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Abstract

This thesis aims at revealing the role of thermodynamics in the quantum regime

by the study of thermodynamical aspects of quantum devices. For more than a

century, thermodynamics is considered as one of the pillars of physics. The theory

is concerned with energetic and entropic processes in the macroscopic regime under

a set of constraints. With only few variables, systems at equilibrium can be fully

characterized thermodynamically. Conversely, quantum theory is concerned with

the dynamics and properties of microscopic systems at the atomic length scale.

Based on few postulates the theory predicts the full dynamics of the system, also far

from equilibrium. The field of quantum thermodynamics aims to reveal the intimate

relationship between thermodynamics and quantum mechanics.

The study of quantum thermal machines is the platform employed to explore the

field of quantum thermodynamics. These can be quantum engines, quantum refrig-

erators and quantum energy storage devices. All these devices describe quantum

systems operating out of equilibrium. This is achieved by coupling the system to a

number of reservoirs which can be passive or active. To analyze the dynamics of the

quantum devices, tools from the theory of open quantum systems, quantum moni-

toring and quantum feedback control are employed. Linking thermodynamics and

quantum mechanics is achieved by relating quantum features such as discreet energy

levels, quantum correlations and quantum coherence with the efficiency, the energy

currents and the entropy production of the devices. This reveals both fundamentally

and technologically novel aspects of quantum mechanics and thermodynamics.

From the fundamental aspect we examine the laws of thermodynamics and their

manifestations in the quantum regime and provide a coherent framework to describe

both theories on a common ground. We establish a description of energy transport

between two heat reservoirs through a quantum network. The description reveals a

common flaw in the literature in setting models of energy transport using the master

equation techniques. The description suggested is shown to be consistent with the

second law of thermodynamics and reveals the global nature of quantum mechan-

ics. We propose definitions for thermodynamic properties such as power and heat

currents in complex quantum systems and provide proofs for the fulfillment of the

laws of thermodynamics. These systems can be simultaneously coupled to thermal

vii



reservoirs and driven strongly by a periodic field or even subject to monitoring and

feedback control.

A dynamical formulation of the third law of thermodynamics is proposed with the

purpose of quantifying the optimal cooling speed towards absolute zero temperature.

This formulation is shown to be superior to other formulations of this law; suggesting

a solution to a longstanding problem. In this context we also observe the universality

of the cooling speed scaling with temperature for different quantum refrigerator types

when attaining absolute zero temperature.

Additional aspects of this thesis are to reveal novel resources and protocols to

drive thermodynamical processes in the quantum regime. These will have significant

implications on future quantum technologies. We introduce the innovative concept

of the quantum absorption refrigerator. This device exploits noise or a heat source to

drive a cooling process. It operates in an autonomous manner that does not require

an active control of the device. Specifically, we consider Gaussian and Poisson noise

and relate it to weak quantum measurements. Using this model we also study the

third law of thermodynamics.

In this thesis, we also apply for the first time quantum monitoring and feedback

control protocols to regulate thermal devices. In particular, we show that using

these techniques we can increase the charging efficiency of quantum energy storage

device and stabilize the destructive fluctuations. A balance between information

gained from monitoring the device and information fed back to the device is found

to maximize the charging efficiency.

The role of coherence in thermodynamics is also revealed. It is shown that in

the small action regime, which corresponds to a quantum regime, coherent work

extraction is considerably stronger than the stochastic (classical) one. This also

implies that coherence can be considered as a resource to drive thermodynamic

processes. Moreover, in this regime of operation, different types of thermal machines

exhibit similar thermodynamic properties. The models considered in this thesis are

analytically tractable, allowing a deeper insight into the mechanism of the quantum

devices and their relation to thermodynamics.
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Chapter 1

Introduction and outline

Physical realism is what motivates scientists to formulate laws which are obeyed by

physical objects under certain circumstances in space and time, and that are be-

lieved to be mind-independent. These laws are deduced from empirical observations

and typically require an additional step of idealization. The laws of thermodynam-

ics exhibit clearly how simple intuition leads scientists to formulate physical laws.

