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Dynamics of a charged particle in a magnetic-flux lattice
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The dynamics of a charged particle in a two-dimensional space under the influence of a nonuniform, periodic
magnetic field, similar to the magnetic induction inside an extremely type-Il superconductor in the vortex state,
is studied. The Hamiltonian for this model is found to be classically nonintegrable. A study of classical
trajectories shows a global transition from a confined chaotic motion on tori for small amplitude of the periodic
modulation, to an extended chaotic system that fills phase space uniformly, for strong modulations. The
classical dynamics is confronted with a semiclassical Gaussian wave-packet approach and a time-dependent
guantum-mechanicdQM) propagation scheme, for the same Hamiltonian. When the magnetic field modula-
tion is small the envelopes of both the semiclassical and the exact QM autocorrelation functions are found to
be Gaussian at short times. For a strong magnetic field modulation the envelope of the semiclassical autocor-
relation function crosses over to a decaying exponential, determined by the characteristic Lyapunov exponent
of the chaotic motion. It deviates significantly from the exact QM autocorrelation function, which retains the
Gaussian envelope. The relatively strong recursion peaks of the latter may indicate a quantum localization
effect.[S0163-182@96)06338-3

[. INTRODUCTION fined chaos to extended chaotic behavior in phase space
within the framework of classical mechanid®) a relation
In a type-1l superconductor below the upper critical field, between the Lyapunov exponent and the decay of the semi-
the magnetic induction is spatially periodic and has the samelassical autocorrelation function envelope; d8¢ qualita-
periodicity as the modulus of the superconducting Ordeitivew different dynamics of semiclassical Gaussian wave
parametet. The nonuniform component of the magnetic in- Packets and quantum-mechanical wave packets.
duction is due to the induced supercurrents generating the 'he outline of this paper is as follows: Section Il treats

vortex lattice. This spatially nonuniform magnetic field canthe ciassical dynamics properties. Section Il presents
be studied by employing muon-spin rotatien*SR) tech- Heller's-type semiclassical Gaussian wave-packet approach
niques as suggested by BraAdt. to the problem of a charged particle in the presence of a

The ground state in a periodic magnetic field for a spin- vector potential. Section IV applies the Chebychev propaga-

charged particle was obtained analytically by Dubrovin andion method, discusses the spectral structure, and compares

Novikov 2 Orbital dynamics of spinless charged particles in aduantum-mechanical and semiclassical results. In Sec. V the
random magnetic field was studied recently by AronoyGaussian broadening of Landau levels due to the periodic

et al,* who showed that in the semiclassical limit the LandauMagnetic field modulation is studied and a summary and

levels, associated with the large uniform component of théliscussion conclude this paper.
magnetic field, undergo a Gaussian broadening in the pres-
ence of the nonuniform random component. The problem ofll- CLASSICAL DYNAMICS OF A CHARGED PARTICLE
a charged particle in a uniform magnetic field with a time- IN'A SPATIALLY PERIODIC MAGNETIC FIELD
dependent peri%dic perturbation was studied by Chernikov 114 magnetic field model that is studied in the present
and co-workers: aper s

In the present paper we focus on the dynamics of zf
charged particle in a spatially periodic magnetic field similar
to that created in the mixed state of type-ll superconductors. B=
Using a simple harmonic model for the periodic field com-
ponent, a detailed study of the classical, semiclassical, angthereB is the uniform component of the magnetic field and
guantum-mechanical dynamics of a spinless charged particB; is the amplitude of the magnetic field modulation compo-
is presented. We have fourid) global transition from con- nent. The magnetic field given in Eql) is a simplified

Bo+B,

27X 2wy | .
cos——+cos——| |z (1)
a a
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harmonic model for the periodic magnetic field found in ational perturbation, since the nondegeneracy condition re-
type-1l superconductor in the mixed state. Note that in aquired by the theory is violated.
type-Il superconductor the periodic magnetic field has a tri- In the presence of the magnetic fi¢Egs.(2) and(3)] the
angular symmetry rather than a square symmetry, as studiddamiltonian is not integrable, but for small valueskf the
in this paper. This difference in symmetry, however, is notphase space motion is almost entirely on tori. Figu(@ 1
expected to significantly influence the main results of thisshows the surface of a section of 100 trajectories with the
paper. same energy but different initial positions in phase space.
The vector potential that generates the above field is givefror larger values oB,, a few tori are destroyed and the
by surface of section shows the preserved tori and phase space
areas with disordered points which are characteristic of a
(_l B —a—Blsinziy % chaotic motion[see Figs. (b) and Xc)]. For even larger
2 oy 2 a values ofB4, almost all the tori are destroyed. The motion is
chaotic almost in all phase space.
- The Poincaresurface of sectiofiFigs. (a)—1(c)] shows a
v 2 global transition from confined to extended chaos as a func-
) S tion of the flux lattice amplitud®,. This transition is stud-
and the classical Hamiltonian is ied below by the calculation of the Lyapunov exponent, av-
1 q |2 eraged over phase space.
H(p,r)= =— (p__A , 3 An important characteristic of a chaotic motion is the
2m c great sensitivity of the motion to small changes in the initial

