coherent states as a

distinguished computational basis. More specifically, the following restrictions

on the observables must be satisfied:

• The set consists of operators weakly nonlinear in the elements of the spec-

trum generating algebra (SGA) of the system

• The Hamiltonian is weakly nonlinear in the elements of the SGA of the

system

Weakly nonlinear is defined as being a polynomial (in the elements of the SGA)

of a fixed order, independent on the Hilbert space representation of the SGA. If

the two restrictions are satisfied and

• The evolving state can be represented as superposition of a small number

of the generalized coherent states (GCS), associated with the SGA

the evolution can be simulated efficiently. Small number is defined as a number

independent on the Hilbert space representation of the SGA.

We propose a scheme for simulating dynamics of the SGA observables based

on expansion of the evolving state in the generalized coherent states, associated
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with the SGA. The computation of the expectation values of the observables can

be performed efficiently, provided the number of terms in the expansion of the

state is small.

A generic quantum dynamics leads to extensive growth of terms in the GCS

expansion of the evolving state. As a consequence, solving the Schroedinger

equation becomes inefficient. Nonetheless, we have found that if in addition to

the restrictions defined above

• The SGA is a compact semisimple Lie-algebra of operators

• The SGA and its Hilbert space representation comply with the well-defined

classicality condition

• The Hamiltonian complies with a certain condition, termed moderate non-

linearity with respect to the SGA

• The initial state of the system is canonical with respect to an operator

moderately nonlinear in the elements of the SGA

a dramatic gain in efficiency can be obtained using the idea of dynamical coarse-

graining of the unitary dynamics.

Our method employs simulation of the unitary dynamics of the restricted

set of observables by a pertinent open-system dynamics. The open-system dy-

namics corresponds to a non unitary evolution of the original system under the

weak measurement of the SGA elements. It is simulated using unraveling of the

evolving density operator into pure-states stochastic trajectories. The pure-state

evolution is governed by the stochastic Nonlinear Schroedinger equation which is

solved numerically. The pure-state evolution can be simulated at low cost due to

the measurement-induced localization of the states in the phase-space, associated

with the SGA. On the level of the density operator, the measurement introduces

a coarse-graining of the evolving state, destroying its fine-structure but leaving

unaffected the dynamics of the smooth observables belonging to the restricted

set. The latter property is a consequence of the wide separation of time-scales in

the open dynamics of a quantum system satisfying the conditions cited above.

Adding weak measurement to the unitary dynamics serves as a computational

tool in the proposed method. A by-product of the method is a tool of simulating

an open-system dynamics. The open dynamics does not necessarily have the

particular form assumed in our method. It is sufficient that the bath has strong

localizing effect on the dynamics. On the other hand, it seems necessary that the

open-system dynamics be Markovian. Otherwise, the reduced dynamics of the

system will involve polynomials of arbitrary orders in the SGA of the system and

the simulation cannot be performed efficiently.
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The method has been implemented in an algorithm for simulation of many-

body dynamics, driven by a su(2)-algebraic Hamiltonian. The algorithm has been

applied to simulation of the dynamics of a bosonic gas in a double-well trap. The

dynamics represents a competition between the hopping rate from well to well

and a two-body repulsive interaction between the particles. The single-particle

observables of a system of 2 ∗ 104 atoms in the strong interaction regime were

simulated and the convergence of the computation was checked. A dramatic

reduction of the computational complexity has been demonstrated.
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Chapter 1

Introduction

1.1 Pump-probe experiment as a monitor of quan-

tum dynamics

A measurement performed on a quantum system disturbs its evolution. There-

fore, monitoring an evolution of a quantum system becomes both a theoretical

and a practical problem. A pump-probe experiment is designed to monitor quan-

tum dynamics. The initial state of the system is a stationary thermal state. A

pump is an interaction with an external field aimed at moving the system away

from the equilibrium. The response of the system to the pump is monitored.

A probe is a copy of the pump applied to the disturbed system with a certain

delay. The system’s response to the probe depends on its instantaneous state. It

is monitored and compared to the reference response to the pump. The system is

left to relax to the initial thermal state and the sequence pump-probe is repeated

with a larger delay. Each sequence can be interpreted as an independent experi-

ment performed on a copy of the system of interest. The series of pump-probes

obtained with increasing delays gives the picture of the evolving system.

The pump-probe experiment should be distinguished from experiments per-

forming weak measurement of the evolving quantum system, where the same copy

of the system is monitored along the evolution.

While the classical dynamics can be monitored in either one of the two modes

with the same result, quantum system entangles with the measurement appa-

ratus (Peres, 1998) and the back reaction of the measurement must be taken

into account unless a fresh copy of the system is provided. Thus, the pump-

probe experiment monitors what can be termed as a measurement-independent

(autonomous) quantum evolution.

Modeling of a pump-probe experiment includes i) building an initial state of

the system, ii) a theory of system-pump (probe) interaction, which predicts the
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state of the system immediately after the application of the pump and relates

the measured response to the state of the system (Gershgoren et al., 2001) and

iii)a theory of the autonomous evolution of the system between the pump and

the probe.

The three steps: the preparation of the initial state, the time-dependent evo-

lution under the action of the pump (probe) and the autonomous evolution of

the system must be simulated on a computer in order to compare the model to

the experiment. It is this latter task which is the topic of the present work.

1.2 Efficient simulation of quantum dynamics

1.2.1 The role of quantum and classical correlations in

defining the computational complexity of quantum

dynamics.

Quantum vs. classical correlations.

Let us assume that the system is partitioned into subsystems (degrees of freedom).

The state of the system is said to be uncorrelated with respect to the partition

if it obtains a form of a product of states of the subsystems. If a state can

be represented as a statistical mixture of such product states it is said to be

classically correlated, otherwise - it is said to be quantum correlated or entangled

(R. F. Werner, 1989; Peres, 1998). A pure quantum correlated state is necessarily

entangled.

Computational complexity of quantum dynamics I.

The definition of efficient simulation The computational complexity (Bras-

sard & Bratley, 2000) of a problem is measured in the memory and CPU resources

for its solution as a function of the size of the problem. The problem of simulation

of quantum dynamics, governed by the Schroedinger or Liouville-von- Neumann

equation, can be solved using resources, scaling polynomially with the Hilbert

space dimension of the system (Kosloff, 1988). If the quantum system is repre-

sented as a composite system of subsystems, the Hilbert space dimension scales

exponentially with the number of the subsystems. This makes one talk about

the exponential wall 1 in front of a practical implementation of a simulation. In

this context, the size of the problem is understood as the number of subsystems

of the composite quantum system.

1Walter Kohn, Nobel Lecture, January 28, 1999
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In the theory of the computational complexity efficient solution is provided to

a problem if the necessary memory and CPU resources scale polynomially with

the size of the problem. In the context of simulation of a composite-quantum-

system dynamics, ”efficient” means scaling polynomially with the number of sub-

systems (degrees of freedom).

The computational complexity of dynamics is related to the extent of cor-

relations in the evolving state. The evolution of an uncorrelated state can be

simulated efficiently. The number of independent parameters of an uncorrelated

state grows linearly with the number of degrees of freedom and the variational

equations of motion (Kramer & Saraceno, 1981) for the parameters can be solved

efficiently. The paradigmatic example is solving quantum many-body dynamics

with the Hartree-Fock ansatz (Beck et al., 2000). Correlations are generically

created in the course of the evolution of a composite system unless the subsys-

tem do not interact. In the latter case the simulation of the composite system

reduces to the simulation of the subsystem dynamics, which is efficient by the

common definition.

Necessary and sufficient conditions for efficient simulation. Unentan-

gled pure states are product states. Product states span the Hilbert space of the

composite system. Therefore, an entangled pure state can be represented as a

superposition of unentangled states. The number of terms in the superposition

scales exponentially with the number of degrees of freedom. As a consequence, a

generic entangled state of a many-body system cannot be represented efficiently

in the given product states basis. It seems to imply that restricted entanglement

is a necessary condition for efficient representation and, therefore, for efficient

simulation of quantum dynamics.

Restricted entanglement does not automatically mean that the simulation

can be performed efficiently. For the computational purposes it seems necessary

to be able to represent the evolving states as (a mixture of) superpositions of

a small number of product states. An unentangled mixed state is a statistical

mixture of product states. Nonetheless, finding the local bases in which the

unentangled state can be represented as a statistical mixture of product states

cannot generally be done efficiently (Jozsa & Linden, 2003). Finding an appro-

priate time-dependent basis of product-states efficiently seems to be a necessary

ingredient of efficient simulation of quantum dynamics.

In classical mechanics both conditions are satisfied. A state of a classical

system is always classically correlated (Diosi, 2007). Moreover, the evolving state

can be represented as a statistical mixture of trajectories in the many-body phase

space. Each trajectory is a product of local bases of delta-localized states in the
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phase-space and the evolution of this time dependent basis is governed by the

Hamiltonian equations of motion.

Each trajectory can be simulated efficiently but a generic state is a mixture

of a continuum of trajectories. Apparently the evolution of a state cannot be

simulated in practice. But the state is never a physical observable. Observables

are expectation values of certain phase-space function, and if the functions are

sufficiently smooth their expectation values are practically insensitive to the fine

details of the state. The robust, coarse-grained features of the state can be simu-

lated using only a limited size sampling of the trajectories leading to convergence

of the expectation values of the interesting observables (Hoover, 1999).

The example of classical mechanics implies that the two conditions, restricted

entanglement plus an efficient algorithm for following the time dependent basis,

are sufficient for simulation of the dynamics of a subset of observables of the

system.

Algorithms for efficient simulation of weakly entangled quantum evolution

have been developed in chemical physics (Beck et al., 2000) and solid state

physics (Vidal, 2003). The condition of restricted entanglement is satisfied in

many molecular systems and in low-dimensional lattices in the solid state. The

approach taken in the Ref.(Beck et al., 2000) is based on solving variational

equations of motion for the time dependent local basis, while the methods of

simulating low-dimensional lattices dynamics in the solid states physics (Vidal,

2003) use a non variational procedure for updating the basis. The distinguished

set of observables in both methods is the set of local observables. For successful

implementation the initial state must be weakly entangled.

1.2.2 The role of generalized quantum and classical cor-

relations in defining the computational complexity

of quantum dynamics.

The generalized quantum and classical correlations

Entanglement is an observable-dependent concept (Filippo, 2000; Viola et al.,

2001; Zanardi, 2001). The same dynamics can generate extensive entanglement

with respect to one partition and no entanglement at all with respect to another

partition. The simplest example is the transformation to normal modes in a

linear system. Linear dynamics generate no entanglement between the normal

modes, while local modes get entangled in the same dynamics. A choice of dif-

ferent partition may solve the problem of efficient simulation. This is analogous

to looking for coordinates in which the Hamiltonian separates. If such a transfor-

mation exists, the problem can be solved efficiently for appropriate initial states
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of the system.

Still, a generic many-body system cannot be separated. Can the procedure

of partitioning be generalized in such a way that non separable systems can be

simulated efficiently?

To answer this problem we note that partition of a system is mathematically

equivalent to expressing the Hamiltonian and other observables of the system

in terms of the local observables, i.e., observables pertaining to the subsystems.

Mathematically, an arbitrary operator of the system is represented as a tensor

product of local observables. A partition is equivalent to singling out a set of local

observables as the distinguished set of observables from an experimental or a the-

oretical standpoints. Dropping a word ”local” we obtain a generalization of the

notion of partition. The corresponding concepts of classical and quantum correla-

tions can be generalized as well. This generalized framework has been developed

in Refs.(Barnum et al., 2003; Klyachko, quant-ph/0206012) for quantum systems

in finite dimensional Hilbert spaces. These groups have coined the term gener-

alized entanglement, referring to generalized quantum correlations with respect

to a distinguished set of observables. Particularly rich mathematical structure

and important physical implications are obtained if the distinguished set of ob-

servables is closed under the commutation relation, i.e., comprise a Lie-algebra

(Section 4).

Computational complexity of quantum dynamics II.

When the effective Hilbert space dimension of a subsystem is fixed but the num-

ber of subsystems varies, scaling of the computational resources with the number

of subsystems is an adequate measure of the efficiency of simulation. The paradig-

matic example of such systems is a spin chain. Each spin is a two-level system and

the Hilbert space dimension equals two to the power of the number of spins. Effi-

cient simulations of the spin chain dynamics scale polynomially with the number

of spins in the chain and logarithmically with the Hilbert space dimension.

In applications one often encounters the situation, where the number of de-

grees of freedom is fixed but the effective Hilbert space dimension of each degree

of freedom varies. In that case, the total Hilbert space dimension scales polyno-

mially with the variable parameter − the effective Hilbert space dimension of a

single degree of freedom, which is a more appropriate measure of the size of the

problem. The term efficient simulation must be redefined accordingly to suit this

case.

Moreover, partitioning of a system into subsystems or degrees of freedom

reflects the choice of local observables as a distinguished set of observables, which

are at the focus of the simulation. The choice of the observables is generally not
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restricted to local observables. If a different subset of observables is in the focus

of the simulation, there is no advantage in partitioning the system and a reference

to the number of subsystems in the definition of efficient simulation is irrelevant.

We adopt the following definition of efficient simulation.

Definition: Let the subset of distinguished observables be a Lie-subalgebra

of observables, represented irreducibly on the Hilbert space of the system. The

simulation is defined as efficient if the memory and the CPU resources necessary

to compute the evolution of the distinguished observables do not depend on the

Hilbert space representation of the algebra.

A paradigmatic example of a system that can be simulated efficiently is a

system, driven by a Hamiltonian linear in the elements of the distinguished sub-

algebra of observables. The Heisenberg equations of motion for the elements of

the subalgebra can be solved using resources independent of the Hilbert space

representation of the algebra. A simple example of such systems is harmonic

oscillator with respect to the oscillator algebra (Perelomov, 1985)) or a spin in

magnetic field with respect to the angular momentum algebra (Cohen-Tannoudji

et al., 1977).

Mean field solutions (Kramer & Saraceno, 1981) of quantum many-body prob-

lems are examples of an approximate simulation of the quantum dynamics, which

is efficient according to our definition.

The computational resources of an efficient simulation do not depend on the

Hilbert space but scale polynomially with the dimension of the fixed subalgebra

of observables. If the dimension of the subalgebra is not fixed like in the case of

local observables of a spin chain with a variable number of spins, the Hilbert space

dimension is an exponential function of the dimension of the local subalgebra.

The conventional definition of efficient simulation demands scaling logarithmi-

cally with the Hilbert space dimension, i.e., polynomially in the dimension of the

local subalgebra, which is consistent with our definition.

Heuristically, the simulation is efficient if the computational effort is pro-

portional to the amount of desired information and not to the total amount of

information contained in the system.

Efficiency of a simulation can be related to the extent of the generalized quan-

tum (classical) correlations of the evolving system using an important concept

of the generalized coherent states (GCS). This relation is established in Chapter

(4).
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1.2.3 The role of the initial state in defining the compu-

tational complexity of quantum dynamics

The generalized entanglement of an initial state of the simulated system with

respect to the distinguished subalgebra of observables must be weak in order

that efficient simulation be possible (Chapter 4). Accordingly, the initial state

must be a mixture of weakly entangled pure states.

If the field of the pump couples to the system through an element of the dis-

tinguished subalgebra of observables, the generalized entanglement of the state

does not change. This is due to the fact that the generalized entanglement with

respect to a Lie-algebra of observables is invariant under unitary transformations,

generated by the algebra (Barnum et al., 2003). The linear coupling is an ade-

quate model at low intensities of the field. Therefore, for efficient simulation it is

necessary that the initial state of the system (before the pump) be (generalized)

unentangled. Initial state of the system in a pump-probe experiment is typically

a thermal state. Therefore, an important question is whether a thermal state of

the system is generalized-entangled with respect to the distinguished subalgebra

of observables.

The (conventional) entanglement of thermal states has been a field of intensive

research in recent years, motivated by developments in the quantum-information

and computation science (see Chapter 2 and the references therein). It can be

shown that entanglement of thermal states tends to zero with temperature. More-

over, a thermal state can be viewed as a result of imaginary time propagation

from the initial maximally mixed state (i.e., the state proportional to identity

operator), which is an unentangled state. Therefore, at sufficiently large temper-

ature it can be assumed without loss of generality that the initial state is pure

unentangled state. This idea is further explored in Chapter 4.

Ground states of many-body systems are often generalized unentangled (Bar-

num et al., 2003) with respect to the spectrum-generating algebra (SGA) (Dothan,

1970; Bohm et al., 1988) of the system. The SGA is shown to be a distinguished

algebra of observables from the computational perspective in Chapter 4.

Generic evolution of an initially unentangled thermal state generates quantum

correlations. An important and interesting question is whether the extent of

quantum correlations, generated in the course of the evolution depends on the

temperature. This is a question addressed in Chapter 2.
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1.2.4 The role of coupling to a bath in defining the com-

putational complexity of quantum dynamics

Open systems are systems, coupled to an environment (bath). The role of the

bath in defining the computational complexity of the open-system dynamics is

rooted in the effect the bath has on the dynamics of quantum and classical (gen-

eralized) correlations. An external bath may create quantum correlations in the

open system but may also destroy them (Chapter 3). Deterioration of entangle-

ment, caused by interaction with environment, is a curse of the quantum infor-

mation processing and quantum computation (M. A. Nielsen and I. L. Chuang,

2000).

One of the first rigorous results relating external noise to the computational

complexity of quantum dynamics belongs to Dorit Aharonov and Michael Ben-

Or (Aharonov & Ben-Or, quant-ph/9611029). They have shown that sufficiently

strong external noise diminishes the computational complexity of a quantum

computing with the result that the latter can be simulated efficiently. Since then

the topic has been extensively investigated both in the quantum information

processing and in a more physical settings (see Chapter 3 and the references

therein). The conclusion can be summarized in four words: local noise destroys

entanglement.

Local Gaussian noise can be shown to correspond to a weak measurement

of a subset of local operators (Chapter 3). This observation can be used to

generalize the notion of local noise to a noise, associated with an arbitrary set of

observables. Particularly interesting is the noise, associated with the spectrum-

generating algebra of observables (Chapter 4). This noise corresponds to a weak

measurement of the elements of the SGA. Dynamics of a quantum system under

the action of a weak measurement is investigated in a general Lie-algebraic setting

in Section 4.3 of Chapter 4.

Dynamics of generalized quantum correlations, associated with the SGA, un-

der the action of a weak measurement, has never been investigated in a general

setting before. Nonetheless, weak measurements and other forms of the system-

bath interactions were found to destroy quantum correlations, associated with

subalgebras other than local algebra. An example is the localization of the phase-

space representation of a state of quantum (nonlinear) oscillator under a weak

measurement of position (momentum) operator (Diosi, 1988a; Gisin & Percival,

1993; Halliwell & Zoupas, 1995). This localization can be interpreted as deterio-

ration of quantum correlations, associated with the Heisenberg-Weyl subalgebra

of observables (Gilmore, 1974).

The effect of weak measurement of a subalgebra of operators on the compu-
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tational complexity of simulating their dynamics is the central theme of Chapter

4.
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Chapter 2

Generation of quantum

entanglement at finite

temperature

2.1 Introduction

Typically interacting systems develop correlations. Pure initial states, following

a unitary evolution, become entangled, while mixed states or initial pure states of

an open system develop both quantum and classical correlations. If no quantum

correlations are generated in the course of the evolution the system can probably

be simulated efficiently. Given a generic interaction, there are two possible routes

for quantum dynamics without entanglement: i) the system is open to interaction

with an environment; ii) the system follows a unitary evolution from an initial

mixed state. The dynamics of quantum correlations in an open-system evolution

is addresses in Chapter 3. The present Chapter investigates the case of vanishing

mixed state entanglement in a generic unitary evolution of a bi- and tripartite

composite system. The evolution of a pure state is found to generate quantum

entanglement both in the case of direct interaction between the subsystems and

in the case of indirect interaction, mediated by the third party.

2.1.1 Efficient simulation of a classically-correlated sys-

tem

It is possible that an arbitrary pure state of a given composite quantum system

develops entanglement in the course of the evolution, while particular mixed ini-

tial states remain classically correlated. Can this property be used for efficient

simulation of the composite system dynamics? A necessary ingredient of simu-
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lating a mixed state evolution seems to be an ability to represent the state as a

mixture of pure states, following an evolution that can be simulated efficiently.

The pertinent pure-state evolution cannot be the original dynamics, since by as-

sumption an arbitrary initial state generates entanglement. Therefore, one may

look for a modified dynamics of the pure states with a property, that the statis-

tical average of the pure-states evolutions gives the correct mixed state evolution

of the system. This scenario can be realized in the following way.

A mixed state dynamics is driven by the Liouville-von-Neumann equation for

the density operator of the system. An equivalent representation of the dynamics

is a phase-space representation. Given a subalgebra of observables, represented

irreducibly on the Hilbert space of the quantum system, a (generalized) phase-

space of the system can be constructed with an associated set of the generalized

coherent states (GCS)(Perelomov, 1985; Zhang et al., 1990), that span the Hilbert

space (see Chapter 4 for details). ( In the context of the present Chapter, the

distinguished subalgebra is the algebra of local operators of the subsystems, and

the GCS is the set of product (unentangled) states of the composite system.)

A point in the phase space corresponds to a single GCS. A density operator

of the system can be reproduced as a pseudo mixture of the GCS. The pseudo

probability density of GCS in the mixture is called a P-representation of the

density operator. A GCS has P-representation which is a δ-function on the phase-

space.

The evolution of the P-representation is driven by the quantum Fokker-Planck

equation of motion (Gardiner, 1983). Fokker-Plank equation is a partial differen-

tial equation of dimension of the underlying phase-space plus one (time). Classical

Fokker-Planck equation for the probability density distribution can be solved by

decomposing the distribution into a mixture of δ-like distributions. Each δ-like

distribution follows a stochastic trajectory, driven by the classical Langevin equa-

tions (Gardiner, 1983). This decomposition is referred to as stochastic unraveling

of the evolution. The Langevin equation is an ordinary first order differential

equation for the phase-space variables and can be solved efficiently. Subsequent

averaging recovers the evolution of the distribution to a desired accuracy. The

unraveling of the classical Fokker-Planck equation into stochastic trajectories is

possible due to its very important property: positive distributions evolve into

positive distributions.

This property does not hold in quantum case. An initial positive P-representation

of the state generically evolves into a P-representation which can be negative in

parts of the phase-space. This property is often referred to as a sign problem

(Miller, 2005). The development of the negative regions corresponds to produc-

tion of the (generalized) quantum correlations. In fact, (generalized) classically
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correlated states can be represented as proper mixtures of the generalized coher-

ent states (GCS, see Chapter 4), associated with the phase-space. A single GCS

has a nonnegative P-distribution (δ-function), therefore a mixture of the GCS is

nonnegative as well.

If no entanglement is generated, the P-distribution remains nonnegative and

unraveling of the quantum Fokker-Plank equation into quantum Langevin equa-

tions becomes possible. This procedure has been performed by Gardiner (Gar-

diner, 1983). Solution of the quantum Langevin equation can be performed ef-

ficiently, since its complexity depends only on the corresponding phase-space

dimension, which is an algebraic property of the distinguished observables inde-

pendent on the Hilbert space representation 1

As an example consider a system of n spins. The dimension of the Hilbert

space is 2n. The phase space, associated with the subalgebra of local operators

has dimension 2 ∗ n. Therefore, a (stochastic) trajectory in the phase space can

be simulated efficiently.

In conclusion, if a particular mixed state evolves into a classically correlated

state its evolution can in principle be simulated efficiently.

2.1.2 Hot states are disentangled

Sufficiently small neighborhood of the identity operator consists of classically

correlated states (Gurvitz & Barnum, 2003). This neighborhood is finite for

finite-dimensional systems and contracts as the Hilbert space dimension increases.

Therefore, sufficiently hot (finite-dimensional) quantum system are classically

correlated. Moreover, a short time dynamics generates no entanglement, unless

the initial states lies on the boundary of the neighborhood. Therefore, it can be

simulated efficiently.

What is ”sufficiently hot” depends on the dynamics. This question is in the

focus of Section 2.2.

2.2 Temperature Dependence of Interaction-Induced

Entanglement

1A more accurate analysis (Zhang et al., 1990) shows the dimension of the phase-space,

associated with the subalgebra of observables depends on the representation, but is always

bounded by the dimension of the subalgebra.
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I. INTRODUCTION

Efficient simulation of quantum dynamics on classical
computers is hampered by the problem of scaling: the com-
plexity of computation in quantum dynamics scales exponen-
tially with the number of degrees of freedom �1�. The reason
for this exponential growth is the entanglement of the de-
grees of freedom generated during the evolution. This prob-
lem is of a fundamental character: entanglement is viewed as
one of the main peculiarities of the quantum dynamics as
compared to its classical counterpart �2,3�. Asking under
what conditions entanglement is generated along the evolu-
tion of the quantum system is closely associated with the
question of the quantum-classical transition �4,5�.

It is customary in quantum-dynamical simulations to as-
sume that the initial state of the composite system is factor-
ized in the relevant local basis �6�. An important question is
whether the product form is conserved along the evolution
�7,8�. The answer was generally found to be negative both
for the pure- �8,9� and for the mixed-state �9� dynamics.

A pure composite state is entangled if and only if it is not
factorized in the local basis. For mixed states the situation is
more complex �10�. For a bipartite composite system sepa-
rability �11� is defined as a decomposition of the density
matrix of the composite system in the form

�̂12 = � pi�̂1
i

� �̂2
i , �1�

where 0�pi�1, �ipi=1, and �̂1 and �̂2 are density matrices
on Hilbert spaces of the first and the second subsystem, re-
spectively. Separable states exhibit only classical correla-
tions. States that cannot be represented in the form �1� ex-
hibit correlations that cannot be explained within any
classical theory and are said to be entangled. There are two
qualitatively different kinds of the mixed-state entanglement
�12�: free entanglement and bound entanglement. Free en-
tanglement can be brought into a form useful for quantum-

information processing and bound entanglement is “useless”
in this sense.

Separable states are not of the product form generally.
Thus the important question remains, under what conditions
does the mixed state of the composite system evolving from
the initial product �or generally separable� state develop en-
tanglement along the evolution. If quantum correlations in
the composite system do not develop during the evolution
one may speculate that the dynamics of the composite sys-
tem has classical character. A possible practical implication
is that this “separable dynamics” could be simulated effi-
ciently on classical computers.

The dynamics of entanglement was investigated recently
in various systems: the quantum Brownian particle �13�, har-
monic chain �14�, two-qubit system interacting with the com-
mon harmonic bath �15�, Jaynes-Cummings model �16�,
NMR �17�, various spin systems �18–20�, Morse oscillator
coupled to the spin bath �21�, and bipartite Gaussian states in
quantum optics �22� to mention just some cases. The purpose
of the present paper is to explore the temperature dependence
of entanglement generation in the course of evolution of a
bipartite state in the limit of weak coupling and nonresonant
interaction between the parts. Under these limitations nonde-
generate perturbation theory was applied to the calculation of
the bipartite entanglement in the evolving composite system.
We have considered two cases of interaction: �1� direct in-
teraction, when two initially disentangled systems are
brought into contact �cf. Fig. 1�, and �2� indirect interaction,
when two noninteracting and initially disentangled systems
are brought into contact with the third party �cf. Fig. 5�. In
each case the initial state of the composite system was taken
to be the product of the thermal states of the parts.

To establish quantum entanglement the Peres-Horodecki
criterion is employed �23,24�. The Peres-Horodecki criterion
states that the bipartite system is entangled when the partially
transposed density matrix of the system possesses a negative
eigenvalue. The converse statement is generally not true:
there exist inseparable states whose partial transposes are
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positive �25�. It is proved in Ref. �12� that states whose par-
tial transposes are positive �PPT states in what follows� do
not exhibit free entanglement. Therefore PPT states are either
separable or bound entangled and as a consequence are not
useful in quantum-information processing. In the context of
simulating a quantum composite system with classical com-
puters, we are interested in the possibility of maintaining a
separable �cf. Eq. �1�� or approximately separable form dur-
ing the evolution. We conjecture on the basis of Ref. �26�,
where it is proved that PPT density matrices of a low rank
are separable, that sufficiently cold �or, perhaps, sufficiently
pure, in general� initial states that remain PPT during the
evolution are at least approximately separable.

It is a well-known fact that in a sufficiently small neigh-
borhood of a maximally mixed state, which can be viewed as
a thermal state at infinite temperature, all states are separable
�28–31�. Since the interactions studied in the present work
are weak and nonresonant, the dynamics keeps the evolving
state in the vicinity of the initial state. By assumption initial
states are thermal product states. It is expected then that
starting somewhere in the separable ball around the maxi-
mally mixed state, the evolving state will remain separable in
the course of the evolution. Given that entanglement is gen-
erated at sufficiently low initial temperature, a finite cross-
over temperature, depending on the details of the interaction,
should exist: below this temperature the interaction generates
entanglement in the course of the evolution of the composite
system and above it the evolving state remains separable.
Since all separable states are PPT states the analogous criti-
cal temperature should exist for the PPT character of the
evolution. In principle, there may exist several critical tem-
peratures for the PPT quality for the given interaction. There-
fore we define the lower and the upper critical temperatures
Tlc and Tuc such that if the composite system evolves from
the initial thermal state at temperature T�Tlc the minimal
eigenvalue of the partial transpose of the state becomes nega-
tive in the course of the evolution and if T�Tuc the PPT
character of the state is preserved. In the present work a
lower bound Tlb of the Tlc is calculated in cases of both direct
�1� and indirect �2� interactions between the parts.

Applying the Peres-Horodecki criterion to the case �1� of
a direct interaction we show that for sufficiently low initial
temperature of the subsystems the interaction does induce
entanglement unless the ground state of either one of the
subsystem is invariant under the interaction. The lower
bound Tlb of the lower critical temperatures Tlc was calcu-
lated in the limit of weak intersystem coupling and shown to
be tight: the negativity of the composite state �27�, which is
a quantitative counterpart of the Peres-Horodecki criterion
and a measure of entanglement, is shown to be generally
negligible for temperatures in the interval Tlb�T�Tuc.

In the case �2� of indirect coupling two scenarios with
time-scale separation are studied: �a� two“slow” noninteract-
ing systems coupled to a “fast” third party and �b� two “fast”
noninteracting systems coupled to a “slow” third party. Un-
der some technical assumptions about the form of the inter-
action we find in both cases that for sufficiently low initial
temperature of the noninteracting systems entanglement is
induced by the interaction with the third party. We calculate
the lower-bound temperature Tlb in both cases of the time-
scale separation.

In case that the directly or indirectly interacting sub-
systems are spins the lower-bound temperature coincides
with the upper critical temperature, i.e., at T�Tlb the spins
stay disentangled. In the higher-dimensional cases it is found
that the negativity of the evolving composite state is negli-
gibly small at T�Tlb. Therefore the lower-bound tempera-
ture Tlb may be considered as an effective crossover tempera-
ture for the PPT character of the evolution. It may be
suspected that Tlb corresponds to a critical purity of the
evolving state below which the state remains separable ac-
cording to the general result �28–31�, cited above. To see that
this is not the case we note that the radius of the largest
separable ball �30� �and of the largest PPT ball �31�, too�
about the maximally mixed state is defined by the condition
that the purity of the state is low enough, namely, that
Tr �2�1/ �d−1�, where d stands for the overall dimension of
the composite state. Since, as will be shown, Tlb is a mono-
tonically decreasing function of the coupling strength the
�effective� crossover to the PPT evolution is found for initial
states of arbitrarily high purity, provided the coupling
strength is small enough. Therefore, the effective crossover
at Tlb cannot be attributed to the “static” proximity of the
evolving state to the maximally mixed state but rather Tlb is
determined dynamically.

In both cases �1� and �2� the evolution starts from an
uncorrelated initial state of the composite system represented
by the tensor product of thermal states of the subsystems
involved. As a consequence, initially the eigenstates of the
partially transposed density matrix of the composite state are
nonnegative. The evolution under the interaction perturbs the
initial state. The new eigenvalues of the partially transposed
density matrix are calculated by nondegenerate perturbation
theory assuming the coupling is weak and the interaction is
nonresonanant. The time dependence of the minimal eigen-
value is not analyzed in detail. As the time evolution of the
density matrix is quasiperiodic the minimal eigenvalue of the
partially transposed density matrix is also a quasiperiodic
function of time. The interaction is said to induce entangle-
ment if the minimal eigenvalue becomes negative in the
course of the evolution.

II. ENTANGLEMENT BETWEEN TWO DIRECTLY
INTERACTING SYSTEMS

A composite system A � B �see Fig. 1� evolves under the
following Hamiltonian:

Ĥtotal = Ĥ + �V̂ , �2�

where Ĥ=Ĥa � 1̂+ 1̂ � Ĥb, V̂= V̂a � V̂b, and � scales the
magnitude of the interaction. Let the initial state be

�̂�0� = �̂a � �̂b, �3�

where both �̂a and �̂b are thermal states: �̂a,b=Za,b
−1

�exp�−Ĥa,b /T�, where Za,b
−1 is the normalization factor. The

Boltzmann constant kB is unity throughout the paper. The
evolution is followed in the interaction picture. Then
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��̂�

�t
= − i��V̂a�t� � V̂b�t�,�̂�� , �4�

where

�̂��t� = e−iĤt�̂ eiĤt,

V̂a,b�t� = eiĤa,btV̂e−iĤa,bt. �5�

Here and in the rest of the paper we take �=1. It is clear that
the density matrix �̂�t� is separable if and only if �̂��t� is
separable. In what follows the prime on �̂��t� are omitted for
simplicity. In the first order in the coupling � the evolution of
�̂ becomes

�̂�t� = �̂�0� − i��
0

t

�V̂a�t�� � V̂b�t��,�̂�0��dt�. �6�

Entanglement of �̂�t� is established by the application of
the Peres-Horodecki criterion. This is carried out by calcu-
lating the partial transpose of the state. The partial transpo-
sition Ta with respect to subsystem A of a bipartite state �̂ab
expanded in a local orthonormal basis as �̂ab=��ij,kl�i	
j�
� �k	
l� is defined as

�ab
Ta � � �ij,kl�j	
i� � �k	
l� . �7�

The spectrum of the partially transposed density matrix does
not depend on the choice of local basis or on the choice of
the subsystem with respect to which the partial transposition
is performed. By the Peres-Horodecki criterion the eigenval-
ues of a partially transposed separable bipartite state are
nonnegative.

The density operator �6� under the partial transposition
�Ta� becomes:

�̂�t�Ta = �̂�0�Ta − i��
0

t

�V̂a�t�� � V̂b�t��,�̂�0��Tadt�. �8�

Let �ik	��i	 � �k	 be the local orthonormal basis of the
system A � B composed of the eigenvectors of the unper-

turbed Hamiltonian Ĥ=Ĥa+Ĥb:

Ĥa,b�i	 = Ea,b
i �i	 , �9�

where Ea,b
i , i=1, 2, …, is the unperturbed energy spectrum of

the Hamiltonian Ĥa,b. The initial state is of the tensor prod-
uct form �see Eq. �3��; therefore

�̂�0�Ta�ik	 = �̂�0��ik	 = �̂a � �̂b�ik	 = Pik�ik	 , �10�

where Pik� pa,ipb,k and pa,i , pb,k are defined by pa,i= 
i��̂a�i	
and pb,k= 
k��̂b�k	. The matrix elements of �̂�t�Ta in the cho-
sen basis are given by


ik��̂�t�Ta�jl	 = Pik	�ik�,�jl� + Mik,jl, �11�

where

Mik,jl = i��
0

t


ik��V̂a�t�� � V̂b�t��,�̂a � �̂b�Ta�jl	dt�

= i��
0

t

�
ik��̂aV̂a�t��T
� V̂b�t���̂b�jl	

− 
ik�V̂a�t��T�̂a � �̂bV̂b�t���jl	�dt�

= i��Pil − Pjk��
0

t


i�V̂a�t��T�j	
k�V̂b�t���l	dt�

= i��Pil − Pjk��
0

t


j�V̂a�i	
k�V̂b�l	eit��Ea
i −Ea

j +Eb
l −Eb

k�dt�

= ��Pil − Pjk�
j�V̂a�i	
k�V̂b�l	
eit�Ea

i −Ea
j +Eb

l −Eb
k� − 1

�Ea
i − Ea

j + Eb
l − Eb

k�
, �12�

where X̂T designates the transpose of the operator X̂.
When T=0, the zero eigenvalue of the initial state �̂�0� is

degenerate. As a result the zero eigenvalue of the partially
transposed initial density operator �̂�0�Ta = �̂�0� is also de-
generate. The zero eigenvalues correspond to empty initially
unoccupied states. By the standard secular perturbation
theory the first-order correction to the degenerate eigenvalue

�0�=0 of the matrix �̂�0�Ta is given by

�Mnn� − 
�1�	nn�� = 0, �13�

where �n	 and �n�	 are eigenvectors of the matrix �̂a
T

� �̂b,
corresponding to the degenerate 
�0�=0. Since �̂�0�Ta = �̂a

T

� �̂b= �̂a � �̂b the eigenvectors of �̂a
T

� �̂b, corresponding to

�0�=0 are �n	= ��1	 � �i	 , �i	 � �1	 , �i	 � �j	 , i , j=2,3 ,….