Thermodynamics was developed as a physical theory almost two hundred years ago

with the pioneering work of Carnot on the efficiency of a hypothetical heat engine.

Using concepts such as temperature, energy and entropy, macroscopic systems are

characterized thermodynamically. With the establishment of statistical mechanics,

a statistical interpretation of the laws of thermodynamics was introduced and a sat-

isfactory connection between thermodynamics and the microscopic description was

achieved.

Quantum mechanics was initiated in the early 20th century with the work of

Planck on black body radiation and the explanation of Einstein of the photoelectric

effect. The postulates of quantum mechanics are also inferred from empirical obser-

vations. These are significantly less intuitive than those of thermodynamics. To the

best of our knowledge, quantum mechanics gives the most accurate predictions on

the behavior of physical objects in space and time. Since both theories are currently

deeply rooted in physics, it calls into question what is the relationship between the

two. The field of quantum thermodynamics attempts to explore this relationship.

Although thermodynamics and quantum mechanics are founded on different sets

of axioms, the initiation of quantum mechanics was achieved thanks to consistency

with thermodynamics. This is the first indication of the delicate relationship be-

tween the two theories. Quantum thermodynamics admits a dichotomous relation-

ship between quantum mechanics and thermodynamics. On the one hand, thermo-

dynamics plays the role of the bouncer that sets physical restrictions on quantum

models. This typically occurs when approximations are held in the quantum de-

scription of open systems. Then, consistency with the laws of thermodynamics can

1



2 Chapter 1. Introduction and outline

reveal flaws in the model assumptions which are not necessarily linked directly to

thermodynamics [Levy 2012a, Levy 2014]. On the other hand, the framework ap-

plied to study novel thermodynamic features in the microscopic world are those of

quantum mechanics.

This apparent paradoxical behavior can be settled by refining the objectives of

the quantum thermodynamics study. Since our current observations are compatible

with the laws of thermodynamics, it is desirable to apply these constraints to the

quantum regime in order to acquire a realistic consistent quantum description of

Nature. This by no means suggests that attempts of challenging these laws should

not be considered. It only implies that without strong evidence of a violation of

these laws, theoretical or empirical, consistency with thermodynamics is essential

in setting realistic quantum models. The other aspect of quantum thermodynamics

is studying thermodynamic processes of small ensembles, much smaller than the

thermodynamic ensemble. In this regime, a new insight on the role of quantum

features in energetic and entropic processes can be observed. This aspect has both

fundamental and technological implications.

Some of the primary questions in the field are: To what extent do the paradigms

and laws of thermodynamics apply in the quantum domain? Do quantum effects

such as quantum correlations and coherence play a significant role in thermodynamic

processes? Can we use quantum features as resources to drive thermodynamic pro-

cesses? What are the requirements of theory to describe quantum mechanics and

thermodynamics on a common ground? To treat these issues, one needs to con-

struct an appropriate mathematical and physical framework. This thesis addresses

the field of quantum thermodynamics by studying quantum thermal machines that

operate far from thermal equilibrium and where quantum effects still exist. Extreme

care has been taken to choose models which can be analyzed from first principles.

Forty years ago, the study of Gedanken quantum thermal machines emerged

[Scovil 1959, Alicki 1979, Kosloff 1984]. Today, scientists are constructing these in

laboratories worldwide [Baugh 2005, Pekola 2007, Fornieri 2015, Thierschmann 2015,

Roßnagel 2016]. Quantum heat engines, quantum refrigerators and quantum energy

storage devices are examples of such quantum thermal machines. These are the nat-

ural candidates to approach the study of quantum thermodynamics as they unite

basic properties of quantum mechanics with those of nonequilibrium thermodynam-

ics.

Using this platform, we can treat fundamental issues such as: The proper def-

initions of heat and work in the quantum regime; the manifestation of the laws of

thermodynamics in the microscopic world; the emergence of thermodynamic friction

and the manifestation of power-efficiency trade-off; and also the role of quantum ef-

fects on thermodynamic processes. From a practical standpoint, such models can
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provide a frame for studying energy transport and quantum effects in biological

systems, such as in photosynthesis process. It is relevant for optimizing the perfor-

mance of photoelectric devices driven by solar photons. Introducing novel cooling

mechanism and revealing the limitations on the cooling process, and studying the

quantum nature of molecular rotors.