The Lorentz equation for a charged particle in the magVerge exponentially in chaotic systems. The Lyapunov expo-
netic field given in Eq(1) is nent measures the mean rate of exponential separation of

neighboring trajectories. For regular motion the exponent is
27X 2wy zero since the trajectories separate only linearly in tige,
cos——+ COST) Uy, (43 for example, Ref. ¥ The Lyapunov exponents are calculated
by a linearization of the equations of motion around the clas-
) 277X 27y sical trajectory.
Vy= — WUy wl( cosT +COST) Uy, (4b) A normalized deviation from the classical trajectory vec-
tor in phase space is defined:

A:

1 aB;, . 2wx
—BOX‘F—SII’]T

12 2

bx=wcvy+w1

wherew.=qBy/mc and w;=qB;/mc.

The Hamiltonian[Eqg. (3)] with B;=0 corresponds to a (1) =N{oxX+ Syy+ Sp,p,+ 5pyf)y}- (5
charged particle in a uniform magnetic field. The energy,
Eo=H(p,r), and the angular momentunt,,=xP,—yP,, Its equations of motion are derived by linearization of the

are its two constants of motion. In this case the Hamiltoniarequations of motion in the four-dimensional phase space and
is integrable and degenerate since the cyclotron frequency &e given in terms of the Hamiltonian second derivatives:
independent ok,y,P,,P,. This degeneracy implies a high

sensitivity t% perturbations as described by Zaslavski and 92H J92H 9°H 9%H
co-workers> >

It should be stressed here that the sizef the unit cell in apzxax &p;&y asz &géapr
the Abrikosov lattice depends on the intensity of the external oX J°H J°H J°H —
magnetic field, represented in our modelByy. Specifically, i oy | | 9pydx dpydy  dpydpy Jpy
a unit cell in the corresponding flux lattice is threaded by a 4t | dp, | | —0°H —-0°H —9°H —4°H
single Cooper-pair flux quantung,=hc/2e, which means Sp X2 axay  axd ENE
that a= yhc/2eB,. On the other hand, the chargeof the g —?H —3%H _azﬁ_’; _&zpl)_)"
particle determines another length, that is, the magnetic >
length |5 = \/ci/qB,. The ratioq/2e= a2/2n-|20, which is ayox dy dydpx  dydpy
equal to the magnetic flux through a unit cell per flux quan- X
tum of the particle, is an important parameter determining Sy
the energy spectrum of the particle. E (6)

The motion in phase space of a two-dimensio(&D) sp
integrable Hamiltonian system is on a 2D torus where the y
Poincaresurface of section is a slice of this torus. The initial The largest Lyapunov exponent is calculated from the defi-
position in phase space defines a torus on which the classicggion-
orbit lies. For a nonintegrable Hamiltonian system the exist-

ence of tori which confine the phase space flow is not guar- In|&t)|
anteed. Kolmogorov-Arnold-MosseiKAM) theory, when A= lim ] (7)
applicable, states that most of the tori are preserved for a e L

sufficiently weak perturbation on the integrable Hamiltonian.
The KAM theory does not apply to the Hamiltonian of a With the magnetic flux lattice model Hamiltonid&qg. (3)],
charged particle in a uniform magnetic field with an addi-the nonvanishing terms in E¢) are
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() : FIG. 2. Lyapunov exponent averaged over phase space for three
values of the energy: 25, 50, and 100 in unitsfed.. For each
50 " ' ' curve the transition from a confined chaotic motion to extended
chaotic motion is seen as a linear rise in the averaged Lyapunov
exponent for large enough values®f. With a larger value of the
energy the transition occurs at smaller value8of
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ay 2mc \2 © 160573 081€0575
=0T ) +quw1 +1qB 27X o
-B;—— == sin—.
ctla m\PxT 2P a (80
, The Lyapunov exponent vanishes when the motion is on
-10.0 . . . : . tori and is positive for a chaotic trajectory. Since it was
35 40 45 50 55 60 85 shown by the Poincarsurface of sectiofiFigs. Xa)—1(c)]
(©) B that asB; is increased some tori are preserved and others are