Therefore at T=0, Pik=	ik	k1, and by inspection of Eq.
�12�, the only nonvanishing matrix elements in the degener-
ate subspace spanned by �n	 and �n�	 are M1i,j1 and Mj1,1i
where either i�1 or j�1. Since the trace of the matrix M is
zero, either all its eigenvalues vanish or some of them are
negative. All the eigenvalues of M cannot vanish unless M

=0, which from Eq. �12� implies �V̂a , �̂a�=0 or �V̂b , �̂b�=0,
i.e., the ground state of either one of the subsystems is in-
variant under the interaction. In this case the interaction acts

FIG. 1. The coupling scheme for two directly interacting
systems.
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locally on the subsystems and cannot entangle them. Other-
wise there are negative solutions to Eq. �13� and as a conse-
quence the partial transpose of the density operator attains
negative eigenvalues already in the first order in the cou-

pling. Therefore, according to the Peres-Horodecki criterion,
entanglement develops at zero temperature. We remark that
this is a well-known result for the pure-state evolution but

the present derivation will be employed also in the case of a
finite temperature.

To simplify the study of the generation of entanglement at
finite temperatures it is assumed that the only nonzero matrix

elements of V̂a,b are those between neighboring states, i.e.,

�V̂a,b�ij�	i,j±1. Under this assumption the partially trans-
posed density matrix �̂�t�Ta obtains the following structure:

�̂�t�Ta =�
P11 0 0 M11,22 0 0 0 . .

0 P12 M12,21 0 M12,23 0 0 . .

0 M12,21
* P21 0 0 M21,32 0 . .

M11,22
* 0 0 P22 0 0 M22,33 . .

0 M12,23
* 0 0 P23 M23,32 0 . .

0 0 M21,32
* 0 M23,32

* P32 0 . .

0 0 0 M22,33
* 0 0 P33 . .

. . . . . . . . .

. . . . . . . . .

� , �14�

where Pij are defined after Eq. �10� and Mki,jl by Eq. �12�.
There are two kinds of matrix elements Mki,jl: Mki,�k+1��i+1�

and Mki,�k±1��i�1� �other elements are their counterparts under
the transposition�. Matrix elements Mki,�k+1��i+1� couple the
unperturbed eigenvalues Pki and P�k+1��i+1�. For small cou-
pling strength � , �Mki,�k+1��i+1��Pki and the contribution of
Mki,�k+1��i+1� to the correction to Pki is negligible and cannot
make the eigenvalue negative. On the other hand, the ratio
�Mki,�k+1��i+1�� / P�k+1��i+1����Pk�i+1�− P�k+1�i� / P�k+1��i+1� can in
general be arbitrarily large for low temperatures but for suf-
ficiently high temperatures it tends to zero and as a conse-
quence the contribution of the coupling element Mki,�k+1��i+1�
to the correction to P�k+1��i+1� is negligible. It can be checked
along the same lines that the ratio of the coupling matrix
elements Mki,�k±1��i�1� to the unperturbed eigenvalues Pki and
P�k±1��i�1� of the partially transposed density matrix �14� van-
ish for sufficiently high temperature. Therefore, at least for
composite systems with finite Hilbert space dimensions,
there exists a finite upper critical temperature Tuc. Above Tuc
the spectrum of the partially transposed density matrix re-
mains positive. In close vicinity of Tuc from below the mini-
mal eigenvalue becomes negative in the course of the evolu-
tion. These conclusions stay in accord with a general result
that finite-dimensional composite states in sufficiently small
neighborhood of the maximally mixed state �i.e., thermal
states at infinite temperature� are separable �28–31�.

At sufficiently low initial temperature the minimal eigen-
value of the partially transposed density matrix becomes
negative in the course of the evolution. This means that there
exists a finite lower critical temperature Tlc. Below Tlc the
composite system A � B develops entanglement. In a suffi-

ciently close vicinity of Tlc from above the state remains PPT
in the course of evolution. It is possible that Tlc=Tuc. This
equality is confirmed in all numerical tests. A lower bound
Tlb for the lower critical temperature Tlc can be calculated
using perturbation analysis. It is shown that this bound is
tight since the free entanglement in the interval Tlb�T
�Tuc is negligibly small under the weak-coupling assump-
tion. Therefore, from the practical point of view the lower
bound Tlb for Tlc can be considered as the critical tempera-
ture for entanglement. For simplicity the lower bound for the
lower critical temperature is termed “the lower-bound tem-
perature” throughout the paper.

At low temperatures the leading-order contribution to the
negative eigenvalue of the partially transposed density ma-
trix comes from the matrix elements M11,22 ,M12,21 �and their
complex conjugates� that do not vanish at T=0. Therefore, to
the leading order in �, the nonvanishing eigenvalues of the
partially transposed density matrix Eq. �14� are the eigenval-
ues of the following effective partially transposed density
matrix �̂�t�ef f

Ta :

�̂�t�ef f
Ta =�

P11 0 0 M11,22

0 P12 M12,21 0

0 M12,21
* P21 0

M11,22
* 0 0 P22

� . �15�

The critical temperature, calculated for the effective 4�4
matrix �15�, is a lower bound for the lower critical tempera-
ture Tlc of the bipartite system A � B. The eigenvalues of Eq.
�15� are eigenvalues of two 2�2 matrices:
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� P12 M12,21

M12,21
* P21

� �16�

and

� P11 M11,22

M11,22
* P22

� . �17�

The eigenvalues of the matrix �16� are


± =
P12 + P21 ± ��P12 + P21�2 − 4�P12P21 − �M12,21�2�

2
,

�18�

where from Eq. �12�

M12,21 = �
2�V̂a�1	
2�V̂b�1	
eit�E11 − 1

�E11
�P11 − P22� , �19�

where we define �E11=Ea
2−Ea

1+Eb
2−Eb

1, which is the lowest
joint excitation energy of the composite system.

From Eq. �18�, 
− will be negative whenever P12P21
� �M12,21�2 and positive if P12P21� �M12,21�2. The lower-
bound temperature Tlb is evaluated from the condition
P12P21= �M12,21�2. Since �M12,21� is an oscillating function of
time �see Eq. �19�� the amplitude of �M12,21� is taken to be
equal to �P12P21:

2�

�E11
�
2�V̂a�1	
2�V̂b�1	��P11 − P22� = �P12P21. �20�

Assuming that Tlb is low P11− P22� P11 and then

2�

�E11
�
2�V̂a�1	
2�V̂b�1	� =�P2P3

P1
2 = e−�E11/2Tlb. �21�

Since e−�E11/2T is a monotonic function of the temperature, at
T�Tlb
−�0 and at T�Tlb
−�0. Finally, the expression for
the lower-bound temperature Tlb becomes

Tlb = −
�E11

2 ln��2�/�E11��
2�V̂a�1	
2�V̂b�1	��
. �22�

So far only two of the eigenvalues of the matrix �15� have
been evaluated. The other two eigenvalues are found to be
strictly positive at and above the temperature Tlb. Therefore,
the expression �22� defines the critical temperature for the
partially transposed effective density matrix �15� and the
lower bound temperature of the partially transposed density
matrix �14�.

Equation �22� can be generalized to an interaction term of

the form ��iV̂a
i

� V̂b
i :

Tlb = −
�E11

2 ln��2/�E11���
i

�i
2�V̂a
i �1	
2�V̂b

i �1	��
, �23�

provided �i�i
2�V̂a
i �1	
2�V̂b

i �1	�0. When this term vanishes
there is no entanglement in the first order in the coupling
strength �.

For the system of two interacting spins the lower bound
Tlb given by Eq. �22� coincides with the upper critical tem-

perature Tuc; therefore in this case the critical temperature
exists in the strict sense. Figure 2 shows results of the nu-
merical calculation of the critical temperature as a function
of coupling strength for a system of two interacting spins
evolving from the initial product state of two thermal states.
The Peres-Horodecki criterion was used and the partial trans-
pose of the evolving density matrix was calculated numeri-
cally to determine entanglement. The shaded area in the
parametric space of the logarithm of inverse coupling and the
inverse initial temperature represents the values of the pa-
rameters where no entanglement develops. For coupling up
to �=0.1 Tlb given by Eq. �22� �the dashed line� corresponds
well to the numerical values of Tuc. It is interesting to note
that for large values of coupling the critical temperature as-
ymptotically tends to a finite constant value of the same or-
der of magnitude as the energy difference between the first
excited and the ground state of the unperturbed composite
system.

At T�Tlb the minimal eigenvalue of the partially trans-
posed state �14� is negative. We want to show that above Tlb
the negative eigenvalues of the matrix matrixform �14� are of
higher order in � and therefore are negligibly small when the
coupling is weak.

Let us consider corrections to the eigenvalues Pi�j+1� and
P�i+1�j of the composite state �14�. The order-of-magnitude
estimate of the smallest one of the corrected eigenvalues is

−

ij =�Pi�j+1�P�i+1�j −�Pij /�Eij, where �Eij �Ea
i+1−Ea

i +Eb
j+1

−Eb
j . For simplicity we assume Pi�j+1�= P�i+1�j. Then 
−

ij

=O�Pi�j+1�−�Pij /�Eij�. Below Tlb the minimal eigenvalue of
the state �14� is 
−=O�−� /�E11�. We shall estimate the ratio
rij �
−

ij /
− and show that it is negligible when the coupling
is weak. We shall assume without loss of generality that the
ground-state energy is zero: Ea

1+Eb
1=0. Then the partition

function Z of the composite system is larger than unity. It
follows that

FIG. 2. �Color online� The shaded area in the parameter space of
the inverse initial temperature T of two spins and the logarithm of
the inverse coupling strength �, represents values of T and �, where
entanglement does not develop in the course of the evolution. The
composite system of two spins evolves from the initial product of

thermal states under the Hamiltonian Ĥ= �1/2����̂z
a

� 1̂+ ��2−1�1̂
� �̂z

b�+���̂x
a

� �̂x
b− �̂y

a
� �̂y

b�. The evolution is calculated numeri-
cally for �=1. The border of the shaded area represents Tuc calcu-
lated numerically. The dashed line represents Tlb according to Eq.
�22�. Up to the coupling �=0.1 Tlb approximates Tlc very well.
Temperature is measured in units of �.
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rij =

−

ij


−
=

��/�Eij�Pij − Pi�j+1�

�/�E11
�

��/�Eij�ZPij − ZPi�j+1�

�/�E11

=
��/�Eij�e−Eij/T − e−Ei�j+1�/T

�/�E11
. �24�

We are looking for the maximal value of rij in the interval
0�T�Tc

ij, corresponding to the condition Pi�j+1�
��Pij /�Eij, i.e., to the negative values of 
−

ij. Tc
ij is deter-

mined by the condition 
−
ij =0. The ratio rij is positive in the

interval 0�T�Tc
ij and vanishes on its borders. Therefore rij

has a maximum rm
ij at 0�Tm

ij�Tc
ij, which is found from the

condition �rij /�T�Tm
ij =0. The calculation gives

exp�− �Eij/�2Tm
ij�� = ��/�Eij��Eij/Ei�j+1��� ��/�Eij�

= exp�− �Eij/�2Tc
ij�� ,

which proves that there is one maximum rm
ij at 0�Tm

ij�Tc
ij.

We remark that Tc
ij, corresponding to the largest �Eij over all

i and j ,Tuc
* , is of the order of the upper critical temperature,

Tuc
* =O�Tuc�. The maximal value of rij is given by

rm
ij =

�E11

2Eij + �Eij
� 2Eij

2Eij + �Eij
�2Eij/�Eij� �

�Eij
�2Eij/�Eij

�
�E11

2Eij + �Eij
� �

�Eij
�2Eij/�Eij

, �25�

where the inequality follows from the fact that 1 /e
� �2Eij / �2Eij +�Eij��2Eij/�Eij�1 in general. As a next step
we notice that �E11�2Eij; therefore

rij � rm
ij �

�E11

2Eij + �Eij
� �

�Eij
�2Eij/�Eij

�
�E11

�E11 + �Eij
� �

�Eij
��E11/�Eij

. �26�

Introducing the definition xij ��Eij /�E11 and taking �E11
=1, which corresponds to a rescaling of the coupling strength
�, leads to


−
ij


−
� rij �

1

xij
� �

xij
�1/xij

. �27�

Typically the spectrum becomes denser with increasing en-
ergy. In that case xij ��Eij /�E11�1. Values of 
−

ij corre-
sponding to xij1 need not be taken into account, because
Tc

ij�Tlb in this case and as a conseqence 
−
ij�0 at T�Tlb. At

xij =O�1� the upper bound for r scales as O��� and therefore
corresponding negative eigenvalues of Eq. �14� are negli-
gible. In this case we expect that Tlb�Tuc.

In those cases when xij ��Eij /�E11�1 the upper bound
for r scales as O�1/xij� and the corresponding negative ei-
genvalues of Eq. �14� can be neglected, too.

When xij is moderately larger than unity the upper bound
Eq. �27� for rij has a local maximum. The position of the
maximum weakly depends on �: numerical calculations
show xij �2–10 in the range of 10−4���10−1. The value of
the minimum is a monotonically slowly increasing function
of �. In the range 10−4���10−1 numerical estimation of

Eq. �27� shows values 0.04–0.1 for the local maximum. It is
clear that the upper bound Eq. �27� for rij is far from being
tight. In fact, numerical calculations show that rij is generally
much smaller. As a consequence, the corresponding negative
eigenvalues of Eq. �14� can be neglected.

It can be argued that although each one of the negative
eigenvalues of Eq. �14� is negligible at T�Tlb the �free�
entanglement of the state cannot be neglected. In fact, the
minimal negative eigenvalue of the partially transposed ma-
trix is not a measure of entanglement. Various measures of
entanglement have been defined �32�. In the present context
we will employ a quantitative counterpart of the Peres-
Horodecki criterion, the negativity �27�

N„�̂�t�… �
��̂�t�Ta� − 1

2
, �28�

where �X̂�=Tr�X̂†X̂ is the trace norm of an operator X̂. The
negativity of the state equals the absolute value of the sum of
the negative eigenvalues of the partially transposed state.
When the negativity of a composite bipartite state vanishes
there is no free entanglement in the state. It can be shown by
an order-of-magnitude analysis similar to the analysis above
that values of the negativity of the composite state, corre-
sponding to the partial transpose �14�, are generally domi-
nated by the minimal negative eigenvalue. As a consequence,
the negativity of the state, evolving from the initial thermal
product state at the temperature T�Tlb is negligible under
the weak-coupling assumption.

Figures 3 and 4 display results of numerical calculations
of the time averaged negativity of the composite state �6� as
a function of initial temperature for two different kinds of
unperturbed spectra of the composite system A � B. Both A
and B are four-level systems. The composite system evolves

FIG. 3. �Color online� The time-averaged negativity as a func-
tion of initial temperature. The composite system is constructed
from two interacting four-level subsystems. The initial state is a
product of thermal states. The evolution is generated numerically by
the Hamiltonian �2� �for details of the Hamiltonian see the text�
with �=0.05. The dashed lines correspond to the lower-bound tem-
perature Tlb, Eq. �22�, and to the upper critical temperature Tuc,
found numerically. It can be seen that the entanglement is vanish-
ingly small in the interval Tlb�T�Tuc. Temperature is measured in
units of �.
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from the initial product of thermal states of A and B under
the Hamiltonian �2�.

Figure 3 presents the results of calculations for the fol-

lowing choice of the unperturbed spectra of Ĥa and Ĥb:
Ea

�1,2,3,4= �� ,5� ,8� ,10� and Eb
i =��Ea

i �we set �=1�.
Care was taken to avoid resonances and the spectra were
chosen to become denser with increasing energy. The inter-

action terms in the Hamiltonian were restricted to �V̂a,b�ij

=	i,j±1 and the coupling strength �=0.05. We see that Tuc
�Tlb and the time-averaged negativity 
N(�̂�t�)	 is negligible
in the interval Tlb�T�Tuc as expected.

Figure 4 displays the time-averaged negativity 
N(�̂�t�)	
as a function of initial temperature of the composite state of
two interacting four-level subsystems A and B with the un-
perturbed energy spectra Ea

�1,2,3,4= �� ,3� ,7� ,13� and Eb
i

=��Ea
i . The composite state evolves from the initial product

of two thermal states under the Hamiltonian �2�, where

�V̂a,b�ij =	i,j±1 and the coupling strength �=0.05. In choosing
the unperturbed spectra care was taken to avoid resonances
and to ensure that the maximal value of xij ��Eij /�E11
equals the position of the local maximum of the upper bound
�27�, corresponding to �=0.05. Figure 3 shows that the time-
averaged negativity 
N(�̂�t�)	 is negligible in the interval
Tlb�T�Tuc as expected. The value of Tc

ij �Tuc
* �the defini-

tion of Tc
ij is given after Eq. �24��, corresponding to the maxi-

mal value �Emax�maxij��Eij� is calculated. Tuc
* is in good

correspondence with the value Tuc, calculated numerically.
In the following section the lower-bound temperature for

the generation of entanglement in the case of indirect inter-
action will be calculated. It is expected on general perturba-
tion theory grounds that the negativity is negligible in this
case, too, at T�Tlb. A quantitative anlysis was not carried

out due to the technical complexity of the indirect interaction
case. Nevertheless, all the numerical tests confirm this view.
The temperature dependence of the negativity for a given
coupling strength in the case of indirect interaction is essen-
tially equivalent to the temperature dependence in the direct-
interaction case plotted in Figs. 3 and 4.

III. ENTANGLEMENT BETWEEN TWO
NONINTERACTING SYSTEMS IN CONTACT

WITH A COMMON THIRD PARTY

The dynamics studied is of the composite system
A � B � C where systems B and C do not interact directly
�see. Fig. 5�. The entanglement explored is of the reduced
composite system B � C.

The evolution is generated by the following Hamiltonian:

Ĥtotal = Ĥ + �V̂ , �29�

where Ĥ=Ĥa+Ĥb+Ĥc and V̂=�V̂a � �V̂b � 1̂+ 1̂ � V̂c�. The
analysis is carried out in the interaction picture. The initial
state is taken to be �̂�0�= �̂a � �̂b � �̂c, where �̂a , �̂b, and �̂c

are thermal states. Since B and C are noninteracting en-
tanglement will appear only in the second order in the cou-
pling. Up to second order in � the state of the composite
system A � B � C becomes

�̂�t�� = �̂�0� − i��
0

t

�V̂�t��,�̂�0���dt�

− �2�
0

t �
0

t� †V̂�t��,�V̂�t��,�̂�0���‡dt�dt�, �30�

where

�̂� = e−iĤt�̂ eiĤt,

FIG. 4. �Color online� The time-averaged negativity as a func-
tion of initial temperature of the composite system. The composite
system is constructed from two interacting four-level subsystems.
The initial state is a product of thermal states. The evolution is
generated numerically by the Hamiltonian �2� �for details of the
Hamiltonian see the text� with �=0.05. The dashed lines correspond
to the lower-bound temperature Tlb, Eq. �22�, to the numerical value
of the upper critical temperature Tuc and to the value Tuc

* , corre-
sponding to the largest spectrum spacing �Emax. We see that en-
tanglement is vanishingly small at Tlb�T�Tuc, as expected, and
Tuc

* is a good approximation to the upper critical temperature Tuc.
Temperature is measured in units of �.

FIG. 5. Scheme of interaction for two noninteraction systems in
contact with a common third party.
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V̂�t� = eiĤtV̂e−iĤt. �31�

In what follows the prime on the �̂�t� is omitted.
Next the system is reduced to B � C by taking the partial

trace of �̂�t� over the system A degrees of freedom. The
partial transposition of the reduced density operator with re-
spect to the subsystem B gives:

�̂bc
Tb�t� = �̂bc

Tb�0� + M̂�t� , �32�

where �̂bc�t��Tra�̂�t� and

M̂ � − i��
0

t

Tra�V̂�t��,�̂�0��Tbdt�

− �2�
0

t �
0

t�
Tra†V̂�t��,�V̂�t��,�̂�0��‡Tbdt�dt�. �33�

Let �ik	��i	 � �k	 be the local orthonormal basis of the
system B � C composed of the eigenstates of the Hamil-

tonian Ĥb+Ĥc:

Ĥb,c�i	 = Eb,c
i �i	 , �34�

where Eb,c
i , i=1,2 ,…, is the unperturbed energy spectrum of

the Hamiltonian Ĥb,c. Since �̂bc�0�= �̂b � �̂c,

�̂bc�0�Tb�ik	 = �̂bc�0��ik	 = �̂b � �̂c�ik	 = Pik�ik	 , �35�

where Pik� pb,ipc,k, and pa,i , pb,k are defined by pb,i= 
i��̂a�	
and pc,k= 
k��̂b�k	. The matrix elements of �̂bc�t�Tb are given
by


ik��̂bc�t�Tb�jl	 = Pik	�ik�,�jl� + Mik,jl, �36�

where by definition Mik,jl= 
ik�M̂�jl	.
From this point the calculations proceed along the same

lines as in Sec. II following Eq. �11�. The minimal eigen-
value of the partially transposed reduced state �̂bc�t�Tb is
shown to be negative at sufficiently low temperatures and the
lower-bound temperature Tlb is calculated.

The negative eigenvalue of the partially transposed com-
posite state Eq. �32� is calculated to the leading order in the

coupling strength � assuming 
ni�V̂i�mi	�	nimi±1. As in Sec.
II the eigenvalue is found from the spectrum of the 2�2
matrix:

�P12 + M12,12 M12,21

M12,21
* P21 + M21,21

� , �37�

completely analogous to the matrix �16�. The eigenvalues of
Eq. �37� are


± =
P12 + M12,12 + P21 + M21,21

2
±

��P12 + M12,12 + P21 + M21,21�2 − 4��P12 + M12,12��P21 + M21,21� − �M12,21�2�
2

, �38�

and the eigenvalue 
− becomes negative when �P12

+M12,12��P21+M21,21�� �M12,21�2.
To calculate M12,12 , M21,21, and M12,21 we first note that

the integrand in the first order term in Eq. �33� is

Tra�V̂�t��,�̂�0��Tb

= 
V̂a	�V̂bc�t��,�̂bc�0��Tb

= 
V̂a	��V̂b�t��,�̂b�T
� �̂c + �̂b

T
� �V̂c�t��,�̂c�

= − 
V̂a	��V̂b�t��T,�̂b� � �̂c − �̂b � �V̂c�t��,�̂c� , �39�

where 
V̂a	 means the thermal average of the operator V̂a

and the notation V̂bc� V̂b � 1̂+ 1̂ � V̂c is introduced. The ini-
tial condition �̂bc�0�= �̂b � �̂c was used. Since �̂b,c�i	=	i,1�i	
the term Eq. �39� does not contribute to the eigenvalues of
the matrix �37� in the first order.

To simplify the calculation of the second order corrections
it is assumed that the thermal average of the system A cou-

pling operator 
V̂a	 vanishes. This assumption is not crucial
for the qualitative picture of temperature dependence of the
entanglement. Moreover, it is in line with common models of
coupling, for example, the Caldeira-Leggett model �33�, di-

pole interaction with the electromagnetic field �34�, etc. The
integrand in the second-order term in Eq. �33� is

Tra†V̂�t��,�V̂�t��,�̂�0��‡Tb

= 
V̂a�t��V̂a�t��	�V̂bc�t��,V̂bc�t���̂bc�Tb

− 
V̂a�t��V̂a�t��	�V̂bc�t��,�̂bcV̂bc�t���Tb. �40�

Expanding the thermal averages in the orthonormal basis �n	
of the Hamiltonian Ha leads to

Tra†V̂�t��,�V̂�t��,�̂�0��‡Tb

= �
m,n

pa,n�
m�V̂a�n	�2„cos��mn
a �t� − t���

�†V̂bc�t��,�V̂bc�t��,�̂bc�‡ + i sin��mn
a �t� − t���

��V̂bc�t��,�V̂bc�t��,�̂bc�…Tb, �41�

where �mn
a is the energy difference between the states �n	 and

�m	 of the Hamiltonian Ha, the �X̂ , Ŷ designates the anti-

commutator of operators X̂ and Ŷ and pa,n���̂a�nn.
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For simplicity the notation Ĉ�t� , t�� is used for the opera-

tor �41�. Expressing the operator V̂bc in terms of V̂b and V̂c

we put the matrix elements of Ĉ�t� , t�� into the following
form:


12�Ĉ�t�,t���12	 = − 2P11�
m,n

pa,n�
m�V̂a�n	�2�
1�V̂c�2	�2

�cos���mn
a + �c��t� − t��� ,


21�Ĉ�t�,t���21	 = − 2P11�
m,n

pa,n�
m�V̂a�n	�2�
1�V̂b�2	�2

�cos���mn
a + �b��t� − t��� ,


12�Ĉ�t�,t���21	 = P11�
m,n

pa,n�
m�V̂a�n	�2
2�V̂b�1	
2�V̂c�1	

�ei�mn
a �t�−t���e−i��bt�+�ct�� + e−i��bt�+�ct��� ,

�42�

where �b,c stands for the energy difference between the first
excited and the ground states of the unperturbed subsystem
B �C�. The matrix elements M12,12 , M21,21, and M12,21 are
given by

M12,12 = − �2�
0

t �
0

t�

12�C�t�,t���12	dt�dt�,

M21,21 = − �2�
0

t �
0

t�

21�C�t�,t���21	dt�dt�,

M12,21 = − �2�
0

t �
0

t�

12�C�t�,t���21	dt�dt�. �43�

The integration is straightforward but the final expres-
sions are cumbersome. Two cases are considered explicitly:
�a� �mn

a ��b,c and �b� �b,c��mn
a . In both cases it is shown

that at sufficiently low initial temperature of the system B
� C one of the eigenvalues of the matrix �37� is negative and
the lower-bound temperature Tlb is calculated.

A. Two slow systems interacting with a fast common
third party

Performing the integrations in Eq. �43� and taking the
leading terms in �b,c /�mn

a brings us to

M12,12 = 4�2�
m,n

pa,n�
m�V̂a�n	�2�
1�V̂c�2	�2
sin���mn

a + �c�t/2�2

��mn
a �2 ,

M21,21 = 4�2�
m,n

pa,n�
m�V̂a�n	�2�
1�V̂b�2	�2
sin���mn

a + �b�t/2�2

��mn
a �2 ,

M12,21 = 2�2�
m,n

pa,n�
m�V̂a�n	�2
2�V̂b�1	

�
2�V̂c�1	
�1 − e−i��b+�c�t�
�mn

a ��b + �c�
. �44�

At T=0 the minimal eigenvalue of Eq. �38� is given by

−=−�M12,12M21,21− �M12,21�2, which to the leading order in
�b,c /�mn

a gives 
−=−�M12,21�2. This proves that the system
B � C becomes entangled at sufficiently low temperature. We
note that this result holds at any finite temperature of the
system A. At infinite temperature of the system A M12,21
�0 and no free entanglement is generated in the system B
� C.

At finite initial temperature of B � C the condition 
−
�0 translates to P12P21��

4�M12,21�2P11
2 to the leading order

in �1,2 /�mn
a . The lower-bound temperature Tlb is found from

the condition P12P21=�4�M12,21�2P11
2 . Since �M12,21� is an os-

cillating function of time the amplitude of �M12,21� must be
substituted for �M12,21� in this equality, which leads to the
following equation defining the lower bound temperature:

4�2 �
2�V̂b�1	
2�V̂c�1	�
�b + �c

�
m,n

pa,n�
m�V̂a�n	�2

�mn
a

=�P2P3

P1
2 = exp�−

�b + �c

2Tlb
� , �45�

finally leading to

Tlb =
− ��b + �c�

2 ln�4�2 �
2�V̂b�1	
2�V̂c�1	�
�b + �c

�
m,n

pa,n�
m�V̂a�n	�2

�mn
a � .

�46�

A generalization of the formula to the case of interaction of

the form ��iV̂a
i

� �V̂b
i

� 1̂+ 1̂ � V̂c
i � can be carried out along

the same lines.
The entanglement in the reduced system of two noninter-

acting slow spins interacting with the fast four-level bath was
explored numerically and the results are plotted in Fig. 6.
The shaded area in the parametric space of the logarithm of
inverse coupling strength and the inverse initial temperature
of the spins represents parametric values for which no en-
tanglement develops in the course of the evolution. The bor-
der of the shaded area corresponds to the critical temperature
for various coupling magnitudes. The Hamiltonian of the
composite system is

Ĥ = Ĥa � 1̂b � 1̂c +
1

2
��1̂a � ��̂z

b
� 1̂c + �21̂b � �̂z

c��

+ �V̂a � ��̂x
b

� 1̂c + 1̂b � �̂x
c� , �47�

where �Ĥa�ij =	ijEa
i , Ea

�1,2,3,4= �0,10� ,20� ,30� and �V̂a�ij

=	ij. The temperature of the thermal initial state of the bath
is T=5�. The value of � chosen for the numerical calcula-
tion is unity. The correspondence of Eq. �46� �the dashed
line� to the numerical values is very good up to a coupling
strength of the order of unity. We note that for large values of
the coupling strength � the critical temperature asymptoti-
cally tends to a finite constant value.
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B. Two fast systems interacting with a slow common
third party

The case �b,c��mn
a is more complex. To demonstrate en-

tanglement at zero temperature of the system B � C two sim-
plifying assumptions were added. The first is that the tem-
perature of the system A is also zero. The second is that the
matrix elements of Va couple only the neighboring states:


n�V̂a�m	�	n,m±1. Under these two assumptions the expres-
sions for M12,12 , M21,21, and M12,12MM21,21

− �M12,21�2 become

M12,12 = P11�2��
2�V̂a�1	��
1�V̂c�2	�sin���a + �c�t/2�
�c

�2

,

M21,21 = P11�2��
2�V̂a�1	��
1�V̂b�2	�sin���a + �b�t/2�
�b

�2

,

M12,12MM21,21
− �M12,21�2

= P11
2 �2�2�
2�V̂a�1	�2�
1�V̂c�2	��
1�V̂b�2	�

�b�c
�2

S�t� , �48�

where

S�t� = sin��at��sin��bt� + sin��ct� − sin���a + �b + �c�t� .

�49�

To estimate S�t� new variables x=sin��at�, y=sin��bt�,
and z=sin��ct� are introduced. Ignoring the zero-measure set
of commensurable frequencies we can treat the function S�t�
as a function of three independent variables x ,y, and z. The
range of S�t� in the cube, defined by −1�x ,y ,z�1, can be
explored numerically and is found to be s�S�t��3, where
s�−1.6834. Therefore, from Eq. �48� M12,12MM21,21
− �M12,21�2�0, which proves that at zero temperature 
−�0

�see Eq. �38�� and the systems B and C are entangled by the
interaction with the system A.

The lower-bound temperature is determined by the condi-
tion 
−=0, which translates to �P12+M12,12��P21+M21,21�
= �M12,21�2 �see Eq. �38��. The latter condition can be put in
the form �M12,12M21,21− �M12,21�2�+ P12P21+ P12M21,21

+ P21M12,12=0. Since M12,21 and M21,21 are nonnegative in-
dependent functions of time the minimum value of
�M12,12M21,21− �M12,21�2�+ P12P21+ P12M21,21+ P21M12,12 is
obtained at M21,21=M12,12=0. Then the lower-bound tem-
perature can be calculated from the condition that the ampli-
tude of M12,12M21,21− �M12,21�2 equals −P12P21:

2�2��s��
2�V̂a�1	�2�
1�V̂c�2	��
1�V̂b�2	�
�b�c

=�P12P21

P11
2 ,

�50�

finally leading to

Tlb =
− ��b + �c�

2 ln�2�2��s�
�
2�V̂a�1	�2�
1�V̂c�2	��
1�V̂b�2	�

�b�c
� .

�51�

It is interesting to note that Tlb in this case does not depend
on the time scales of the slow system.

The entanglement in the reduced system of two noninter-
acting fast spins interacting with the slow four-level bath was
explored numerically and the results are plotted in Fig. 7.
The shaded area in the parametric space of the logarithm of
inverse coupling strength and the inverse initial temperature
of the spins represents parametric values for which no en-
tanglement develops in the course of the evolution. The bor-
der of the shaded area corresponds to the critical temperature

FIG. 6. �Color online� The shaded area in the parameter space of
the inverse initial temperature T of the slow spin and the logarithm
of the inverse coupling strength �, represents values of T and �
where entanglement does not develop in the course of the evolution.
The composite system of two slow spins interacting with a fast
four-level system evolves from the initial product of thermal states
under the Hamiltonian �47�. The dashed line is the plot of Tlb, Eq.
�46�. Up to the coupling �=1 its correspondence with the border of
the shaded area is very good. Temperature is measured in units
of �.

FIG. 7. �Color online� The shaded area in the parameter space of
the inverse initial temperature T of the fast spins and the logarithm
of the inverse coupling strength � represents values of T and �
where entanglement does not develop in the course of the evolution.
The composite system of two fast spins interacting with the slow
four-level system evolves from the initial product of thermal states
under the Hamiltonian �52�. The dashed line is the plot of Tlb, Eq.
�51�. Up to the coupling �=1 its correspondence with the border of
the shaded area is good. Temperature is measured in units of �.

M. KHASIN AND R. KOSLOFF PHYSICAL REVIEW A 72, 052303 �2005�

052303-10



for various coupling magnitudes. The Hamiltonian is chosen
to be similar to the previous example, �see Eq. �47��, but
time scales of the subsystems are reversed:

Ĥ = Ĥa � 1̂b � 1̂c + 5��1̂a � ��̂z
b

� 1̂c + �21̂b � �̂z
c��

+ �V̂a � ��̂x
b

� 1̂c + 1̂b � �̂x
c� , �52�

where �Ĥa�ij =	ijEa
i , Ea

�1,2,3,4= �0,� ,2� ,3�, and �V̂a�ij =	ij.
The temperature of the thermal initial state of the bath was
chosen as T=0.01�, which is small compared to the energy
scale of the bath chosen for the numerical calculation: �=1.
The dashed line in Fig. 7 is a plot of Eq. �51� and the corre-
spondence with the border of the shaded area at coupling
strength up to the order of unity is good.

IV. SUMMARY AND CONCLUSIONS

Entanglement is created by both direct and indirect weak
interaction between two initially disentangled systems pre-
pared in thermal states at sufficiently low temperatures. The
study is restricted to the conditions where the ground states
of both systems are not invariant under the interaction and
the interaction is nonresonant. As a consequence, the present
analysis left out some interesting models such as the Jaynes-
Cummings model �35�. The generation of entanglement in
cases of the weak resonant direct and undirect interactions
will be considered elsewhere.

In the case of indirect interaction to show entanglement at
T=0 we have assumed that the thermal average of the third
party coupling term in the initial state vanishes. The reason
for the assumption was technical. It should be noted that
many system-bath models of linear coupling satisfy this as-
sumption �33�. The additional technical assumption was that
the coupling terms of the noninteracting parties possess ma-
trix elements only between the adjacent energy states. Here,
too, the assumption is general for weak-coupling models.
Two cases of time-scale separation were considered explic-
itly. The first is the case of two slow systems interacting via
the fast third common party. The second is the case of two
fast systems interacting via the slow third common party. In
the first case the entanglement was shown to appear at suf-
ficiently low initial temperature of the slow systems for any
finite temperature of the third party. In the second case the
entanglement develops at sufficiently low initial temperature
of the fast systems. In this case we assumed that the third
party was prepared at zero temperature and that the third-
party coupling agent has nonvanishing matrix elements only
between the adjacent energy states. This assumption is stron-
ger than just assuming that its thermal average vanishes.

In these cases of indirect interaction and in the case of the
direct interaction between the parts we have shown that if the

initial temperature of the bipartite state is zero entanglement
is generated by the interaction. From this result and the gen-
eral theorem about the existence of a finite separable ball
about the maximally mixed state �28–31� it follows that at
least one crossover from the entanglement-generating to the
separable evolution should exist at some finite initial tem-
perature of the state. The same is true for the crossover from
the NPPT �non-partial-positive transpose� to the PPT evolu-
tion. The lowest temperature corresponding to a crossover
was termed the lower critical temperature Tlc and the highest
was termed the upper critical temperature Tuc. Numerical ex-
periments suggest that there is one such crossover for the
interactions studied and therefore Tlb=Tuc. In both cases of a
direct and an indirect interaction between the initially disen-
tangled systems, prepared in thermal states, we calculated the
lower bound Tlb for the lower critical temperature Tlc. When
the initial temperature of both thermal states is below Tlb the
interaction generates entanglement in the course of the evo-
lution. For temperatures above the lower bound Tlb the nega-
tivity of the partially transposed composite state is zero in
the leading order in the coupling strength and therefore neg-
ligible in the weak-coupling limit. It follows that Tlb may be
considered as the physical critical temperature for the nega-
tivity of the composite state.

