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The dynamics of a charged particle in a two-dimensional space under the influence of a nonuniform, periodic
magnetic field, similar to the magnetic induction inside an extremely type-II superconductor in the vortex state,
is studied. The Hamiltonian for this model is found to be classically nonintegrable. A study of classical
trajectories shows a global transition from a confined chaotic motion on tori for small amplitude of the periodic
modulation, to an extended chaotic system that fills phase space uniformly, for strong modulations. The
classical dynamics is confronted with a semiclassical Gaussian wave-packet approach and a time-dependent
quantum-mechanical~QM! propagation scheme, for the same Hamiltonian. When the magnetic field modula-
tion is small the envelopes of both the semiclassical and the exact QM autocorrelation functions are found to
be Gaussian at short times. For a strong magnetic field modulation the envelope of the semiclassical autocor-
relation function crosses over to a decaying exponential, determined by the characteristic Lyapunov exponent
of the chaotic motion. It deviates significantly from the exact QM autocorrelation function, which retains the
Gaussian envelope. The relatively strong recursion peaks of the latter may indicate a quantum localization
effect. @S0163-1829~96!06338-2#

I. INTRODUCTION

In a type-II superconductor below the upper critical field,
the magnetic induction is spatially periodic and has the same
periodicity as the modulus of the superconducting order
parameter.1 The nonuniform component of the magnetic in-
duction is due to the induced supercurrents generating the
vortex lattice. This spatially nonuniform magnetic field can
be studied by employing muon-spin rotation~m1SR! tech-
niques as suggested by Brandt.2

The ground state in a periodic magnetic field for a spin-1
2

charged particle was obtained analytically by Dubrovin and
Novikov.3 Orbital dynamics of spinless charged particles in a
random magnetic field was studied recently by Aronov
et al.,4 who showed that in the semiclassical limit the Landau
levels, associated with the large uniform component of the
magnetic field, undergo a Gaussian broadening in the pres-
ence of the nonuniform random component. The problem of
a charged particle in a uniform magnetic field with a time-
dependent periodic perturbation was studied by Chernikov
and co-workers.5,6

In the present paper we focus on the dynamics of a
charged particle in a spatially periodic magnetic field similar
to that created in the mixed state of type-II superconductors.
Using a simple harmonic model for the periodic field com-
ponent, a detailed study of the classical, semiclassical, and
quantum-mechanical dynamics of a spinless charged particle
is presented. We have found~1! global transition from con-

fined chaos to extended chaotic behavior in phase space
within the framework of classical mechanics;~2! a relation
between the Lyapunov exponent and the decay of the semi-
classical autocorrelation function envelope; and~3! qualita-
tively different dynamics of semiclassical Gaussian wave
packets and quantum-mechanical wave packets.

The outline of this paper is as follows: Section II treats
the classical dynamics properties. Section III presents
Heller’s-type semiclassical Gaussian wave-packet approach
to the problem of a charged particle in the presence of a
vector potential. Section IV applies the Chebychev propaga-
tion method, discusses the spectral structure, and compares
quantum-mechanical and semiclassical results. In Sec. V the
Gaussian broadening of Landau levels due to the periodic
magnetic field modulation is studied and a summary and
discussion conclude this paper.

II. CLASSICAL DYNAMICS OF A CHARGED PARTICLE
IN A SPATIALLY PERIODIC MAGNETIC FIELD

The magnetic field model that is studied in the present
paper is

B5HB01B1S cos2px

a
1cos

2py

a D J ẑ ~1!

whereB0 is the uniform component of the magnetic field and
B1 is the amplitude of the magnetic field modulation compo-
nent. The magnetic field given in Eq.~1! is a simplified
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harmonic model for the periodic magnetic field found in a
type-II superconductor in the mixed state. Note that in a
type-II superconductor the periodic magnetic field has a tri-
angular symmetry rather than a square symmetry, as studied
in this paper. This difference in symmetry, however, is not
expected to significantly influence the main results of this
paper.