o, ) ) _ destroyed, an average over phase space has to be calculated
FIG. 1. Poincaresurface of section of 100 equienergy trajecto- in order to determine the global transition from a regular
ries launched from different positions in a magnetic unit ogll. motion (on tor) to an extended chaotic motion in phase
B,/By=0.01, (b) B;/By=0.05, and(c) B;/B;=0.08. For(a)—(c) space

Ey=100hw.. In (8) motion on tori is seen. The separatix lines can In Fig. 2 an average Lyapunov exponent, over the same
also be observed as the separating lines between different clustel:[ﬁo trajéctories that were presented in the I,Dofnsarmce
n

of tori centered around adjacent fixed points in the phase space. . . . .
(b) and(c) filled areas in phase space between the remaining tori argf §ectlon, are shown with three energies 25, 5.0’ and 100 in
units of Zw, . For small values 0B, the calculation of the

seen indicating the existence of chaotic motion.
g Lyapunov exponenfEgs. (5)—(7)] does not converge to a
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constant value for long propagation times. Since it decreases

to zero very slowly we did not determine whether the
Lyapunov exponent vanishes exactly or it is very small. For

large values 0B, the calculation does converge to a constant

value which is the largest Lyapunov exponent. The transition

to extended chaotic motion is seen as an approximate linear Poa
rise in the average value of as a function of the lattice
parameteB, above some critical value d,. The critical

!

-20-80 -40 00 40 80
L

field is determined by linearly extrapolating the Lyapunov [,
exponent values at high values Bf to zero. The critical — T
field of the transition exhibits an inverse dependence on en- 45 50 55 60 65 70 75 80 85
ergy. At small energies the transition occurs at higher values :
of B. . . .
With the magnetic flux lattice classical HamiltoniE&gs. FIG. 3. Zaslavski's web explored by a single trajectory. At each

(2) and (3)], each classical trajectory has an infinite numberh°|e of .the web there is a fixed pplnt and.the web structure is a
of equivalent trajectories that are obtained by magnetic tranSeParatix sheet between the fixed poinB=100iw; and
lations. The magnetic translation shifts the initial space coB1/Bo=0.08.
ordinate by a unit cell vector and conserves the initial veloc-

ity components by an appropriate shift of the initial the trajectories lie, and are separated by sharp separatix lines.

generalized momentum components. The magnetic transl#f a perturbation is added to the Hamiltonian, chaotic trajec-

tions are tories appear in the vicinity of the separatix lines of the un-
, ) perturbed Hamiltonian. A single trajectory initialized in the

Xo=Xot]a, (93 vicinity of the separatix line can explore phase space by

moving in the regime in phase space that is created by the

Yo=VYotla, (9b) destruction of the separatix line. This phenomenon was

found by Zaslavski® in a system of a charged particle in a
uniform magnetic field with a time-dependent periodic per-
turbation, and is referred to as Zaslavski’s web. The forma-
tion of the web changes the transport properties of the sys-
, 1 tem since these specific trajectories are classically unbound,
Pyo=Pyo ] 2 Bo c a. (9d) while the trajectories in the unperturbed systémuniform

] ) ] magnetic fieldgl are classically bound. WheB;, is small, the
The magnetic translation symmetry and the existence Ofegime of the destroyed separatix is exponentially small in
equivalent trajectories are the reason for the periodicity Se€Phase space, nearly all the trajectories seen in Faylié on
in the Poincaresurface of sectiopsee Fig. 13)]. The classi- 14y and the web is not observed. With largey values there
cal magnetic translation symmetry of the magnetic-flux Iat-are regimes in phase space that are fifledthe Poincare

tice model exh|p|ts itself al_so in Fhe calcula_tlon pf LyapunovS rface of section, Figs.(9)—1(c)] and in these regimes a
exponents and in the semiclassical Gaussian time-dependen .