It was found that Tlb is a monotonically decreasing func-
tion of the coupling strength. As a consequence, the purity of
the state evolving from the initial thermal state at T=Tlb can
be arbitrary high at weak enough coupling, but the entangle-
ment generation is zero to the leading order in the coupling
strength. This proves that far from the maximal separable
�and the maximal PPT� ball �30,31� centered at the maxi-
mally mixed state there exist a quantum dynamics, which is
effectively PPT.

In Ref. �26� it was proved that a PPT density operator of
a sufficiently small rank is separable. We speculate that, aim-
ing at a less stringent criterion for the approximate separa-
bility, one may be satisfied with showing that the PPT state is
sufficiently pure.

A high-temperature limit is generally considered as bring-
ing about classical features into the quantum evolution. A
quantum system at high temperature can be efficiently simu-
lated on the classical computer. The present analysis suggests
that there exists a PPT �or perhaps, even separable� dynamics
in a relatively cold quantum region, which hopefully can be
simulated with a moderate scaling.
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26 Generation of quantum entanglement at finite temperature



Chapter 3

Quantum and classical

correlations in an open-system

evolution

3.1 Introduction

In Chapter 2 we discussed one generic pathway for quantum dynamics without en-

tanglement - a unitary evolution of a sufficiently mixed initial state. The present

Chapter explores another paradigm - the open-system dynamics. As pointed out

in Section 1.2.4 of Chapter 1, an extensive theoretical and experimental evidence

has been obtained in favor of the following intuitive formula: local noise destroys

entanglement.

Coupling to a local environment is expected to destroy existing quantum cor-

relation in a composite system and to restrict the generation of new quantum

correlations by the interaction. As a consequence, one could expect to be able to

simulate the corresponding open system evolution with higher efficiency. Inves-

tigation of various types of a local system-bath interaction in Section 3.2 reveals

that this formula is not universal.

3.1.1 Gaussian noise

The common intuition is based on hypothesis of a large time-scales separation

between the local dynamics of the open quantum system and the decoherence

time scale. The latter can be understood as follows. Assume a large time-

scale separation between the slow evolution of a certain hypothetic set of states

- termed robust states - and the fast evolution of a generic superposition of

robust states. Due to this property robust states can be considered as attractors

for the open-system dynamics. As a consequence, the density operator of the
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open-system assumes a quasidiagonal structure in the robust states basis. The

dynamical (quasi) diagonalization is termed decoherence and is a basis-dependent

phenomena by construction. If the robust states are local states, the evolving

density matrix obtains quasidiagonal structure in the local basis, which implies

that quantum correlations are restricted.

The quasidiagonal structure does not contradict generation of classical corre-

lations between the subsystems. On the contrary, extensive classical correlations

can develop in the open-system evolution (Section 3.2). Therefore, the effect

of the local environments can be interpreted as a transformation of quantum

correlations, generated by the interaction, to classical correlations.

This pattern has been found in the open dynamics of a composite system of

interacting nonlinear oscillators (Section 3.2), when the local system-bath inter-

action corresponds to the Gaussian noise (Kubo, 1962; Gorini & Kossakowski,

1976). The Gaussian noise leads to the open system dynamics, which can be

interpreted (Diosi, 2006) as a process of weak measurement of certain local ob-

servables.

A general mathematical framework for this pattern of open-system dynam-

ics can be developed based on the concept of the generalized coherent states

(GCS)(Zhang et al., 1990; Perelomov, 1985), which turn out to be the robust

states for particular system-bath interactions (Boixo et al., 2007). The frame-

work is introduced and developed in Chapter 4. Robust states seem to be an

appropriate candidate for the computational basis of the simulation. For the

reasons given in Section 4.1.1 of Chapter 4 the robust states must be GCS with

respect to a particular subalgebra of observables in order to be an appropriate

computational basis for efficient simulation. GCS are robust states with respect

to a certain environment, but not vice versa (Boixo et al., 2007). The robust

states considered in Section 3.2 are eigenstates of particular local operators −
local Hamiltonians − and are not GCS. Nonetheless, they are a subset of the

GCS, associated with the subalgebra of all local operators, − the product states,

which can be used as a computational basis.

3.1.2 Poissonian noise

The Poissonian noise models have been found to adequately describe dephasing

dynamics driven by rare collisions in chemistry (Weiss et al., 2006) and in solid

state physics (Uskov et al., 2000; Kammerer et al., 2002; San-Jose et al., 2002).

In Section 3.2 it is shown that Poissonian type of local system-bath coupling

does not exhibit the time-scale separation between the local dynamics and the

decoherence. As a consequence, the generation of entanglement by the interaction
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is not affected substantially by the Poissonian noise. Accordingly, the simulation

of the corresponding open-system dynamics does not seem to be advantageous

from the computational point of view.

3.1.3 Measures of correlations

The efficiency of a simulation will depend on the extent of quantum entangle-

ment. Section 3.2 explores dynamics of quantum and classical correlations as a

function of the effective Hilbert space dimension of the system in various open

bipartite composite systems. A natural measure of the mixed state entangle-

ment is the average entanglement of pure states in a convex decomposition of the

density operator, minimized over all possible decompositions (Plenio & Virmani,

2007). The minimization is a difficult computational problem and this measure

is unpractical in calculations.

A feasible measure of the mixed state entanglement is the negativity (Vidal &

Werner, 2002). The disadvantage of the negativity is that generally it measures

a lower bound on the mixed state entanglement, i.e., entangled states may still

have vanishing negativity. In Section 3.3 we show that the negativity is an appro-

priate measure of the mixed state entanglement in a certain class of mixed states,

where it measures the distance of the mixed state from the set of separable (i.e.,

classically correlated) states. The mixed states, generated by the open-system

dynamics, considered in Section 3.2, are shown to belong to that class.

A measure of the classical (more accurately, of the total) correlations is de-

veloped in Section 3.2. The central idea (Zwolak & Vidal, 2004) is to view a

density operator as a pseudo pure state (superket) in the Hilbert-Schmidt space

of operators. Then a regular measure of the pure-state entanglement (Plenio &

Virmani, 2007) can be applied to calculate the total correlations of the state.

3.2 Rise and Fall of Quantum and Classical Cor-

relations in an Open System Dynamics
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I. INTRODUCTION

The exploration of the nature and the extent of correla-
tions generated by the many-body dynamics has both funda-
mental and practical applications. One of the fundamental
issues in the investigation of many-body dynamics is finding
an optimal set of coordinates �1,2�. This problem is solved in
classical mechanics by introducing partition of a complex
system into smaller subsystems, i.e., introducing degrees of
freedom. The description of the composite system is fur-
nished by local descriptions of the subsystems. The adequacy
of a particular partition depends heavily on the nature and
the extent of the correlations between the local degrees of
freedom.

The role played by correlations in classical and quantum
mechanics is substantially different. This is due to the pres-
ence of the quantum correlations, or entanglement, in a com-
posite quantum state, having no analog in the classical world
�3�. In contrast to classical correlations �4�, extensive en-
tanglement makes the partition of a quantum system mean-
ingless, since local measurements do not provide information
on the state of an entangled system �3�.

The problem of the optimal partition is deeply connected
to the foundation of many-body dynamical simulations. The
complete description of the system composed of fully corre-
lated subsystems should grow exponentially with the number
of subsystems involved. The possibility of representing a
state of a complex system as a mixture of independently
evolving uncorrelated states �trajectories� solves in principle
the problem of many-body simulations, permitting one to
sample single trajectories for simulation and averaging the
result subsequently �5,6�. This possibility is inherent in clas-
sical mechanics but is nongeneric in the quantum case, due
to the fact that the typical interaction of a quantum system
generates entanglement. If the growth of the total �i.e., quan-
tum and classical� correlations becomes restricted, the quan-
tum dynamics can be efficiently simulated �7–11�. Nonethe-
less, it is still an open question whether restrictions on
quantum correlations alone are sufficient to provide for
efficient simulations �12�.

Addressing the problem of dynamical generation of cor-
relations it is necessary to distinguish between the unitary
evolution of an isolated system and the open evolution of a
system coupled to an environment. While a given unitary
evolution can generate extensive entanglement, coupling the
system to an environment is generally expected to restrict
entanglement generation. This expectation originates in the
general philosophy, seeing in environmental-induced deco-
herence �13� the universal route of quantum-to-classical tran-
sition. It is consistent with some established results on open-
systems entanglement dynamics.

Evolution of quantum correlations under the influence of
the environment was investigated both in the context of
quantum to classical transition �13� and in the context of
quantum information processing �14�. Most studies have
been concerned with dynamics of entanglement between
noninteracting systems coupled to a bath. It was found that
coupling to a common environment is able to entangle non-
interacting systems �15,16�. On the other hand, coupling to
certain local environments leads to total disentanglement of
the systems in finite time �17–22�. The rates of disentangle-
ment were calculated in bi- and multipartite systems of non-
interacting qubits �19,23–26� and quidits �27,28�, locally
coupled to various environments. A number of studies ad-
dressed dynamical generation of correlations between inter-
acting subsystems in the presence of the environment. Pro-
duction of entanglement between qubits, modeling a system
of ions, coupled to environment through their center of mass
motion in ion traps, was investigated in Ref. �28�. It was
found that the coupling to environment diminishes the maxi-
mally achievable entanglement, with the corresponding en-
tanglement loss increasing with the number of ions. Refer-
ence �29� explored the dynamics of entanglement in the
quantum Heisenberg XY chain, immersed in a global purely
dephasing bath. The robustness of entanglement against the
dephasing was related to the number of spins in the chain.
The coupling of interacting subsystems to local environ-
ments was considered in Refs. �30,18�. Reference �30� inves-
tigated the generation and transfer of entanglement in har-
monic chains. The creation of entanglement by suddenly
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switching on the interaction in the chain was found to be
robust against the decoherence induced by coupling of the
oscillators to local harmonic baths. The model of two har-
monically coupled quantum Brownian particles was treated
in Ref. �18�. It was found that in the physically interesting
range of parameters the interaction between the particles can-
not prevent their eventual disentanglement, induced by
coupling to local baths.

While the observed disentanglement of the noninteracting
systems by coupling to local environments meets the com-
mon intuition about the quantum-to-classical transition, the
picture of dynamics of entanglement in the presence of in-
teraction is not so clear. Searching for an efficient and a
universal environment-induced mechanism of restricting the
extent of the generated entanglement, it seems necessary to
focus on the following aspects of the dynamics of
correlations.

First, the scaling of the generated correlations with the
effective Hilbert space dimension of the interacting sub-
systems must be considered. This is in contrast to the context
of the quantum information processing where the object of
interest is usually the scaling of entanglement with the num-
ber of degrees of freedom �qubits�. The expectation is that
the environment-induced restriction on the generation of en-
tanglement becomes most significant in the range of the large
quantum numbers of the system, which is commonly associ-
ated with the quantum-to-classical transition. In fact, exten-
sive entanglement in the large Hilbert space dimension
seems impossible without creating the “cat-state” superposi-
tions, which are expected to be destroyed by the
decoherence.

Second, the dynamics of correlations must be followed on
the short, interaction time scales. It is possible that the long-
time dynamics of an open composite system, approaching
equilibrium, is disentangled, but the entanglement generated
on the interaction time scales is so large that the partition of
the system has no meaning.

Moreover, since a common environment will generically
entangle noninteracting systems, coupling to local environ-
ments seems necessary to provide for a generic route to a
disentangled dynamics.

The present study focuses on the investigation of
environment-induced constraints on the dynamics of quan-
tum and classical correlations in the open bipartite composite
system. The system consists of two nonlinearly interacting
harmonic oscillators, coupled to local purely dephasing
baths. The distinction between the dephasing and pure
dephasing has first appeared in the context of NMR �31�.
Pure dephasing corresponds to loss of coherence in the en-
ergy representation. The two prototypes of underlying sto-
chastic processes leading to dephasing are the Gaussian and
the Poissonian processes �32�. Kubo based his line-shape
theory �33� on the Gaussian model. Kubo’s model is the
cornerstone of the condensed-matter spectroscopy. Recently,
exceptions to the Gaussian paradigm have been found ex-
perimentally �34–36� in ultrafast vibrational spectroscopy.
The Poissonian model was shown to describe the dynamics
adequately. Quantum Poissonian stochastic models have first
appeared in the gas collision theory. They are also employed
in the condense phase physics. For example, the Poissonian

noise has been considered as a source of decoherence in
quantum dots �37–39�. Due to the fundamental and the ex-
perimental relevance of the Gaussian and the Poissonian sto-
chastic processes they were chosen as the source of the
dephasing in the present study.

The models aim to explore dynamics of correlations in a
composite system of coupled multilevel subsystems at large
effective Hilbert space dimension. Examples of such systems
include multimode molecular vibrations �40�, linear and non-
linear quantum optics �41�, and cold trapped atomic ions
�42�. The primary goal is to locate a generic mechanism by
which the decoherence keeps an interacting composite sys-
tem “approximately disentangled” all along the evolution.
Dynamics of quantum and classical correlations and their
scaling with the effective Hilbert space dimension of the sys-
tem are compared.

The measures of quantum and total, i.e., quantum and
classical, correlations are defined in Sec. II. Section III ex-
amines the issue of the generation of quantum correlations
�entanglement� in the model problems. Section IV presents
numerical results on the dynamics of both quantum and clas-
sical correlations and Sec. V summarizes the conclusions.

II. MEASURES OF CORRELATION

The state of a bipartite system is uncorrelated if it can be
described by the form

�̂ab = �̂a � �̂b. �1�

A general correlated state can be Schmidt-decomposed
�43� �cf. Appendix A� in the Hilbert-Schmidt space leading
to

�̂ab = �
i

N

ciÂa
i

� B̂b
i , �2�

where the sets �Â and �B̂ of operators are orthonormal in
the Hilbert-Schmidt spaces of systems a and b.

The number of nonvanishing coefficients ci in the
Schmidt decomposition of a vector in an abstract tensor-
product Hilbert space is called the Schmidt rank of the vec-
tor. To avoid confusion in the following presentation the term
HS-Schmidt rank �or just HS rank for brevity� is adopted for
the Schmidt decomposition in the Hilbert-Schmidt �HS�
space of operators, while retaining the term Schmidt rank for
the Schmidt decomposition in the corresponding Hilbert
�pure� state space. A HS rank is a natural measure of total
correlations present in a mixed state �̂ �cf. Appendix A�.

A special subset of mixed states is the set of separable or
classically correlated states �4�. The state is separable if it
can be cast into the following form

�̂ab = �
i

N

pi�̂a
i

� �̂b
i , �3�

where 0�pi�1, �i
Npi=1, and �̂a and �̂b are density opera-

tors defined on the Hilbert spaces of the subsystems a and b,
respectively. Separable states are mixtures of uncorrelated
states, which can be completely characterized by local mea-
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surements. Therefore, partition of a composite system into
parts has a strong physical meaning. Such a partition is
always possible for classical probability density distribution
of a bipartite system �4,44�.

States that do not comply with the form of Eq. �3� are
called quantum-correlated or entangled. Pure correlated
states are always entangled. The measure of a pure state
entanglement can be defined by its Schmidt rank �45�. Esti-
mating the measure of a mixed-state entanglement is a diffi-
cult conceptual and computational problem �45�. One can
look for the decomposition of �̂ab into a mixture of pure
states that are least entangled on average. The average en-
tanglement corresponding to such decomposition is a pos-
sible measure of the mixed state entanglement. Unfortu-
nately, such measures are notoriously difficult to compute.

An alternative computable measure of the bipartite mixed
state entanglement is the negativity �46� defined as follows:

N��̂� �
��̂Ta� − 1

2
, �4�

where �X̂�=Tr�X̂†X̂ is the trace norm of an operator X̂ and
Ta stands for the partial transposition with respect to the first
subsystem. The partial transposition Ta, with respect to sub-
system a of a bipartite state �̂ab expanded in a local ortho-
normal basis as �̂ab=��ij,kl�i	
j� � �k	
l�, is defined as

�ab
Ta � � �ij,kl�j	
i� � �k	
l� . �5�

The spectrum of the partially transposed density matrix is
independent of the choice of local basis or on the choice of
the subsystem with respect to which the partial transposition
is performed. The negativity of the state equals the absolute
value of the sum of the negative eigenvalues of the partially
transposed state. By the Peres-Horodecki criterion �47,48�
the negativity vanishes in a separable state. On the other
hand, vanishing of the negativity does not imply separability
of the state in general �48�.

Finite negativity is a necessary and sufficient condition
for the presence of entanglement in a particular type of
mixed states, the so-called Schmidt-correlated states
�49–51�. In this case the negativity can be related to the
structure of the density operator, which facilitates the evalu-
ation of the entanglement.

The Schmidt-correlated states have the following form:

�̂ = �
mn

�mn��m	
�n� � ��m	
�n� , �6�

where �1= ���m	m=1
k and �2= ���m	m=1

k are local orthonor-
mal bases. Equation �6� implies that �̂=�ipi��i	
�i�, where
��i	=�mcm

i ��m	 � ��m	2 for every i, i.e., all pure states in the
mixture share the same Schmidt bases �cf. Appendix A� �1
and �2. It has been proved �52� that for Schmidt-correlated
states

N��̂� = �
m�n

��mn� , �7�

i.e., the negativity equals half the sum of absolute values of
the off-diagonal elements of the density operator, written in a

�1 ��2 local tensor product basis. It follows that the nega-
tivity of entangled Schmidt-correlated states is finite �52�.

The negativity can be related to the structure of the den-
sity operator. Consider the density operator �6� having the
following quasidiagonal structure:

�̂ = �
�m−n���

�mn��m	
�n� � ��m	
�n� , �8�

with �k. The sum of the absolute values of the
off-diagonal elements can be estimated as follows:

�
m�n

��mn� = �
mn

��mn� − 1 = �
m

�
n=m−�

n=m+�

��mn� − 1

��
m

�
n=m−�

n=m+�

��mm�nn ��
m

�
n=m−�

n=m+�
�mm + �nn

2

=
1

2�
m

�
n=m−�

n=m+�

�mm +
1

2�
m

�
n=m−�

n=m+�

�nn � 2� , �9�

where the first inequality follows from the positivity of the
density operator and the second is the inequality of geomet-
ric and arithmetic means. Therefore,

N��̂��� �10�

in the state �8�. Since the negativity of the maximally en-
tangled state �corresponding to ��mn�=1/k in Eq. �6�� equals
�k−1� /2, as follows from Eq. �7�, the negativity of the qua-
sidiagonal density matrices is negligible compared to the
maximally entangled state. It should be noted that the form
�8� with �k of the density matrix does not constrain the
magnitude of the classical correlations present in the state.
For example, a strictly diagonal matrix �mn=	mn corresponds
to a maximally �classically� correlated separable state.

Schmidt correlated states appear naturally in a composite
bipartite dynamics admitting particular conservations laws
�52�. The models of open-system dynamics considered in the
following sections belong to that class. As a consequence,
the presence and extent of entanglement in evolving compos-
ite systems can be related to the structure of the density
matrix, which can be inferred on the basis of relatively
general scaling considerations.

III. DENSITY OPERATOR OF A BIPARTITE SYSTEM
UNDER LOCAL PURE DEPHASING

A. General considerations

The model of open system dynamics considered is
described by

�

�t
�̂ = �L1 + L2��̂ + I�̂ , �11�

where the generators of local nonunitary evolution are

L j =−i�Ĥ j , • �−� jD j, j=1,2, and I=−i��Ĥ12, • � stands for

the interaction superoperator. The operators Ĥ j are local sys-

tem Hamiltonians, the operator Ĥ12 is the nonlocal �interac-
tion� term in the composite system Hamiltonian, and D j de-
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notes the local bath-dependent superoperators. Coupling
constants �1,2 and � measure, respectively, the strength of
the coupling to the local environments and the strength of the
interaction between the subsystems.

As a reference, the open evolution of noninteracting sub-
systems ��=0� is considered first. In this case a local dephas-
ing evolution of each separate system takes place,

�

�t
�̂ = �L1 + L2��̂ . �12�

In many models of open evolution �13,53–55� it is found
that the evolving state undergoes decoherence, characterized
by the decay of the off-diagonal elements of the density op-
erator represented in a particular basis of the robust states.
Ideal robust states retain their purity notwithstanding the in-
teraction with environment. Examples of such models in-
clude interaction with a purely dephasing environment, sin-
gling out energy states as the robust basis, quantum
Brownian motion, and damped harmonic oscillator at zero
temperature T=0, which select the robust basis of coherent
states. While the robust state’s basis is determined by the
type of the bath and the system Hamiltonian, the time scales
of the decoherence generally depend on the initial state as
well.

Let us assume that the local superoperators L1 and L2 in
Eq. �12� single out local robust state’s bases �1 and �2. A
composite noninteracting system evolving according to Eq.
�12� from an arbitrary initial state is expected to decohere in
the tensor product basis: �1 ��2. That means that an arbi-
trary initial state density matrix will eventually diagonalize
in this basis. Switching on the interaction between sub-
systems causes a competition between entanglement genera-
tion and decoherence induced by the local baths. For suffi-
ciently weak interaction viewing the evolving density
operator in the unperturbed tensor product basis �1 ��2 of
local robust states is a good starting point. If the interaction
perturbs only slightly the evolution of an off-diagonal matrix
element, it will decay on an almost unperturbed decoherence
time scale.

To proceed with a more quantitative argument the concept
of the effective Hilbert space Hef f is helpful. Since the en-
ergy of the evolving system is finite, the evolution can be
effectively restricted to a Hilbert space with finite dimension.
This Hilbert space is termed the effective Hilbert space of the
system. Let 
 be a spectral norm �56� of the interaction su-
peroperator I restricted to the effective Hilbert-Schmidt
space �i.e., the space of linear operators on Hef f� and � be a
spectral norm of the dissipator D=D1+D2 restricted to this
space. 
 and � correspond to the shortest time scales of the
evolution generated by the I and D, respectively. When 

�, the interaction time scale is slow compared to the short-
est decoherence time scale. As a consequence, the evolution
of certain matrix elements is only slightly perturbed by the
interaction. In that case the perturbed dynamics of the matrix
element will follow essentially the course of the decoher-
ence. Therefore, a rough distinction can be made between the
region of the density matrix dominated by the decoherence
and the region dominated by the interaction. The border be-

tween the two regions is defined by the condition

�ij = O�
−1� , �13�

where �ij is the unperturbed decoherence time scale of a
matrix element �ij, i , j��1 ��2.

In the case where the decoherence-dominated regions of
the density matrix are not populated initially, they will stay
unpopulated in the course of the perturbed evolution. This
property will shape the structure of the evolving density ma-
trix. If the states are Schmidt-correlated states with local
Schmidt-bases �1 and �2, being the local robust states
bases, the relation can be established between the structure of
the matrix and the entanglement of the state as indicated in
the previous section. Qualitatively, the larger the
decoherence-dominated region, the smaller the negativity of
the state.

The relative extent of the decoherence- and the
interaction-dominated regions in a given dynamics generally
depends on the initial state and, in particular, on the effective
Hilbert-space dimension k of the system. As a consequence,
different scenarios may be expected at asymptotically large
k. The growing contribution of the interaction-dominated re-
gions will generally imply extensive entanglement genera-
tion. On the other hand, if the relative size of the interaction-
dominated regions becomes negligible at large k the
entanglement generated by the open system dynamics may
be negligible or even asymptotically independent on k. This
possibility appeals to one who believes in the environmental-
induced decoherence as a universal instrument of quantum to
classical transition. An interesting question is the fate of the
classical correlations in this scenario. While decoherence-
dominated dynamics can turn extensively entangled initial
state into extensively classically correlated state, it is not
clear that decoherence-dominated dynamics can generate ex-
tensive classical correlations when quantum entanglement is
negligible all along the evolution. Negligible total correla-
tions seem nongeneric and do not correspond to the intuitive
picture of a “really interacting” system. Therefore, a scenario
of negligible quantum and extensive classical correlations
matches best to a generic mechanism of quantum to classical
transition.

B. Model calculations

The model calculations are used to illustrate and verify
the general considerations presented above. The evolution of
a bipartite system is studied according to Eq. �11�,
�
�t �̂= �L1+L2��̂+I�̂, where �L j =−i�Ĥ j , • �−� jD j, j=1,2, and

I=−i��Ĥ12, • �� with two types of dissipators, corresponding
to the Gaussian �57,58� and the Poissonian �35� purely
dephasing models

D j�̂ =� †Ĥ j,�Ĥ j, �̂�‡ �Gaussian� ,

e−i�Ĥj�̂ei�Ĥj − �̂ �Poissonian� .
� �14�

These dissipators have the Lindblad form �59� of a genera-
tors of quantum dynamical semigroups. The Gaussian and
the Poissonian generators are the two examples explicitly
mentioned in the seminal paper by Lindblad �59�.
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The model Hamiltonian is a simplified version of a non-
linearly interacting multimode system. The local Hamilto-

nians Ĥ j, j=1,2 are chosen to be Hamiltonians of harmonic

oscillators Ĥ j =� jâ j
†â j, where â j

† and â j
† are the creation and

annihilation operators, respectively. Two general types of in-
teraction are considered. The first �IA�, termed band-limited
interaction, is motivated by the stimulated Raman interaction
between the translational modes of ions in cold traps �60–62�
�for example, in Ref. �61� the effective interaction between
the modes is reduced to the band-limited operator

exp�±i��âx
†ây + âxây

†���. The second type of interaction �IB�
is motivated by weakly nonlinear interacting modes emerg-
ing in molecular vibrations �40� and in nonlinear optics. The
typical example in the nonlinear optics is the second har-
monic generation modeled by the interaction Hamiltonian of

the form Ĥ=�g�â2b̂†+ â†2b̂� �41,60�. In addition, the dynam-
ics of the cold ion traps can be operated in the regime, where
the effective interaction is well approximated by a weakly
nonlinear coupling �60–62�.

The two types of interaction are generated by

I =� − i��Â1
†Â2 + Â2

†Â1, • � ��IA� ,

− i���â1
†�s�â2�r + �â2

†�s�â1�r, • � , s = 1,2, . . . ; r = 1,2, . . . ��IB� ,
� �15�

where Â j is defined by its matrix elements in local energy

basis �Â j�mn=	m,n−1. The structure of Â j assures that IA is
band limited with the spectral norm 
=O���.

The important property of the dynamics, Eq. �11�, with
local dephasing, Eq. �14�, and interaction, Eq. �15�, is con-
servation of a particular additive operator in each case. The
first type of interaction, IA, preserves the number operator

N̂= â1
†â1+ â2

†â2: IA
†�N̂�=0, which is also preserved by the

local generators �L1
†+L2

†��N̂�=0. The second type of interac-

tion, IB, preserves the generalized number operator N̂rs

�râ1
†â1+sâ2

†â2: IB
†�N̂rs�=0, preserved by the local genera-

tors as well, �L1
†+L2

†��N̂rs�=0.
Assume a pure uncorrelated initial state ���0�	= �k0	

�written in the local energies basis�. The state ���0�	 is an

eigenstate of N̂ with the eigenvalue k. As a consequence, the
first type of the interaction, IA, will drive the initial state into

a mixture of eigenstates of N̂ corresponding to the eigen-
value k, �̂�t�=�mncmn�mlm	
nln� with lm=k−m. Thus, k deter-
mines the effective Hilbert space dimension of the system in
this case: dim�Hef f�=k. Since ���0�	 is also an eigenstate of

N̂rs with the eigenvalue rk, the second type of interaction, IB,

will take it into a mixture of eigenstates of N̂rs corresponding
to the same eigenvalue rk, �̂�t�=�mncmn�mlm	
nln� with lm

= r
s �k−m�. The number of initial excitations k of the first

oscillator determines the effective Hilbert space dimension
of the system in this case: dim�Hef f�=k /s. To summarize,

�̂�t� = �
mn

cmn�mlm	
nln� where � lm = k − m �IA�

lm =
r

s
�k − m� �IB� �

�16�

In both cases, the resulting mixed state is a Schmidt-
correlated state with a time-independent Schmidt bases. This
property permits evaluation of the negativity of �̂ in each

case from its structure, as indicated in Sec. II.

1. Gaussian vs Poisson pure dephasing bath

The difference between the two types �14� of environ-
ments can be understood by comparing the local evolutions
of a single oscillator coupled to the bath of each type,

�

�t
�̂ = − i�Ĥ, �̂� − �D�̂ . �17�

In the Gaussian case, Eq. �17� in the energy representation
becomes

�̇nm = − i�mn�nm − ��mn
2 �nm, �18�

with �mn��m−�n, leading to the solution �nm�t�
=�nm�0�e−i�mnt−��mn

2 t. Thus the effect of the purely dephasing
Gaussian bath is the “diagonalization” of the density matrix
in the energy basis �the robust states basis for this model� on
the time scale that varies for different matrix elements �nm
and increases with the distance �m−n� of the element from
the diagonal. The shortest decoherence time scale corre-
sponds to the largest distance from the diagonal and de-
creases with the growing effective Hilbert space dimension
of the system.

In the Poissonian case, Eq. �17� in the energy representa-
tion becomes

�̇nm = − i�mn�nm + ��e−i�mn� − 1��nm, �19�

leading to the solution �nm�t�=�nm�0�e−i�mnt+��e−i�mn�−1�t. Ap-
parently, the robust states basis is once again the energy ba-
sis, but the decoherence rates of the matrix elements are
limited by ���e−i�mn�−1��=2�, independently of the initial
state.

This difference in properties of the Gaussian and the Pois-
sonian environments will result in different dynamics of the
correlations in the composite bipartite system dynamics, Eq.
�11�.
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2. Local dephasing driven dynamics

To gain insight on the effect of dephasing on the correla-
tions the simplest bath-driven dynamics is studied first, in
which the composite system Hamiltonian vanishes alto-
gether, meaning that no entanglement is generated during the
evolution. The corresponding equation �11� transforms into

�

�t
�̂ = − �

j=1,2
� j†Ĥ j,�Ĥ j, �̂�‡ �Gaussian dephasing� ,

�20�

�

�t
�̂ = − �

j=1,2
� j�e−i�Ĥj�̂ei�Ĥ j − �̂� �Poissonian dephasing� .

�21�

Since the dynamics preserve local energies the effective
Hilbert space dimension of the evolving system is deter-
mined by the energy range of the initial state. The initial state
of the form ��	= 1

�k+1
�n=0

k �n	�k−n	 ��n	 is a local energy
eigenstate� is a maximally entangled state. It corresponds to
the effective Hilbert space spanned by the states
��n	�k−n	n=0

k .
The solution to Eq. �20�, the Gaussian case, is found:

�̂�t� =
1

k + 1�
mn

e−��1�1,mn
2 +�2�2,mn

2 �t�n	�k − n	
m�
k − m� ,

�22�

when the solution to Eq. �21�, the Poissonian case, becomes

�̂�t� =
1

k + 1�
mn

e−��1�1−e−i�1,mn��+�2�1−e−i�1,mn���t�n	�k − n	

�
m�
k − m� . �23�

Decoherence rates in the Gaussian case �22� are �mn
−1

=�1�1,mn
2 +�2�2,mn

2 ��g�maxm,n�k��1�1,mn
2 +�2�2,mn

2  and
generally increase without bounds with the effective Hilbert

space dimension k. For example, taking Ĥ j =� jâ j
†â j, �mn

−1

= ��1�1
2+�2�2

2��m−n�2 is obtained, with maximal rate �g

=�0k
−1= ��1�1

2+�2�2
2�k2. In the Poissonian case �23� the

decoherence rates are bounded: �mn
−1 =Re��1�1−e−i�1,mn��

+�2�1−e−i�1,mn����p�2��1+�2�.
Note, that both solutions �22� and �23� are Schmidt-

correlated states. Therefore, the corresponding negativities
can be calculated from Eq. �7�,

N„�̂�t�… =
1

k + 1 �
m�n

e−��1�1,mn
2 +�2�2,mn

2 �t

�Gaussian dephasing� , �24�

N„�̂�t�… =
1

k + 1 �
m�n

e−��1�1−e−i�1,mn��+�2�1−e−i�1,mn���t

�Poissonian dephasing� . �25�

From Eqs. �24� and �25� it follows that both types of the
purely dephasing dynamics �Eqs. �20� and �21�� lead eventu-

ally to a complete decay of the quantum correlations �note
that since the evolving state is Schmidt correlated, its nega-
tivity vanishes if and only if the state is disentangled �52��.
But the dependence of the time scales of the decay on the
effective Hilbert space dimension k is different in the two
cases. In the Poissonian case the rate of the negativity �25�
decay is bounded by �p=2��1+�2�, independent of k, while
in the Gaussian case �24�, the bound is �g
=maxm,n�k��1�1,mn

2 +�2�2,mn
2 , which generally grows with

k.
The total correlations �and, as a consequence, the classical

correlations� follow a different course of evolution. The HS
rank �and HS-participation number� of initial state is k2 �see
Appendix A for the calculation of HS rank of a pure state�.
The stationary solution corresponding to both Eqs. �22� and
�23� is �̂st=

1
k+1�m�m	�k−m	
m�
k−m� with HS rank �and HS

participation number� equal to k. Therefore, although the to-
tal correlations decay in both models, the stationary solution
contains extensive classical correlations, i.e., the correlations
that grow without bounds with the effective Hilbert space
dimension k.

Figure 1 displays the negativity, HS-participation number,
and purity of the composite state evolving under Gaussian
�20� and Poissonian �21� dephasing dynamics, corresponding

to Ĥi=�âi
†âi, �1=�2, and the initial state of the form ��	

= 1
�k+1

�n=0
k �n	�k−n	. The effective Hilbert space dimension is

varied, k=4, . . . ,12. As anticipated from the difference of the
two types of environments, the decay rates in the Gaussian
case depend on the initial state and increases with the effec-
tive Hilbert space dimension, while in the Poissonian case
the rates are effectively independent of the initial state.

3. Full dynamics

At this point the interaction between the oscillators are
introduced, and the full dynamics according to Eq. �11� with
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FIG. 1. �Color online� Purity, HS-participation number, and
negativity of the density operator of two harmonic oscillators evolv-
ing under local purely dephasing Gaussian �solid lines� and Poisso-
nian �dashed lines� environments �Eq. �14��. The initial state is a
pure maximally correlated state ��	= 1

�k+1
�n=0

k �n	�k−n	 for k
=2,4 , . . . ,12. The coupling parameter to the bath �=1 in both
cases. The frequencies of the oscillators �1=�2=1. While the decay
rates in the Gaussian case depend on the initial state and increase
with the effective Hilbert space dimension k, in the Poissonian case
the rates are practically independent of k.
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��0 is followed. We shall consider a pure uncorrelated ini-
tial state of the composite system, ���0�	= �k0	, i.e., the state
corresponding to the excitation of the kth level of the first
oscillator and the ground state of the second. In that case, as
shown above, each type of the interaction �15� and the
dephasing �14� considered admits a particular additive con-
served quantity �a generalized number operator�, which de-
fines the effective Hilbert space of the composite system for
each k and is responsible for the remarkable property of the
evolving state: the density operator is a Schmidt-correlated
state in a time-independent Schmidt bases: �̂�t�
=�mn�mn�t��m	
n� � �lm	
ln� �Eq. �16��. The Schmidt bases
�1= ��m	 and �2= ��lm	 are the robust �local energies� bases
of the corresponding local open systems �17�, with the cor-
respondence m↔ lm, determined by the particular conserva-
tion law, depending on the type of interaction. This property
allows us to relate the structure of the evolving density op-
erator to its negativity, as indicated in Sec. II. The relevant
structure of the evolving density operator is determined by
the relative size of the decoherence- and the interaction-
dominated regions of the corresponding density matrix. This
structure is investigated for each type of interaction and
dephasing and for different effective Hilbert space dimen-
sions of the system.

The overview in the preceding section of the dynamics
driven solely by the local dephasing reveals important differ-
ences between the two types of local environment with re-
spect to the anticipated structure of the evolving density ma-
trix. In the Poissonian case the decoherence rates are of the
order of the system-bath coupling �mn

−1 �2��1+�2�, as shown
above. Therefore, evolution of the matrix elements is domi-
nated either by the decoherence or by the interaction depend-
ing on the relative strength of the coupling constants and
independently of the effective Hilbert space dimension. In
models with weak system-bath coupling, �1,2
, the struc-
ture of the evolving density operator will only slightly be
affected by the coupling to the Poissonian bath on the inter-
action time scale �−1�mn. As a consequence, the quantum
correlations will develop almost unperturbed on the interac-
tion time scale.

A different dynamical pattern is anticipated in the case of
the Gaussian purely dephasing bath. The decoherence rates
in this case are

�mn
−1 = �1�1

2�m − n�2 + �2�2
2�lm − ln�2

where � lm = k − m �IA� ,

lm =
r

s
�k − m� �IB� , � �26�

where IA and IB indicate the type of interaction:

IA�−i��Â1
†Â2+ Â2

†Â1 , • �, with �Â j�mn=	m,n−1, and
IB�−i���â1

†�s�â2�r+ �â2
†�s�â1�r , • �, with �â j�mn=�m	m,n−1

�see Eq. �15��. In each case, the decoherence rate increases
with the “distance” �m−n� from the diagonal. As a conse-
quence, the evolving density operator obtains a quasidiago-
nal structure in the local energies basis, with the width � of
the interaction-dominated region about the diagonal depend-
ing on the type of interaction.