The vector potential that generates the above field is given
by

A5H S 2
1

2
B0y2

aB1
2p

sin
2py

a D x̂
1S 12 B0x1

aB1
2p

sin
2px

a D ŷ% ~2!

and the classical Hamiltonian is

H~p,r !5
1

2m SP2
q

c
AD 2, ~3!

whereq is the electric charge of the particle, andm its mass.
The Lorentz equation for a charged particle in the mag-

netic field given in Eq.~1! is

v̇x5vcvy1v1S cos2px

a
1cos

2py

a D vy , ~4a!

v̇y52vcvx2v1S cos2px

a
1cos

2py

a D vx , ~4b!

wherevc5qB0/mc andv15qB1/mc.
The Hamiltonian@Eq. ~3!# with B150 corresponds to a

charged particle in a uniform magnetic field. The energy,
E05H~p,r !, and the angular momentum,Lz5xPy2yPx ,
are its two constants of motion. In this case the Hamiltonian
is integrable and degenerate since the cyclotron frequency is
independent ofx,y,Px ,Py . This degeneracy implies a high
sensitivity to perturbations as described by Zaslavski and
co-workers.5,6

It should be stressed here that the sizea of the unit cell in
the Abrikosov lattice depends on the intensity of the external
magnetic field, represented in our model byB0. Specifically,
a unit cell in the corresponding flux lattice is threaded by a
single Cooper-pair flux quantum,f05hc/2e, which means
that a5Ahc/2eB0. On the other hand, the chargeq of the
particle determines another length, that is, the magnetic
length l B05Ac\/qB0. The ratioq/2e5a2/2p l B0

2 , which is

equal to the magnetic flux through a unit cell per flux quan-
tum of the particle, is an important parameter determining
the energy spectrum of the particle.

The motion in phase space of a two-dimensional~2D!
integrable Hamiltonian system is on a 2D torus where the
Poincare´ surface of section is a slice of this torus. The initial
position in phase space defines a torus on which the classical
orbit lies. For a nonintegrable Hamiltonian system the exist-
ence of tori which confine the phase space flow is not guar-
anteed. Kolmogorov-Arnold-Mosser~KAM ! theory, when
applicable, states that most of the tori are preserved for a
sufficiently weak perturbation on the integrable Hamiltonian.
The KAM theory does not apply to the Hamiltonian of a
charged particle in a uniform magnetic field with an addi-

tional perturbation, since the nondegeneracy condition re-
quired by the theory is violated.5

In the presence of the magnetic field@Eqs.~2! and~3!# the
Hamiltonian is not integrable, but for small values ofB1 the
phase space motion is almost entirely on tori. Figure 1~a!
shows the surface of a section of 100 trajectories with the
same energy but different initial positions in phase space.
For larger values ofB1, a few tori are destroyed and the
surface of section shows the preserved tori and phase space
areas with disordered points which are characteristic of a
chaotic motion@see Figs. 1~b! and 1~c!#. For even larger
values ofB1, almost all the tori are destroyed. The motion is
chaotic almost in all phase space.

The Poincare´ surface of section@Figs. 1~a!–1~c!# shows a
global transition from confined to extended chaos as a func-
tion of the flux lattice amplitudeB1. This transition is stud-
ied below by the calculation of the Lyapunov exponent, av-
eraged over phase space.

An important characteristic of a chaotic motion is the
great sensitivity of the motion to small changes in the initial
conditions. Closely neighboring trajectories are found to di-
verge exponentially in chaotic systems. The Lyapunov expo-
nent measures the mean rate of exponential separation of
neighboring trajectories. For regular motion the exponent is
zero since the trajectories separate only linearly in time~see,
for example, Ref. 7!. The Lyapunov exponents are calculated
by a linearization of the equations of motion around the clas-
sical trajectory.

A normalized deviation from the classical trajectory vec-
tor in phase space is defined:

d~ t!5N$dxx̂1dyŷ1dpxp̂x1dpyp̂y%. ~5!

Its equations of motion are derived by linearization of the
equations of motion in the four-dimensional phase space and
are given in terms of the Hamiltonian second derivatives:

]

]t S dx
dy
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D 5S ]2H

]px]x
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2]2H

]x2
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2]2H
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]2H
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]2H

]px]py
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]py
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]x]py
2]2H

]y]py

D
3S dx
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dpx
dpy

D . ~6!

The largest Lyapunov exponent is calculated from the defi-
nition:

l5 lim
t→`

lnud~ t !u
t

. ~7!

With the magnetic flux lattice model Hamiltonian@Eq. ~3!#,
the nonvanishing terms in Eq.~6! are
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The Lyapunov exponent vanishes when the motion is on
tori and is positive for a chaotic trajectory. Since it was
shown by the Poincare´ surface of section@Figs. 1~a!–1~c!#
that asB1 is increased some tori are preserved and others are
destroyed, an average over phase space has to be calculated
in order to determine the global transition from a regular
motion ~on tori! to an extended chaotic motion in phase
space.