. . single trajectory can explore phase space and by that explore
wave-packet approach. In both cases the equations of moti

are invariant under the magnetic translations, and henc e web structure. In Fig. 3 Zaslavski's web is shown to be

equivalent trajectories have an identical stability character(,:re,""ted by'a single trajectory. In each h‘?'e of the web there is
fixed point and the web is a separatix sheet between the

determined by the Lyapunov exponent, and an identicaf’,l - . X

time-dependent Gaussian wave packe to a phasethat fixed pomts.(‘l’_he flxec_J pom_t can be ob_served as the celjter

follows the classical trajectory. of many localized trajectories that encircle the fixed point.
From the gquantum-mechanical point of view the presencd hese trajectories are not shown in Fig. 3.

of magnetic translational symmetry means that tunneling be-

tween equivalent closed orbits should lead to the broadening

of the Landau levels, associated with the ideal cyclotron or-

, 1.9
Pxo= Pxo—| > Bo P (90

bits of the particle in the uniform magnetic fiel,, into Ill. SEMICLASSICAL GAUSSIAN TIME-DEPENDENT

energy bands. Dubrovin and Novikbwhowed that each WAVE-PACKET APPROACH

Landau band splits intmm magnetic subbands in the presence ) o ) ) .

of a periodic magnetic field modulation, whereis the num- The classical dynamics is confronted with a semiclassical

ber of magnetic flux quanta that threads through a unit celPfopagation on the same Hamiltonian describing a charged
(m is an integer larger thar)1in this paper the focus is not Particle in the presence of a vector potential. Heller's-type
on the internal fine structure of the energy bands, thus for théeémiclassical time-dependent Gaussian wave-packet ap-
sake of simplicity the unit cell length ia= Jhc/eB,, pro-  Proach is employed.

viding one magnetic flux quanta per unit cell and a simply
broadened Landau bands. ) ) _

The Poincaresurface of section for a two degrees of free- _ I I '

dom integrable bound Hamiltonian system produces clusters w(r,t)—exp[ 7Nty Pt g (rmrga(r= rt)]’
of tori centered around different stable fixed points on which (10
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where ¥y, f¢,p;,; are all time-dependent parameters deter- 2
mined by first-order differential equations that are derived Tl
below. The vector potentiah=(A,,A,,0) is expanded in el
Taylor series around the instantaneous center of the wave Tl
packet,r,, which follows the classical trajectory —
il
3 AL
Ax(xyy)_Ax|rt+W r (X_Xt) 19y
t
1 (92AX ) 1 (92 X 3 T T T T
5 W (X—Xy) +§ a—yz— 00 10 20 30 40 50
r t/T
2
FIG. 4. The semiclassical autocorrelation function showing a
+(7Xr9y (X=x)(y=yv), (113 Gaussian envelope of the recursions peakss 100hw. and
Ay(Xy)=A| + .2 1 g dA, q dA,
y ylr — -1 2
' r R N AR
9%A 1 92 2 1qdA q dA
i —x)24 = 2 _- 27y _ 1y
2 2| XT3 ) m( 2275 ¢ ay)(alz c x)
q ( aZAX _ asz)
| Xt Ty | (13¢
= &y (11b c | "t axay axay
. ) ) ) ~with the definitions
The Gaussian wave packet is substituted into the time-
dependent Schdinger equation q
mrt=pt—EAt, (13f)
% ap(r,t) 1 py_ g T A 17
ih — =5 | —iAV - o, a2 |
E=2imrZ (139

First-order equations of motion are derived for the time-
dependent functions of the Gaussian wave packet by equathe main feature of this semiclassical approximate wave
ing terms of the same order in the deviation from the classipacket is that it remains of Gaussian shape at all times. Dur-
cal trajectory[all terms proportional to X—x;), (Y—V), ing propagation its spatial width varies, its momentum vector
(x—x)% (Y—Yy)?% (x—x)(y—y,), and the free ternisThe  can change direction and magnitude, and the total phase
set of differential equations for the Gaussian time-dependerthanges, but it remains a Gaussian shaped centered at the
functions are classical trajectory spatial position. The Gaussian form al-
lows analytical calculation of spatial integrals over the wave
_ ih packet which are needed for calculating the autocorrelation
y=pifi—E+ ™ (a1t ayy), (133 function. The disadvantage of the Gaussian wave-packet ap-
proach is that no bifurcation of the wave packet is allowed.
This can cause significant deviations from the exact
. q. guantum-mechanical wave-packet dynamics.
mry= rexB, (13b The overlap between the initial wave packet and the
propagated one at any timids the autocorrelation function