Let us assume for simplicity that �1�1
2=�2�2

2=�. In that
case a matrix element �mn decoheres on the time scale �mn
= �2��m−n�2�−1. The spectral norm of IA is 
=O���. There-
fore, the width about the diagonal of the evolving density
matrix can be estimated from Eq. �13� as

� = O���/�� , �27�

where �� is assumed. The spectral norm of IB is 

=O�k�r+s�/2�, where k /s is the effective Hilbert space dimen-
sion of the system �see Eq. �16��. As a consequence, from
Eq. �13� � becomes

� = O���/�k�r+s�/4� . �28�

In the band limited interaction case �IA� the quasidiagonal
structure of the density operator emerges �Eq. �27��, while in
the case of the nonlinear interaction �IB� a quasidiagonal
structure is expected only if the nonlinearity is weak: s+r
�4 �Eq. �28��.

Perturbation theory supports the scaling considerations.

For a normalized eigenoperator Ôl of the local evolution

generator L1
†+L2

†: �L1
†+L2

†�Ôl=
lÔl. The interaction I per-
turbs the evolution. The action of the perturbed generator on

Ôl gives �L1
†+L2

†+I†�Ôl=
l�Ôl+ 	̂l�. If the trace norm of 	̂l

is small compared to unity: �	̂l�1 �Ôl�1=1, the evolution of

Ôl is only slightly perturbed on the time scale of �
l�−1.

Therefore, if Re�
l��0, the perturbed Ôl will decay on a

time scale of �Re�
l�� to the leading order in �	̂l�1. To each
density matrix element �mn in the nonperturbed tensor-
product basis of the local energy states �the robust states

bases� there corresponds the normalized operator Ômn

= �mlm	
nln� such that 
Ômn	=Tr��̂Ômn=�mn. Defining 	̂mn

by �L1
†+L2

†+I†�Ômn=
mn�Ômn+ 	̂mn� with 
mn= i��1�m−n�
+�2�lm− ln��−���m−n�2+ �lm− ln�2�, we obtain for the trace

norm of 	̂mn corresponding to the first type of interaction IA,

�	̂mn�1 = O� ��� 1

��1

�
�m − n��2

+ ��2

�
�lm − ln��2

+ ��m − n�2 + �lm − ln�2�2� � O��
�

1

�m − n�2 + �lm − ln�2� , �29�

and for the trace norm of 	̂mn corresponding to the second type of interaction IB,
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�	̂mn�1 = O� ��� nrms + lm
s ln

r

��1

�
�m − n��2

+ ��2

�
�lm − ln��2

+ ��m − n�2 + �lm − ln�2�2� � O��
�

�lm
r ms + nsln

r

�m − n�2 + �lm − ln�2� . �30�

The width � of the interaction-dominated region is esti-
mated by solving

�

�

1

�m − n�2 + �lm − ln�2 = 1 �31�

for the interaction generated by IA and

�

�

�lm
r ms + nsln

r

�m − n�2 + �lm − ln�2 = 1 �32�

for the interaction generated by IB. Using Eq. �26�, Eq. �31�
is simplified to

�

2�

1

�m − n�2 = 1, �33�

from which �=2�m−n�=�2� /� is found, in compliance with
the estimate �27�, and Eq. �32� is simplified to

�

2�
� r

s
�r/2���k − m�rms + ns�k − n�r�

2�m − n�2 = 1. �34�

In this case, the width about the diagonal �=2�m−n� will
depend on m. The upper bound on � was calculated from Eq.
�34� in two cases. First, for the linear coupling r=s=1 gives
��23/4��k

� . Second, for the nonlinear coupling r=1, s=2
gives ��� �

�k3/4. Both results comply with the estimation
Eq. �28�.

Figure 2 displays regions of the density matrix, dominated
by the interaction, vs regions dominated by the decoherence,
with the boundary between the regions determined by Eqs.
�33� and �34� for k=10, 20, 40, 50, and � /�=3. The figure
represents the composite system density matrices �̂
=�mncmn�mk−m	
nk−n� and �̂=�mncmn�m r

s �k−m�	
n r
s �k

−n��, corresponding to Eqs. �33� and �34�, with m indexing
the columns and n indexing the rows. The contours of Eqs.
�34� are plotted for the linear coupling �r=s=1� and the non-
linear coupling �r=1, s=2�. The quasidiagonal structure of
the density operator is apparent. Both in the case of linear
and nonlinear coupling between the oscillators, the width
grows with the effective Hilbert space dimension. This is in
contrast to the case of the band-limited interaction �IA�,
where the width about the diagonal does not depend on the
effective Hilbert space dimension k.

To conclude, in contrast to the Poissonian type dephasing,
in the Gaussian case the interaction-dominated regions are
located about the diagonal of the density operator repre-
sented in the local energies basis. Since the initial state
���0�	= �k0	 corresponds to the density operator with an un-
populated decoherence-dominated region, this region will re-
main unpopulated all along the evolution. As a consequence,
the evolving density operator will stay in the quasidiagonal

form. According to Eq. �10� the value of negativity is
bounded by � in each case: N��̂���. Asymptotically, i.e.,
as k�1 for the band-limited interaction, �k�1 for the linear
interaction and �4k�1 for the nonlinear case, the width about
the diagonal becomes negligible compared to k. In this case,
the generated entanglement is negligible compared to the
maximal entanglement compatible with the effective Hilbert
space dimension.

In the following section the results of the numerical cal-
culations of the evolution of negativity, illustrating the fore-
going discussion, are presented. The evolution of negativity
is compared in each case with the dynamics of the total �i.e.,
quantum and classical� correlations, as measured by the ef-
fective HS rank and HS-participation number of the evolving
density operator.

IV. NUMERICAL RESULTS

In the present section the results of numerical calculations
of negativity N��̂�, HS-participation number �̃��̂�, and the
effective HS-rank �̃0.01��̂� �cf. Appendix A� are displayed
and analyzed. The model is a bipartite composite state of two
oscillators, evolving according to Eq. �11�. The dynamics
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FIG. 2. �Color online� The density operator of the state, evolv-
ing according to Eqs. �11� for various interactions �15� and Gauss-
ian type local baths �14� is represented in the product of local en-
ergies bases �Schmidt bases�. Boundaries are indicated, in each
case, separating the outer �off-diagonal� regions, dominated by the
decoherence, from the inner �near diagonal� interaction-dominated
regions. The interactions correspond to the band-limited case �case
A, Eq. �15�, dotted lines�, linear coupling r=s=1 �case B, Eq. �15�,
solid lines�, and the nonlinear coupling r=1, s=2 �case B, Eq. �15�,
dashed lines�. The density matrices in the band-limited case are of
the form �̂=�mncmn�mk−m	
nk−n� and in the linear and nonlinear
cases �̂=�mncmn�m�r /s��k−m�	
n�r /s��k−n��. The effective Hilbert
space dimension corresponds to k=10,20,30,40,50 in each case.
See explanations in the text.
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simulated is classified according to the type of local bath, Eq.
�14�, and the type of interaction, Eq. �15�:

�AG� The band-limited interaction IA. Gaussian pure
dephasing �Figs. 3 and 4�.

�AP� The band-limited interaction IA. Poissonian pure
dephasing �Fig. 4�.

�A� The band-limited interaction IA. Isolated reference
case �Fig. 3�.

�BG1� The linear �r=s=1� interaction IB. Gaussian pure
dephasing �Figs. 5–7�.

�BP1� The linear �r=s=1� interaction IB. Poissonian pure
dephasing �Fig. 6�.

�B1� The linear �r=s=1� interaction IB. Isolated reference
case �Figs. 5 and 7�.

�BG2� The nonlinear �r=1, s=2� interaction IB. Gaussian
pure dephasing �Figs. 8–10�.

�BP2� The nonlinear �r=1, s=2� interaction IB. Poisso-
nian pure dephasing �Fig. 9�.

�B2� The nonlinear �r=1, s=2� interaction IB. Isolated
reference case �Figs. 8 and 10�.

In each case the evolution of the composite system starts
from a pure uncorrelated state ��	= �k0	, where k is the initial

number of excitations of the first oscillator, which determines
the effective Hilbert space dimension of the system.

Case AG (Figs. 3 and 4). In Fig. 3 the negativity, HS-
participation number and effective HS rank of the evolving
state in the presence of the bath is compared to the corre-
sponding unitary evolution �case A�. The amplitude of the
negativity in the isolated case grows without bounds as the
effective Hilbert space dimension k increases. Once the bath
is introduced the amplitude of the negativity saturates to a
value independent of k. On the other hand, both the HS-
participation number and the effective HS rank of the evolv-
ing state show that the total correlations grow without
bounds when the effective Hilbert space dimension of the
system increases. It is interesting to note the qualitative dif-
ference, most obvious in the unitary evolution �dashed lines�,
between the dynamics of the HS-participation number and
the effective HS rank on the shorter time scale, correspond-
ing to the inverse frequency of the oscillators �−1. While the
HS-participation number is smooth on that scale, the effec-
tive HS rank displays oscillations which follow closely after
the corresponding dynamics of the negativity.
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FIG. 3. �Color online� The negativity, the effective HS rank, and
the HS-participation number of the evolving density operator: cases
AG �solid lines� and A �dashed lines�. In both cases �1=�2=�,
�1=�2=�, with ��2= �1/3��= �1/15�� in case AG and �=0 in
case A. Initial state ��	= �k0	, with k=4,6 , . . . ,14.
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FIG. 4. �Color online� The negativity, the local energies and the
HS-participation number of the density operator: cases AG and AP.
Parameters: �1=�2=�, �1=�2=� in both cases, ��2=0.125�
=0.025� in AG �solid lines�, and �= �1/15��= �1/75��, �=2� /7
in AP �dashed lines�. Initial state ��	= �k0	, with k=4,6 , . . . ,14.
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FIG. 5. �Color online� The negativity, the effective HS rank, and
the HS-participation number of the evolving density operator: cases
BG1 �solid lines� and B1 �dashed lines�. In both cases �1=�2=�;
in the BG1 case �1=�2=�, ��2= �1/3��= �1/15��; in the B1 case
�1=�2=0. Initial state ��	= �k0	 for k=4,6 , . . . ,24.
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FIG. 6. �Color online� The negativity, the local energies, and the
HS-participation number of the density operator: cases BG1 and
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with k=4,6 , . . . ,18.
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Case AP. Figure 4 compares the dynamics of correlations
in case AP to case AG. The relative strength of couplings to
different types of environments is chosen to match the time
scales of the local energies dephasing in both cases. It can be
seen that in contrast to case AG both the negativity and the
HS-participation number in case AP increase without bounds
as the effective Hilbert space dimension grows similarly to
the corresponding unitary evolution displayed in Fig. 3.

Case BG1 (Figs. 5–7). In Fig. 5 the negativity, HS-
participation number, and effective HS rank of the evolving
state in the presence of the bath is compared to the corre-
sponding unitary evolution �case B1�. The amplitude of the
negativity in the isolated case grows without bounds as the
effective Hilbert space dimension k increases. In the bath-on
case the amplitude of the negativity is obviously restricted
but the quantitive conclusions are better drawn from Figure 7
�see below�. Both HS-participation number and effective HS-
rank display the growth of the total correlations without

bounds with the effective Hilbert space dimension of the
system. Note the qualitative difference in dynamics of the
two measures.

Figure 7 displays the maximal values of the negativity
and the HS-participation number obtained in cases BG1, B1,
and BP1 as functions of the effective Hilbert space dimen-
sion k. It is seen that in the B1 case the squared negativity
and the HS-participation number scale linearly with k in
compliance with the calculation in Appendix B. The same
scaling is found in case BP1. On the other hand, the nega-
tivity in the BG1 case scales as a fourth root of the effective
Hilbert space dimension. The corresponding HS-
participation number measuring the total correlations scales
as k2/3.

Case BP1. Figure 6 compares the dynamics of correla-
tions in case BP1 to case BG1. The relative strength of cou-
plings to different types of environments is chosen to match
the local energies dephasing rates. From this figure and Fig.
7 it can be seen that in contrast to case BG1 both the nega-
tivity and the HS-participation number in case BP1 follow a
dynamical pattern identical to the corresponding unitary
evolution.
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FIG. 9. �Color online� The negativity, the local energies, and the
HS-participation number of the density operator: cases BG2 �solid
lines� and BP2 �dashed lines�. Parameters: 2�1=�2=� in both
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=4,6 , . . . ,20.
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Case BG2 (Figs. 8–10). In Fig. 8 the negativity, HS-
participation number and effective HS rank of the evolving
state in the presence of the bath is compared to the corre-
sponding unitary evolution �case B2�. For a nonlinear inter-
action both the amplitudes and time scales of the dynamics
depend on the initial state. As a consequence, the pattern of
behavior changes with the effective Hilbert space dimension.
This makes it difficult to compare the evolutions correspond-
ing to different k. Comparing the open to the closed unitary
evolutions for a fixed k, it is seen that the global dynamics of
the negativity is much stronger affected by the bath than the
dynamics of the total correlations. For example, the total
correlations may grow in the open dynamics similarly to the
unitary case, while the negativity at this time is decaying in
sharp contrast to the corresponding unitary behavior.

A possible way to compare values of the negativity and
the total correlations at different k is to measure the values
observed at the first maximum in the evolutions of these
quantities. These measurement are displayed in Fig. 10. To
understand the scaling, the negativity �squared to fit the lin-
ear dependence� and the HS-participation number obtained
in cases BG2, B2, and BP2 are plotted as functions of the
effective Hilbert space dimension k. It is found that the nega-
tivity scales with �k while the HS-participation number scale
linearly with k.

Case BP2. Figure 9 compares the dynamics of correla-
tions in case BP2 to case BG2. The relative strength of cou-
plings to different types of environments is chosen to match
the local energies dephasing rates. The negativity and the
HS-participation number in case BP2 follow a dynamical
pattern identical to the corresponding unitary evolution dis-
played in Fig. 8. See also Fig. 10.

V. SUMMARY AND CONCLUSIONS

A variety of open interacting bipartite systems were inves-
tigated in order to characterize restrictions, imposed by cou-
pling to local environments, on the generation of classical
and quantum correlations.

The extent of the generated quantum correlations is deter-
mined by the interplay of two competing forces: the interac-
tion, leading to development of entanglement, and the local
decoherence, inducing a decay of entanglement. The relative
magnitudes of the local decoherence rates and the cutoff fre-
quency of the interaction in the effective Hilbert space of the
composite system determines the relative size of
decoherence- and interaction-dominated regions of the den-
sity operator in local robust states basis. The presence of the
decoherence-dominated regions constrains the structure of
the evolving composite density operator, restricting the ex-
tent of entanglement, generated by the interaction.

The character of restriction depends on the type of bath
and the type of the interaction. The two different paradigms
of the dephasing, the Poissonian and the Gaussian, lead to
very different correlation dynamics. In models with band-
limited decoherence such as the Poissonian pure dephasing
model, either the decoherence or the interaction dominates
the dynamics, depending on the relative strength of the cou-
pling constants and irrespective of initial state. Numerical

calculations performed on a bipartite system of two interact-
ing harmonic oscillators, coupled to local Poissonian baths,
support this conclusion.

Open systems with Gaussian pure dephasing belong to a
different class of models. This class is characterized by un-
bounded growth of the decoherence time scales with the ef-
fective Hilbert space dimension of the system. As a conse-
quence, constrains on the structure of evolving state and
restriction on the extent of entanglement are generally ex-
pected. Still the precise character of the restriction depends
on the type of interaction between the subsystems. Coupling
local Gaussian environments to subsystems with band-
limited interaction between them, imposes an upper bound
on the extent of generated entanglement, which is indepen-
dent of the effective Hilbert space dimension of the system.
As a consequence, asymptotically, i.e., at sufficiently large
effective dimension, the generated entanglement is negli-
gible, compared to entanglement generated in the corre-
sponding unitary dynamics. Interactions which are not band-
limited generally produce extensive entanglement,
notwithstanding the type of local environment. Nonetheless,
in models with local Gaussian environments the scaling of
entanglement with the effective dimension is limited by the
local decoherence. The precise limit depends on the nonlin-
earity of the interaction. In the model of two nonlinearly
interacting harmonic oscillators stronger nonlinearity implies
weaker bounds on the generated entanglement. When the
nonlinearity exceeds some maximal value no restriction on
the extent of entanglement is expected. Numerical calcula-
tions support these predictions.

Estimation of bounds on negativity in the evolving state
was based on analysis of the structure of the density matrix,
in particular local robust states bases. Relating the negativity
to the structure of the density operator was facilitated by the
observation that the evolving states are Schmidt-correlated
due to particular conservation laws observed by the interac-
tions. The corresponding Schmidt bases are built of local
robust states selected by local purely dephasing
environments—the local energy bases. Since the presence of
exact conservation laws is nongeneric in physical models, it
should be noted that numerical evidence shows that the
qualitative picture presented above is robust.

Dynamics of the total correlations was investigated nu-
merically to compare with the corresponding dynamics of
the entanglement. It was found that evolution of the total
�and, as a consequence, classical� correlations display a dif-
ferent dynamical pattern. In the band-limited interaction
model, the amplitude of the total correlations grows without
bounds with the effective Hilbert space dimension, while the
negativity tends to an asymptotic behavior independent of
the effective dimension. In the linear interaction model,
though the amplitudes of both the quantum and the total
correlations grow without bounds with the effective Hilbert
space dimension, the total correlations scale with a higher
power of the dimension. In the nonlinear interaction, a com-
parison is impeded by the fact that the evolution of both the
entanglement and the total correlations display a variety of
time scales. Nonetheless, inspection of the numerical evi-
dence shows that the total correlations always scale with a
higher power of the effective Hilbert space dimension. These
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findings can be informally interpreted as a trade off between
the classical and quantum correlations: since the total corre-
lations are �relatively� unaffected by the environment, re-
striction on the entanglement generation must be “compen-
sated” by the growth of the classical correlations.

Considering the restriction on the generation of entangle-
ment, a natural question arises: is the observed restriction
substantial, i.e., is the given partition of the composite sys-
tem meaningful? When can a composite systems be regarded
as approximately disentangled? The answer depends on the
definition of the relevant scale of a measure of entanglement
in the evolving system. Is the scale unity or some power of
the effective Hilbert space dimension or neither?

One possibility is to compare the entanglement, generated
in the open evolution to the entanglement, generated in the
corresponding unitary evolution. Numerical evidence ob-
tained in the present study shows that entanglement is always
relatively restricted in the open system dynamics. In some
cases, such as the Gaussian pure dephasing, it can even be
negligible in asymptotically large Hilbert space dimensions.
This comparison elucidates the role of the decoherence in
constraining the generation of the quantum correlations.
Nevertheless, the magnitude of the entanglement generated
in a particular open evolution may still be large in some
absolute sense.

An alternative scale of entanglement is set by the maxi-
mal entanglement compatible with the effective Hilbert
space dimension. The results of the present study show that
in some models, such as the Gaussian pure dephasing and
weakly nonlinear or band-limited interactions, coupling to
local environments does the job, i.e., it restricts the generated
entanglement to bounds, negligible compared to the maximal
compatible entanglement. Still, in all cases apart from a
band-limited type of the interaction, entanglement, generated
on the interaction time scale in the open system evolution,
grows without bounds with the effective Hilbert space di-
mension. As a consequence, this scale may become irrel-
evant in large effective Hilbert dimensions, due to a limited
experimental resolution.

To conclude, common models of local decoherence do not
provide a universal pathway to an approximately disen-
tangled evolution of a bipartite composite system in the pres-
ence of interaction. It follows that, contrary to expectations,
coupling to local environments does not generally validate
partition of composite quantum systems.
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APPENDIX A: THE SCHMIDT RANK AND
THE HS-SCHMIDT RANK

The definition of the Schmidt rank of the bipartite com-
posite state �3,43� is reviewed. Let ��	 be a state in the com-

posite Hilbert space H12=H1 � H2. There exist a following
representation �a Schmidt decomposition� of the state: ��	
=�ici�i	1 � �i	2, where �i	1,2 is an orthonormal basis in the
Hilbert space H1,2. While a Schmidt decomposition is not
unique, the set of nonvanishing coefficients ci is invariant
�modulo irrelevant phases� under the local unitary transfor-
mations and is characteristic of the state ��	. This set is
shown to be the square root of the spectrum of the reduced
density operator of either subsystem. The number of nonva-
nishing coefficients ci is called the Schmidt rank ���� of the
state and equals the rank of the reduced density operator of
either subsystem: ����=rank{Tr1��̂12}. To calculate
the Schmidt rank of a state expressed in an arbitrary
tensor product basis ��	=�ijcij�i	1�j	2, one calculates the rank
of the matrix �2=C†C, where Cij =cij: Tr1��̂12
=��n,i,j,k,lcijckl

* 	in	kn�j	
l�=��i,j,lcijcil
* �j	
l�=��j,l��2�lj�j	
l�.

The Schmidt rank characterizes the extent of correlations
present in the state. The uncorrelated �product� state has �
=1 but generally �����min�dim�H1� ,dim�H2�. The maxi-
mally correlated state has ����=min�dim�H1� ,dim�H2� and
ci=cj, ∀i , j. Generally, some of the coefficients ci are much
smaller than others and as a consequence dropping the cor-
responding contributions to the Schmidt decomposition does
not lead to an observable effect. This suggests a definition of
the physically reasonable effective Schmidt rank �9� ��:
�����������, with ���	=�i�I�

ci�i	1 � �i	2, where I� is the
smallest set of indices such that ���	− ���	���. An alterna-
tive measure is a participation number �63� �����1/Tr��̂2

2
with �̂2=Tr1��̂12. The participation number of a state, char-
acterized by M equal substantial contributions to its Schmidt
decomposition is seen to be M, which motivates the
definition.

A mixed state displays both quantum �entanglement� and
classical correlations. The extent of the total correlations can
be characterized by the Schmidt rank of a density operator.
With a slight abuse of terminology the term HS-Schmidt
rank �HS indicating the Hilbert-Schmidt space� or just HS
rank is adopted. The definition of the HS rank views the
density operator of a composite system as a �unnormalized�
pure state �“superket” �10�� in the Hilbert-Schmidt space of
system operators. The Schmidt rank of the corresponding
“superket” defines the HS rank �denoted �̃��̂�� of the density
operator. The notions of the effective Schmidt rank ����� and
the participation number ���� can be transferred to the HS
rank of the density operator. For brevity, the corresponding
measures of the total correlations are termed effective HS
rank and HS-participation number and denoted by �̃���̂� and
�̃��̂�, respectively.

The calculation of the HS rank proceeds as follows.
Let �̂12=��i,j,k,l�ijkl�ij	
kl� be a density operator of the
composite system. In the superket notation it has the form
��̂	12=��i,j,k,l�ijkl�ij	
kl � 	. The corresponding density super-
operator is R12��̂�=��i,j,k,l,i�,j�,k�,l��ijkl�i�j�k�

* �ij	
kl � 	
�i�j�	
�
k�l�� and the reduced density superoperator is

R2��̂� = Tr1�R12��̂�

= ��i,j,k,l,i�,j�,k�,l�,m,n �ijkl�i�j�k�l�
*

�	mi	nk	mi�	nk��j	
l�	
�j�	
l��

MICHAEL KHASIN AND RONNIE KOSLOFF PHYSICAL REVIEW A 76, 012304 �2007�

012304-12



= ��j,l,j�,l� Rjlj�l��j	
l�	
�j�	
l��

where Rjlj�l�=�ik�ijkl�i�j�k�l�
* . The HS rank �̃��̂� of the density

operator �̂ is �̃��̂�=rank�R2��̂�. The effective HS rank and
the HS-participation number are calculated similarly.

Finally, note that �̃���	
��=����2. In fact,

��
2 = �rank��̂2�2 = rank��̂2 � �̂2

T

= rank���i,j,l,k,j�,l� aijail
*akj�akl�

* �j	
l� � �l�	
j��

= rank���i,j,l,k,j�,l� �ijkl��ilkj�
* �j	
l� � �l�	
j��

= rank���j,l,j�,l� Rjl�lj��j	
l� � �l�	
j��

= rank���j,l,j�,l� Rjlj�l��j	
j�� � �l	
l��

= rank���j,l,j�,l� Rjlj�l��jl	
j�l�� = �̃���	
���

.

APPENDIX B: CALCULATION OF THE EFFECTIVE
SCHMIDT RANK OF THE COMPOSITE STATE OF TWO

LINEARLY INTERACTING HARMONIC
OSCILLATORS

A system of two linearly interacting harmonic oscillators

is considered with the Hamiltonian Ĥ=��â1
†â1+ â2

†â2�

+��â1
†â2+ â2

†â1� The initial state is ���0�	= �0k	 in the local
energies basis. The state at t�0 becomes ���t�	=�n=0

k cn�k

−nn	, where cn�t�=� k!cos��t�2n sin��t�2�k−n�

n!�k−n�! e−i�kt. The width �k of

the distribution of expansion coefficients �cn�2 is estimated at
t=� /4� for k�1. This width is a reasonable estimate for the
amplitude of the effective Schmidt rank of the state, ����
��k.

The distribution of the coefficients �cn�� /4���2= k!
2kn!�k−n�!

is peaked around n=k /2. To estimate �k it is assumed that
�kk. �k is defined by � �2

�n2 �cn�� /4���2�n=n* =0, where n*

=k /2−�k /2. Performing the derivation under the Stirling ap-
proximation for the factorials �valid at k�1� leads to

k
n*�k−n*� =ln2� k−n*

n* �. For highly peaked distribution k−n*

n* −11,

therefore ln2� k−n*

n* ��� k−2n*

n* �2
. Also k

n*�k−n*� � 4
k to the leading

order in k−2n*

n* . Finally 4
k �� k−2n*

n* �2�� k−2n*

k/2
�2

= � �k

k/2
�2

from
which �k=�k and ������k=�k. As follows from the rela-
tion �̃���	
���=����2, proved in Appendix A, the amplitude
of the effective HS rank scales as k.

The obtained result can be used to estimate the amplitude
of the negativity in the pure state evolution. In fact
N����t�	
��t���= 1

2 ���ncn�2−1� by Ref. �46�. Taking cn= 1
��k

= 1
�4k for the purpose of scaling we obtain N����� /4��	

�
��� /4����= 1
2
�k for the amplitude of the negativity.
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The computable measure of the mixed-state entanglement, the negativity, is shown to admit a clear geo-
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distance of the state from a pertinent separable state. As a consequence, the Peres-Horodecki criterion of
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Nonlocal quantum correlations are a key resource in
quantum information processing �1�. The exclusive quantum
part of this correlation has been termed entanglement. For a
pure bipartite state the extent of entanglement is well defined
by the Schmidt rank of the state �2,3�, counting the number
of nonvanishing terms in the product states decomposition
�4�. For mixed quantum states the notion of entanglement is
more involved and various measures have been suggested
�4�, each focusing on particular aspects of this phenomenon.
In order to take advantage of the insights learned from dif-
ferent measures, it is advantageous to seek for classes of
states where different entanglement measures agree �5�. Such
a class is the bipartite Schmidt-correlated states class �6–8�,
where it has been shown that the distillable entanglement �9�
and relative entropy of entanglement �10� both coincide and
can be calculated by a simple formula �6,7,10,11�. The
Schmidt-correlated �SC� states are defined as mixtures of
pure states, sharing the same Schmidt bases �6–8�. Such
states naturally appear in a bipartite system dynamics with
additive integrals of motion �see below and Ref. �12��.
Hence, these states form an important class of mixed states
from a quantum dynamical perspective.

The present study establishes a remarkable property of the
SC states: the handy, albeit obscure, negativity �13� measure
of entanglement admits a clear geometrical interpretation. It
is found that the negativity equals half the sum of the abso-
lute values of the off-diagonal elements of the density ma-
trix, which is a distance of the SC state from a pertinent
separable state �see Fig. 1�. As a consequence, unlike a gen-
eral mixed state, a SC state is separable �16� if and only if its
negativity vanishes, which implies that the Peres-Horodecki
criterion �14,15� of separability is both necessary and suffi-
cient for SC states. It should be noted, that the matrix norm
used to define the distance, permits an estimation of the
negativity “at a glance,” which has a strong intuitive appeal.
Quantum-dynamical considerations motivate a generaliza-
tion of the results to particular mixtures of SC states. It is
shown that the negativity of such a mixture is less or equal to
the distance of the state from a pertinent separable state.

We start from a formal definition of a SC state.
Definition. A mixed bipartite state �̂=�ipi��i	
�i� is called

Schmidt-correlated if ��i	=�mcm
i �m	1 � �m	2 for every i, i.e.,

all pure states in the mixture share the same Schmidt bases
�1= ��m	1m=1

N and �2= ��m	2m=1
N .

As a simple example of SC state consider the state �̂
=�i=1,2pi��i	
�i� of a composite system of two qubits, where
��i	=c1

i �11	+c2
i �00	. On the other hand, a mixture of pure

states ��1	=c1
1�11	+c2

1�00	 and ��2	=c1
2�10	+c2

2�01	 will not
be SC, unless both states are maximally entangled, in which
case a common Schmidt bases exist �8�.

Theorem 1. Let a bipartite state �̂ be a SC state with
respect to Schmidt bases �1 and �2. Then the negativity of
the state �̂ equals a distance of �̂ from a separable state �̂�
diagonal in the tensor-product basis �=�1 ��2: N��̂�
= 1

2d��̂ , �̂��, where ��̂��ij =	ij��̂�ij, i , j�� and the distance
d�x̂ , ŷ�= �x̂− ŷ�� is induced by the matrix norm �x̂��
=�i,j � �x̂�i,j� �17�.

Remark. The separable state �̂�, from which the distance
induced by the norm � • �� is measured, is simply represented
by the matrix of �̂ with off-diagonal elements stripped off. If
�̂ is a pure state �which is trivially SC,� then �̂� is also the
state that minimizes the relative entropy S��̂ � �̂� over all dis-
entangled states �̂. In that case, the entanglement of relative
entropy is ERE��̂��minseparable �̂S��̂ � �̂�=S��̂ � �̂�� �18,19�.

Proof. Let �̂=�ipi��i	
�i�, where ��i	=�m=1
N cm

i �m	1 � �m	2.
Then �̂=�ipi�mncn

i �cm
i �*�n	
m� � �n	
m�=�mn�mn�n	
m� � �n	

�
m�, where �mn=�ipicn
i �cm

i �*. By definition d��̂ , �̂��
= ��̂− �̂��=�mn��mn�−1=2�m�n��mn�.

The negativity of a state is defined as the absolute value
of the sum of the negative eigenvalues of the partially trans-
posed density operator corresponding to the state �13�. In
what follows we show that �−��mn � ,m�n is the set of all
the negative eigenvalues of the partially transposed �̂. This
completes the proof.

The partially transposed density matrix is given by

�̂PT = �
mn

�mn�n	
m� � ��n	
m��T = �
mn

�mn�n	
m� � �m	
n� .

�1�

Consider N�N−1� vectors

��kl	± = − �lk�k	�l	 ± ��kl��l	�k	, k� l,k = 1,2, . . . ,N − 1

�2�

and N vectors

��kk	 = �k	�k	, k = 1,2, . . . ,N , �3�
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�̂PT��kl	± = �
mn

�mn�n	
m� � �m	
n��− �lk�k	�l	 ± ��kl��l	�k	� =

− �
mn

�mn�lk	mk	nl�n	�m	 ± �
mn

�mn��kl�	ml	kn�n	�m	

= − �kl�lk�l	�k	 ± �lk��kl��k	�l	 = − ��lk�2�l	�k	 ± �lk��kl�

��k	�l	 = � ��kl��− �lk�k	�l	 ± ��kl��l	�k	� = � ��kl�

���kl	±. �4�

Analogously we obtain

�̂PT��kk	 = ��kk���kk	 . �5�

Thus, the partially transposed matrix �̂PT has been diagonal-

ized and its
N�N−1�

2 negative eigenvalues −��kl�, k� l have
been found, which completes the proof. �

Corollary 1. Let a bipartite state �̂ be SC. Then �̂ is dis-
entangled if and only if its negativity vanishes.

Proof. If �̂ is disentangled its negativity N��̂� vanishes by
Peres-Horodeckii criterion �14,15�. If N��̂�=0 then by theo-
rem 1 �̂ is separable. �

The following two corollaries of theorem 1 permit an es-
timation of entanglement of a SC state by simply “looking
at” the occupied entries of the corresponding density matrix.

Corollary 2. The negativity of the SC �with respect to
Schmidt bases �1,2� state �̂ equals half the sum of the off-
diagonal elements of the corresponding density matrix in the
Schmidt basis: N��̂�= 1

2�i�j��ij�, i , j��1 ��2.
Corollary 3. Let a SC state �̂ be quasidiagonal, i.e., �̂

=�mn�mn�n	
m� � �n	
m�, where m ,n=1,2 , . . . ,N and �m−n�
=��N−1. Then N��̂���.

Proof. By corollary 2 it suffices to show that
1
2�m�n��mn���. The sum of the absolute values of the off-
diagonal elements can be estimated as follows:

�
m�n

��mn� = �
mn

��mn� − 1 = �
m

�
n=m−�

n=m+�

��mn� − 1

��
m

�
n=m−�

n=m+�

��mm�nn ��
m

�
n=m−�

n=m+�
�mm + �nn

2

=
1

2�
m

�
n=m−�

n=m+�

�mm +
1

2�
m

�
n=m−�

n=m+�

�nn � 2� , �6�

where the first inequality follows from the positivity of the
density operator and the second is the inequality of geomet-
ric and arithmetic means. This concludes the proof. �

The SC correlated states naturally emerge in certain quan-
tum dynamical settings �see Ref. �12��. Assume a �generally

non unitary� evolution of a bipartite composite system admit-

ting an additive integral of motion Â=Â1 � Î2+ Î1 � Â2,

where Â1,2 are local observables, i.e.,

�

�t
�̂ = L�̂ �7�

and

d

dt
Â = L†Â = 0. �8�

Consider local bases of eigenstates of operators Â1 and Â2:

�i = ��m	im = 1,2, . . . ,Ni,Âi�m	i = 
m
i �m	i, i = 1,2. �9�

We denote as H
 a subspace of the composite system Hilbert

space H spanned by the eigenstates of Â, corresponding to
an eigenvalue 
:

H
 = Sp��m	1 � �n	2,
m
1 + 
n

2 = 
 . �10�

Let us assume that the spectra of Âi, i=1,2 are non degen-
erate, i.e., 
m

i =
n
i ⇒m=n. Then the equation 
m

1 +
n
2=
 with

fixed m and 
 possesses a unique solution for n: n= f
�m�.
Therefore the map f
 :�1→�2 provides a one-to-one corre-
spondence between a state �m	1��1 and a state �n	2��2,
i.e., it defines a unique common set of Schmidt bases for the
Schmidt decomposition of all ��
	�H
:

��
	 = �

m

1 +
n
2=


cm�m	1�n	2. �11�

Since all pure states ��
	�H
 share the same Schmidt bases
their mixture is a SC state.

If the initial state of the composite system is a mixture of

eigenstates of Â, corresponding to the same eigenvalue 
,
i.e., �̂�0�=�ipi��i


	
�i

� with ��i


	�H
 then the conservation

of Â would imply that �̂�t�=�ipi�t���i�t�	
�i�t��, ���t�	i

�H
 at any t�0. Therefore, the evolving state �̂�t� remains
SC and the negativity of the state can be calculated using
theorem 1.

For illustration, the evolution of negativity of a composite
state of a two noninteracting quantum systems coupled to a
local purely dephasing baths is calculated. The composite
system evolves according to the Liouville equation

�

�t
�̂ = − �Â1,�Â1, �̂�� − �Â2,�Â2, �̂�� . �12�

The local bases of eigenstates of operators Â1 and Â2 is �i

= ��m	i ,m=1,2 , . . . ,Ni , Âi�m	i=
m
i �m	i, i=1,2. The initial

state of the composite system is a pure entangled state

FIG. 1. The negativity of a SC
state �̂ equals half the sum of the
absolute values of the off-diagonal
elements of the density matrix,
which is a distance of the state
state from the separable state �̂�.
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���0�	 = �
m

cm�m	1�m	2. �13�

At t�0 the solution of Eq. �12� with initial state �13� is
given by

�̂�t� = �
m,n

cmcn
*e−��
m

1 − 
n
1�2+�
m

2 − 
n
2�2�t�m	1�m	2
n�1
n�2.