In Fig. 2 an average Lyapunov exponent, over the same
100 trajectories that were presented in the Poincare´ surface
of section, are shown with three energies 25, 50, and 100 in
units of \vc . For small values ofB1 the calculation of the
Lyapunov exponent@Eqs. ~5!–~7!# does not converge to a

FIG. 1. Poincare´ surface of section of 100 equienergy trajecto-
ries launched from different positions in a magnetic unit cell.~a!
B1/B050.01, ~b! B1/B050.05, and~c! B1/B050.08. For ~a!–~c!
E05100\vc. In ~a! motion on tori is seen. The separatix lines can
also be observed as the separating lines between different clusters
of tori centered around adjacent fixed points in the phase space. In
~b! and~c! filled areas in phase space between the remaining tori are
seen indicating the existence of chaotic motion.

FIG. 2. Lyapunov exponent averaged over phase space for three
values of the energy: 25, 50, and 100 in units of\vc . For each
curve the transition from a confined chaotic motion to extended
chaotic motion is seen as a linear rise in the averaged Lyapunov
exponent for large enough values ofB1. With a larger value of the
energy the transition occurs at smaller values ofB1.
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constant value for long propagation times. Since it decreases
to zero very slowly we did not determine whether the
Lyapunov exponent vanishes exactly or it is very small. For
large values ofB1 the calculation does converge to a constant
value which is the largest Lyapunov exponent. The transition
to extended chaotic motion is seen as an approximate linear
rise in the average value ofl as a function of the lattice
parameterB1 above some critical value ofB1. The critical
field is determined by linearly extrapolating the Lyapunov
exponent values at high values ofB1 to zero. The critical
field of the transition exhibits an inverse dependence on en-
ergy. At small energies the transition occurs at higher values
of B1.

With the magnetic flux lattice classical Hamiltonian@Eqs.
~2! and ~3!#, each classical trajectory has an infinite number
of equivalent trajectories that are obtained by magnetic trans-
lations. The magnetic translation shifts the initial space co-
ordinate by a unit cell vector and conserves the initial veloc-
ity components by an appropriate shift of the initial
generalized momentum components. The magnetic transla-
tions are

x085x01 ja, ~9a!

y085y01 la, ~9b!

px08 5px02 l
1

2
B0

q

c
a, ~9c!

py08 5py01 j
1

2
B0

q

c
a. ~9d!

The magnetic translation symmetry and the existence of
equivalent trajectories are the reason for the periodicity seen
in the Poincare´ surface of section@see Fig. 1~a!#. The classi-
cal magnetic translation symmetry of the magnetic-flux lat-
tice model exhibits itself also in the calculation of Lyapunov
exponents and in the semiclassical Gaussian time-dependent
wave-packet approach. In both cases the equations of motion
are invariant under the magnetic translations, and hence
equivalent trajectories have an identical stability character,
determined by the Lyapunov exponent, and an identical
time-dependent Gaussian wave packet~up to a phase! that
follows the classical trajectory.

From the quantum-mechanical point of view the presence
of magnetic translational symmetry means that tunneling be-
tween equivalent closed orbits should lead to the broadening
of the Landau levels, associated with the ideal cyclotron or-
bits of the particle in the uniform magnetic fieldB0, into
energy bands. Dubrovin and Novikov3 showed that each
Landau band splits intommagnetic subbands in the presence
of a periodic magnetic field modulation, wherem is the num-
ber of magnetic flux quanta that threads through a unit cell
~m is an integer larger than 1!. In this paper the focus is not
on the internal fine structure of the energy bands, thus for the
sake of simplicity the unit cell length isa5Ahc/eB0, pro-
viding one magnetic flux quanta per unit cell and a simply
broadened Landau bands.