: 2 1q0A\% 1 IA,\?
alr‘E(an > 2 axx) _ﬁ( 12‘%(9_;) =((r,0)](r,1)). (14
1q PA, . ,;ZA Using the Gaussian form of the wave packet, given by Eq.
+ >c (Xt v +yi X2 ) (130 (10), the spatial overlap integral is calculated analytically.
The absolute values of the autocorrelation function are
shown in Figs. 4 and 5, for the first five periods with two
: 2 1g90A)\* 1 q 9A\? values ofB;. For small values oB; the envelope of the
22T T\ Y270 ey ) T 2am | %2 ¢ Ty recursions peaks at short propagation times has a Gaussian
5 5 shape(see Fig. 4. For larger values oB,, the envelope has
N } q i Ay d Ay) (130 an exponential decay form shown as the dotted line in Fig. 5,
2c | Xy T ) taking the form,
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10

J,(a) is the first kind of Bessel function of an integer order.
The matrix ¢, is calculated by the Chebychev recursion for-
mula

‘ dn+1=2iH norm®n— dn-1- (19

o)

\ H o is @ shifted and normalized Hamiltonian operator such
X that its eigenvalues are spread within the intervall,1],
]\ ..... where the Chebychev polynomials are defined. Convergence
i of the sum in Eq(183 is reached whem, the order of the
00 10 {0 30 40 50 Chebychev polynomial, is greater than This is due to the
t/T fact that Bessel functions decay exponentially when their
order is greater than its argument. The basic operation of the
FIG. 5. The semiclassical autocorrelation functi@olid line ~ Hamiltonian on the wave packet at the grid points is a sum of
and an exponential envelope with the calculated Lyapunov expolocal potential energy operators, and nonlocal kinetic-energy

00

nent\w.=0.223(dotted ling. E=100h w. andB;/By=0.15. operators which are calculated in the momentum space by a
fast Fourier transform algorithm following Kosloff and
A=e M, (15  Kosloff.*

) The spectrum of the Hamiltonian is calculated from the
The value ok is the average Lyapunov exponent calculated,iocorrelation function as follows: During propagation op-
at the same value dB;. The correspondence between the

: i , X eration an overlap vectd? is calculated. The autocorrelation
exponential decay of the aut_ocorrelatlon_ function with theg,nction is given in terms of the overlap vector components
average Lyapunov exponent is goteke Fig. 5. Our con-

clusion from this correspondence is that in the chaotic re-
gime the Lyapunov exponent determines the decay of the
semiclassical autocorrelation function. In Sec. IV it will be
shown that the quantum-mechanical autocorrelation function
does not decay exponentially in the classically chaotic re- _ _ ;

) . . . a(t)=(y(r,0 r,t))=exp(—I a P,.
gime. Thus, the quantum-mechanical and the semiclassical O=(hr0lur.v) " a); n(@)Pn

Pn:<¢0|¢n>v (203

autocorrelation functions are qualitatively different. (20b
IV. CONVERGED QUANTUM-MECHANICAL Thefcalcglat|ondof thg Fﬁgnerhtransform I;)f the autoc;)rrela-]c
WAVE-PACKET DYNAMICS ON A GRID BY THE t|r?n Bunctlcl)r; re gcesr:n this sc ergelfi%\r?“ ourier transform o
CHEBYCHEV PROPAGATION METHOD the Bessel function that is given below.
The Chebychev propagation schéfé” provides a uni- oc »
formly convergent scheme for the time-dependent Schro a(w)=JO a(t)e'” dt:; Ca(B)Pn, (219

dinger equation allowing us to obtain accuracy limited only
by the computers precision. This approach and other relat

methods are widely used to perform numerically converge re
guantum-mechanical calculations in various areas of quan-
tum molecular dynamics. A brief presentation of the method Co(B) = 2 21b)
is given below. The Schobinger equation has the following 0 ‘/1_,3?'
formal solution for a time-independent Hamiltonian:
Y(r,)=0(0)(r,0), (16 e w (210
wherefJ(t) is the evolution operator
; i L _2E 21
U(t)=ex;{—|H %). (17 wo= 57 (210
The Chebychev propagation scheme is based on a converged -
polynomial expansion of the evolution operator. The wave 4 cogn sin " (B)]
packet at time is given by V1-p2 if n is even,
C = . .
n(B) 4 sir{n sin"X(B)] if n is odd.
Ur=exp—ia) X an(a)én, (189 =
(21
where a=AEt/2,
. High-resolution spectra using the Chebychev propagation
2Jn(a@) if n>0, scheme are presented in Ref. 15, where the ground state in a