�14�

Since �̂�t� is a SC state the theorem 1 applies and

N„�̂�t�… =
1

2
d„�̂�t�, �̂��t�… =

1

2� �
i,j��1��2

���̂
�i,j� − 1�
=

1

2��m,n
cmcn

*e−��
m
1 − 
n

1�2+�
m
2 − 
n

2�2�t − 1� . �15�

As a next step, the initial state for the evolution �7� is
generalized from a state �̂�0�=�ipi��i


	
�i

� with ��i


	�H
 to
a mixture of such states, corresponding to different eigenval-

ues 
 of the conserved operator Â:

�̂�0� = �



p
�̂

, �16�

where �̂
=�ipi

��i


	
�i

� with ��i


	�H
. By conservation of

Â we have �̂�t�=�
p
�t��̂
�t�. An estimation of the negativ-
ity of �̂�t� is possible using a generalization of the theorem 1
�see theorem 2 below�. The result is

N„�̂�t�…� 1

2
d„�̂�t�, �̂��t�… , �17�

where ��̂��t��ij =	ij��̂�t��ij, i , j��1 ��2 �see Eq. �9�� and the
distance d�x̂ , ŷ�= �x̂− ŷ�� is induced by the norm �x̂��
=�i,j��x̂�i,j�.

Theorem 2 generalizes theorem 1 to particular mixtures of
SC states. Consider a composite Hilbert space H=H1 � H2
of bipartite quantum system. Let �1= ��m	1 ,m=1,2 , . . . ,N1
be an orthonormal basis of the local Hilbert space H1 and
�2= ��m	2 ,m=1,2 , . . . ,N2 be an orthonormal basis of the
local Hilbert space H2. Consider a one-to-one correspon-
dence f
 between a subset S1


��1 and a subset S2

��2. The

map f
 defines a subspace H
�H spanned by the states of
the form �m	1 � �f
�m�	2:

H
 = Sp��m	1 � �f
�m�	2, �m	1 � S1

 . �18�

All pure states ��
	�H
 share the same Schmidt bases by
construction. Therefore, a mixture �̂
=�ipi��i


	
�i

� is a SC

state by definition and will be called 
-SC state for brevity in
what follows.

Consider a family of such maps f
, indexed by 
, with the
following property:

f
1��m	1� = f
2��m	1� ⇔ 
1 = 
2. �19�

Then the following result can be proven.
Theorem 2. Let a bipartite state �̂ be a mixture of 
-SC

states: �̂=�
p
�̂

 with respect to local bases �1,2 and a fam-

ily of injective maps f
: S1

��1→�2 with the property �19�.

Then the negativity of the state �̂ is less or equals a distance
of �̂ from a separable state �̂ diagonal in the basis �=�1

��2: N��̂�� 1
2d��̂ , �̂�, where ��̂�ij =	ij��̂�ij, i , j�� and the

distance d�x̂ , ŷ�= �x̂− ŷ��, where �x̂��=�i,j��x̂�i,j�.
Proof. Since the negativity is entanglement monotone

�13� the following holds:

N��



p
�̂

���




p
N��̂
� . �20�

By theorem 1:

�



p
N��̂
� = �



p

1

2
d��̂
, �̂�
� = �




p

1

2
��̂
 − �̂�
��

= �



p

1

2 �
i,j��

���̂
 − �̂�
�i,j�

= �



p

1

2� �
i,j��

���̂
�i,j� − 1�
=

1

2��
 p
 �
i,j��

���̂
�i,j� − 1� . �21�

From the property �19� it follows that

�



p
 �
i,j��

���̂
�i,j� = �
i,j��

���



p
�̂

�

i,j
� = �

i,j��
���̂�i,j� .

�22�

Combining Eqs. �21� and �22� we get

�



p
N��̂
� =
1

2��
 p
 �
i,j��

���̂
�i,j� − 1� =
1

2� �
i,j��

���̂�i,j� − 1�
=

1

2
d��̂, �̂�� . �23�

From inequality �20� and Eq. �23� it follows that

N��̂��
1

2
d��̂, �̂�� . �24�

�
Corollaries 1–3 of the theorem 1 can be generalized ac-

cordingly. As a simple example of a mixture of 
-SC states
with respect to a family f
 with the property �19�, consider a
mixture of pure states ��1	=c1

1�11	+c2
1�00	 and ��2	=c1

2�10	
+c2

2�01	. The states ��1	
�1� and ��2	
�2� are 
-SC, 
=1,2,
with respect to the family of maps f1= ��0	→ �0	 , �1	→ �1	
and f2= ��0	→ �1	 , �1	→ �0	. Note, that such mixture is gen-
erally not a SC state �8�. On the other hand, a mixture of pure
states ��1	=c1

1�11	+c2
1�00	 and ��2	=c1

2�+ + 	+c2
2�−−	 �where

�± 	� �0	±�1	
�2

� is generally neither SC nor a mixture of 
-SC
states.

In conclusion, the negativity of a SC state can be inter-
preted geometrically as a distance in a particular metric d of
the state from a separable state. An immediate consequence
of this fact is that the negativity vanishes if and only if the
SC state is separable, which implies that the Peres-Horodecki
criterion of separability is both necessary and sufficient for
SC states. The metric d that is induced by the � matrix norm,
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is basis dependent, i.e., is not invariant under unitary trans-
formations �and, in particular, is not invariant under local
unitary transformations�. Nevertheless, the basis in which the
correspondence of this distance to the negativity is estab-
lished is the Schmidt basis, which is a preferred basis for
representing SC states �21�.

In a SC state the negativity equals half the sum of the
absolute values of the off-diagonal elements of the density
matrix in the Schmidt bases. This finding suggests the “at a
glance” estimation of the entanglement of SC states: the state
is “substantially” entangled if and only if the off-diagonal
entries in the corresponding density matrix are “substan-
tially” populated. In particular, if the corresponding density
matrix is quasidiagonal, i.e., the off-diagonal elements popu-
late the strip about the diagonal of width �, the negativity is
bounded by �.

We have considered Schmidt-correlated states and par-
ticular mixtures of Schmidt-correlated states. These states
emerge in dynamical models with conservation laws. Dy-
namics where the conservation laws are relaxed generate
mixed states that are not SC. Simulations of open-system
dynamics, similar to those in Ref. �12�, have suggested a

generalization of the geometrical interpretation of negativity
to arbitrary mixed states. It is conjectured that the negativity
of an arbitrary mixed state is bounded by half the minimal
distance d of the state to a corresponding separable state,
where the distance is minimized over all possible local bases:

N��̂��
1

2
min
�1��2

�d��̂, �̂�� � �
�i	,�j	��1��2

���̂ − �̂��ij�,��̂��ij

= 	ij��̂�ij� . �25�

An interesting question is whether this minimal distance it-
self is an entanglement monotone �20�. Since �ij���̂− �̂��ij�
=2�i�j��ij� the conjecture �25� implies that the negativity of
an arbitrary state is bounded by half the sum of the off-
diagonal elements of the corresponding density matrix in any
local bases, which gives an intuitive appraisal of the nega-
tivity �and entanglement� of an arbitrary mixed state.

This work was supported by the Binational U.S.-Israel
Science Foundation �BSF�.
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Chapter 4

Efficient simulation of strongly

quantum-correlated dynamics

4.1 Introduction

In Chapters 2 and 3 we discussed two routes to a quantum system dynamics with

vanishing or restricted quantum correlations: i) taking sufficiently mixed (hot)

initial states (Chapter 2); ii) coupling a composite system to local environments

(Chapter 3 ).

The present Chapter follows the route of Chapter 3 but in a more general

mathematical framework. This framework is the theory of the generalized co-

herent states (GCS) (Zhang et al., 1990; Perelomov, 1985), associated with a

Lie-algebra of observables of a quantum system. In the general framework we ob-

tain conditions on the Lie-algebra of observables, its Hilbert space representation

and on the Hamiltonian of the system, necessary for efficient simulation of the

observable quantum dynamics (Section 4.2). Moreover, the time-dependent basis

of the GCS is shown to be a distinguished computational basis for simulation of

the corresponding Lie-algebra of observables (Section 4.4).

4.1.1 The generalized coherent states as a computational

tool

The concept of entanglement can be put into a general Lie-algebraic framework

(Barnum et al., 2003; Klyachko, quant-ph/0206012) as pointed out in Chapter

1. The starting point of the generalization is an understanding that entangle-

ment is an observable-oriented concept. The same state of a quantum system is

characterized by different magnitudes of entanglement with respect to different

partitions. The second important observation is that unentangled pure states
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of a composite system look pure from the restricted perspective of the local op-

erators. The generalization of the concept of entanglement to the Lie-algebraic

framework proceeds by defining the (generalized) unentangled states as states

having maximal purity from the standpoint of a given Lie-algebra of observables.

This relative purity is termed the generalized purity of the state with respect

to the given subalgebra of observables (Barnum et al., 2003). It measures the

generalized entanglement of the state and is shown to be intimately related to

computational complexity of quantum dynamics (Sections 4.2−4.4).

In the case of compact semisimple Lie-algebras (Gilmore, 1974) of observables,

which is important in finite-dimensional Hilbert spaces, the generalized unentan-

gled states turn out (Barnum et al., 2003) to be the GCS, associated with the

Lie-algebra (see Section 4.2 for the detailed definition of the GCS). GCS with

respect to the subalgebra of local operators are product states. Their exclusive

role in simulating dynamics of local observables of composite quantum systems

(Beck et al., 2000) implies that GCS may be a distinguished computational basis

in the general Lie-algebraic framework.

The status of GCS as a preferred computational basis for simulation of the

corresponding Lie-algebra of observables can be established by a direct argument.

In Section 4.4 it is shown that

• The spectrum-generating algebra (SGA)(Bohm et al., 1988) of observables

is a distinguished subset of observables for the purpose of efficient simulation

of quantum dynamics.

• The associated GCS comprise preferred computational basis for the simu-

lation of the SGA observables.

The dynamics of the SGA observables can be simulated efficiently only if the

size of the GCS computational basis is sufficiently small. Generic Hamiltonian

(nonlinear in the elements of the SGA) leads to an evolution, characterized by

extensive generalized entanglement with respect to the SGA of the system. An

extensive generalized entanglement corresponds to a large GCS basis, necessary

to represent the evolving state. Therefore, new ideas must be introduced to

simulate a generic quantum dynamics of a many-body system.

4.1.2 The idea of the method

The following idea is proposed to solve the problem of efficient simulation of a

strongly generalized-entangled quantum evolution (Section 4.2). Since the origi-

nal Hamiltonian generates extensive (generalized) entanglement by assumption,

the original dynamics cannot be simulated efficiently. A different (surrogate)

dynamics must be simulated. Three conditions must be satisfied:
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• The surrogate dynamics can be simulated efficiently.

• The surrogate dynamics is equivalent to the original one modulo the expec-

tation values of the distinguished subset of observables, i.e., the elements

of the SGA.

• The initial state of the system can be simulated efficiently.

The results of Chapter 3 suggest the following choice of the surrogate dynamics.

The surrogate dynamics is the open-system dynamics, resulting from the coupling

of the system of interest to a special bath. The bath has the effect of weak

measurement of the elements of the SGA.

In Section 4.2 it is shown that in a rigorously defined classical limit the open-

system dynamics displays widely separated time-scales. The first time-scale is

an observable time-scale on which the dynamics of the elements of the SGA are

affected by the measurement. The other time-scale is the decoherence time-scale,

on which the evolving state undergoes coarse-graining in the phase-space, associ-

ated with the SGA. The classical limit is the limit of a strong inequality (termed

the classicality condition in Section 4.2) imposed on the SGA and its Hilbert

space representation. The classicality condition is satisfied only in higher dimen-

sional Hilbert space representations of the SGA, but the converse is generally not

true. For example, the dynamics of the algebra of local operators does not have

a classical limit (Section 4.2). As a consequence, the proposed method does not

apply to simulation of local observables.

Due to the time-scales separation the SGA of observables can be negligibly

effected on the physically relevant time-scale of their unitary evolution, while

the coarse-graining in the phase-space is substantial. The evolving state of the

open-system can be represented as a statistical mixture of pure-state quantum

trajectories (unravelings), driven by the stochastic Nonlinear Schroedinger equa-

tion (sNLSE)(Gisin, 1984; Diosi, 1988b; Gisin & Percival, 1992). In the sNLSE

picture the coarse-graining corresponds to localization of the pure-state solution

in the phase-space (Section 4.3). The localization is measured by the generalized

purity of the state with respect to the SGA. In Section 4.3 we prove that an

arbitrary stochastic quantum trajectory, driven by the weak measurement of a

compact semisimple algebra of observables, ends up in a GCS, associated with

the algebra.
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In the case of a compact semisimple SGA , it can be proved 1 that the gen-

eralized purity of a single pure-state unraveling of the open system tends to the

generalized purity of a GCS in the classical limit. Therefore, the pure-state so-

lutions of the sNLSE tend to GCS in the classical limit. As a consequence, the

pure-state solution can be represented efficiently in the GCS basis, which is a

necessary condition for efficient simulation.

For efficient dynamical simulation the initial state of the system must be sim-

ulated efficiently. As pointed out in Chapter 1 the initial state of a system in

a pump-probe experiment is generally a thermal state. A thermal state can be

viewed as a result of imaginary-time propagation of identity operator. Identity

operator is a proper mixture of the GCS with respect to the SGA observables

(Zhang et al., 1990). Therefore, a thermal initial state can be simulated using our

method. The argument can be generalized to an arbitrary initial state, which is

canonical with respect to an appropriate Hamiltonian, i.e., which can be viewed

as the result of the imaginary-time propagation, generated by an appropriate

Hamiltonian. A detailed definition of an appropriate Hamiltonian for the appli-

cation of our method is given in Section 4.4.2. It should be noted that a GCS is

canonical with respect to the corresponding SGA of observables2.

The expectation values of observables are obtained by averaging over the

stochastic realizations of the sNLSE. The averaging introduces classical correla-

tions into the dynamics. Quantum correlations are bounded by the generalized

entanglement of the pure-state unraveling, which tends to zero in the classical

limit. It follows that in the classical limit (generalized) classical correlations can

simulate (generalized) quantum correlations modulo the expectation values of the

SGA operators.

1The following proof is based on the results and uses the definitions of Section 4.2. Let P0

and P denote the generalized purity of a GCS and of a pure-state solution ψ of the sNLSE,

respectively. Let Δ0 = C − P0 and Δ = C − P stand for the generalized uncertainty in a GCS

and in the state ψ, respectively (C is the eigenvalue of the Casimir operator in the (irreducible)

Hilbert space representation). P can be estimated from the condition that the decoherence time-

scale and the time-scale of the generalized purity decay in the corresponding unitary evolution

are equal. If Δ � Δ0 γΔ is the decoherence rate in the state ψ. The generalized purity decays

on the time-scale of the SGA observables in the unitary evolution. Let the sNLSE correspond

to the strength of measurement γ such that the evolution of the SGA observables is negligibly

affected. Then γΔ = O(ω), where ω is the inverse time-scale of the unitary evolution of the

SGA observables, which is independent on the Hilbert space representation (if the Hamiltonian

is moderately nonlinear which is assumed). γΔ ≥ γΔ0. In the classical limit γΔ0 → ∞ ⇒
γΔ → ∞. Contradiction. Therefore, Δ = O(Δ0), i.e., P = P0 + O(Δ0). In the classical limit

C/Δ0 → ∞ ⇒ (P0 + Δ0)/Δ0 → ∞ ⇒ P0/Δ0 → ∞ ⇒ P/P0 = (P0 + O(Δ0))/P0 → 1 �

2A GCS can be viewed as a ground state of a Hamiltonian linear in the elements of the SGA

(Zhang et al., 1990; Barnum et al., 2003)
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A scheme to simulate the evolution of a restricted set of observables of a quantum system is proposed. The
set comprises the spectrum-generating algebra of the Hamiltonian. Focusing on the simulation of the restricted
set allows to drastically reduce the cost of the simulation. This reduction is the result of replacing the original
unitary dynamics by a special open-system evolution. This open-system evolution can be interpreted as a
process of weak measurement of the distinguished observables performed on the evolving system of interest.
Under the condition that the observables are “classical” and the Hamiltonian is moderately nonlinear, the
open-system dynamics displays a large time-scale separation between the relaxation of the observables and the
decoherence of a generic state. This time-scale separation allows the unitary dynamics of the observables to be
efficiently simulated by the open-system dynamics on the intermediate time scale. The simulation employs
unraveling of the corresponding master equations into pure-state evolutions, governed by the stochastic non-
linear Schrödinger equation. The stochastic pure-state evolution can be simulated efficiently using a represen-
tation of the state in the time-dependent basis of the generalized coherent states, associated with the spectrum-
generating algebra.
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I. INTRODUCTION

The number of independent observables of a quantum
system with the Hilbert space dimension N is N2−1. In
many-body systems, when N increases exponentially with
the number of degrees of freedom, that large number of ob-
servables can be neither measured nor calculated. Only a
limited number of dynamical variables is accessible to an
experimentalist, while all the uncontrollable parameters are
averaged out. This means that generically, an observed quan-
tum system is characterized by a small number of the expec-
tation values of accessible observables. To theoretically char-
acterize the dynamics of a quantum system it is desirable �i�
to find equations of motion for this reduced set of expecta-
tion values, �ii� to be able to solve the associated equations
of motion efficiently.

In the context of the computational complexity theory the
term “‘efficient”’ is reserved for a computation involving
memory and CPU resources, scaling polynomially with the
size of the problem. The term “efficient” is used in a differ-
ent sense in the present paper. A computational cost of a
direct quantum simulation scales as O�N	�, 	�1 �1�, with
the Hilbert space dimension N. A simulation is defined as
efficient for the purpose of the present discussion if its com-
putational cost is substantially lower than that.

We explore the possibility of such efficient simulation of a
restricted set of observables, using a paradigm for the simu-
lation. Assuming that the set of experimentally accessible
observables is small, it is plausible that there exist a number
of microscopic theories, leading to the same observed dy-
namics. If a microscopic theory can be found, which leads to
equations of motion that can be solved efficiently, the dy-
namics of the restricted set of observables can be efficiently
simulated. More specifically, we propose to simulate the uni-
tary dynamics of a quantum system by embedding it in a
particular open-system dynamics. In this dynamics the cou-
pling to the bath is constructed to have a negligible impact

on the evolution of the selected set of observables on the
characteristic time scale of their unitary evolution. The key
point is that the resulting open-system dynamics can be
simulated with much higher efficiency. The reduction of the
computational complexity of the evolution, imposed by the
bath, is attributed to dynamical coarse graining, collapsing
the system to a preselected representation which is used as
the basis for the dynamical description. Since the bath has no
observable effect by construction it should be considered
solely as a computational tool. For that reason a term ficti-
tious bath is used in the paper to refer to it.

The quantum systems considered in the present work have
finite Hilbert space dimension. The dynamics is generated by
the Lie-algebraic Hamiltonians

Ĥ = �
i

aiX̂i + �
ij

bijX̂iX̂ j + ¯ , �1�

where the set �X̂i of observables is closed under the com-
mutation relations

�X̂i,X̂ j� = i�
k=1

K

fijkX̂k, �2�

i.e., it forms the spectrum-generating �2� Lie algebra �3� of
the system. This algebra is labeled by the letter g in what
follows. Lie-algebraic Hamiltonians �1� are abundant in mo-
lecular �4,5�, nuclear �2,5�, and condensed matter physics

�2�. The basis of the algebra �X̂i is chosen as a distinguished
set of observables, which are to be simulated efficiently. Lie
algebras considered in the present work are compact semi-

simple algebras �3� and the basis �X̂i is assumed to be or-
thonormal with respect to the Killing form �3�.

The corresponding open-system dynamics, which is al-
leged to simulate the unitary dynamics of the elements of g,
is governed by the following Liouville–von Neumann equa-
tion of motion:
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�

�t
�̂ = L�̂ = − i�Ĥ, �̂� − ��

j=1

K

†X̂ j,�X̂ j, �̂�‡ , �3�

which has the Lindblad form �6,7�, i.e., it describes a Mar-
kovian completely positive �7� nonunitary evolution of the
quantum system. The physical interpretation of the evolu-
tion, governed by Eq. �3� is the process of weak measure-
ments �8� of the algebra of observables g, performed on the
quantum system, evolving under the Hamiltonian �1�.

The foundation of the method is the observation that cou-
pling to the bath induces a decoherence of the evolving den-
sity operator in a particular basis known as generalized co-
herent states �GCS�, associated with the algebra �Sec. II�. It

is shown that if the Hamiltonian is linear in X̂i and a certain
“classicality condition” is satisfied by the Hilbert space rep-
resentation of the algebra, the decoherence time scale is
much shorter than the time scale on which the effect of the
bath on the elements of g is measurable, i.e., the relaxation
time scale. It is argued that this strong time-scale separation
will also hold for moderately nonlinear Hamiltonians �Sec.
III�. The claim is supported by an order of magnitude analy-
sis.

We propose to take advantage of this property of the
open-system dynamics for efficient simulation of the unitary

evolution of �X̂i, using stochastic unraveling of the evolu-
tion �9–11� and representing the evolving stochastic pure
state in the time-depending basis of the GCS �12,13� �Sec.
IV�. The effect of the decoherence translates into localization
of evolving stochastic pure state in the GCS basis, which
enables efficient representation and simulation of the sto-
chastic evolution. Averaging over the unraveling recovers the
unitary dynamics of the algebra generators. The effect of
coupling to the fictitious bath is illustrated by the dynamics
of a Bose-Einstein condensate �BEC� in a double-well trap
�14,15� modeled by the two-mode Bose-Hubbard Hamil-
tonian �Sec. V�. It is demonstrated that the bath induces dras-
tic localization on the level of a stochastic pure-state evolu-
tion, while having no observed effect on the dynamics of the
elements of the spectrum-generating algebra of the system.

II. EVOLUTION OF STATES

A central theme in this section is the intimate relation
between the evolution of the subalgebra of observables and
the dynamics of the generalized coherent states �GCS� asso-
ciated with this subalgebra. The GCS minimize the total un-
certainty with respect to the basis elements of the subalgebra
and in addition are maximally robust to interaction with the
bath, modeled by Eq. �3�.

A. Generalized coherent states and the total uncertainty

Let us assume that the subalgebra g is represented irre-
ducibly on the system’s Hilbert space H. Then an arbitrary
state ��H can be represented as a superposition of the GCS
�12,13� �� ,�0	 with respect to the corresponding dynamical
group G and an arbitrary state �0,

��	 =� d �����,�0	
�,�0��	 , �4�

where  ��� is the group-invariant measure on the coset
space G /H �3�, ��G /H, H�G is the maximal stability
subgroup of the reference state �0,

h��0	 = ei��h���0	, h � H �5�

and the GCS �� ,�0	 are defined as follows:

Û�g���0	 = Û��h���0	 = ei��h�Û�����0	 � ei��h���,�0	 ,

g � G, h � H, �� G/H , �6�

where Û�g� is a unitary transformation generated by a group
element g�G.

The group-invariant total uncertainty of a state with re-
spect to a compact semisimple algebra g is defined as �12,16�

���� � �
j=1

K


�X̂ j
2	� = �

j=1

K


X̂ j
2	� − �

j=1

K


X̂ j	�
2 . �7�

The first term on the right-hand-side of Eq. �7� is the eigen-
value of the Casimir operator of g in the Hilbert space rep-
resentation,

Ĉ = �
j=1

K

X̂ j
2 �8�

and the second term is termed the generalized purity �17� of
the state with respect to g,

P
g
��� � �

j=1

K


X̂ j	�
2 . �9�

We define �min as a minimal total uncertainty of a quantum
state and cH as the eigenvalue of the Casimir operator of g in
the system Hilbert space. Then

�min!����! cH. �10�

The total uncertainty �7� is invariant under an arbitrary
unitary transformation generated by g. Therefore, all the
GCS, associated with the subalgebra g and a reference state
�0 have a fixed value of the total invariance. It has been
proved in Ref. �16� that the minimal total uncertainty �min is
obtained if and only if �0 is a highest �or lowest� weight state
of the representation �the Hilbert space�. The value of �min is
given by �16,18�

�min � ��, �!����! ��,� +  � = cH, �11�

where ��Rr is the highest weight of the representation,  
�Rr is the sum of the positive roots of g, r is the rank of g

�3� and �¯ ,¯� is the Euclidean scalar product in Rr. The
corresponding CGS were termed the generalized unen-
tangled states with respect to the subalgebra g �17,18�. The
maximal value of the uncertainty is obtained in states termed
maximally or completely entangled �17,18� with respect to g.
The maximum value equals cH in the states having


��X̂ j��	2=0 for all i. Such states exist in a generic irreduc-
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ible representation of an arbitrary compact simple algebra of
observables �18�. Generic superpositions of the GCS have
larger uncertainty and are termed generalized entangled
states with respect to g �17,18�. In what follows, it is as-
sumed that the reference state �0 for the GCS minimize the
total invariance �7�.

B. Decoherence time scales

The rate of purity loss in an arbitrary pure state �̂
= ��	
�� can be calculated using Eq. �3� as follows �19�:

d

dt
Tr��̂2 = Tr�2�̇̂�̂ = 2 Tr�i�Ĥ, �̂��̂ − ��

j=1

K

†X̂ j,�X̂ j, �̂�‡�̂�
= − 2� Tr��

j=1

K

†X̂ j,�X̂ j, �̂�‡�̂�
= − 4��

j=1

K

�
��X̂ j
2��	 − 
��X̂ j��	2�

= − 4��
j=1

K


�X̂ j
2	�, �12�

i.e., the rate is proportional to the group-invariant uncertainty
�7�. From Eqs. �12� and �10� it follows that the time scale of
the purity loss in a generic state is ��cH�−1, where cH is the
eigenvalue of the Casimir, Eq. �8�. On the contrary, the rate
of purity loss of a GCS is determined by �min, Eq. �11�,
which implies that GCS are robust against the influence of
the bath �19�.

Assume that

�min cH. �13�

The strong inequality �13� can be interpreted as follows. Un-
der the action of the bath, modeled by Eq. �3�, a generic
superposition of the GCS, Eq. �4�, decoheres on the fast time
scale ��cH�−1 into a proper mixture of the GCS, which then
follows the slow evolution on a time scale fixed by �min. As
a consequence, the effect of the bath is to “diagonalize” the
evolving density operator into a time-dependent statistical
mixture of the GCS.

Accordingly, ��cH�−1 determines the decoherence time
scale of the density operator in the basis of the GCS.

Condition �13� does not depend on the strength of cou-
pling to the bath and therefore is a property of the subalgebra
of observables and its Hilbert space representation. Condi-
tion �13� will be termed the classicality condition on the
algebra of observables �see Appendix B for some examples�.

III. EVOLUTION OF THE OBSERVABLES

Following the evolution of observables in the Heisenberg
picture we can show that the classicality condition �13� im-
plies a large time-scale separation between the decoherence
of the state and the relaxation of the observables comprising
the spectrum-generating algebra of the system. The relax-
ation rate is calculated for the case when the Hamiltonian �1�
is linear in the algebra elements and the time-scale separation

is demonstrated. An order of magnitude considerations imply
that the time-scale separation still persists for moderately
nonlinear Hamiltonians. It follows, that the unitary evolution
of the observables in the intermediate time scale can be
simulated by the open-system dynamics. Then, the decoher-
ence can be employed to increase the simulation efficiency.

Consider a Hamiltonian linear in the elements of the al-
gebra g, i.e., all bij =0 in Eq. �1�. The corresponding Heisen-
berg equations for the observables in g becomes

�

�t
X̂i = − i�Ĥ,X̂i� − ��

j=1

K

†X̂ j,�X̂ j,X̂i�‡

= − i�
k=1

K

�iaik�X̂k − ��
j,l=1

K

�if jik��if jkl�X̂l

= − i�
k=1

K

�iaik�X̂k − ��
j,l=1

K

�Tj�il
2X̂l, �14�

where Tjk
i = if ijk is a matrix element of the adjoint represen-

tation �3� of X̂i. It is assumed without loss of generality that
g is a compact simple subalgebra of observables �in the gen-
eral case of a semisimple algebra, the system of Eq. �14�
decouples into systems of equations for the simple compo-
nents of the algebra�. The coefficients on the right-hand side
of �14� obey

�
j=1

K

�Tj�2 = C2, �15�

where C2 is the quadratic Casimir of g in the adjoint repre-
sentation. Therefore,

��
j=1

K

�Tj�2�
il

= �C2�il = cadj	il �16�

leading to

�

�t
X̂i = − i�

k=1

K

�iaik�X̂k − �cadjX̂i, �17�

which in a matrix notation reads as

�

�t
X̂ = − i�A − �cadj�X̂, �18�

where A=A† is defined by Akl= iakl and X̂��X̂1,X̂2 , . . . , X̂k.
We define Ŷ��Ŷ1 , Ŷ2 , . . . , Ŷk by

�

�t
Ŷi = − iAŶi = − i�iŶi, �19�

where �i are real since A is Hermitian. Then Ŷ diagonalize
also Eq. �18�,

�

�t
Ŷi = �− iA − �cadj�Ŷi = �− i�i − �cadj�Ŷi, �20�

leading to the solution of Eq. �18�,
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Ŷi�t� = Ŷi�0�e−�i�i+�cadj�t �21�

and

X̂i�t� = �
j

cijŶi�t� . �22�

The solution �21� is obtained for an arbitrary compact simple
subalgebra of the system observables g�su�K��su�N� for a
quantum system in a N-dimensional Hilbert space. It can be
generalized to a semisimple subalgebra of observables, i.e., a
direct sum of simple subalgebras, g= � i=1

n su�Ki��su�N�,
corresponding to a tensor-product partition of the system Hil-
bert space H= � i=1

n Hi. In this case, Eq. �21� corresponds to
local observables of any given subsystem.

The dynamics displayed by Eq. �21� shows that the ex-
pectation values of observables in g oscillate on the time
scales �i and decay on the time scale �cadj. Consider an

observable Ŷi such that �i��cadj. When the measurement of

Ŷi in a time interval

��i�−1  � ��cadj�−1 �23�

is performed, the nonunitary character of the evolution can-
not be discovered. Therefore, given the time interval � any �
with the property � ��cadj�−1 will lead to apparently unitary

dynamics of Ŷi on the time interval �.
Next we note that since �� , ��0 in Eq. �11� �a positive

root has strictly positive scalar product with the maximal
weight vector� strong inequality �13� implies ���� � �, which
leads to the following strong inequality:

�cH� �cadj. �24�

Therefore, a time interval � exists such that

��cH�−1 �i
−1  � ��cadj�−1 �25�

for some i corresponding to an observable Ŷi in Eq. �21�.
The term ��cH�−1 on the left-hand side of the inequality �25�
is the decoherence rate of a generic superposition of the
GCS, associated with the algebra g and the term ��cadj�−1 on

the right-hand side is the relaxation rate of the observable Ŷi.
This system of strong inequalities implies two important
properties of the open-system dynamics, Eq. �14�: �i� A ge-
neric superposition of the GCS collapses into a mixture of
the GCS on a time scale much shorter than a physically
interesting time scale of the unitary evolution of the observ-
able; �ii� the time scale of the unitary evolution of the ob-
servable is much shorter than its relaxation time scale.

If the Hamiltonian is nonlinear in the spectrum-generating
algebra elements this simple analysis can no longer be made.
Nonetheless, it is argued that that if the Hamiltonian is only
moderately nonlinear, the time-scale separation between the
decoherence and the relaxation still holds. The order of mag-
nitude argument is based on considering a nonlinear Hamil-
tonian of the following form:

Ĥ = �
i1

ai1
�1�X̂i1

+ �
i1i2

ai1i2
�2� X̂i1

X̂i2
+ ¯ + �

i1...im

ai1¯im
�m� X̂i1

¯ X
...

im
,

�26�

i.e., a polynomial of order m in the algebra of elements,
where m is independent on the Hilbert space representation
of the algebra. The Hamiltonian is defined to be moderately
nonlinear if �ai1¯ik

�k� �=�O�1 / ���k−1�, 1!k!m, where ��� is
the norm of the maximal weight of the representation, and
�−1 is an arbitrary reference time scale. The moderate non-
linearity implies that the dynamical time scales �i

−1 of an
element of the algebra are of the order of unity with respect
to ���. In fact,

�i = ���−1O�� �

�t
X̂i��

= ���−1O�− i
�Ĥ,X̂i�	�

= ���−1O��
k=1

m

�
i1¯ik

kbi1¯ik
�k� 
X̂i1

¯ X̂ik
	� , �27�

where �bi1...ik
�k� �=�O�1 / ���k−1� and �
X

...

i1
¯ X̂ik

	�=O��k�.
Therefore,

�i = ���−1O��
k=1

m

�
i1...ik

kbi1...ik
�k� ���k� = �O�1� , �28�

since m is assumed to be independent on the representation,
i.e., m=O�1�. The time scales �i�

−1 of the element of the
algebra in the open-system evolution follows from the calcu-
lations leading to Eq. �17� and the fact that cadj=O�1�, satisfy

�i� = �O�1� + �O�1� = �O�1� �29�

as well, for �"�.
Let us assume that �i� is analytic in �. Then to the first

order in �,

�i� = �i + �i
�1�� . �30�

Since Eq. �29� holds for any fixed �"�, it follows that
�i

�1�=�O�1�. The rate ��i
�1�=�O�1� is the relaxation rate of

the algebra element X̂i. The decoherence rate of the state is
�cH=�O����2�. Therefore, for sufficiently large ��� or,
equivalently, for sufficiently strong “classicality” �13�, a time
interval � exists such that

O„�����2�−1… = ��cH�−1 �i
−1  � „��i

�1�…−1 = O��−1� ,

�31�

i.e., the decoherence is substantial on the physically interest-
ing time interval �i

−1�, while the relaxation of the observ-
able is negligible. In the analysis above we did not keep
track of the order m of the polynomial �26� since m=O�1� by
assumption. Equation �28� implies that the relaxation rates of
observables increase with the growing order, therefore, a
stronger “classicality” �larger ���� is needed to satisfy the
inequalities �31�.
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IV. EFFICIENT SIMULATION OF THE EVOLUTION
OF THE SPECTRUM-GENERATING ALGEBRA

OF OBSERVABLES

Efficient simulation is defined as a simulation based on a
numerical solution of the first-order differential equations for
a number of dynamical variables which is much smaller than
the Hilbert space dimension of the system. As pointed out in
the introduction, the term “efficient” does not imply a change
in the complexity class, i.e., reduction to a computational
problem belonging to a polynomial rather than exponential
complexity class. “Efficient” in the present context means
that the computation can be performed with a substantial
speed-up over a “brute-force” simulation which scales as
some power of the size of the Hilbert space.

The number of dynamical variables m cannot be smaller
than the number of observables to be simulated, which
equals the dimension K of the spectrum-generating algebra
g. If there is a large gap between the dimension of the alge-
bra and the Hilbert space dimension K=dim�gdim�H
=N the simulation based on the number of variables K"m
N is considered efficient.

The proposed method of efficient simulation of the ob-
servables, forming the spectrum-generating algebra g of the
Hamiltonian �1� is based upon the following.

�i� Simulating the unitary evolution of the observables by
the fictitious open-system dynamics, governed by the
Liouville–von Neumann equation �3�.

�ii� Unraveling the Liouville–von Neumann equation �3�
into pure-state evolutions, governed by the stochastic nonlin-
ear Schrödinger equation �sNLSE� �see below�.

�iii� Efficient simulation of the stochastic nonlinear pure-
state dynamics, using expansion of the state in a time-
dependent basis of the GCS, associated with the spectrum-
generating algebra g.

In the preceding section we have discussed the first of the
listed items. The other two items focus on the principles of
efficient simulation of the open-system evolution.

Solving directly the Liouville–von Neumann master equa-
tion �3� is more difficult than the original problem. A reduc-
tion in complexity is based on the equivalence between the
Liouville–von Neumann equation and the sNLSE �9–11�,

d��	 = �− iĤdt − ��
i=1

K

�X̂i − 
X̂i	��2dt

+ �
i=1

K

�X̂i − 
X̂i	��d#i��	 , �32�

where the Wiener fluctuation terms d#i satisfy


d#i	 = 0, d#id# j = 2�dt . �33�

To demonstrate the equivalence, Eq. �32� can be cast into the

evolution of the projector P̂�= ��	
��,

dP̂� = �− i�Ĥ,P̂�� − ��
j=1

K

†X̂ j,�X̂ j, P̂��‡�dt

+ �
i

��X̂i − 
X̂i	��d#i, P̂� . �34�

Averaging Eq. �34� over the noise recovers the original
Liouville–von Neumann equation �3�. Therefore, the prob-
lem of efficient simulation of the Liouville–von Neumann
dynamics is transformed to the problem of efficient simula-
tion of the nonlinear stochastic dynamics, governed by
sNLSE �32�.