The Poincare´ surface of section for a two degrees of free-
dom integrable bound Hamiltonian system produces clusters
of tori centered around different stable fixed points on which

the trajectories lie, and are separated by sharp separatix lines.
If a perturbation is added to the Hamiltonian, chaotic trajec-
tories appear in the vicinity of the separatix lines of the un-
perturbed Hamiltonian. A single trajectory initialized in the
vicinity of the separatix line can explore phase space by
moving in the regime in phase space that is created by the
destruction of the separatix line. This phenomenon was
found by Zaslavski5,6 in a system of a charged particle in a
uniform magnetic field with a time-dependent periodic per-
turbation, and is referred to as Zaslavski’s web. The forma-
tion of the web changes the transport properties of the sys-
tem since these specific trajectories are classically unbound,
while the trajectories in the unperturbed system~a uniform
magnetic field! are classically bound. WhenB1 is small, the
regime of the destroyed separatix is exponentially small in
phase space, nearly all the trajectories seen in Fig. 1~a! lie on
tori and the web is not observed. With largerB1 values there
are regimes in phase space that are filled@in the Poincare´
surface of section, Figs. 1~b!–1~c!# and in these regimes a
single trajectory can explore phase space and by that explore
the web structure. In Fig. 3 Zaslavski’s web is shown to be
created by a single trajectory. In each hole of the web there is
a fixed point and the web is a separatix sheet between the
fixed points.~The fixed point can be observed as the center
of many localized trajectories that encircle the fixed point.
These trajectories are not shown in Fig. 3.!

III. SEMICLASSICAL GAUSSIAN TIME-DEPENDENT
WAVE-PACKET APPROACH

The classical dynamics is confronted with a semiclassical
propagation on the same Hamiltonian describing a charged
particle in the presence of a vector potential. Heller’s-type
semiclassical time-dependent Gaussian wave-packet ap-
proach is employed.8

c~r ,t !5expH i

\
g t1

i

\
pt~r2r t!1

i

\
~r2r t!a t~r2r t!J ,

~10!

FIG. 3. Zaslavski’s web explored by a single trajectory. At each
hole of the web there is a fixed point and the web structure is a
separatix sheet between the fixed points.E5100\vc and
B1/B050.08.
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wheregt ,r t ,pt ,a t are all time-dependent parameters deter-
mined by first-order differential equations that are derived
below. The vector potentialA5~Ax ,Ay ,0! is expanded in
Taylor series around the instantaneous center of the wave
packet,r t , which follows the classical trajectory

Ax~x,y!5Axur t1
]Ax

]x U
r t

~x2xt!1
]Ax

]y U
r t

~y2yt!

1
1

2

]2Ax

]x2 U
r t

~x2xt!
21

1

2

]2Ax

]y2 U
r t

~y2yt!
2

1
]2Ax

]x]yU
r t

~x2xt!~y2yt!, ~11a!

Ay~x,y!5Ayur t1
]Ay

]x U
r t

~x2xt!1
]Ay

]y U
r t

~y2yt!

1
1

2

]2Ay

]x2 U
r t

~x2xt!
21

1

2

]2Ay

]y2 U
r t

~y2yt!
2

1
]2Ay

]x]yU
r t

~x2xt!~y2yt!, ~11b!

The Gaussian wave packet is substituted into the time-
dependent Schro¨dinger equation

i\
]c~r ,t !

]t
5

1

2m S 2 i\“2
q

c
AD 2c~r ,t !. ~12!

First-order equations of motion are derived for the time-
dependent functions of the Gaussian wave packet by equat-
ing terms of the same order in the deviation from the classi-
cal trajectory @all terms proportional to (x2xt), (y2yt),
(x2xt)

2, (y2yt)
2, (x2xt)(y2yt), and the free terms#. The

set of differential equations for the Gaussian time-dependent
functions are

ġ t5pt ṙ t2E1
i\

m
~a111a22!, ~13a!

mr̈ t5
q

c
ṙ t3B, ~13b!

ȧ1152
2
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q

c
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q

c
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1
1

2

q

c S ẋt ]2Ax

]x2
1 ẏt
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]x2 D , ~13c!

ȧ2252
2
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q
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c
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c S ẋt ]2Ax

]y2
1 ẏt
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]Ax
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]Ax
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m S a222
1

2

q

c

]Ay
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q

c
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1
q
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with the definitions

mṙ t5pt2
q

c
At , ~13f!

E5 1
2mṙ t

2. ~13g!

The main feature of this semiclassical approximate wave
packet is that it remains of Gaussian shape at all times. Dur-
ing propagation its spatial width varies, its momentum vector
can change direction and magnitude, and the total phase
changes, but it remains a Gaussian shaped centered at the
classical trajectory spatial position. The Gaussian form al-
lows analytical calculation of spatial integrals over the wave
packet which are needed for calculating the autocorrelation
function. The disadvantage of the Gaussian wave-packet ap-
proach is that no bifurcation of the wave packet is allowed.
This can cause significant deviations from the exact
quantum-mechanical wave-packet dynamics.