(18b

an(a)= Jo(@) if n=0. periodic magnetic field is studied.
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FIG. 6. The semiclassical autocorrelation functisalid line) vs FIG. 7. The modulus of the autocorrelation function in the first

the quantum onddotted ling. The semiclassical autocorrelation ten periods. The three time scales, 7,, and 73 are seen.
function has an exponential envelope while the quantum one hag= 1004w, andB;/By=0.15.

much stronger recursion peaks and it retains its Gaussian envelope. . . )
shortest time scaler;, determined by the half width at half

c ina th d " " lation f maximum of a single recursion peak, is related to the broad-
omparing the converged quantum autocorrelation UNCegt featyre in the energy domain, which is the energy width

tion with the semiclassical one for a small flux lattice ampli- ¢ the initial wave packet. The second time scalg, is the
tude, B,, the quantum autocorrelation function has at eachime separation between the recursions peaks, and is related
time period a stronger recursion peak. Both autocorrelatiory the energy level spacing &fw, , where w, =27/, is the
functions show a Gaussian envelope determined by the vagyciotron frequency. The third time scaley, is determined
ues of the recursions peaks. When a larger amplitude of thgy the Gaussian envelope created by the maxima of the re-
flux is used(B,/B,=0.15 in Fig. 6, the envelope of the cursions peaks every time periad. The time scaler; is
semiclassical autocorrelation function becomes an exponefelated to the broadening of Landau levels dudto
tially decaying function, determined by the Lyapunov expo- |n a plot of —In([a(t)|) vs t? the recursion peaks of the
nent, while the quantum-mechanical autocorrelation functioryytocorrelation function seen in Fig. 7 appear as a set of
retains the Gaussian envelope structure obtained with smathinima. If the autocorrelation function has a Gaussian enve-
values ofB;. lope at short propagation time, the minima of the logarithm
The Gaussian wave packet follows the chaotic classicgblot will fit a straight line whose slope is #3. In Fig. 8 the
trajectory and the Gaussian width differential equations argninima are linear in? and the relaxation time can be ex-
closely related to the stability differential equation of a tra-tracted. For long propagation times the envelope of the au-
jectory that is solved in the calculation of the Lyapunov ex-tocorrelation function does not have a simple Gaussian form.
ponent[Eq. (6)]. Heller in his review® shows the relations The exact structure of the autocorrelation function for long
between the Gaussian wave packet and the elements of thighes is related to the fine structure of the Hamiltonian spec-
monodromy matrix, which is related to the stability of the trum. A high resolution spectrum can be obtained by a Fou-

classical trajectory measured by the Lyapunov exponentier transform of the autocorrelation function with long time
This relation might be the reason for the general good agregyropagation.

ment between the autocorrelation envelope exponential de-

cay with the Lyapunov exponent calculation. Thus the semi- 0 T I |
classical Gaussian wave packet reflects the classical
dynamics of the system.
The exact quantum-mechanical wave packet does not fol- o
low the route of a single classical trajectory. It can bifurcate =
and interfere with making the dynamics persistent to the }
classical chaotic behavior of the system. The strong recur- 'q /
sion peaks obtained by the exact autocorrelation function in 7 /
comparison to the semiclassical one are due to interferences
that are taken fully into account by the converged Chebychev o |/
o

propagation and are not described well by the approximated

T T T T T T T T T
. ; S 0.0 0.0 20030.040.050060.0 70.080.090.0000
Gaussian wave packet. This result might indicate a quantum

localization of the charged patrticle in the studied magnetic [%l’
flux lattice model, which elucidation needs a more detailed
investigation. FIG. 8. The logarithmic plot of the modulus of the autocorrela-

In Fig. 7 the absolute value of the autocorrelation functiontion function vst? showing the Gaussian behavior at short times.
is shown. There are three time scales that characterize th®he scattering rate 4 is determined from the slop&=100h w,
behavior of the autocorrelation functidsee Helle}). The  and B,/By=0.15.
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V. LANDAU LEVEL GAUSSIAN BROADENING In the semiclassical limit, considered in both models, the
ratio Ey/% w. is much larger than unity. Thus the inhomoge-
neous broadening of the Landau levels by a random distri-
é)ution of flux lines is much stronger than the broadening by