The methodology employed to study quantum thermal machines is the theory

of open quantum systems. In the theoretical background chapter, 2, we briefly

review the roles of the theory of open quantum systems that are relevant to this

thesis. In addition, we introduce concepts from the theory of quantum measurement

and feedback control which are essential for chapter 6. Finally, we integrate these

mathematical tools in the context of the theory of quantum thermodynamics.

Chapter 3 [Levy 2014] intends to point out a common flaw in setting quantum

models of energy transport that is repeated in dozens of papers, and to show how

this omission should be corrected. We present a quantum thermodynamic analysis

of heat transport between two thermal reservoirs through a quantum network as a

case study. In the literature a local description of a quantum network coupled to

multiple reservoirs is common. In this description, the coupling between a reservoir

and each subsystem of the network is modeled by a local Lindblad generator (see

section 2.1.3). The interaction between the network subsystems is manifested only

through the unitary part of the evolution and does not affect directly the dissipation

part. If the inter-coupling between the subsystems are weak this description seems

reasonable. Nevertheless, we show that even in the weak inter-coupling limit this

approach may lead to a violation of the second law of thermodynamics.

We further show that a global approach that accounts for the inter-coupling

in the derivation of the Lindblad equation is always consistent with the second

law. This is an immediate consequence of the Spohn inequality (see section 2.3.2).

Lindblad dynamics is an axiomatic powerful description of open quantum systems.

Nevertheless, it will not necessarily result in a physical consistent picture. Thermo-

dynamic study uncovers the global nature of quantum mechanics and the necessity

of a microscopic derivation of the master equation. It provides physical testing tools

for approximations and assumptions carried out on the dynamics of quantum system

(see also appendix A [Levy 2012a], for example in the context of the third law).

In chapter 4 [Levy 2012c], the concept of heat and noise assisted cooling which

we termed the quantum absorption refrigerator is introduced. The aim is to extract

heat from a system using a noise source or a thermal source instead of an externally

controlled field in order to drive the cooling process. This type of quantum thermal

machine belongs to the class of continuous and autonomous machines that bene-

fit from the advantage that no constant manipulation and control of the quantum

system is required. We further study the limitations on the cooling process, thus



4 Chapter 1. Introduction and outline

we present the optimal scaling of the heat current from the reservoir being cooled

with temperature as we approach the absolute zero temperature. We treat both

Gaussian and Poisson white noise as the resources driving the cooling process. We

then relate this to a thermal source at the high temperature limit and to monitor-

ing (continuously measuring) some observables of the quantum system. This work

implies that noise which is typically considered as a harmful process can serve as a

thermodynamic resource for obtaining a more ordered (cooler) system. Additional

new results can be found in the review paper [Kosloff, R. and Levy, A. 2014] and in

[Correa 2014b].

Chapter 5 [Levy 2012b] introduces a study of the third law of thermodynamics

and refining it from a dynamical standpoint. Previous studies regarding quantum

refrigerators and the quest for absolute zero temperature [Kosloff 2000, Rezek 2008,

Rezek 2009, Levy 2012c] concentrated on the Nernst’s heat theorem (see section

2.3.2). This statement sets limitations on the scaling of the heat current from the

reservoir being cooled with temperature as we approach the absolute zero. In this

chapter we study the implications of the unattainability principle and restate the

third law in its dynamical form. This formulation enables us to quantify the third

law in terms of a characteristic exponent for the cooling process. The characteristic

exponent describes the scaling of the rate of temperature change with temperature

itself. Different studies investigating the relation between the two formulations, led

to different answers regarding which, and if at all, one of these formulations imply

the other [Landsberg 1956, Belgiorno 2003a, Belgiorno 2003b]. Our formulation of

this law is shown to be more restrictive than the Nernst’s heat theorem as it imposes

limitations on the spectral density and the dispersion dynamics of the reservoir.