The overlap between the initial wave packet and the
propagated one at any timet is the autocorrelation function

a~ t !5^c~r ,0!uc~r ,t !&. ~14!

Using the Gaussian form of the wave packet, given by Eq.
~10!, the spatial overlap integral is calculated analytically.
The absolute values of the autocorrelation function are
shown in Figs. 4 and 5, for the first five periods with two
values ofB1. For small values ofB1 the envelope of the
recursions peaks at short propagation times has a Gaussian
shape~see Fig. 4!. For larger values ofB1, the envelope has
an exponential decay form shown as the dotted line in Fig. 5,
taking the form,

FIG. 4. The semiclassical autocorrelation function showing a
Gaussian envelope of the recursions peaks,E5100\vc and
B1/B050.025.
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A5e2lt. ~15!

The value ofl is the average Lyapunov exponent calculated
at the same value ofB1. The correspondence between the
exponential decay of the autocorrelation function with the
average Lyapunov exponent is good~see Fig. 5!. Our con-
clusion from this correspondence is that in the chaotic re-
gime the Lyapunov exponent determines the decay of the
semiclassical autocorrelation function. In Sec. IV it will be
shown that the quantum-mechanical autocorrelation function
does not decay exponentially in the classically chaotic re-
gime. Thus, the quantum-mechanical and the semiclassical
autocorrelation functions are qualitatively different.

IV. CONVERGED QUANTUM-MECHANICAL
WAVE-PACKET DYNAMICS ON A GRID BY THE

CHEBYCHEV PROPAGATION METHOD

The Chebychev propagation scheme12–14 provides a uni-
formly convergent scheme for the time-dependent Schro¨-
dinger equation allowing us to obtain accuracy limited only
by the computers precision. This approach and other related
methods are widely used to perform numerically converged
quantum-mechanical calculations in various areas of quan-
tum molecular dynamics. A brief presentation of the method
is given below. The Schro¨dinger equation has the following
formal solution for a time-independent Hamiltonian:

c~r ,t !5Û~ t !c~r ,0!, ~16!

whereÛ(t) is the evolution operator

Û~ t !5expS 2 iĤ
t

\ D . ~17!

The Chebychev propagation scheme is based on a converged
polynomial expansion of the evolution operator. The wave
packet at timet is given by

c~r ,t !5exp~2 ia!(
n

an~a!fn , ~18a!

wherea5DEt/2\,

an~a!5 H2Jn~a!

J0~a!

if n.0,
if n50. ~18b!

Jn~a! is the first kind of Bessel function of an integer order.
The matrixfn is calculated by the Chebychev recursion for-
mula

fn1152iĤ normfn2fn21 . ~19!

Ĥnorm is a shifted and normalized Hamiltonian operator such
that its eigenvalues are spread within the interval@21,1#,
where the Chebychev polynomials are defined. Convergence
of the sum in Eq.~18a! is reached whenn, the order of the
Chebychev polynomial, is greater thana. This is due to the
fact that Bessel functions decay exponentially when their
order is greater than its argument. The basic operation of the
Hamiltonian on the wave packet at the grid points is a sum of
local potential energy operators, and nonlocal kinetic-energy
operators which are calculated in the momentum space by a
fast Fourier transform algorithm following Kosloff and
Kosloff.11

The spectrum of the Hamiltonian is calculated from the
autocorrelation function as follows: During propagation op-
eration an overlap vectorPW is calculated. The autocorrelation
function is given in terms of the overlap vector components
by

Pn5^f0ufn&, ~20a!

a~ t !5^c~r ,0!uc~r ,t !&5exp~2 ia!(
n

an~a!Pn .

~20b!

The calculation of the Fourier transform of the autocorrela-
tion function reduces in this scheme to a Fourier transform of
the Bessel function that is given below.13,14

a~v!5E
0

`

a~ t !eivtdt5(
n

cn~b!Pn , ~21a!

where

c0~b!5
2

A12b2
, ~21b!

b5
2\~v2v0!

DE
, ~21c!

v05
DE

2\
, ~21d!

cn~b!55
4 cos@n sin21~b!#

A12b2

4 sin@n sin21~b!#

A12b2

if n is even,
if n is odd.