The simulation of the pure-state evolution according to
the sNLSE �32� is based on an expansion of the evolving
state in the time-dependent basis of the GCS, Eq. �4�. In the
case of a finite Hilbert space an arbitrary state can be repre-
sented as a superposition of M!N GCS,

��	 = �
i=1

M

ci��i,�	 , �35�

where �i is an element of the coset space G /H, G is the
dynamical group of the system generated by g, H is the
maximal stability subgroup, corresponding to the reference
state ��	, and � is the highest weight of the Hilbert space
representation of the algebra. The coset space G /H has natu-
ral symplectic structure �13� and can be considered as a
phase space of the quantum system, corresponding to g. Ac-
cordingly, �i is a point in the phase space. The total number
of variables defining �up to an overall phase� the state � �35�
equals M times the dimension of the phase space G /H plus
the number M of amplitudes ci. The dimension of G /H de-
pends on the properties of the Hilbert space representation of
the algebra, but is always strictly less then the dimension of
the algebra K �13�. Therefore, the number m of real param-
eters, characterizing the state � �35� satisfies the following
inequality:

m� M�K + 2� . �36�

It follows that the necessary condition for efficient simula-
tion of the dynamics is that 1"MN in the physically rel-
evant time interval.

It is assumed that initial state of the system is a GCS,
corresponding to M =1 in the expansion �35�. If we omit the
nonlinear and stochastic terms in Eq. �32�, it becomes an
ordinary Schrödinger equation, governing the unitary evolu-
tion of the state. Under the action of a Hamiltonian linear in
the elements of g, the initial GCS evolves into a GCS by the
definition, Eq. �6�. Restoring the nonlinear and stochastic
terms to Eq. �32� breaks the unitarity of the evolution but a
GCS still evolves into a GCS under the full equation, Ref.
�20�. Therefore, a GCS solves the sNLSE �32�, driven by a
linear Hamiltonian. In Ref. �20� it is proved that a CGS is a
globally stable solution in that case, i.e., an arbitrary initial
state evolves asymptotically into a GCS.

Adding bilinear terms to the Hamiltonian �1� breaks the
invariance of the subalgebra g under the action of the Hamil-
tonian and, as a consequence, an initial GCS evolves into a
superposition of a number M�1 of the GCS �35� in the
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corresponding unitary evolution. If the number of terms M
becomes large, M =O�N�, the unitary evolution can no longer
be simulated efficiently. The nonlinear and stochastic terms
�representing the effect of the fictitious bath� in Eq. �32� is
expected to decrease the effective number M of terms in the
expansion �35� of the evolving state. This effect will be
termed localization. The natural measure of the localization
is the total uncertainty of the evolving state with respect the
spectrum-generating algebra g or, equivalently, the general-
ized purity of the state with respect to g �21�.

The localizing effect of the bath is proved and discussed
in Ref. �20�. Heuristically, it can be summarized as follows.
If each sum in the sNLSE �32� is replaced by a single con-

tribution of a given operator X̂ the uncertainty of the evolv-

ing state with respect to X̂ is strictly decreasing under the

action of the bath, unless the state is an eigenstate of X̂, in
which case it vanishes �9–11�. Therefore, the effect of the

bath is to bring an arbitrary state into an eigenstate of X̂. In

our case, the observables X̂i are noncommuting and cannot
be diagonalized simultaneously. Therefore, it is expected that
the effect of the bath in this case will be to take an arbitrary
state to a state which minimizes the total uncertainty with
respect to the elements of the algebra, i.e., to a GCS.

The characteristic time scale of the localization is the de-
coherence time scale ��cH�−1. If the classicality condition
�13� holds and the nonlinearity of the Hamiltonian is moder-
ate �cf. the end of Sec. III�, the localization is effective on a
time interval much shorter than the relaxation of the observ-
ables in g. As a consequence, the unitary dynamics of these
observables can be obtained by �i� simulating the nonlinear
stochastic evolution of the localized pure states, �ii� calculat-
ing the expectation values of the observables in each stochas-
tic unraveling, and �iii� averaging over the stochastic realiza-
tions.

Calculating the expectation values and averaging �steps
�ii� and �iii� above� are not part of the definition of efficient
simulation, and therefore should be considered separately.
Even if the step �i� can be performed efficiently according to
the definition, it is left to show that the computational cost of
steps �ii� and �iii�, measured, for example, by a number of
elementary computer operations, does not undermine the ef-
ficiency of the total scheme.

To calculate the expectation value of an observable in a
state represented by the GCS expansion �35� one must cal-
culate M�M +1� /2 matrix elements of the operator between

the GCS. Each matrix element for an operator X̂i�g can be
calculated group theoretically �13,22�, i.e., independently on
the Hilbert space representation. Therefore, if MN the
computation of the expectation values of the elements of g

can be performed efficiently.
The computational cost of the step �iii� is measured by the

number of stochastic realizations necessary to obtain the ex-
pectation values of the observables to a prescribed accuracy.
From statistics, this number n equals the ratio of the disper-
sion of the observable D and the squared absolute error �,
n=D /�2, i.e., the inverse relative error squared. If the relative
error is the quantity of interest, the number of the realizations
does not depend on the properties of the dynamics and, in

particular, on the size of the problem. If the stochastic evo-
lution simulation provides only a moderate speed-up over its
“brute-force” unitary counterpart, as will happen in simula-
tions of small quantum systems, the averaging may turn out
to be the bottleneck of the proposed scheme. On the other
hand, for large systems, the efficiency gained by the stochas-
tic simulation will be the main factor of the efficient imple-
mentation of the algorithm. In addition, it is important to
emphasize that it is not necessary to converge the averaging
process in order to obtain a meaningful information: even a
single “trajectory” bears important information. The absolute
error of the estimation depends on the dispersion of the ob-
servable and the corresponding number of stochastic realiza-
tions may grow with the Hilbert space dimension of the sys-
tem. In Appendix C it is shown that the number nst��� of
stochastic realizations, necessary to obtain the expectation

value of each observable X̂i�g to an absolute accuracy � is
comparable to the number of experimental runs, necessary to
obtain the same absolute accuracy. More precisely,

nst���! nex���dim�g . �37�

The dimension of the subalgebra of observables dim�g is
assumed to be a small number. Therefore, nst��� is smaller or
of the order of nex���.

Finally we focus on step �i� of simulating the nonlinear
stochastic evolution of the localized pure states. The local-
ization means that the number of GCS terms M in the ex-
pansion �35� is much smaller than the Hilbert space dimen-
sion N and, by virtue of the inequality �36�, the number m of
parameters that characterize the evolving state is much
smaller than N.

The details of the derivation of equations of motion for
the parameters will be given elsewhere �23�. Here we point
out the main ingredients of the derivation. We set the sNLSE
�32� in the equivalent exponential form

��	 + �d�	 = exp�− iĤdt − 2��
i=1

K

�X̂i − 
X̂i	��2dt

+ �
i

�X̂i − 
X̂i	��d#i���	

= exp�− 2��
i=1

K

�X̂i − 
X̂i	��2dt

+ �
i

�X̂i − 
X̂i	��d#i�e−iĤdt��	 , �38�

using the fact that the infinitesimal transformations commute
to the leading order.

The transformation

���	 = e−iĤdt��	 �39�

is a unitary evolution, corresponding to the Schrödinger
equation. The first-order differential equation of motions of
parameters of the representation �35� under this unitary evo-
lution can be derived variationally �24�, using �35� as a varia-
tional ansatz. Therefore, the unitary evolution can be simu-
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lated efficiently, provided the number of terms in the
expansion �35� is small.

Consider the second, nonunitary transformation

���	 = exp�− 2��
i=1

K

�X̂i − 
X̂i	��2dt + �
i=1

K

�X̂i − 
X̂i	��d#i����	

=
�

e��t� exp��
i=1

K

X̂i�4�
X̂i	�dt + d#i�����	

= e��t��
i=1

M

ci� exp��
i=1

K

X̂i�4�
Ĥi	�dt + d#i����i�,�	

=
��

e��t��
i=1

M

ci�e
�i��i�,�	

= �
i=1

M

ci���i�,�	 , �40�

where the starred equality follows from the fact that the Ca-

simir operator �i=1
K X̂i

2 act as identity on an arbitrary state ��,
and the double-starred equality follows from the fact that a
not necessarily unitary transformation generated by an ele-
ment of the algebra maps a GCS to a GCS modulo a com-
plex phase �13�. This transformation can be performed group
theoretically �13�, i.e., efficiently.

The unitary evolution, Eq. �39�, generated by the nonlin-
ear Hamiltonian �1�, will lead to delocalization of the evolv-
ing state. The nonunitary evolution, Eq. �40�, will lead to
localization. At sufficiently strong localization the number of
terms M necessary to converge the solution of the sNLSE
�32� on a fixed time interval will be much smaller, than in the
corresponding unitary evolution, and a substantial gain in the
computational efficiency will be achieved.

The next section takes up an example of a two-mode
Bose-Hubbard model of a Bose-Einstein condensate in a
double-well trap to illustrate the localizing properties of the
fictitious bath.

V. EXAMPLE: TWO-MODE BOSE-HUBBARD MODEL

A common model for an ultracold gas of bosonic atoms in
a one-dimensional periodic optical lattice is described by the
Bose-Hubbard Hamiltonian �25�,

Ĥ = − ��
i

�âi+1
† âi + âi

†âi+1� +
U

2 �
i

�âi
†âi�2, �41�

where � is the nearest-neighbors hopping rate and U is the
strength of the on-site interactions between particles. In the
simplest case of a two-sites lattice model, which has been
realized experimentally by confining a condensate in a
double-well trap �14,15�, the Hamiltonian �41� reduces to

Ĥ = − ��â1
†â2 + â2

†â1� +
U

2
��â1

†â1�2 + �â2
†â2�2� , �42�

where � is the tunneling rate. Equation �42� can be trans-
formed �26� to the su�2� set of operators

Ĵx = 1
2 �â1

†â2 + â2
†â1� ,

Ĵy =
1

2i
�â1

†â2 − â2
†â1� ,

Ĵz = 1
2 �â1

†â1 − â2
†â2� , �43�

leading to the following Lie-algebraic form:

Ĥ = − �Ĵx + UĴz
2, �44�

where �=2�. The Hilbert space of the system of N bosons in
this model corresponds to the j=N /2 irreducible representa-
tion of the su�2� algebra. We seek to simulate the evolution
of the operators �43�, driven by the Hamiltonian �44�, where
the initial state of the system is a GCS with respect to the
su�2�, the spin-coherent state �13,27,28�. More specifically,
the initial state is chosen as

���0�	 = �− j	 , �45�

which corresponds to the state of the condensate, localized in
a single well.

The dynamics driven by the weak measurement of the
operators �43� on the evolving condensate is described by the
Liouville–von Neumann equation of the form �3�:

�

�t
�̂ = − i�Ĥ, �̂� − ��

i=0

2

†Ĵi,�Ĵi, �̂�‡ . �46�

The classicality condition �13� for the 2j+1=N+1-
dimensional representation of the su�2�, corresponding to N
atoms in the trap, translates into the N�1 condition �Appen-
dix B�. Therefore, for sufficiently large numbers of atoms in
the trap the classicality condition is satisfied and a suffi-

ciently weak measurement of the operators Ĵx, Ĵy, and Ĵz is
expected to induce strong decoherence in the spin-coherent
state basis, but leaving the dynamics of the operators practi-
cally unperturbed. As a consequence, the generalized purity

of a stochastic unraveling of Eq. �46�, Psu�2����=�i
Ĵi / j	2, is
expected to remain close to unity, which enables efficient
simulation of the corresponding dynamics.

Figure 1 displays the evolution of the expectation values

of the operators Ĵx / j, Ĵy / j, and Ĵz / j in the unitary evolution
�=0 and in the nonunitary case �=� / �300j� for N=2j
=128 particles in the condensate. The hopping rate � and the
strength of the on-site interaction are related by U=� /2j. It
can be seen that the evolution is negligibly perturbed by the
bath for the chosen strength of the coupling �. We also plot
the generalized purity of the unitarily evolving state and of a
random stochastic unraveling of the nonunitary evolution.
The generalized purity in the unitary case decreases to the
value of about 0.06, which corresponds �Appendix A� to the
number of configurations M =0.75�2j+1��100=O�N� in the
GCS expansion of the solution. On the other hand, the gen-
eralized purity in the stochastic unraveling is about 0.9–0.95
which corresponds to a drastic reduction of the number of
configurations to M =0.04�2j+1��5N.
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An interesting feature of the stochastic evolution dis-
played in Fig. 1 �and observed in other numerical simula-
tions, see Fig. 2� is that apparently, the generalized purity
approaches a constant value on average. Since the general-
ized purity is a measure of localization of the state on the
corresponding phase space �which is the Bloch sphere for the
su�2� algebra �13,27,28�� such behavior is suggestive of a
solitonlike solution of the sNLSE �32�. Investigation of ex-
istence and properties of these solitonlike solutions seems to
be an interesting topic for future research. For the time being
let us assume that the stationary �on average� value P of the
generalized purity as displayed in Fig. 1 is an analytical
function of 1 / j �see Fig. 2 for some evidence�. Then

P = 1 −
1

j
f��aUb�c� , �47�

to the lowest order in 1 / j, where f is an unknown function of
the dimensionless argument �aUb�c and a+b+c=0. Using
the estimate �Appendix A� for the number of configurations
we obtain

M = �2j + 1��1 − �P� = f��aUb�c� , �48�

i.e., the number of configurations in the expansion of the
stochastic unraveling does not depend on j. Numerical evi-
dence implies that generally f��aUb�c��1. For example, the
value of f��aUb�c� is 3, deduced from Fig. 2. This implies,
that asymptotically, as j→$, the dynamics of the single-
particle observables of the two-modes Bose-Hubbard model
can be reproduced not by an averaging over stochastic GCS
evolutions �stochastic mean-field solutions�, but rather by an
averaging over the stochastic evolutions of superpositions of
a constant small number M�1 of GCS.

Similar behavior has been observed in different paramet-
ric regimes of the Bose-Hubbard model and in the study of
other su�2� Hamiltonians, including the Lipkin–Meshkov–
Glick model �29� of a system of interacting fermions. It
should be noted that drawing inferences from these models
requires certain caution since both the two-mode Bose-
Hubbard and Lipkin–Meshkov–Glick are exactly solvable
models �30�. The proposed method does not rely on the
quantum integrability of the system. Nonetheless, its effi-
ciency may depend on the integrability. Investigation of this
important question seems to be a meaningful objective for
future research.

VI. DISCUSSION AND OPEN QUESTIONS

A strategy for efficient simulation of a unitary evolution
of a restricted set of observables has been proposed �cf. Fig.
3�. The present strategy can lead to a dramatic speed-up
compared to a brute-force computation. The price paid for
the speed-up is that the dynamics of only a restricted set of
observables can be simulated. The simulation focuses on the
set of the observables which comprises the spectrum-
generating Lie algebra of the system. This set of observables
is interesting theoretically and often accessible experimen-
tally �2�. The main idea of the proposed method is that the
unitary evolution of the distinguished observables is simu-
lated by a particular open-system dynamics, corresponding
to the process of weak measurement of the observables, per-
formed on the evolving quantum system.

A successful implementation of the scheme is based on
the assumption that a large time-scale separation exists be-
tween the decoherence of the evolving state in the basis of
the GCS, associated with the algebra, and the relaxation of
the expectation values of the elements of the algebra. The
necessary condition for the existence of the time-scale sepa-
ration is the classicality condition �13� on the spectrum-
generating algebra and its Hilbert space representation. This
necessary condition excludes efficient simulation of certain
subalgebras of observables �Appendix B�. For example, the
unitary dynamics of local observables of a composite system
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FIG. 1. �Color online� The purity and expectation values of
observables as a function of time. An initial GCS, Eq. �45�, under-
goes �i� unitary, �=0 �solid lines�; �ii� nonunitary, �=� / �300j�
�dashed lines�, evolution according to the Liouville equation �46�.
The strength of the on-site interaction chosen for the numerical
solution is U=� /2j. The observed dynamics of the expectation val-

ues of Ĵx / j, Ĵy / j, and Ĵz / j is negligibly affected by the bath while
the generalized purity Psu�2���� of the stochastic unraveling of the
nonunitary evolution is larger by the factor of 15 than the minimal
purity of the unitarily evolving state.
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FIG. 2. �Color online� Generalized purity averaged over a small
number �2–10� of stochastic unraveling of the Liouville–von Neu-
mann equation �46�. Initial state and parameters of the equation are
as in Fig. 1. Purity is plotted for j=2,4 ,8 ,16,32,64,128. The inset
shows the generalized purity as a function of 1 / j. At larger j the
value of the averaged purity is apparently consistent with the esti-
mate 1− 1

j f��aUb�c�, with f��aUb�c�=3, corresponding to M =3
number of the GCS terms in the expansion of the solution.
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of qubits cannot be simulated with higher efficiency by the
open-system evolution. It is expected that the classicality
condition is also sufficient for the time-scale separation, pro-
vided the nonlinearity is moderate. An order of magnitude
argument is presented to support a claim that if the Hamil-
tonian is a polynomial in the algebra elements, the time-scale
separation exists, provided the classicality condition is satis-
fied sufficiently well. Higher orders of the polynomial re-
quire a stronger “classicality” condition to ensure the time-
scale separation. Numerical investigation of the su�2� case
with Hamiltonians bilinear in the algebra elements has
shown that time-scale separation is strong already in Hilbert
space representations of dimension �100.

The proposed numerical algorithm allows for an empirical
check of convergence by repeating the calculation with a
reduced coupling to the fictitious bath. If a simulation is
found to converge the results are valid and a theoretical jus-
tification for time-scale separation is no longer required. If
the time-scale separation is small or nonexistent, in order to
obtain convergent results one must take the coupling to the
bath so weak that the localization, generated by the bath will
not be sufficient to provide any substantial speed-up. Once
the results are converged in the strength of the coupling and
in the number of the generalized coherent states in the com-
putational basis, the results can be relied on irrespectively on
the magnitude of the time-scale separation.

The fast decoherence reduces the computational complex-
ity of the evolution, while the slow relaxation leaves the
dynamics of the restricted set of observables practically un-
affected on physically interesting time scales. The effect of a

fictitious coupling to a bath can be viewed as a dynamically
induced coarse graining of the evolving state in the phase
space, associated with the spectrum-generating Lie algebra.
The fine structure of the evolving state, irrelevant for the
expectation values of the “smooth” observables, is rubbed
out by the decoherence, thereby reducing the computational
complexity of the evolution. This coarse graining can be seen
as a generalization of the process of conversion of quantum
correlations �entanglement� to classical correlations under
the action of local dephasing environments �31�. The reduc-
tion of the computational complexity is realized by simulat-
ing the sNLSE, governing the stochastic unraveling of the
nonunitary evolution. The GCS are globally stable solutions
of the sNLSE, corresponding to a Hamiltonian, linear in the
algebra elements �20�. Numerical evidence obtained in the
su�2� case suggests that Hamiltonians bilinear in the genera-
tors asymptotically lead to solitonlike stable localized solu-
tions of the corresponding sNLSE. Averaging over the sto-
chastic realizations of the open-system evolution recovers
the unitary dynamics of the restricted set of observables.

The fictitious bath is fine-tuned—it corresponds to a pro-
cess of weak measurement of the orthonormal basis set of the
operators, performed with equal rates and strengths. This
fine-tuned bath is constructed as a computational tool. On the
other hand, if the fine-tuning condition is dropped, the result-
ing open-system dynamics can represent a real physical situ-
ation, where the linear part of the Hamiltonian is perturbed
by the time-dependent 	-correlated noise �32�. In that case
the density operator of the system will follow an open evo-
lution, corresponding to a process of weak measurement of
the algebra elements, performed with generally different
rates �32�. It is expected, that if the noise is sufficiently weak,
the constant part of the Hamiltonian will induce fast �on the
relaxation time scale� rotation in the Hilbert-Schmidt opera-
tor space, which effectively will average out the difference
between the contributions of various measurements. There-
fore, this real bath is expected to induce the same type of
localization as the fine-tuned fictitious bath. Numerical evi-
dence obtained in the su�2� case supports this conjecture
�23�. Restricting the measurements to the algebra elements,
the experimentalist will not observe the effect of the bath if
the noise is sufficiently small, while measuring the higher-
order correlations will reveal the nonunitary character of the
evolution. Generally, it is expected that the open-system dy-
namics can be simulated with higher efficiency than the cor-
responding unitary dynamics, provided the classicality con-
dition holds.

The main directions for future research are the following:
�i� Investigation of the effect of nonlinear terms in the

Hamiltonian �1� on the relaxation time scales of the observ-
ables in the spectrum-generating algebra in the correspond-
ing fictitious open-system dynamics, Eq. �3�.

�ii� Development of an efficient and convergent algorithm
for simulating the evolution of a state in the GCS basis rep-
resentation.

�iii� Investigation of the extent of localization as a func-
tion of the “classicality,” and in particular, proving the con-
jecture that the localization is independent of the Hilbert
space representation of the spectrum-generating algebra if
the “classicality” is sufficiently strong.

Effective Hamiltonian
H=∑aiXi +∑bij XiXj

Selected observables 〈Xj〉

GCS X⇔ |Ω,ψ0〉
representation

Fictitious Bath
−γ∑[Xj,[Xj, ρ]]

Simulating the bath by
the stochastic nonlinear

Schrödinger equation for ψk

Averaging
〈Xj〉u=〈Xj〉st = nst

∑〈ψk|Xj|ψk〉1

FIG. 3. �Color online� A schematic flow chart of the proposed

approach to simulate dynamics of the operators X̂i of the spectrum-
generating algebra of the system. The unitary evolution of the ob-
servables is simulated by the open-system evolution, modeling
weak measurement of the evolving observables. The open-system
dynamics is unraveled into stochastic pure-state evolutions, effi-
ciently simulated using expansion of the pure state in the GCS.
Averaging over nst realizations obtains the expectation values, cor-

responding to the unitary evolution 
X̂ j	u= 
X̂ j	st.
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�iv� Comparison of the efficiency of the proposed method
in applications to quantum integrable vs nonintegrable mod-
els.
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APPENDIX A: RELATION OF THE GENERALIZED
PURITY TO THE NUMBER OF CONFIGURATIONS

IN THE GCS EXPANSION OF THE STATE:
su(2) CASE

The phase space of a quantum system, associated with the
su�2� spectrum-generating algebra is a two-dimensional
sphere �13,27,28�, usually called a Bloch sphere. The local-
ization of a state � of the system in the phase space means
localization of its P distribution �13,28� about a point in the
phase space. Without loss of generality it can be assumed
that the state is localized about the origin. In fact, an appro-
priate unitary transformation, generated by the su�2�, maps a
state localized about an arbitrary point to the state, localized
about the origin, leaving both the generalized purity and the
number of the GCS in the expansion invariant. For definite-
ness let us assume that the P distribution has a finite support
area S of radius � about an origin on the phase space. Using
the expression for the resolution of identity in terms of the
GCS �13,28� ��	,

Î =
2j + 1

�
� d2�

�1 + ���2�2 ��	
�� , �A1�

the number of the GCS in the expansion of the state can be
estimated as follows:

M��� =
2j + 1

�
�

S

d2�

�1 + ���2�2

= �2j + 1��
0

���2 d���2

�1 + ���2�2

= �2j + 1�
���2

1 + ���2
. �A2�

To calculate the generalized purity we must calculate the

expectation values of Ĵx, Ĵy, and Ĵz. Given the P representa-

tion of the state, the expectation value of an observable X̂
can be calculated using its Q representation,


X̂	 =
2j + 1

�
� d2�

�1 + ���2�2 P���QX̂��� , �A3�

where QX̂���= 
��X̂��	. We have �13,28�

QĴx
= j

� + ��

1 + ���2
,

QĴy
= j

� − ��

i�1 + ���2�
,

QĴz
= j

���2 − 1

1 + ���2
. �A4�

Assuming that P��� is symmetric about the origin ��=0�, we

see that the expectation values of Ĵx and Ĵy vanish and


Ĵz	 =
2j + 1

�
� d2�

�1 + ���2�2 P���j
���2 − 1

1 + ���2
. �A5�

We assume that

P��� = �p , ���! ��� ,
0, ���� ��� .� �A6�

The distribution �A6� as it stands does not correspond to a
pure state. Nonetheless, it can be understood as a coarse-
grained version of a localized pure state, useful for calcula-

tion of the expectations of Ĵx, Ĵy, and Ĵz and the generalized
purity Psu�2����, Eq. �A10�. In fact, Eq. �A4� gives the char-
acteristic scale of unity for the change of the Q representa-
tion in the integral �A3�. On the other hand, the resolution of
identity �A1� implies the characteristic scale of the fine struc-
ture of the P distribution �the width of the overlap of two
coherent states� of the order of �1+ ���2� /�j. Therefore, as
long as �1+ ���2� /�j1 in Eq. �A6� the coarse-grained dis-
tribution can be used for calculation of the generalized pu-
rity. As can be seen below, Eq. �A10�, for j�1 the coarse-
grained description is valid for calculation of the generalized
purity asymptotically as 1 / j.

For a particular form of the distribution �A6�, Eq. �A5�
simplifies to


Ĵz	 = pj�2j + 1��
0

���2 d���2

�1 + ���2�2

���2 − 1

1 + ���2

= j − pj�2j + 1��
0

���2 2d���2

�1 + ���2�3

= j − pj�2j + 1��1 −
1

�1 + ���2�2� . �A7�

The number p in Eq. �A6� can be found from the normaliza-
tion condition

1 = 
Î	 =
2j + 1

�
� d2�

�1 + ���2�2 P���

= p�2j + 1��
0

���2 d���2

�1 + ���2�2

= p�2j + 1�
���2

1 + ���2
, �A8�

from which p= �1+ ���2� / ����2�2j+1��. Inserting this expres-
sion into Eq. �A7�, we obtain
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Ĵz	 = j − pj�2j + 1��1 −
1

�1 + ���2�2�
= j −

1 + ���2

���2
j�1 −

1

�1 + ���2�2�
= −

j

1 + ���2
. �A9�

Therefore,

Psu�2���� =
1

j2�
i


Ĵi	2 =
1

j2 
Ĵz	2 = � 1

1 + ���2�
2

�A10�

and

���2 =
1

�Psu�2����
− 1. �A11�

Inserting the latter expression into Eq. �A2�, we obtain for
the number of GCS in the expansion

M��� = �2j + 1��1 − �Psu�2����� . �A12�

As argued after Eq. �A6� expressions �A10� and �A12� are
valid for Psu�2�����1 / j.

APPENDIX B: CLASSICALITY CONDITION: (i)
SUBALGEBRA su(n) OF SINGLE PARTICLES

OBSERVABLES OF THE n-MODES BEC IN AN OPTICAL
LATTICE; (ii) SUBALGEBRA OF LOCAL

OBSERVABLES OF A SYSTEM OF n d-LEVEL SYSTEM

1. BEC

The spectrum-generating algebra of the Bose-Hubbard
model for the n-modes BEC in optical lattice is su�n� subal-
gebra of the single particles observables �33,34�. It is shown
that the classicality condition �13� is satisfied in this case,
provided the number of atoms N in the condensate complies
with

N� n . �B1�

The Hilbert space of the condensate is a totally symmetric
irreducible representation of the su�n� �N� �5� and the value
of the Casimir in this representation is �5�

cH =
n − 1

2n
N�N + n� . �B2�

The total uncertainty in the GCS is �16,18�

�min = cH − 
�N��N	 = cH −
n − 1

2n
N2 =

1

2
N�n − 1� ,

�B3�

where we have used the known expression �5� for the norm
of the maximal weight vector �3� �N in the totally symmetric
irreducible representation of the su�n� �N�. The value of the
Casimir in the adjoint representation is �5�

cadj = n . �B4�

Thus Eq. �13� holds if and only if Eq. �B1� holds. More-
over,

� cH
cadj

=�n − 1

2n2 N�N + n� , �B5�

which implies Eq. �23�, provided Eq. �B1� holds.
Therefore, using the sNLSE �32�, propagation can be ad-

vantageous for calculation of the single particles observ-
ables, provided the on-site interaction preserves the time-
scale separation in Eq. �23�.

2. Local observables

Let g be a subalgebra of local observables on the compos-
ite Hilbert space. For simplicity, let us consider n d-level
systems in the Hilbert space H= � i=1

n Hi and a subalgebra of
local observables g= � i=1

n su�L�� � i=1
n su�d��su�dn�. Since

the minimum of the total uncertainty �7� for a local subalge-
bra is obtained in a product state �prod= � i=1

n �i, where each
�i is a GCS with respect to the local subalgebra su�L� it
follows that

�min = ���prod� = cH − P
g
��prod� = �

i=1

n

�cHi
− Psu�L���i��

= n�cHd
− Psu�L��GCS�� = n�d,min, �B6�

where Hd is the Hilbert space of a d-level subsystem and
�d,min is the minimal total uncertainty of a state of any sub-
system with respect to the subsystem subalgebra su�L�.
Therefore, the condition �13� is equivalent to

�min

cH
=
�d,min

cHd

 1, �B7�

i.e., holds if and only if the local subalgebras su�L� of the
subsystems operators comply with the classicality condition.
For example, in the composite system of a two-level system
the only subalgebra of local observables is the local subalge-
bra g= � i=1

n su�2�. The eigenvalue of the local Casimir equals
�1 /2��1 /2+1�=3 /4 and the generalized purity with respect
to a su�2� algebra of each two-level system is 1/4. Therefore,
the minimal total uncertainty with respect to a su�2� algebra
of each two-level system equals 3 /4–1 /4=1 /2 and the ratio
of the uncertainty to the Casimir equals �1 /2� / �3 /4�=2 /3.
Therefore, the strong inequality �B7� is not satisfied. More
generally, it can be shown using Eq. �B6� that the local al-
gebra g= � i=1

n su�d��su�dn� gives

�min

cH
=

d

d + 1
, �B8�

therefore the classicality condition �13� does not hold.

APPENDIX C: ESTIMATION OF THE NUMBER OF
STOCASTIC REALIZATIONS, NECESSARY TO

CONVERGE THE EXPECTATION VALUES
OF THE OBSERVABLES IN g TO A

PRESCRIBED ABSOLUTE ACCURACY �

Given a random variable X̂ with dispersion DX�
X̂2	
− 
X̂	2 the number of samplings n���, necessary to estimate
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the expectation value 
X̂	 to the absolute accuracy � equals

n���X =
DX

�2 . �C1�

Let us assume that each observable X̂i�g is measured in an
experiment to a prescribed accuracy �. The corresponding
number of experimental runs is n���Xi

. Then

�
i=1

dim�g

n���Xi
=

�
i=1

dim�g

DXi

�2

=

�
i=1

dim�g

�
X̂i
2	 − 
X̂i	2�

�2

=

CH − �
i=1

dim�g


X̂i	2

�2 . �C2�

Now consider the computation of expectation values of

observables X̂i�g in a state �̂�t�, evolving according to Eq.
�3�, by averaging over stochastic unraveling �32�. By Eq.
�C1� the number of unraveling necessary to compute the ex-

pectation value of X̂i to the accuracy � is n���Xi
� =DXi

� /�2,
where DXi

� is the dispersion of the observable in the state �̂�t�.
Then

�
i=1

dim�g

n���Xi
� =

�
i=1

dim�g

DXi
�

�2 =

�
i=1

dim�g

�
X̂i
2	� − 
X̂i	�2�

�2

=

CH − �
i=1

dim�g


X̂i	�2

�2 , �C3�

where 
X̂	� means statistical average over the unraveling of
the quantum expectation values obtained in each unraveling
�which is the random variable for the purpose of Eq. �C1��.
But on the time interval of the simulation �Sec. III�


X̂i	� = 
X̂i	 , �C4�

therefore Eqs. �C2�–�C4� imply

�
i=1

dim�g

n���Xi
� = �

i=1

dim�g

n���Xi
. �C5�

It follows that

n���st � maxi�n���Xi
� ! �

i=1

dim�g

n���Xi
� = �

i=1

dim�g

n���Xi

! dim�gmaxi�n���Xi
 � dim�gn���ex, �C6�

where nst��� is the number of stochastic realizations, neces-

sary to obtain the expectation value of each observable X̂i
�g to an absolute accuracy �, nex��� is the number of ex-
perimental runs, necessary to obtain the expectation value of

each X̂i to the absolute accuracy �.
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Abstract
Weak measurement of a subset of noncommuting observables of a quantum
system can be modeled by the open-system evolution, governed by the master
equation in the Lindblad form. The open-system density operator can be
represented as a statistical mixture over non-unitarily evolving pure states,
driven by the stochastic nonlinear Schrödinger equation (sNLSE). The globally
stable solution of the sNLSE is obtained in the case where the measured subset
of observables comprises the spectrum-generating algebra of the system. This
solution is a generalized coherent state (GCS), associated with the algebra.
The result is based on proving that the GCS minimizes the trace-norm of the
covariance matrix, associated with the spectrum-generating algebra.

PACS numbers: 03.65.Ta, 03.65.Yz, 02.50 Ey

1. Introduction

The number of solvable quantum dynamics models is quite limited. The importance of such
models is that they form a source of insight into quantum phenomena. In addition, the solvable
models are the starting point of approximate theories. An important class of solvable models
is based on a Lie-algebraic Hamiltonian of the following form:

Ĥ =
∑

j

aj X̂j (1)

where the set {X̂j } of observables is closed under the commutation relations:

[X̂i, X̂j ] = i
K∑

k=1

fijkX̂k, (2)

i.e., it forms Lie algebra (Gilmore 1974) of the system operators, known as the spectrum-
generating algebra (Bohm et al 1988) of the system.

1751-8113/08/365203+10$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1
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The solvable nature of the dynamics generated by equation (1) motivates the search of
transformation of complex many-body problems to an algebraic description. The next level
of complexity is to add the binary term

Ĥ =
∑

j

aj X̂j , +
∑
kl

bklX̂kX̂l, (3)

where aj = a∗
j and bkl = b∗

lk . Such Lie-algebraic Hamiltonians are encountered in various
fields of the many-body physics, such as molecular (Iachello and Levine 1995, Iachello 2006),
nuclear (Bohm et al 1988, Iachello 2006) and condensed matter physics (Bohm et al 1988).

A useful property of the Lie-algebraic setting is a set of states which can be thought of
as the most classical states with respect to measurement performed on the elements of the
algebra. These states are termed generalized coherent states (GCS) with respect to the algebra
(Perelomov 1985, Zhang et al 1990). An important property of the GCS is their invariance
under the action of the unperturbed Hamiltonian, linear in the algebra elements, equation (1).
This means that a GCS evolves into a GCS under the action of the Hamiltonian (1). In the
perturbed case (3) GCS are generally no longer invariant but the GCS ansatz can be used for
a mean-field approximation of the many-body dynamics (Kramer and Saraceno 1981, Zhang
et al 1990).

Any realistic physical system is open, i.e., the interaction with the dissipating environment
cannot be neglected. It is therefore of necessity to include the effect of an environment on
the dynamics. Particularly interesting is the open-system evolution modeling the process of
weak measurement (Diosi 2006). The open-system dynamics studied in the present work is
generated by the Lindblad semi-group (Lindblad 1976, Breuer and Petruccione 2002):

∂

∂t
ρ̂ = Lρ̂ = −i[Ĥ , ρ̂] −

K∑
j=1

γj [X̂j , [X̂j , ρ̂]], (4)

where the Hamiltonian has the algebraic form (1). The spectrum-generating algebra of the
system spanned by {X̂i} is assumed to be a compact semisimple algebra (Gilmore 1974)
and the basis {X̂i} is chosen to be orthonormal with respect to the Killing form (Gilmore
1974). The second term on the rhs of the Lindblad master equation (4) (the dissipation term
in what follows) is responsible for the non-unitary character of the open-system evolution and
is due to the system–bath interaction. This interaction can be interpreted as a process of weak
measurement (Diosi 2006) of operators {X̂i}Ki=1, performed on a quantum system, driven by
the Hamiltonian (3), and the coupling constant γj reflects the strength of the measurement of
the observable X̂j . It will be assumed that all the coupling constants are equal, γj = γ . This
form of the dissipation term in equation (4) is chosen to ensure invariance under the group of
unitary transformations, generated by spectrum-generating algebra, which is assumed to be
the symmetry of the system–bath interaction. As a paradigm for such open-system dynamics
(4) one may consider dynamics of a spin, immersed into an isotropic dissipating environment:

∂

∂t
ρ̂ = −iω[Ĵ 1, ρ̂] − γ

3∑
j=1

[Ĵ j , [Ĵ j , ρ̂]], (5)

where Ji satisfy the commutation relations of the su(2): [Ĵ i , Ĵ j ] = iεijkĴ k . Here, the
SU(2) group invariance of the dissipation term results from the isotropy of the system–bath
interaction.

2
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The solution of the master equation (4) can be represented as a statistical mixture of pure
states, evolving according to the stochastic nonlinear Schrödinger equation (sNLSE) (Gisin
1984, Diosi 1988a, Gisin and Percival 1992):

d|ψ〉 =
{

−iĤ −
K∑

i=1

γj (X̂i − 〈X̂i〉ψ)2

}
dt |ψ〉 +

K∑
i=1

(X̂i − 〈X̂i〉ψ) dξi |ψ〉, (6)

where the Wiener fluctuation terms dξi satisfy

〈dξi〉 = 0, dξi dξj = 2δij γj dt. (7)

The purpose of the present work is to study the asymptotical properties of solutions of
the sNLSE (6). We will show that the GCS associated with the spectrum-generating algebra
of the system, driven by the Lindblad equation (4), are the globally stable solutions of the
associated sNLSE (6). This property means that a group-invariant coupling to a dissipating
environment will result in dynamics which can be represented as a statistical mixture of stable
trajectories of the GCS, associated with the corresponding algebra.