An overview of magnetic oscillations in metals is given
by Shonbergsee Ref. 15 An important example of mag-
netic oscillations is the de Haas—van Alphen effect which i ;
used to study Fermi surfaces in metals and, recently, type-ft "egular flux lattice.
superconductorS.~?*The effect of Landau level broadening,
due to finite temperature, impurities, and inhomogeneous
magnetic field, on the magnetization of a two-dimensional
electron gas was studied by Shonb&ttn this paper Landau VI. SUMMARY AND DISCUSSION
level broadening due to an additional periodic component of . —
the magnetic fiegl;d is studied by examir?ing the chargcteristics We have_ shc_;wn that the classical Ham|ltpn|an O.f a
of an autocorrelation functiofsee Eq.(14)] in the time do- charged_ pgrtlcle in the_ presence of a small, spatlally penod_lc
main. magnetic f|eI(_j, supenmposed on a large un!fgrm magnetic

The third time scaler,, that was defined in the previous field, is chao.tlc. A detall.ed analysis of the Pompamzfaces
section and which is related to the broadening of LandaljOr the classical dynamics and the correspondlmg Lyapynov
levels, is determined by the Gaussian envelope of the autgXponents has been made. An exten(_jed web in the PO'F‘C"’“E
correlation function at short propagation times map, S|_m|Iar to that f‘?“r?d by Z_aslav§k| for a charged pa_rtlc_le

in a uniform magnetic field, with a time-dependent periodic

perturbation, is found in the stationary, spatially periodic
22) magnetic field model studied here. The formation of the web
is expected to change the transport properties of the system
since the specific trajectories involved are classically un-
bound, while the trajectories in the unperturbed systam
Aw - uniform magnetic fiell and also most of the trajectories
—= . (23)  with a small perturbation, are classically bound. It is not
W T3We clear, however, to what extent this remarkable effect can
Fitting our numerical result for the envelope of the autocor-survive the influence of the full quantum-mechanical bifur-
relation function to the Gaussidf2) with various values of cation and interference of the wave packet, neglected in the
B, and E, (see, for example, Figs. 7 and,8ve find the classical description.

following analytical expression for the Landau levels width: ~ We have found that the envelope of the semiclassical au-
tocorrelation function obtained by the semiclassical Gaussian

_t2

Aenvelope: exl{ 2
73

The width of the broadened Landau levels is given by

E, \ Y4B, yvave-packe_t appr_oach is determined by Lyapunov exponent

:0.35]( -, (24)  in the chaotic regime. The exact quantum-mechanical auto-

T3We hwe|  Bo correlation function envelope does not decay exponentially
whereE, is the mean energy of the initial Gaussian waveand it has much stronger recursion peaks than the semiclas-
packet. sical one. The dynamics of wave packets was used to esti-

It is instructive to compare this result to the expression formate the spectrum that is obtained with limited resolution. A
the Landau level width derived by Aron@t al,*in a model  qualitative difference between the quantum and semiclassical
similar to that used here, but with a completely random dislinewidths was found. The semiclassical result may be rel-
tribution of flux lines. These authors have found that in theevant if weak noise, leading to decoherence is present. We
semiclassical limit, the mean local density of stdtsstained have shown that as for a random flux line distribution, the
by averaging over the realizations of the flux lines configu-inhomogeneous broadening of the Landau levels by a peri-

rationg has a Gaussian line shape, with a Landau level widttpdic magnetic field component is Gaussian, but with a much
given by smaller linewidth.

Experimental testing of the model studied here seems to
12 752 be feasible for charged particles like muofs®). These
7 :(@) { >, (25)  charged, massive particlem(=207m,) have characteristic
Tw. \ h Bo lifetimes 7,~2 us. Thus, for a magnetic field of 10 T the

Where<b2>:f<Bl(r)Bl(r’)>d2r’, which is proportional to the cyclotron frequency for muontsaw~109 s~ !, which means

mean-square amplitude of the random field fluctuations, ~ that within its lifetime a muon insideoq)an extremely type-l|
The amplitudeB, of the periodic modulation in our model SuPerconductor can compleig,, 7,~10" cyclotron orbits.

may be related tdb? in the random flux lines model by
(p*)=Bilg,, wherelg = \chi/eBy=al 2 is the magnetic

length. Thus the corresponding linewidtg. (25)] may be ACKNOWLEDGMENTS
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