We then examine this exponent for different types of quantum refrigerators. Thus

gaining a deeper insight on the role of each component of the device. Specifically, we

consider different cooling substances, the standard harmonic oscillator reservoir, and

the ideal Bose and Fermi gas. The working medium is either a two coupled two-level

system or harmonic oscillators, and the work source is treated as a very hot thermal

reservoir or a periodically external field. For a quantum refrigerator driven by a

strong periodic field Floquet’s theory is employed to derive the master equation and

the proper definitions for heat and work are presented. These definitions are shown

to be compatible with the second law of thermodynamics. Universal behavior of the

final scaling near the absolute zero is obtained. The characteristic exponent does

not depend on the dimension of the substance being cooled, nor does on the type

of refrigerator, absorption or periodically driven refrigerator. Different medium, i.e.

harmonic oscillators and TLS’s also produce the same scaling.

Storing useful work and extracting it on demand will have a significant impact on

future quantum technologies. In chapter 6 [Levy 2016], we present the novel concept
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of the quantum flywheel (a quantum energy storing device) as an integral part of

quantum heat machines. Generally, when a work repository is quantized it may be

subject to entropy increase and reduction in charging efficiency. This “problematic

feature” is absent when a classical approximation for the external field is made. In

this work we confront this difficulty, going beyond the standard classical scenario.

For the particular work repository realized by a quantum harmonic oscillator, quan-

tum and thermal fluctuations dominate the dynamics leading to divergence of the

thermodynamic properties of the flywheel. For the first time, tools from quantum

measurement and feedback control are utilized to overcome these fluctuations and

to regulate quantum heat machines. This merging between the different fields also

raises new fundamental questions about the definitions of work and heat in quantum

stochastic feedback systems.

Recent studies in quantum thermodynamics [Uzdin 2015, Perarnau-Llobet 2015]

have shown that quantum properties enhance work extraction. Any realization of

quantum heat machines as part of future technology requires regulation by mea-

surement. However, measurement is known to collapse the state of the system and

demolish these quantum features, thus making regulation impossible. Therefore,

we suggest that weak quantum measurements and feedback control play an integral

part of future advances in the study of quantum heat machines. We further show

that a particular balance between information gained by monitoring the system and

information fed back to the system maximizes the charging efficiency and minimizes

the entropy production of the flywheel. Despite its complexity the model is analyti-

cally solvable, and can be decomposed to its basic components, gaining insight into

the operation of the quantum flywheel. The model studied is applicable to a variety

of experimental setup systems such as QED cavities, nanomechanical oscillators,

trapped particles, and superconducting circuits. In the conclusion, chapter 7, we

discuss this in detail.

Appendix A [Levy 2012a], presents an example of how the formulation and quan-

tification of the third law of thermodynamics introduced in [Levy 2012b] reveals

flaws in setting quantum models.

In appendix B we present joint work with Raam Uzdin [Uzdin 2015]. In this

work, we introduce quantum thermodynamic signatures in the operation of quantum

thermal devices. Specifically, it is shown that in the small action regime with respect

to ~ different types of quantum engines (two stroke, four stroke and continuous

engines) are thermodynamically equivalent. That is, after a complete cycle, power,

heat and efficiency are the same for all types of engines. This behavior is traced back

to the role of coherence in quantum thermal devices that becomes dominant in the

small action regime. Furthermore, it is shown that for small action a quantum engine

outperforms a stochastic (classic) one. The coherent work extraction is considerably
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stronger than the stochastic work extraction mechanism. This enables us to derive

a power bound for stochastic engines that constitutes a quantum-thermodynamics

signature. This means that for a given set of thermal resources and thermodynamic

measurements (for example, measurement of the power output of an engine) one can

determine if the device exploits coherence in its operation. This finding implies that

coherence can be used as a resource to drive thermodynamic processes. Presently,

these predictions are being examined in the laboratory.