~21e!

High-resolution spectra using the Chebychev propagation
scheme are presented in Ref. 15, where the ground state in a
periodic magnetic field is studied.

FIG. 5. The semiclassical autocorrelation function~solid line!
and an exponential envelope with the calculated Lyapunov expo-
nentl/vc50.223~dotted line!. E5100\vc andB1/B050.15.
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Comparing the converged quantum autocorrelation func-
tion with the semiclassical one for a small flux lattice ampli-
tude,B1, the quantum autocorrelation function has at each
time period a stronger recursion peak. Both autocorrelation
functions show a Gaussian envelope determined by the val-
ues of the recursions peaks. When a larger amplitude of the
flux is used ~B2/B050.15 in Fig. 6!, the envelope of the
semiclassical autocorrelation function becomes an exponen-
tially decaying function, determined by the Lyapunov expo-
nent, while the quantum-mechanical autocorrelation function
retains the Gaussian envelope structure obtained with small
values ofB1.

The Gaussian wave packet follows the chaotic classical
trajectory and the Gaussian width differential equations are
closely related to the stability differential equation of a tra-
jectory that is solved in the calculation of the Lyapunov ex-
ponent@Eq. ~6!#. Heller in his review10 shows the relations
between the Gaussian wave packet and the elements of the
monodromy matrix, which is related to the stability of the
classical trajectory measured by the Lyapunov exponent.
This relation might be the reason for the general good agree-
ment between the autocorrelation envelope exponential de-
cay with the Lyapunov exponent calculation. Thus the semi-
classical Gaussian wave packet reflects the classical
dynamics of the system.

The exact quantum-mechanical wave packet does not fol-
low the route of a single classical trajectory. It can bifurcate
and interfere with making the dynamics persistent to the
classical chaotic behavior of the system. The strong recur-
sion peaks obtained by the exact autocorrelation function in
comparison to the semiclassical one are due to interferences
that are taken fully into account by the converged Chebychev
propagation and are not described well by the approximated
Gaussian wave packet. This result might indicate a quantum
localization of the charged particle in the studied magnetic
flux lattice model, which elucidation needs a more detailed
investigation.

In Fig. 7 the absolute value of the autocorrelation function
is shown. There are three time scales that characterize the
behavior of the autocorrelation function~see Heller9!. The

shortest time scale,t1, determined by the half width at half
maximum of a single recursion peak, is related to the broad-
est feature in the energy domain, which is the energy width
of the initial wave packet. The second time scale,t2, is the
time separation between the recursions peaks, and is related
to the energy level spacing of\vc , wherevc52p/t2 is the
cyclotron frequency. The third time scale,t3, is determined
by the Gaussian envelope created by the maxima of the re-
cursions peaks every time periodt2. The time scalet3 is
related to the broadening of Landau levels due toB1.

In a plot of2ln„ua(t) u… vs t2, the recursion peaks of the
autocorrelation function seen in Fig. 7 appear as a set of
minima. If the autocorrelation function has a Gaussian enve-
lope at short propagation time, the minima of the logarithm
plot will fit a straight line whose slope is 1/t3

2. In Fig. 8 the
minima are linear int2 and the relaxation time can be ex-
tracted. For long propagation times the envelope of the au-
tocorrelation function does not have a simple Gaussian form.
The exact structure of the autocorrelation function for long
times is related to the fine structure of the Hamiltonian spec-
trum. A high resolution spectrum can be obtained by a Fou-
rier transform of the autocorrelation function with long time
propagation.

FIG. 6. The semiclassical autocorrelation function~solid line! vs
the quantum one~dotted line!. The semiclassical autocorrelation
function has an exponential envelope while the quantum one has
much stronger recursion peaks and it retains its Gaussian envelope.

FIG. 7. The modulus of the autocorrelation function in the first
ten periods. The three time scalest1, t2, and t3 are seen.
E5100\vc andB1/B050.15.

FIG. 8. The logarithmic plot of the modulus of the autocorrela-
tion function vst2 showing the Gaussian behavior at short times.
The scattering rate 1/t3 is determined from the slope.E5100\vc

andB1/B050.15.
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V. LANDAU LEVEL GAUSSIAN BROADENING

An overview of magnetic oscillations in metals is given
by Shonberg~see Ref. 16!. An important example of mag-
netic oscillations is the de Haas–van Alphen effect which is
used to study Fermi surfaces in metals and, recently, type-II
superconductors.17–22The effect of Landau level broadening,
due to finite temperature, impurities, and inhomogeneous
magnetic field, on the magnetization of a two-dimensional
electron gas was studied by Shonberg.23 In this paper Landau
level broadening due to an additional periodic component of
the magnetic field is studied by examining the characteristics
of an autocorrelation function@see Eq.~14!# in the time do-
main.