2. Generalized coherent states and the total uncertainty

Let us assume that the algebra g is represented irreducibly on the system’s Hilbert space H.
Then an arbitrary state ψ ∈ H can be represented as a superposition of the generalized coherent
states (GCS) (Perelomov 1985, Zhang et al 1990) |
,ψ0〉 with respect to the corresponding
dynamical group G and an arbitrary state ψ0:

|ψ〉 =
∫

dμ(
)|
,ψ0〉〈
,ψ0|ψ〉, (8)

where μ(
) is the group-invariant measure on the coset space G/H (Gilmore 1974),

 ∈ G/H,H ⊂ G is the maximal stability subgroup of the reference state ψ0:

h|ψ0〉 = eiφ(h)|ψ0〉, h ∈ H (9)

and the GCS |
,ψ0〉 are defined as follows:

Û (g)|ψ0〉 = Û (
h)|ψ0〉 = eiφ(h)Û (
)|ψ0〉
≡ eiφ(h)|
,ψ0〉, g ∈ G, h ∈ H, 
 ∈ G/H, (10)

where Û (g) is a unitary transformation generated by a group element g ∈ G.
The group-invariant total uncertainty of a state with respect to a compact semisimple

algebra g is defined as (Delbourgo and Fox 1977, Perelomov 1985)

�[ψ] ≡ 〈�̂ψ 〉ψ =
K∑

j=1

〈
X̂2

j

〉
ψ

−
K∑

j=1

〈X̂j 〉2
ψ, (11)

where we have used the notation �̂ψ ≡ ∑
i (X̂i − 〈X̂i〉ψ)2. The first term on the rhs of

equation (11) is the eigenvalue of the the Casimir operator of g in the (irreducible) Hilbert
space representation:

Ĉ =
K∑

j=1

X̂2
j (12)

and the second term is the generalized purity (Barnum et al 2003) of the state with respect
to g:

Pg[ψ] ≡
K∑

j=1

〈X̂j 〉2
ψ. (13)

3
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Let us define �min as a minimal total uncertainty of a quantum state and cH as the eigenvalue
of the Casimir operator of g in the system Hilbert space. Then

�min � �[ψ] � cH, (14)

The total uncertainty (11) is invariant under an arbitrary unitary transformation generated
by g. Therefore, all the GCS with respect to the algebra g and a reference state ψ0 have a fixed
value of the total invariance. It has been proved (Delbourgo and Fox 1977) that the minimal
total uncertainty �min is obtained if and only if ψ0 is the highest (or lowest) weight state of
the representation. The value of �min is given by (Delbourgo and Fox 1977, Klyachko 2002)

�min ≡ (,μ) � �[ψ] � (, + μ) = cH, (15)

where  ∈ R
r is the highest weight of the representation, μ ∈ R

r is the sum of the positive
roots of g, r is the rank of g (Gilmore 1974) and (. . . , . . .) is the Euclidean scalar product in
R

r . The corresponding GCS were termed the generalized unentangled states with respect to
the algebra g (Barnum et al 2003, Klyachko 2002). The maximal value of the uncertainty is
obtained in states termed maximally or completely entangled (Barnum et al 2003, Klyachko
2002) with respect to g. The maximum value equals cH in the states having 〈ψ |X̂j |ψ〉2 = 0
for all i. Such states exist in a generic irreducible representation (irrep in what follows) of an
arbitrary compact simple algebra of observables (Klyachko 2002). Generic superpositions of
the GCS have larger uncertainty and are termed generalized entangled states with respect to g

(Barnum et al 2003, Klyachko 2002). In what follows, it is assumed that the reference state
ψ0 for the GCS minimizes the total invariance (11).

3. The main result: global stability of the generalized coherent states

3.1. The time evolution of the total uncertainty

The time evolution of the total uncertainty (11) of a pure state evolving according to the sNLSE
(6) can be calculated as follows:

d�[ψ(t)] = d
∑

i

(〈
X̂2

i

〉
ψ

− 〈X̂i〉2
ψ

) = −d
∑

i

〈X̂i〉2
ψ

= −
∑

i

(2 d〈X̂i〉ψ 〈X̂i〉ψ + d〈X̂i〉ψ d〈X̂i〉ψ), (16)

where we have used prescription of the Ito calculus: d(xy) = dxy + x dy + dx dy and the
fact that d

∑
i

〈
X̂2

i

〉
ψ

= 0 by the invariance of the Casimir operator (12) under dynamics in an

irreducible representation. To calculate dX̂i we derive the Heisenberg equations of motion,
corresponding to the sNLSE (6).

Equation (6) is equivalent to the following equation for the corresponding projector
P̂ ψ = |ψ〉〈ψ |:

dP̂ ψ =
⎛
⎝−i[Ĥ , P̂ ψ ] − γ

K∑
j=1

[X̂j , [X̂j , P̂ ψ ]]

⎞
⎠ dt +

∑
i

{(X̂i − 〈X̂i〉ψ) dξi, P̂ ψ }. (17)

Equation (17) implies that the following stochastic Heisenberg equation can be used to calculate
the increment d〈X̂i〉 for an arbitrary operator X̂i :

dX̂i =
⎛
⎝i[Ĥ , X̂i] − γ

K∑
j=1

[X̂j , [X̂j , X̂i]]

⎞
⎠ dt +

∑
j

{(X̂j − 〈X̂j 〉ψ) dξj , X̂i}

= (i[Ĥ , X̂i] − γ cadjX̂i) dt +
∑

j

{(X̂j − 〈X̂j 〉ψ) dξj , X̂i}, (18)

4
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where cadj is the quadratic Casimir in the adjoint representation (see equation (12)).
Multiplying equation (18) by 〈X̂i〉ψ , summing up over all the observables and computing
the expectation value we obtain

K∑
i=1

〈X̂i〉ψ d〈X̂i〉 =
(

i
K∑

i=1

〈X̂i〉ψ 〈[Ĥ , X̂i]〉ψ − γ cadj

K∑
i=1

〈X̂i〉2
ψ

)
dt

+
∑
j,i

〈X̂i〉ψ 〈{(X̂j − 〈X̂j 〉ψ) dξj , X̂i}〉ψ

= −γ cadj

K∑
i=1

〈X̂i〉2
ψ dt

+
K∑

i,j=1

〈X̂i〉ψ(〈{X̂j , X̂i}〉ψ − 2〈X̂j 〉ψ 〈X̂i〉ψ) dξj , (19)

where the contribution of the Hamiltonian term has vanished due to the antisymmetry of the
structure constants fjik of g:

i
K∑

i,j=1

aj 〈X̂i〉ψ 〈[X̂j , X̂i]〉ψ = i
K∑

i,j,k=1

aj 〈X̂i〉ψ 〈ifjikX̂k〉ψ

= −
K∑

j=1

aj

K∑
i,k=1

fjik〈X̂i〉ψ 〈X̂k〉ψ = 0. (20)

From equation (18) we get

d〈X̂i〉ψd〈X̂i〉ψ =
∑
k,l

dξk dξl〈{(X̂k − 〈X̂k〉ψ), X̂i}〉ψ 〈{(X̂l − 〈X̂l〉ψ), X̂i}〉ψ

= 2γ dt
∑

k

〈{(X̂k − 〈X̂k〉ψ), X̂i}〉2
ψ

= 2γ dt
∑

k

(〈{X̂k, X̂i}〉ψ − 2〈X̂k〉ψ 〈X̂i〉ψ)2. (21)

Inserting equations (21) and (20) into equation (16) we obtain

d〈�̂〉ψ = −
∑

i

(2 d〈X̂i〉ψ 〈X̂i〉ψ + d〈X̂i〉ψ d〈X̂i〉ψ)

= 2γ

(
cadj

K∑
i=1

〈X̂i〉2
ψ −

∑
k,i

(〈{X̂k, X̂i}〉ψ − 2〈X̂k〉ψ 〈X̂i〉ψ)2

)
dt

− 2
∑
j,i

〈X̂i〉ψ(〈{X̂j , X̂i}〉ψ − 2〈X̂j 〉ψ 〈X̂i〉ψ) dξj . (22)

The remaining terms in equation (22) describe the effect of the bath (weak measurement)
on the total uncertainty of a pure state evolving according to the sNLSE. It can be shown
by direct calculation that these terms vanish in a GCS. But a simpler way to show this is to
note that the infinitesimal evolution of the state, corresponding to the sNLSE (6) dropping the

5
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Hamiltonian term, is given by

|ψ〉 + |dψ〉 = exp

{
−2γ �̂ψ dt +

∑
i

(X̂i − 〈X̂i〉ψ) dξi

}
|ψ〉

= exp

{∑
i

(X̂i − 〈X̂i〉ψ) dξi

}
exp {−2γ �̂ψ dt}|ψ〉

= exp {φ(t)} exp

{∑
i

(X̂i − 〈X̂i〉ψ) dξi

}
|ψ〉, (23)

where we have used the fact (Delbourgo and Fox 1977) that a GCS is an eigenstate of the
operator �̂ψ , defined after equation (11). From equation (23) we see that the infinitesimal
transformation of the state is driven by the operator linear in the generators of the algebra.
Therefore, a GCS transforms into a GCS under the infinitesimal evolution1 and the total
uncertainty of the evolving state remains constant (and minimal).

The first term in equation (22), considered as a functional on the Hilbert space, has
global maximum in the GCS (Subsection C). Therefore, on average, the rate of uncertainty
loss (termed localization rate) is minimal in a GCS. In a GCS the second (stochastic) term
vanishes. Since the rate of localization is zero in a GCS, as proved above, it follows that the
average rate of localization obtains minimum at zero. Therefore, an arbitrary state localizes
on average. Since the uncertainty is minimal in a GCS, the localization on average implies
that almost every solution of the sNLSE (6) approaches asymptotically a GCS.

3.2. An illustration. su(2)-case

For the purpose of illustration let us consider a quantum system, driven by a su(2)-algebraic
Hamiltonian Ĥ = ωĴ 1, i.e., a spin. The GCS, associated with the su(2) algebra, are the
so-called spin-coherent states (Arecchi et al 1972) which are characterized by the maximal
projection of the spin. A spin-coherent state of the system in the irreducible (2j + 1)-
dimensional Hilbert space representation has the group-invariant uncertainty (11) equal to j ,
the spin quantum number of the representation. A superposition of GCS has larger uncertainty.
For example, a superposition (|−j 〉 + |j 〉)/√2 has uncertainty equal to the maximal possible
value j (j + 1), i.e., the eigenvalue of the Casimir operator. This follows from the fact that
the projection of the spin in this state in any direction vanishes and, as a consequence, its
generalized purity (13) is zero.

The Lindblad master equation, corresponding to the weak measurement of the projections
of the spin Ĵ i , is equation (5). Taking (|−j〉+|j 〉)/√2 for the initial state, we expect to observe
stochastic evolution of a pure-state unraveling of equation (5) according to the corresponding
sNLSE (6), approaching asymptotically a spin-coherent state. The spin coherent state will
have minimal uncertainty and maximal amplitude of the spin projection.

Figure 1 shows the evolution of the normalized expectation values of the spin projections
〈Ĵ i〉/j, i = 1, 2, 3, for the pure state ψ(t) evolving according to the sNLSE (6), associated
with the master equation (5). Initial state of the system is (|−j 〉 + |j 〉)/√2 and the total
spin quantum number is j = 16. In addition, the normalized total uncertainty �[ψ]/j 2 is

1 This fact does not follow directly from the definition of the GCS, since the evolution in equation (23) is not unitary.
Nonetheless, by an application of the Baker–Campbell–Hausdorff disentangling formula (Zhang et al 1990) it can be
shown that ∀ ζi ∈ C and X̂i ∈ gexp(

∑
i ζi X̂i )|
, 〉 ∝ exp(

∑
α ηαÊ−α)|
, 〉 (Ê−α is the lowering operator of

the algebra, corresponding to the positive root α), which is a GCS up to a normalization [see Kramer and Saraceno
(1981), pp 31–2 for details].

6



J. Phys. A: Math. Theor. 41 (2008) 365203 M Khasin and R Kosloff

0 1.5 3 4.5 6 7.5

0

0.5

0.5

1

1

time

<
J 1>

/j,
<

J 2>
 /j

,<
J 3>

/j 
an

d 
Δ[

ψ
]/j

2

<J
3
>/j<J

2
>/j

<J
1
>/j

Δ[ψ]/j2

Figure 1. The normalized expectation values of the spin projections 〈Ĵ i〉/j, i = 1, 2, 3 (dashed
lines), and the normalized total uncertainty �[ψ]/j2 (solid line) as a function of time. The pure
state ψ(t) evolves according to the sNLSE (6), corresponding to the master equation (5). Time is
measured in units of ω−1 and the spin–bath coupling is γ = ω/160. Initial state of the system
is (|−j〉 + |j〉)/√2 and the total spin quantum number is j = 16. The asymptotic solution has
minimal (normalized) uncertainty of 1/16, i.e., it is a spin-coherent state.

plotted as a function of time. The stochastic evolution asymptotically leads to a state having
constant value of the (normalized) uncertainty equal to 1/16, i.e., the minimal value in the
representation. It follows therefore that the asymptotic solution is a spin-coherent state.

3.3. The proof of the main result

Next we prove that the first term in equation (22), considered as a functional on the Hilbert
space, has global maximum in the GCS. The first sum in this term is just the generalized
purity of the state (13), which has a global maximum in a GCS (Barnum et al 2003, Klyachko
2008), while the second sum is the trace-norm of the covariance matrix, which obtains global
minimum in a GCS.

Theorem. The trace-norm of the covariance matrix Mij = 〈{X̂i, X̂j }〉ψ − 2〈X̂i〉ψ 〈X̂j 〉ψ is
minimal in a maximal (minimal) weight state of the irrep, i.e., in a GCS.

Proof. The trace-norm is invariant under unitary transformations, generated by the algebra
g. Therefore, any orthonormal basis X̂i can be used for the calculation of the trace-norm.
Consider a particular choice of the basis X̂i such that the projection of the density operator
ρ̂ = |ψ〉〈ψ | on g is contained in the Cartan subalgebra h ⊂ g. Let us use index i, j for the
elements of h and α, β for the elements of the root subspace. Then,

Tr{M2} =
∑
i,j

M2
i,j +

∑
i,α

M2
i,α +

∑
i,α

M2
α,i +

∑
|α|�=|β|

M2
α,β +

∑
|α|=|β|

M2
α,β . (24)

Let us focus on the last term in equation (24). Since the projection of the state on g is contained
in the Cartan subalgebra, it vanishes on the root subspace, i.e., 〈X̂α〉 = 0, for every α. Then∑

|α|=|β|
M2

α,β =
∑

|α|=|β|
〈{X̂α, X̂β}〉2

ψ. (25)

7
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Using notation E±α for the raising and the lowering operators of the algebra, corresponding
to the positive root α we obtain∑
|α|=|β|

M2
α,β =

∑
|α|=|β|

〈{X̂α, X̂β}〉2
ψ = −1

2

∑
α>0

〈(Êα + Ê−α)(Êα − Ê−α)

+ (Êα − Ê−α)(Êα + Ê−α)〉2 +
∑
α>0

〈(Êα + Ê−α)2〉2 +
∑
α>0

〈(Êα − Ê−α)2〉2

= − 2
∑
α>0

〈
Ê2

α − Ê2
−α

〉2
+

∑
α>0

〈
Ê2

α + Ê2
−α + ÊαÊ−α + Ê−αÊα

〉2
+

∑
α>0

〈
Ê2

α + Ê2
−α − ÊαÊ−α − Ê−αÊα

〉2
= − 2

∑
α>0

〈
Ê2

α − Ê2
−α

〉2
+ 2

∑
α>0

〈
Ê2

α + Ê2
−α

〉2
+ 2

∑
α>0

〈ÊαÊ−α + Ê−αÊα〉2

= 8
∑
α>0

〈
Ê2

α

〉〈Ê2
−α〉 + 2

∑
α>0

〈ÊαÊ−α + Ê−αÊα〉2. (26)

The density operator ρ̂ = |ψ〉〈ψ | can be expressed in the basis of the eigenstates |μ〉 of
the Cartan operators X̂i ∈ h, X̂i |μ〉 = μi |μ〉

ρ̂ =
∑
μ,μ′

cμc∗
μ′ |μ〉〈μ′|. (27)

Then the last term in equation (26) obtains

2
∑
α>0

〈ÊαÊ−α + Ê−αÊα〉2 = 2
∑
α>0

⎛
⎝∑

μ,μ′
cμc∗

μ′ 〈μ′|ÊαÊ−α + Ê−αÊα|μ〉
⎞
⎠

2

= 2
∑
α>0

(∑
μ

|cμ|2〈μ|ÊαÊ−α + Ê−αÊα|μ〉
)2

. (28)

States |μ + kα〉 form an irreducible representation of the su(2), spanned by

E± ≡ E±α/|α| E3 ≡ α · Ĥ /|α|2, Ĥ i ≡ X̂i ∈ h (29)

obeying su(2) commutation relations (Georgi 1982)

[E3, E
±] = ±E±; [E+, E−] = E3. (30)

Therefore, the state |μ〉 can be labeled as |mα, jα〉, where jα is the maximal weight of the
corresponding irrep of the su(2) and mα is the weight, corresponding to the state |μ〉 in the
irrep. Then,

〈Ê−αÊα + ÊαÊ−α〉2
ψ = |α|4〈2Ê−Ê+ + Ê3〉2

ψ = |α|4〈mα, jα|2Ê−Ê+ + Ê3|mα, jα〉2

= |α|4(jα + j 2
α − m2

α)2. (31)

The term (31) obtains minimum in the maximal (minimal) weight state of the jα irrep,
corresponding to mα = jα(mα = −jα). Therefore, |mα, jα〉 is annihilated by the E+(E−),
and, by equations (29), the state |μ〉 is annihilated by Eα(E−α). The minimum of the sum (29)
is obtained in the state, annihilated by Eα(E−α) for all positive roots α, i.e., in the maximal
(minimal) weight state ρ̂ = |〉〈|. The first term in equation (26) is nonnegative and vanishes
at |ψ〉 = |〉, therefore it obtains minimum at |〉. Therefore, the term (26) in the sum (24)
obtains minimum at |〉. Since |〉 is an eigenstate of every Cartan operator X̂i , the first term

8
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in equation (24) vanishes at |〉. For the same reason and the fact that the projection of ρ̂ on
the root subspace vanishes both the second and the third terms in equation (24) also vanish at
|〉. The fourth term in equation (24) vanishes at |〉 since 〈|ÊαÊβ |〉 = 0,∀|α| �= |β|.
Since all these terms are nonnegative, they obtain minimum at the maximal (minimal) weight
state ρ̂ = |〉〈|. Therefore, the whole expression (24) for the trace-norm of the covariance
matrix obtains minimum at ρ̂ = |〉〈|. �

4. Conclusions

The globally stable solutions of quantum dynamics modeled by the stochastic nonlinear
Schrödinger equation (6) are the generalized coherent states, associated with the spectrum-
generating algebra of the system. Stable solutions of the sNLSE in the case of Heiseberg–
Weyl algebra have been obtained before (Diosi 1988b, Halliwell and Zoupas 1995, Schack
et al 1995). Our result refers to a compact semisimple spectrum-generating algebra. The
description by the stochastic nonlinear Schrödinger equation is equivalent to Lindblad semi-
group modeling of the process of group-invariant weak measurement of the elements of the
algebra. The Hamiltonian of the system is linear in the algebra elements, i.e., possesses
dynamical symmetry. It is conjectured that breaking the symmetry by adding nonlinearity to
the Hamiltonian results in the asymptotically stable localized solutions of the corresponding
sNLSE (see (Khasin and Kosloff 2008) for some numerical evidence). The proof of stability
is based on proving that the trace-norm of the covariance matrix, associated with the algebra,
becomes minimal in a generalized coherent state.
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4.4 An Algorithm for Simulation of a Many-

Body Dynamics using Dynamical Coarse-

Graining.

4.4.1 Introduction

Simulation of quantum many-body dynamics is a challenging task (Kohn, 1999).

The computational resources of a direct solution scale with the size of the Hilbert

space. The effective Hilbert space dimension of a typical many-body system is

huge, practically eliminating any direct approach to simulation of the dynamics.

Typical approximate solutions rely on limiting the extent of quantum many-body

correlations, i.e., mean-field approaches. An alternative is to restrict the scope

of the simulation to a subset of observables. In the present Section we describe

a method of simulation which is restricted to a subset of dynamical observables.

This restriction allows to develop an efficient and converged algorithm for the

dynamics of this restricted set.

To demonstrate the approach we apply the algorithm to the simulation of the

dynamics of N = 2∗104 cold atoms in a double-well trap. The system is modeled

by the two-site Bose-Hubbard model (Mahan, 2000) with the Hamiltonian:

Ĥ = −Δ
∑
i=1,2

(â†i+1âi + â†i âi+1) +
U

2N

∑
i=1,2

(â†i âi)
2, (4.1)

where âi (â†i ) is the creation (annihilation) operator of a particle in the i-th

well. Δ describes the hopping rate and U scales the two-body interaction. The

transformation to the operators

Ĵx =
1

2
(â†1â2 + â†2â1)

Ĵy =
1

2i
(â†1â2 − â†2â1) (4.2)

Ĵz =
1

2
(â†1â1 − â†2â2)

leads to the following Lie-algebraic form of the Hamiltonian

Ĥ = −ωĴx +
U

N
Ĵ2

z, (4.3)

where ω = 2Δ. The set of single-particle operators {Ĵx, Ĵy, Ĵz} is closed under the

commutation relation and spans the su(2) spectrum-generating algebra (Bohm

et al., 1988) of the system. The observables: Ĵx, Ĵy, Ĵz are the target of the

dynamical simulation, representing coherence, current and population difference

between the wells.
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The Hilbert space of the system of N atoms carries the N + 1 dimensional

irreducible representation (Zhang et al., 1990) of the the spectrum-generating

su(2) algebra, corresponding to the pseudo-spin quantum number j = N/2. A

direct numerical propagation of the corresponding Schrödinger equation requires

multiplication of the N + 1-dimensional state vector of the system by the (2N +

1) × (2N + 1) matrix of the Hamiltonian. In order to propagate to a time scale

of ω−1 O(N) such multiplications are needed. As a result, the propagation of the

state vector requires O(N3) elementary operations from which any expectation

value can be calculated (Kosloff, 1988). The memory resources for the storage of

the (2N + 1) × (2N + 1) matrices with the double precision is O(10N2) bytes.

Taking N = 2 ∗ 104 brings the memory requirements to the edge of the 2Gb

RAM capacity of a regular modern computer. Having N = 105 will make it

prohibitive to store the Hamiltonian matrix in the RAM. The challenge of an

efficient simulation is that the computational resources become independent of

the Hilbert space dimension.

The basic idea of the current algorithm relies on the close connection between

the algebra of observables and the generalized coherent states which minimize

the generalized uncertainty with respect to these observables. These states serve

as dynamical basis functions for expanding the state of the system. The second

ingredient is to replace the original unitary dynamics generated by Eq. (4.3) by

by a certain surrogate dynamics. The surrogate dynamics is an open-system dy-

namics, corresponding to a weak measurement performed on the original system.

This substitution is realized by averaging the dynamics generated by the stochas-

tic nonlinear Schrödinger equation(sNLSE)(Gisin, 1984; Diosi, 1988b; Gisin &

Percival, 1992)over the stochastic realizations. The sNLSE corresponds to a sin-

gle realization of the the process of weak measurement of the elements of the

spectrum generating algebra (4.2) performed on the system, evolving under the

Hamiltonian (4.3). If the measurement is sufficiently strong, the computational

complexity of the sNLSE is dramatically smaller than complexity of solving the

corresponding Schrödinger equation. As a consequence, the numerical solution

of the sNLSE becomes practical.

The expectation values of observables are obtained by averaging over the

stochastic realizations. The number of realizations for a prescribed relative error

is independent of N , therefore asymptotically the complexity of the simulation is

determined by the cost of solving the sNLSE. The parameter of the sNLSE, corre-

sponding to the strength of the measurement, is lowered until the open dynamics

of the single-particle observables (4.2) converges to the original unitary dynam-

ics, driven by the Hamiltonian (4.3). It is shown that a convergent solution is

obtained at the values of the measurement strength sufficient for a drastic reduc-
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tion of the computational complexity of the sNLSE, compared to the Schrödinger

equation.

The reduction of the computational complexity is achieved by virtue of the

localization of the solution of the sNLSE of the system in the corresponding phase

space under the action of the measurement as explained in Sections 4.2 and 4.3.

On the level of the density matrix the localization leads to a coarse-graining

of the phase-space representation of the state, destructing the fine structure but

leaving unaffected the dynamics of smooth observables, such as the single-particle

observables.

The localization of the sNLSE solution is equivalent to compression of the

effective Hilbert space of the system. The multiplication of N × 1 state vector

by a N × N matrix necessary for the propagation of the Schrödinger equation,

is replaced by multiplication of M × 1 state vector by a M × M matrix, where

the number M � N is asymptotically independent on N . In the application,

considered in Section 4.4.3, M ≈ 3 ∗ 10−3N . This spectacular compression of

the computational basis results in dramatic speed-up of the computation by the

order of 103 and reduction of the involved RAM resources by the factor of 105.

Section 4.4.2 outlines the basic ideas in the foundation of the algorithm. It

summarizes the main results of Sections 4.2 and 4.3 and applies them to con-

struction of an algorithm for simulation of quantum dynamics, driven by the

su(2)-Hamiltonians.

Section 4.4.3 focuses on the application of the algorithm to the Bose-Hubbard

model. Discussion and conclusions are presented in Section 4.4.4.

4.4.2 The algorithm

Generalal considerations

The algorithm for simulation of a many-body quantum dynamics, is based on the

following sequence of steps (Section 4.2):

1. The choice of the time-dependent computational basis, built of the gen-

eralized coherent states (GCS), associated with the spectrum-generating

algebra (SGA) of the system.

2. The choice of the elements of the SGA of the system as the distinguished

set of observables for the simulation.

3. Numerical solution of the stochastic Nonlinear Schrödinger Equation (sNLSE),

corresponding to the weak measurement of the elements of the SGA, per-

formed on the evolving system.
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4. Averaging of the expectation values of the SGA observables over many

different stochastic realizations.

5. Decreasing the strength of measurement until convergence is obtained to

the unitary evolution of the SGA observables.

The choice of the time-dependent basis The motivation for the algorithm

is the following definition of the efficient simulation of a quantum many-body

dynamics:

Definition: The simulation of dynamics of a Lie algebra of observables of the

system is efficient if and only if the necessary memory and the CPU resources for

the computation do not depend on the Hilbert space (irreducible) representation

of the algebra.

An example of efficient simulation is the solution of the Heisenberg equations

of motion for the algebra elements, when the Hamiltonian is itself an element of

the algebra. Another example is a mean field solution of the quantum dynamics,

i.e., solution of the variational equations of motion for the ansatz, parametrized

by the expectation values of the operators, belonging to the algebra (Kramer &

Saraceno, 1981).

The starting point for the algorithm is the assumption that a reduction of the

computational complexity is achieved by using a time-dependent basis of a small

number of states. It is further assumed that the many-body Hamiltonian is given

in terms of the spectrum-generating algebra SGA = span
{

X̂i

}
of the system as

in Eq.(4.3).

A necessary ingredient of a simulation scheme is a calculation of the matrix

elements of the Hamiltonian in the time-dependent basis. Let ψi(t) be the time-

dependent computational basis. Let the Hilbert space dimension be n. Then the

state vector of the system becomes

|Ψ(t)〉 =
M∑
i=1

ci(t) |ψi(t)〉 =
M∑
i=1

ci(t)Ûi(t) |ψi(0)〉 , (4.4)

where M ≤ n and Ûi(t) is a nonunique time-dependent unitary transformation

of the reference state ψi(0). An efficient computation of the matrix elements of

the Hamiltonian in the time-dependent basis
〈
ψ(t)i

∣∣∣Ĥ∣∣∣ ψ(t)j

〉
implies that the

following transformation is performed efficiently:

Ĥ → Ûi(t)ĤÛj(t) (4.5)

and, in particular, the unitary transformation

Ĥ → Ûi(t)ĤÛi(t). (4.6)
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is performed efficiently. By the assumption, the Hamiltonian is given as a func-

tion of the SGA operators X̂i. Efficient transformation (4.6) implies that the

transformation of X̂i under the action of Ûj(t) is performed efficiently. It follows

that Ûj(t) is generated by the SGA itself. Each ψi(t) is an orbit of the reference

state ψi(0) under the action of the SGA. According to the definition (Perelomov,

1985; Zhang et al., 1990) the ψi(t) is a generalized coherent state (GCS), associ-

ated with the SGA and the reference state ψi(0). Therefore, the time-dependent

computational basis is a basis of the GCS, associated with the SGA of the system.

The choice of the reference states ψi(0) affects the computational complex-

ity of the simulation. The matrix elements
〈
ψi(0)

∣∣∣Ĥ∣∣∣ ψj(0)
〉

and, therefore, the

matrix elements
〈
ψi(0)

∣∣∣X̂k

∣∣∣ ψj(0)
〉

must be computed efficiently. Generally, com-

plexity of the computation of
〈
ψi(0)

∣∣∣X̂k

∣∣∣ ψj(0)
〉

will depend on the Hilbert space

representation of the SGA. Nonetheless, if the reference state ψi(0) is chosen as

the maximal (minimal) weight state of the representation, the computation can

be performed group-theoretically (Zhang et al., 1990), i.e., efficiently. These con-

siderations lead to the choice of the basis of the GCS, associated with the SGA

of the system and the maximal(minimal) weight state of the representation, as

the time-dependent computational basis.

The choice of the SGA observables for the simulation Given the ansatz

(4.4) computation of the expectation value of an observables X̂ demands com-

puting of
〈
X̂

〉
=

〈
ψ(t)i

∣∣∣X̂∣∣∣ ψ(t)j

〉
, i.e., performing the transformation

X̂ → Ûi(t)X̂Ûj(t). (4.7)

In the previous subsection we found that Ûi(t) is generated by the SGA. For

efficient computation of
〈
X̂

〉
it is necessary that the transformation (4.7) is inde-

pendent on the Hilbert space representation of the SGA. It follows that X̂ must

be of the form:

X̂ =
K∑

i=1

aiX̂i +
∑
ij

bijX̂iX̂j + ...
∑

i1,i2,...iL

ci1,i2,...iL

L∏
j=1

X̂ij , (4.8)

where each 1 ≤ ij ≤ K = dim{SGA} and L is a fixed number, independent on

the representation of the SGA. In particular, the Hamiltonian of the system must

have this form in order that an efficient simulation be possible. The elements X̂i

of the SGA is the simplest choice of observables of the form (4.8).

Solving the stochastic Nonlinear Schrödinger Equation For efficient sim-

ulation it is necessary that M in Eq.(4.4) be independent of the Hilbert space
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representation of the SGA. This implies in particular that M � n as n → ∞.

Generic Hamiltonian, nonlinear in the SGA elements, is expected to take an ini-

tial state of a many-body system to a state Eq.(4.4), corresponding to M = O(n).

Therefore, a generic unitary dynamics cannot be simulated efficiently.

A possible solution has been proposed in Section 4.2: a pertinent open-system

dynamics can be found, approximating the unitary dynamics modulo the expec-

tation values of the restricted set of observables − the elements of the SGA. The

open-system dynamics corresponds to the process of weak measurement of the

elements of the SGA, performed on the system of interest, evolving under the

action of the original Hamiltonian.

The open-system evolution can be simulated using stochastic unraveling of

the evolving density operator into pure-state evolutions (quantum trajectories),

governed by the stochastic Nonlinear Schrödinger equation (sNLSE)(Gisin, 1984;

Diosi, 1988b; Gisin & Percival, 1992). The pure state, evolving along a quantum

trajectory, can be expressed in the form Eq.(4.4), corresponding to M � n,

provided the measurement is sufficiently strong.

Averaging The expectation values of the SGA observables are calculated along

the quantum trajectory for each stochastic realization of the sNLSE. Averaging

over the stochastic realizations recovers the open-system dynamics of the ob-

servables. The number of realizations necessary for convergence of the averaged

values to a given relative error is independent of the Hilbert space representation

of the SGA. Therefore, the averaging can be performed efficiently.

Convergence to the unitary evolution As the strength of the measurement

decreases the open-system dynamics of the SGA observables converges to their

original unitary dynamics. If the classicality condition (Section 4.2) is satisfied,

the open system follows the evolution on widely separated time-scales. Due to

this time-scales separation the open-system dynamics of the SGA observables

converges to the unitary evolution at the value of the measurement strength

which is sufficient to ensure that M � n in the expansion (4.4) of the pure-

state solution of the corresponding sNLSE. Therefore, the unitary evolution of

the SGA observables can be simulated at comparatively low computational cost.

The question when and whether this reduction of the computational complexity

amounts to an efficient simulation is left for Section 4.4.4.

A linear implementation

The algorithm outlined in the previous subsection can be implemented in a variety

of ways. This is in part due to the non uniqueness of the transformations Ûi(t) in
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Eq.(4.4) of the computational basis elements. In the present implementation we

adopt the choice Ûi(t) = Ûj(t) = Û(t), leading to the term linear implementation.

In the linear implementation the pure-state solution of the sNLSE is represented

by

|Ψ(t)〉 =
M∑
i=1

ci(t)Û(t) |ψi(0)〉 , (4.9)

where ψi(0) is a fixed set of the GCS, associated with the SGA and a maxi-

mal(minimal) weight state of the Hilbert space representation of the algebra.

The advantage of this choice is that the numerical effort is reduced to solving

a system of linear equations. This explains the term. The disadvantage is that

the number of the elementary computer operations will necessarily depend on

the Hilbert space dimension for reasons discussed in Section 4.4.4. Therefore,

the linear implementation cannot in principle lead to an efficient simulation in

the strict sense of our definition. Still, as will be demonstrated in Section 4.4.3,

the reduction of the computational complexity can be so dramatic, that the

simulation of the many-body dynamics becomes feasible in the case where solving

the Schrödinger equation is unpractical.

An infinitesimal time step of the simulation is represented as a superposition

of a linear transformation T̂1 of the state represented in the fixed instantaneous

basis, i.e., the transformation of the vector ci in Eq.(4.9) and a subsequent uni-

tary transformation T̂2 of the basis itself. The transformation T̂1 corresponds

to the physical (measurable) evolution of the state, driven by the sNLSE. The

transformation T̂2 serves to set the origin of the linear transformation T̂1 at the

subsequent time step. T̂2 ensures that the evolving state remains localized in

the Hilbert subspace spanned by the instantaneous basis. Connection of the in-

finitesimal unitary transformation T̂2 to Û(t) in Eq.(4.9) is established by the

following relation:

T2 = 1̂ − Û(t)′dt. (4.10)

The time-dependent basis is chosen from the GCS, associated with the SGA

as argued above. It is interesting that the updating of the basis can be viewed

as an analog of the Schmidt decomposition (Peres, 1998) in the generalized en-

tanglement setting (Barnum et al., 2003).

Application to the su(2) spectrum-generating algebra

The algorithm presented above can be given an intuitive geometric meaning in

the special case of the SGA spanned by the operators Ĵx, Ĵy and Ĵz satisfying the
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commutation relations [
Ĵi, Ĵj

]
= iεijkĴk, (4.11)

of the su(2) algebra. Examples of a many-body quantum system with the su(2)

SGA include the Lipkin-Meshkov-Glick model of interacting fermions (Lipkin

et al., 1965) and cold bosonic atoms in the double-well trap (Vardi & Anglin,

2000; Trimborn et al., 2008) among others (Bohm et al., 1988).

The GCS of the su(2) are represented by points in the phase space, asso-

ciated with the algebra (Arecchi et al., 1972). The phase-space globally is a

two-dimensional sphere and the GCS are parametrized by spherical coordinates,

for example by the azimuthal and the polar angles. The 2j + 1 dimensional

Hilbert space, carrying an irreducible representation of the algebra, is spanned

by a linearly independent basis of GCS, represented by 2j + 1 points on the

sphere. A localized state can be expanded in a small fraction of the total basis,

represented by points inside a relatively small portion of the phase-space.

The corresponding sNLSE has the following structure:

d |ψ〉 =

{
−iĤ − γ

3∑
i=1

(
Ĵi −

〈
Ĵi

〉
ψ

)2
}

dt |ψ〉

+
3∑

i=1

(
Ĵi −

〈
Ĵi

〉
ψ

)
dξi |ψ〉 , (4.12)

where Ĥ is the Hamiltonian of the system and where the Wiener fluctuation terms

dξi satisfy

< dξi >= 0, dξidξj = 2γδijdt. (4.13)

The parameter γ is the strength of the measurement of elements Ĵx, Ĵy and Ĵz of

the spectrum-generating su(2) algebra of the system.