The third time scale,t3, that was defined in the previous
section and which is related to the broadening of Landau
levels, is determined by the Gaussian envelope of the auto-
correlation function at short propagation times

Aenvelope5expS 2t2

t3
2 D . ~22!

The width of the broadened Landau levels is given by

Dv

vc
5

p

t3vc
. ~23!

Fitting our numerical result for the envelope of the autocor-
relation function to the Gaussian~22! with various values of
B1 and E0 ~see, for example, Figs. 7 and 8!, we find the
following analytical expression for the Landau levels width:

p

t3vc
50.351S E0

\vc
D 1/4 B1

B0
, ~24!

whereE0 is the mean energy of the initial Gaussian wave
packet.

It is instructive to compare this result to the expression for
the Landau level width derived by Aronovet al.,4 in a model
similar to that used here, but with a completely random dis-
tribution of flux lines. These authors have found that in the
semiclassical limit, the mean local density of states~obtained
by averaging over the realizations of the flux lines configu-
rations! has a Gaussian line shape, with a Landau level width
given by

p

tvc
5SmE0

\2 D 1/2 A^b2&
B0

, ~25!

where^b2&5*^B1~r !B1~r 8!&d
2r 8, which is proportional to the

mean-square amplitude of the random field fluctuations.
The amplitudeB1 of the periodic modulation in our model

may be related tôb2& in the random flux lines model by
^b2&5B1

2l B0
2 , wherel B05Ac\/eB05a/A2p is the magnetic

length. Thus the corresponding linewidth@Eq. ~25!# may be
written as

p

tvc
5S E0

\vc
D 1/2 B1

B0
. ~26!

In the semiclassical limit, considered in both models, the
ratioE0/\vc is much larger than unity. Thus the inhomoge-
neous broadening of the Landau levels by a random distri-
bution of flux lines is much stronger than the broadening by
a regular flux lattice.

VI. SUMMARY AND DISCUSSION

We have shown that the classical Hamiltonian of a
charged particle in the presence of a small, spatially periodic
magnetic field, superimposed on a large uniform magnetic
field, is chaotic. A detailed analysis of the Poincare´ surfaces
for the classical dynamics and the corresponding Lyapunov
exponents has been made. An extended web in the Poincare´
map, similar to that found by Zaslavski for a charged particle
in a uniform magnetic field, with a time-dependent periodic
perturbation, is found in the stationary, spatially periodic
magnetic field model studied here. The formation of the web
is expected to change the transport properties of the system
since the specific trajectories involved are classically un-
bound, while the trajectories in the unperturbed system~a
uniform magnetic field!, and also most of the trajectories
with a small perturbation, are classically bound. It is not
clear, however, to what extent this remarkable effect can
survive the influence of the full quantum-mechanical bifur-
cation and interference of the wave packet, neglected in the
classical description.

We have found that the envelope of the semiclassical au-
tocorrelation function obtained by the semiclassical Gaussian
wave-packet approach is determined by Lyapunov exponent
in the chaotic regime. The exact quantum-mechanical auto-
correlation function envelope does not decay exponentially
and it has much stronger recursion peaks than the semiclas-
sical one. The dynamics of wave packets was used to esti-
mate the spectrum that is obtained with limited resolution. A
qualitative difference between the quantum and semiclassical
linewidths was found. The semiclassical result may be rel-
evant if weak noise, leading to decoherence is present. We
have shown that as for a random flux line distribution, the
inhomogeneous broadening of the Landau levels by a peri-
odic magnetic field component is Gaussian, but with a much
smaller linewidth.

Experimental testing of the model studied here seems to
be feasible for charged particles like muons~m1!. These
charged, massive particles (mm5207me) have characteristic
lifetimes tm;2 ms. Thus, for a magnetic field of 10 T the
cyclotron frequency for muonsvc,m;109 s21, which means
that within its lifetime a muon inside an extremely type-II
superconductor can completevc,mtm;103 cyclotron orbits.
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