A Hamiltonian nonlinear in Ĵx, Ĵy and Ĵz leads to delocalization an initially

localized state. The non unitary stochastic contribution of the evolution due

to the measurement, leads to a localization(Section 4.3). Therefore, a single

stochastic realization of the open system evolution can be viewed as a small

spot on the sphere, involving each instant a small fraction of the GCS, moving

stochastically in the phase space.

The infinitesimal linear transformation T̂1 includes two parts: the original

Hamiltonian part and the non unitary part, which contains a stochastic and a

deterministic element. Both elements depend on the instantaneous state of the

system. Therefore, while the infinitesimal transformation T̂1 is a linear transfor-

mation, the superposition of these transformations is described by the nonlinear
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Eq.(4.12). The infinitesimal linear transformation T̂1 is performed on the instan-

taneous state of the system represented by a superposition of the states of the

instantaneous fixed basis of the GCS.

The GCS basis must be updated at each time step. Practically a different

but physically equivalent transformation has been found to be more convenient.

Instead of updating the basis to match the evolving state we update the state

to match the fixed basis. Therefore, the unitary transformation T̂2 is performed

on the state itself and the inverse transformation T̂−1
2 − on the Hamiltonian

and other observables. The unitary transformation T̂2 is generated by the su(2)

elements Ĵx, Ĵy and Ĵz and rotates the state to the position localized in the fixed

basis of the GCS.

Without loss of generality an initial state can be assumed to be localized

about a south pole of the phase space having zero expectation values of the

operators Ĵx and Ĵz. An infinitesimal transformation T̂1 takes the state into

a new position having finite expectation values of Ĵx and Ĵz. The purpose of

the unitary transformation T̂2 is to rotate the state back to the position with

vanishing expectation values of Ĵx and Ĵz. This rotation is performed by the

SU(2) group transformation and is equivalent to rotating of the density operator

in the Hilbert-Schmidt space to ensure that the projection of the density operator

on the algebra is spanned by the Ĵz operator. This procedure is analogous to

the Schmidt-decomposition of the state in the generalized entanglement setting

(Barnum et al., 2003) as pointed out above.

The back-rotation of the operators by the inverse transformation T̂−1
2 can be

performed analytically, knowing how the su(2) algebra elements transform under

the SU(2) group itself.

The superposition of the two transformations T̂2 ◦ T̂1 of the state results in

a new state, still localized about the south pole. The convergence of the compu-

tation to the exact open-system-dynamics solution is obtained by increasing the

size of the GCS basis until the evolution of the single-particle observables has

ceased to change. The convergence of computation to the exact unitary evolu-

tion of the single-particle observables is obtained by decreasing the strength of

the measurement until the evolution of the single-particle observables has ceased

to be affected.

4.4.3 Application to the two-site Bose-Hubbard model

Introduction

The gas of cold atoms (bosons) in a double-well trap (Schumm et al., 2005; Gati

et al., 2006) is described by the two-site Bose-Hubbard model. The Hamiltonian
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(4.1) contains two terms: the one-body (linear) term responsible for the hopping

of the atoms from one well to another and the two-body (nonlinear) or interaction

term responsible for the on-site attraction or repulsion of the atoms. In the

present application we consider repulsive interaction, measured by the coupling

strength 2U/N , where N is the total number of particles in the trap. The hopping

rate is fixed by the coefficient Δ of the one-body part.

The spectrum-generating algebra of the system is the su(2) algebra of the

single-particle operators (4.2). The system of N particles correspond to the N+1-

dimensional irreducible representation of the algebra with the principle pseudo-

spin quantum number j = N/2. Condensed state of the system is a generalized

coherent state (Tikhonenkov et al., 2007; Trimborn et al., 2008), associated with

the algebra, termed spin-coherent states in the literature (Arecchi et al., 1972;

Zhang et al., 1990; Viera & Sacramento, 1995).

The character of dynamics at fixed N depends essentially on a single param-

eter: U/2ω (Vardi & Anglin, 2000), where ω = 2Δ. The weak interaction regime

U/2ω � 1, corresponds to dynamics preserving coherence of the atomic con-

densate for times much larger than the the oscillation period of the population

between the two wells. High coherence corresponds to a weak delocalization, i.e.,

an initial spin-coherent state remains localized for a very long time. The cor-

responding dynamics is well described by solution of the mean-field variational

equations of motion, assuming a spin-coherent state as the variational ansatz

(Kramer & Saraceno, 1981) (Fig.1).

Solving mean-field equations is no challenge for numerical computation. There-

fore our focus will be on the second, strong interaction regime. The dynamics at

U/2ω = 1 corresponds to the oscillations of the condensate which is overdamped

by the on-site interaction, i.e., a substantial depletion of the condensate occurs

on the time-scale of a single oscillation. At U/2ω = 1 the dynamics is strongly

delocalizing, characterized by the exponential loss of coherence (Khodorkovsky

et al., 2008) as measured by the purity of the single-particle density operator.

The loss of coherence can also be measured by the generalized purity (Barnum

et al., 2003) of the state with respect to the su(2) algebra of the single-particle

observables. The generalized purity of the state ψ is defined by

Psu(2)[ψ] ≡
∑

i=x,y,z

〈
Ĵi

〉2

. (4.14)

Psu(2)[ψ] ≤ 1 and equals to unity if and only if ψ is a spin-coherent state. A

mean-field solution is a generalized pure state by the definition. The mean-field

approximation breaks down as the generalized purity decreases substantially.

Figs.1 and 2 show dynamics of the system of N = 128, 256, 512 particles in

the weak and strong interaction regime respectively, obtained by a direct solution
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Figure 4.1: (Color online) The mean-field solution for the expectation values of

the single-particle observables Ĵx (blue, solid), Ĵy (red, solid) and Ĵz (green,solid),

Eq.(4.2), and the generalized purity (dotted), Eq.(4.14), as a function of time vs.

the exact solution of the Schrödinger equation (dashed lines) for N = 128, 256, 512

(expectation values) and N = 512 (generalized purity). The system of N atoms

resides initially in a spin-coherent state corresponding to the condensate prepared

in the left well of the trap. The value of the on-site interaction is chosen U/2ω =

1/2, corresponding to the weak interaction regime. Time is measured in units of

ω−1 = 0.5Δ−1. The expectation values are normalized by the factor j = N/2.

As the number of particles grows the exact solution approaches the mean-field

solution on the characteristic time-scale of the oscillations.

of the Schrödinger equation using the Chebyshev method (H. Tal Ezer and R.

Kosloff, 1984). Initial state of the system is chosen to be the condensed state

of the atoms located in the left well. This is a spin-coherent eigenstate of the

Ĵz single-particle operator, measuring the difference of the right- and left-well

populations of the atoms. Apparently the mean-field solution works well for the

weak interaction regime, where the generalized purity of the evolving remains

close to unity. In the strong interaction region the purity decreases on the time-

scale of a single oscillation of the condensate and the mean-field solution fails to

reproduce correctly the character of the dynamics.

Application to a system of N = 2 ∗ 104 cold atoms

Equations of motion The numerical solution of the sNLSE (4.12) proceeds

as a sequence of infinitesimal linear transformations:

|ψ〉 → T̂1 |ψ〉 (4.15)

|ψ〉 → T̂2 |ψ〉 , (4.16)

X̂ → T̂2X̂T̂†
2, (4.17)



4.4 An Algorithm for Simulation of a Many-Body Dynamics using Dynamical

Coarse-Graining. 89

0 3 6 9 12 15
1

0.5

0

0.5

1

time in units of 1

<
J x>

, <
J y>

 ,<
J z>

 a
nd

 P
su

(2
)[

]

<J
x
> <J

y
>

P
su(2)

[ ]

<J
z
>

Figure 4.2: (Color online) The mean-field solution for the expectation values of

the single-particle observables Ĵx (blue, solid), Ĵy (red, solid) and Ĵz (green,solid),

Eq.(4.2), and the generalized purity (dotted), Eq.(4.14), for N = 512 as a func-

tion of time vs. the exact solution of the Schrödinger equation (dashed lines) for

N = 128, 256, 512 (expectation values) and N = 512 (generalized purity). The

system of N atoms resides initially in a spin-coherent state corresponding to the

condensate prepared in the left well of the trap. The value of the on-site interac-

tion is chosen U/2ω = 1, corresponding to the strong interaction regime. Time

is measured in units of ω−1 = 0.5Δ−1. The expectation values are normalized by

the factor j = N/2. The mean-field approximation breaks down on the time-scale

of a single oscillation.

where X̂ stand for all relevant operators, i.e., the Hamiltonian and the single-

particle observables, the linear transformation T̂1 drives the physical evolution of

the state in the fixed computational basis of spin-coherent states and the unitary

transformation T̂2 keeps the state localized in the basis. The state ψ in Eqs.(4.15)

and (4.16) is given by

|Ψ(t)〉 =
M∑
i=1

ci(t) |ψi(0)〉 , (4.18)

where ψi(0) is the fixed computational basis of spin-coherent states. From Eq.(4.12)

T̂1 = Î +

{
−iĤdt − γ

3∑
i=1

(
Ĵi −

〈
Ĵi

〉
ψ

)2

dt +
3∑

i=1

(
Ĵi −

〈
Ĵi

〉
ψ

)
dξi

}
, (4.19)
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where
〈
Ĵi

〉
are the instantaneous expectation values of the single-particle oper-

ators. From Eqs.(4.15), (4.19) and (4.4) we obtain

M∑
k=1

Cjk dck (4.20)

=
M∑

k=1

{
−i(Ĥ)jkdt − γ

3∑
i=1

(
(Ĵi)jk −

〈
Ĵi

〉
ψ

)2

dt +
3∑

i=1

(
(Ĵi)jk −

〈
Ĵi

〉
ψ

)
dξi

}
ck,

where (X̂)jk ≡
〈
ψj(0)

∣∣∣X̂∣∣∣ ψk(0)
〉

and

Cjk ≡ 〈ψj(0)|ψk(0)〉 (4.21)

is the overlap matrix. It should be noted that the overlap matrix is time-

independent.

The unitary transformation T̂2 is not unique and serves to rotate the state

in such a manner that the rotated state is localized in the fixed basis. In the

simulation we use an initial spin-coherent state |−j〉, i.e., a point at the southern

pole of the phase-space. Accordingly, the fixed basis of M states is localized

about the south pole. Therefore, the unitary transformation T̂2 has to ensure

that the expectation values of Ĵx and Ĵy in the rotated state vanish. As pointed

out in Section 4.4.2, in the Hilbert-Schmidt picture this rotation corresponds to

rotation of the density operator in such a way that its projection on the SGA of

the single-particles observables be proportional to Ĵz. T̂2 is not unique. In our

simulations T̂2 is chosen to be a unitary transformation, generated by Ĵx and Ĵy.

Since T̂2 is generated by the su(2) SGA itself, the transformation (4.17) of the

single-particle observables and the Hamiltonian is performed analytically at each

time-step.

The choice of numerical values A converged solution should be independent

of the numerical parameters in the Eq.(4.20). They include the parameters of the

basis, its size M , the strength of the measurement γ and the size of the time-step

dt. The convergence is obtained by increasing M and dt and decreasing γ.

Choice of basis The choice of the basis is practically determined by its size

M . In fact, a solution of the sNLSE is localized in the phase-space under the

action of the noise (Sections 4.2 and 4.3). Therefore, a localized basis of states is

sufficient to represent the solution. A set of N +1 spin-coherent states comprises

the full basis of the Hilbert space. A spin-coherent state is represented by a point

of the phase-space sphere. A natural choice is a uniform distribution of the points

on the sphere. A state, localized in an area A on the sphere can be represented
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by M = (N + 1)A/4π points uniformly distributed on the area A. In practice, a

more dense sampling has proved to be better for numerical stability of solution.

The value of M in the convergent solution depends on the strength of the

measurement γ. An estimate based on the theory presented in Section 4.2 shows

that for U/2ω = O(1)

M � 2ω

γN
(4.22)

provided M � 1. As γ goes to zero M approaches the Hilbert space dimension

in the strong interaction regime where the generalized purity of the exact state

of the system becomes low. For the purpose of the simulation we are interested

at the maximal value of γ for which the open-system dynamics of the single-

particle observables is indistinguishable from the exact unitary one. Therefore,

an estimate for this maximal value will also give an estimate for M .

Choice of a time-step From the Eq.(4.20) the size of the time-step should

be chosen to ensure that |(Ĥ)jk|dt � 1, where |(Ĥ)jk| stands for the spectral

norm of the Hamiltonian matrix in the computational basis. A good estimate for

the spectral norm is the inverse of the characteristic time scale of the dynamics,

which for U/2ω = O(1) is of the order of ω. As N goes to infinity the area in

the phase space, corresponding to the localized basis for any fixed M decreases

as 1/N , i.e., its linear dimension decreases as 1/
√

N . On the time interval dt

the localized state is expected to move the distance of dtω on the sphere. For

the infinitesimal transformation the state must remain localized in the basis.

Therefore, we demand that

dtω � O(1/
√

N). (4.23)

It follows that the simulation on the time interval of ω−1 must take no less than

O(
√

N) time-steps.

The expectation of the term γ
∑3

i=1

(
Ĵi −

〈
Ĵi

〉
ψ

)2

in Eq.(4.20) in a localized

state is of the order of O(γNM) (Section 4.2). Since O(γNM) = O(ω), as follows

from Eq.(4.22), this term is sufficiently small at dt = O(1/
√

N).

The last stochastic term
∑3

i=1

(
(Ĵi)jk −

〈
Ĵi

〉
ψ

)
has spectral norm of the

order of N . Therefore, we must have dξiN � 1. Using Eqs.(4.13) and (4.22) we

obtain dtγ � O(1/N2) and, finally

dtω � O(1/N), (4.24)

which leads to the number of time-steps on the time interval of ω−1 of the order

of O(N). It follows that the algorithm is not efficient in the sense of the definition

in Section 4.4.2.
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Figure 4.3: (Color online). Panels (a) and (b) display the (normalized by the

factor j = N/2) expectation values of the single-particle observables Ĵx (blue,

solid), Ĵy (red, solid) and Ĵz (green,solid), Eq.(4.2), and the generalized purity

(black,dashed), Eq.(4.14) as a function of time. The expectation values are cal-

culated in pure-states solutions of the sNLSE (4.12) for two different realizations

of noise. The system of N atoms resides initially in a spin-coherent state corre-

sponding to the condensate prepared in the left well of the trap. The value of the

on-site interaction is chosen U/2ω = 1, corresponding to the strong interaction

regime. Time is measured in units of ω−1 = 0.5Δ−1. Panel (c) is the average of

realizations in panel (a) and (b).

Choice of γ If the time-scales of the open-system dynamics, corresponding to

the sNLSE (4.12) are analytical in γ, the effect of the measurement on the dy-

namics of the single-particles observables must be asymptotically (i.e. as N → ∞
) negligible on a fixed time interval at γ � ω (Section 4.2). Surprisingly, for the

parametric choice U/2ω = 1, convergent solution obtains at γ � ω/N ! This im-

plies some singular dependence of the dynamical time-scales on the measurement

strength. The problem is further discussed in Section 4.4.4.

Numerical results Convergence in the size of the basis can be checked on

the level of a single stochastic realization of the sNLSE (4.12). Figure (4.3)

(a) and (b) displays dynamics of the single-particle observables for two different

realizations of noise in Eq.(4.12). The size of the basis is M = 40 and the value

of γ is 0.5/N . The strong localization results in the values of the generalized

purity indistinguishable from unity as in a single spin-coherent state. The two

trajectories coincide on a short time interval, corresponding to high generalized

purity of the exact solution (Fig(4.4)). On this short time interval the mean-field
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Figure 4.4: (Color online). The (normalized by the factor j = N/2) expectation

values of the single-particle observables Ĵx (blue, solid), Ĵy (red, solid) and Ĵz

(green,solid), Eq.(4.2), and the generalized purity (black,dashed), Eq.(4.14) as a

function of time. The system of N = 2 ∗ 104 atoms resides initially in a spin-

coherent state corresponding to the condensate prepared in the left well of the

trap. The value of the on-site interaction in the Hamiltonian (4.3) is chosen

U/2ω = 1, corresponding to the strong interaction regime. Time is measured in

units of ω−1. The plots for five values of the measurement strength are presented:

γ = 8/N, 4/N, 2/N, 1/N(thin lines),0.5/N (thick line). The expectation values

are averages of 2000 stochastic pure-states solutions of the sNLSE (4.12) for each

value of γ.

solution (Cf.Fig(4.2)) is a perfect approximation. Starting at t ≈ 2ω−1 the two

trajectories start to diverge abruptly, remaining very smooth function of time.

Each simulation takes a couple of minutes on a PC.

Figure (4.3) (c) shows the dynamics of the single-particle observables averaged

over the two realizations and the corresponding generalized purity . The main

feature is an apparent decrease of the generalized purity, already resembling the

dynamics of the exact solution. This implies that some features of a many-body

dynamics are attainable from a small number of realizations.

Averaging over 2000 stochastic trajectories leads to a relative error of 2.5%

for the expectation values of the observables. Figure (4.4) presents the averaged

results. The averaging has been performed for solutions of the sNLSE, corre-

sponding to γ = 8/N, 4/N, 2/N, 1/N and, finally, to γ = 0.5/N at which the
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convergence to the unitary evolution becomes apparent. The evolution on the

time interval 0 < t < 2ω−1 corresponds to the mean-field behaviour and is not

visibly perturbed by the measurement. The size of the basis for the convergent

solution is MsNLSE = 60.

The size of the basis necessary to span the pure-state evolution, governed

by the original Schrödinger equation can be estimated from Figure (4.4). The

minimal purity obtains at t ≈ 7.5ω−1. Its (normalized) value at this point is

Psu(2)[ψ] ≈ 0.13 which corresponds to

MSE = (N + 1)
(
1 −

√
Psu(2)[ψ]

)
≈ 0.64N. (4.25)

according to the formula derived in Section 4.2.

Therefore, the size of the time-dependent basis is compressed by the factor of

MSE/MsNLSE ≈ 2 · 102! As a result, the memory cost is reduced by the factor of

4∗104. The number of the time-steps for the propagation is 2∗106, which results

in reduction of the CPU resources by the factor of 103.

4.4.4 Conclusions and Discussion

An algorithm for simulation of a many-body dynamics, generated by a su(2)-

Hamiltonian has been described, analyzed and applied to simulation of the dy-

namics of cold atoms in the double-well trap. The dynamics reflects a competition

between the hopping rate of the atoms from well to well and the two-body re-

pulsive interaction between the particles. The single-particle observables of the

system were simulated in the strong interaction regime and the convergence of

the simulation was checked.

The simulation is based on numerical solution of the stochastic Nonlinear

Schrödinger Equation, corresponding to weak measurement of the elements of the

spectrum-generating su(2) algebra of the single-particle observables. Dynamics

of the smooth SGA observables is negligibly affected by sufficiently weak mea-

surement, which is nonetheless strong enough to localize solutions of the sNLSE

in the corresponding phase-space.

The localization leads to substantial reduction of the computational complex-

ity of the many-body dynamics. The algorithm is applied to simulation of the

single-particle observables of a system of N = 2 ∗ 104 cold atoms in a double-well

trap. The localization allows to describe the pure-state solution of sNLSE by

a superposition of only 60 spin-coherent states, which is smaller by the factor

of 2 · 102 than the size of the spin-coherent basis necessary to span the solution

of the original Schrödinger equation on the corresponding time interval. This

”compression” of the time-dependent basis results in dramatic reduction of the

computational complexity of the simulation.
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Two important questions are left for future investigations:

• What is the maximal strength of the measurement, at which the evolution

of the SGA operators is negligibly affected on the time-scale of their unitary

evolution?

• Does the method provide an efficient simulation of the SGA observables in

the sense of definition in Section 4.4.2?

The first question is raised by the numerical results of the simulation presented in

Section 4.4.3. The value of the measurement strength at which the open-system

evolution of the single-particles observables of cold atoms converged to their uni-

tary evolution is smaller by the factor of N than its theoretical estimate (Section

4.4.3). The theoretical estimate is based on assumption that the time-scale of the

open evolution of the SGA observables is analytic in the measurement strength

(Section 4.2). The finding seems to imply the radius of convergence of the inverse

time-scale is of the order of ω/N , where ω stands for the inverse time-scale of

the unitary evolution. This singular behavior is probably related to the singu-

lar choice of the parameter U/2ω = 1 for the simulation, corresponding to the

crossover from the weakly interacting dynamical regime to the regime of strong

interaction (Vardi & Anglin, 2000). This choice of the parameter corresponds to

maximal delocalization of the phase-space unitary dynamics and therefore poses

the real challenge for the simulation.

The second question is raised by the estimation performed in Section 4.4.3,

according to which the number of time-steps of the simulation scales linearly

with the number of particles (the Hilbert space dimension) N on a fixed time

interval. This implies that the algorithm is not efficient in the strict sense of

our definition, according to which the computational resources of an efficient

simulation do not depend on the Hilbert space representation of the Lie-algebra

of observables. The estimation has been performed for the linear implementation

of the method, which relies on solving linear equations of motion. The estimation

has been performed in the special case of the su(2) SGA but can be generalized

to an arbitrary compact semisimple algebra of observables with a similar result.

It is possible that the scaling with N is a drawback of the linear implementation

of the method. An algorithm based of solving nonlinear equations of motion,

corresponding to the situation where each element of the time-dependent basis

follows its own unitary evolution, may have a different scaling.
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Chapter 5

Conclusions and open question

5.1 Conclusions

We define a quantum system by a Lie-algebra of observables and its irreducible

Hilbert space representation. It is assumed that the Hamiltonian is a function of

the elements of the algebra. As a consequence, the distinguished algebra can be

appropriately termed a spectrum-generating algebra(SGA) (Dothan, 1970; Bohm

et al., 1988). We propose the following definition of efficient simulation of the

evolution of a subset of observables:

Definition: The simulation of a subset of observables is defined as efficient

if the memory and the CPU time resources necessary to compute the evolution of

the distinguished observables do not depend on the (Hilbert space) representation

of the SGA.

Stated differently, the simulation is efficient if it can be performed group-

theoretically. The main conclusions of the presented work can be summarized in

the following scheme (Fig 5.1).

Necessary conditions on the subset of observables which can be simulated

efficiently are:

• The set consists of operators weakly nonlinear in the elements of the spec-

trum generating algebra (SGA) of the system

• The Hamiltonian is weakly nonlinear in the elements of the SGA of the

system

Weakly nonlinear is defined as being a polynomial (in the elements of the SGA)

of a fixed order, independent on the Hilbert space representation of the SGA. If

the necessary conditions hold and

• The evolving state can be represented as superposition of a small number

of the generalized coherent states (GCS), associated with the SGA
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Figure 5.1: The block scheme of relations between various conditions on the SGA

of observables, its Hilbert space representation and the efficiency of dynamical

simulation of a subset of observables.

the evolution can be simulated efficiently. Small number is defined as a number

independent on the Hilbert space representation of the SGA.

If the necessary conditions hold and the evolving state cannot be represented

as superposition of a small number of the GCS but

• The SGA is a compact semisimple Lie-algebra of operators

• The SGA and its Hilbert space representation comply with the well-defined

classicality condition

• The Hamiltonian is moderately nonlinear1 in the elements of the SGA

• The initial state of the system is canonical with respect to an operator

moderately nonlinear in the elements of the SGA

a radical gain in efficiency can be obtained using a method proposed in Chapter

42. This method employs simulation of the unitary dynamics of interest by a

1Moderate nonlinearity is defined in Section 4.2 and is not equivalent to the weak nonlinerity

defined above.
2Recently a preprint appeared in the arXiv (Sidles et al., arXiv:0805.1844v1), containing

very similar ideas
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pertinent open-system dynamics. The open-system dynamics corresponds to a

nonunitary evolution of the original system under the weak measurement of the

SGA elements. It is simulated using unraveling of the evolving density operator

into pure-states stochastic trajectories. The pure-state evolution can be simulated

at low cost due to localization of the states in the corresponding phase-space under

the action of the measurement.

The method has been implemented in an algorithm for simulation of many-

body dynamics, driven by a su(2)-algebraic Hamiltonian. The algorithm has been

applied to simulation of the single-particle observables of a system of 2∗ 104 cold

atoms in a double-well trap. A dramatic reduction of the computational com-

plexity has been demonstrated. The algorithm is not efficient in the strict sense

of our definition since the CPU time scales linearly with the Hilbert space dimen-

sion. It is conjectured that this is a drawback of the particular implementation

of the method relying on solving a system of linear equations of motion.

Adding weak measurement to the unitary dynamics serves as a computational

tool in the proposed method. A by-product of the method is a tool of simulating

a real open-system dynamics. The open-system dynamics does not need to have

the particular form assumed in the present work. It is sufficient that the bath

has a strong localizing effect on the dynamics. On the other hand, it seems

necessary that the open-system dynamics be Markovian. Otherwise, the reduced

dynamics of the system will involve polynomials of arbitrary orders in the SGA

of the system and the simulation cannot be performed efficiently.

5.2 Open questions

5.2.1 Can the sNLSE be solved efficiently?

The algorithm presented in Section 4.4 is not efficient in the strict sense of the

definition given above, since the CPU time scales linearly with the Hilbert space

dimension of the system (Section 4.4.3). The order-of-magnitude analysis similar

to the argument presented in Section 4.4.3 shows that this feature is independent

of the SGA and characterizes the linear implementation of the algorithm (Section

4.4.2) in general. It is an open question whether this feature is inherent in the

sNLSE or is a drawback of the linear implementation.



100 Conclusions and open question

5.2.2 What is the optimal unraveling of the open-system

dynamics?

Unraveling of an open-system evolution into quantum stochastic trajectories is

not unique. Particular unraveling may have stronger localization properties and,

as a consequence, be more advantageous from the computational point of view.

For example, the open system evolution corresponding to a weak measurement

of operators in the SGA of the system can be unraveled into statistic mixtures

of pure-states trajectories, driven by the real noise (Chapter 4), which leads to

strong localization. A different unraveling corresponds to imaginary noise. In the

latter case the pure-state stochastic trajectory is driven by the original Hamil-

tonian, perturbed by the operator linear in the elements of the SGA, coupled

to the δ-correlated noise (Gorini & Kossakowski, 1976). Since the perturbation

is linear in the SGA it does not change the generalized purity of the state with

respect to the SGA and, as a consequence, has no localization effect at all.

Optimal unraveling from the computational point of view is unraveling having

the strongest localization property. This unraveling is a dynamical equivalent of

the optimization procedure for finding the measure of the mixed state (general-

ized) entanglement. The mixed state entanglement can be defined as an averaged

entanglement of the pure states in the mixture, minimized over all the possible

decompositions of the density operator into a mixture of pure states (Plenio &

Virmani, 2007; Barnum et al., 2003). The dynamical equivalent of this decom-

position is an unraveling. Maximizing the localization corresponds to minimizing

the generalized entanglement.

Finding the optimal unraveling seems to be at least as complex a problem as

calculating the mixed state entanglement, which is notoriously difficult(Plenio &

Virmani, 2007). Therefore, a physical insight is needed to guide the choice of

unraveling in the applications. This is left as an important open problem.

5.2.3 Is quantum integrability of the dynamics relevant?

Given a SGA of observables (or any other subalgebra of observables), the irre-

ducible Hilbert space representation of the algebra and an appropriate reference

state of the system, one can construct the corresponding phase space of the quan-

tum system (Onofri, 1975; Simon, 2000). GCS of the system with respect to the

reference states can be represented by a point in the phase-space (Zhang et al.,

1990) and an arbitrary evolution generated by the SGA can be represented as a

trajectory in the phase-space. The corresponding equations of motion are clas-

sical Hamiltonian equations (Kramer & Saraceno, 1981). Moreover, they are

linear equations of motion, corresponding to a system of harmonic oscillators in
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appropriate canonical coordinates.

When the Hamiltonian is nonlinear in the SGA elements (excluding the case

where the nonlinearity enters through a combination of Casimirs) an initial GCS

does not evolve into a GCS and trajectories are no longer an adequate description

of the dynamics. Still one can assume a GCS ansatz (the mean-field ansatz)

for the evolving state. The variational equations of motion are still classical

Hamiltonian equations of motion, but they are no longer linear and are generally

non integrable (Kramer & Saraceno, 1981; Zhang & Feng, 1995). Quantum

integrability is the property of the mean field dynamics of the quantum system

in the phase space.

Our method is based on representing evolving density operator as a statistical

mixture of pure states, evolving according to a nonlinear Schroedinger equation.

Each state is a superposition of a small number of the GCS and is localized in

the phase space. The limit of extreme localization corresponds to the mean-field

dynamics perturbed by the nonlinear and stochastic contributions from the mea-

surements. As is well known from the classical mechanics, the effect of the pertur-

bation on the dynamics depends strongly on the integrability of the unperturbed

dynamics. While integrable dynamics is stable under the action of sufficiently

small perturbation (Arnold, 1989), non integrable system are generally not. It

is conceivable that strongly localized solutions bear some characteristics of the

mean-field solutions, at least in the regular zones of the phase space. Therefore,

it is expected that the effect of the measurement (the fictitious bath) depends

strongly on the quantum-integrability.

5.2.4 What is the physical meaning of the classical limit?

The classical limit is the limit of a certain strong inequality imposed on the SGA

and its Hilbert space representation (Section (4.2)). In the case of the su(2) SGA

this limit corresponds to taking the dimension of the representation to infinity.

The same SGA can describe very different systems. For example the su(2) is

the SGA of both the system of cold atoms in a double-well trap (Vardi & Anglin,

2000) and of a vibrational degree of freedom of a diatomic molecule (Iachello &

Levine, 1995). In the latter case, the classical limit is usually associated with a

semiclassical limit of high vibrational numbers. In the former case, the classical

limit is associated with the thermodynamical limit of a large number of particles.

We ask the following speculative question: is the classical world a semiclassical

or a thermodynamical limit of quantum degrees of freedom, of both , of neither?



102 Conclusions and open question



References

Aharonov, D., & Ben-Or, M. quant-ph/9611029. . e-print.

Arecchi, F.T., Courtens, E., Gilmore, R., & Thomas, H. 1972. Phys. rev. a, 6,

2211.

Arnold, V. I. 1989. Mathematical methods of classical mechanics. 2nd edition,

New York: Springer.

Barnum, H., Knill, E., Ortiz, G., & Viola, L. 2003. Phys. rev. a, 68, 032308.

Beck, M. H., Jackle, A., Worth, G.A., & Meyer, H.D. 2000. Phys. rep., 324, 1.

Bohm, A., Neeman, Y., & Barut, A. O. 1988. Dynamical groups and spectrum

generating algebras. Singapur: World Scientific.

Boixo, S., Viola, L., & Ortiz, G. 2007. Epl, 79, 40003.

Brassard, G., & Bratley, P. 2000. Algorithmics: Theory and Practice. Engelwood

Cliffs: Prentice-Hall.

Cohen-Tannoudji, C., Dlu, B., & Laloe, F. 1977. Quantum Mechanics. New York:

Wiley.

Diosi, L. 1988a. Physics letters a, 132, 233.

Diosi, L. 1988b. Physics letters a, 129, 419.

Diosi, L. 2006. Weak measurements in quantum mechanics . v 4, p276-282 in:

Encyclopedia of Mathematical Physics, eds.: J.-P. Fransoise, G.L. Naber,

and S.T. Tsou , Elsevier, Oxford.

Diosi, L. 2007. A Short Course in Quantum Information Theory. Berlin:

Springer.

Dothan, Y. 1970. Phys. rev. d, 2, 2944.

Filippo, S. De. 2000. Phys. rev. a, 62, 052307.



104 REFERENCES

Gardiner, C.W. 1983. Handbook of Stochastic Methods. Berlin: Springer.

Gati, R., Hemmerling, B., Folling, J., Albiez, M., & Oberthaler, M. K. 2006.

Phys. rev. lett., 96, 130404.

Gershgoren, E., Vala, J., Kosloff, R., & Ruhman, S. 2001. J. phys. chem. a, 105,

5081.

Gilmore, R. 1974. Lie groups, Lie Algebras and Some of Their Applications. New

York: John Wiley and Sons.

Gisin, N. 1984. Phys. rev. lett., 52, 1657.

Gisin, N., & Percival, I. C. 1992. J. phys a: Math.gen., 25, 5677.

Gisin, N., & Percival, I.C. 1993. J. phys a: Math.gen., 26, 2233.

Gorini, V., & Kossakowski, A. 1976. J. math. phys., 17, 1298.

Gurvitz, L., & Barnum, H. 2003. Phys. rev. a, 68, 042312.

Halliwell, J.J., & Zoupas, A. 1995. Phys. rev. d, 52, 7294.

Hoover, W.G. 1999. Time Reversibility Computer Simulation and Chaos. Singa-

pore: World Scientific.

Iachello, F., & Levine, R.D. 1995. Algebraic Theory of Molecules. Oxford: Oxford

University Press.

Jozsa, R., & Linden, N. 2003. Proc. r. soc. lond. a, 459, 2011.

Kammerer, C., Voisin, C., Cassabois, G., Delalande, C., Roussignol, Ph., Klopf,

F., Reithmaier, J. P., Forchel, A., & Gerard, J. M. 2002. Phys. rev. b, 66,

041306(R).

Khodorkovsky, Y., Kurizki, G., & Vardi, A. 2008. Phys. rev. lett., 100, 220403.

Klyachko, A. A. quant-ph/0206012. . e-print.

Kohn, W. 1999. Nobel Lecture. January 28.

Kosloff, R. 1988. J. phys. chem., 92, 2087.

Kramer, P., & Saraceno, M. 1981. Geometry of the Time-Dependent Variational

Principle in Quantum Mechanics. Berlin: Springer-Verlag.

Kubo, R. 1962. Fluctuations, Relaxation and Resonance in Magnetic Systems.

Edinburgh: edited by D. ter Haar, Oliver and Boye.



REFERENCES 105

Lipkin, H. J., Meshkov, N., & Glick, A.J. 1965. Nucl. phys., 62, 188.

Mahan, Gerald D. 2000. Many-particle physics . New York: Kluwer Aca-

demic/Plenum Publishers.

Miller, W. H. 2005. Proc. natl. acad. sci. u s a, 102.

Nielsen, M. A., & Chuang, I. L. 2000. Quantum computation and quantum in-

formation. Cambridge University Press.

Onofri, E. 1975. J. math. phys., 16, 1087.

Perelomov, A. 1985. Generalized Coherent States and their Applications. Berlin:

Springer.

Peres, A. 1998. Quantum Theory: Concepts and Methods. Kluwer, Boston.

Plenio, M., & Virmani, S. 2007. Quant. inf. comp., 7, 1.

San-Jose, P., Zarand, G., Shnirman, A., & Schon, G. 2002. Phys. rev. lett., 97,

076803.

Schumm, T., Hofferberth, S., Andersson, L.M., Wildermuth, S., Groth, S., Bar-

Joseph, I., Schmiedmayer, J., & Kruger, P. 2005. Nature physics., 1, 57.

Sidles, J. A., Garbini, J. L., Harrell, L. E., Hero, A. O., Jacky, J. P., Malcomb,

J. R., Norman, A. G., & Williamson, A. M. arXiv:0805.1844v1.

Simon, R. 2000. Phys. rev. lett., 84, 2726.

Tal-Ezer, H., & Kosloff, R. 1984. J. chem. phys., 81, 3967–3970.

Tikhonenkov, I., Anglin, J. R., & Vardi, A. 2007. Phys. rev. a, 75, 013613.

Trimborn, F., Witthaut, D., & Korsch, H. J. 2008. Phys. rev. a, 77, 043631.

Uskov, A. V., Jauho, A. P., Tromborg, B., Mork, J., & Lang, R. 2000. Phys. rev.

lett., 85, 1516.

Vardi, A., & Anglin, J. R. 2000. Phys. rev. lett., 86, 568.

Vidal, G. 2003. Phys. rev. lett., 91, 147902.

Vidal, G., & Werner, R. F. 2002. Phys. rev. a, 65, 032314.

Viera, V.R., & Sacramento, P.D. 1995. Ann. phys., 242, 188.

Viola, L., Knill, E., & Laflamme, R. 2001. J. phys a: Math.gen., 34, 7067.



106 REFERENCES

Weiss, E. A., Katz, G., Goldsmith, R. H., Wasielewski, M. R., Ratner, M. A., &

R. Kosloff, A. Nitzan. 2006. J. chem. phys., 124, 074501.

Werner, R. F. 1989. Phys. rev. a, 40, 4277.

Zanardi, P. 2001. Phys. rev. lett., 87, 077901.

Zhang, W., & Feng, D. H. 1995. Phys. rep., 252, 1.

Zhang, W., Feng, D. H., & Gilmore, R. 1990. Rev. mod. phys., 62, 867.

Zwolak, M., & Vidal, G. 2004. Phys. rev. lett., 93, 207205.


	title.pdf
	rest.pdf