The study of thermodynamics of quantum devices is mainly concentrated in a

regime where the quantum system is coupled weakly to the thermal reservoirs. This

is important for having a clear thermodynamic interpretation of heat and work,

see section discussion in 2.3.2. In appendix C [Uzdin 2016], we treat the strong

coupling limit using the idea of heat exchangers. These are mediating particles that

can interact strongly with the quantum system and then thermalize via a secondary

thermal reservoir. This setup enables us to extend the equivalence of different types

of thermal machines presented in appendix B to the non-Markovian regime. It

is shown that this regime introduces a higher degree of equivalence that cannot be

achieved in the Markovian one. We further study the charging process of a quantum

battery, and obtain the condition for energy transfer without increasing the entropy

of the battery. In the strong coupling limit it is also possible to super-charge the

battery. Which means that the energy of the battery increases while its entropy

decreases at the same time.

In appendix D we introduce the useful Liouville space representation of open

quantum systems and the KMS condition. Appendix E presents additional infor-

mation on stochastic differential equations that was not included in the theoretical

background. In appendix F we summarize properties of entropy and relative en-

tropy, and in appendix G the list of publications is shown. Finally, additional novel

results on thermodynamics of quantum devices can be found in the review article

[Kosloff, R. and Levy, A. 2014]. Form length considerations, this review article is

not displayed in the thesis.



Chapter 2

Theoretical background

2.1 The theory of open quantum systems

Quantum mechanics is a probabilistic theory describing the dynamics of microscopic

systems. The core of the theory is concerned with closed systems. The state of a

closed (isolated) quantum system follows a unitary evolution given by the solution of

the Schrödinger equation for pure states, and in the more general case, the solution of

the von Neumann equation that embodies the dynamics of mixed states. The unitary

evolution is represented by the linear unitary operator Û which form a continuous

time translation symmetry group. The knowledge of the state of a closed quantum

system at some time t′ allows to predict the state and the measurement outcome at

any given time t.

An open quantum system S is a quantum system that interacts with another

system R. Typically system S is the system we are interested in. It is considered

to be small with respect to the system R and has a well defined structure. System

R is often referred to as the environment or the reservoir. Under additional ther-

modynamic equilibrium conditions it is referred to as a heat bath1. For example,

R can represent phonons in a crystal, a gas of particles or a beam of photons. The

joint system S ∨R is closed and the knowledge about subsystem S can in principle

be retrieved from the dynamics of S ∨R. Since the S ∨R can be very large, it

is impossible to solve the evolution equation of the joint state. Many techniques

were developed to overcome this issue [Breuer 2002, Weiss 1998, Alicki 1987]. The

idea behind most of these techniques is to ignore parts of the environment R that

are assumed to have negligible effects on the evolution of the subsystem S. Then,

the effect of the environment R on the subsystem S can be characterized to some

approximation by a comparably small number of parameters such as temperature,

spectral density and correlation functions of the environment. The dynamics of the

1In most cases of practical interest these conditions are fulfilled.

7
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open system S becomes non-unitary and thermodynamic irreversibility emerges. In

this section we mainly concentrate on the reduced dynamics of the open systems

which are described by Markovian master equations.

2.1.1 Density operator description

Quantum mechanics of isolated system corresponding to maximal knowledge about

the state of the system is described by pure states. These states can be identified

with normalized vectors {|ψi〉} in Hilbert space H. To treat the dynamics of an

open system or of a subsystem belonging to a bigger isolated system, concepts from

statistical mechanics are applied. Randomness and incomplete information about

system S is reflected in the density operator description for mixed states (sometimes

referred as to the density matrix).

The incomplete information interpretation has two different aspects. The first is

the ensemble aspect where the system is found in a statistical mixture of pure states.

The experiment is performed repeatedly on the ensemble to obtain an averaged

outcome of the measurement. Because of fluctuations the ensemble is composed of

pure states with different weights. This statistical nature is embodied in the density

operator formalism. The second aspect results from splitting of the total Hilbert

space into sub-spaces. By tracing out parts of the total system in order to obtain

the reduced description of the subsystem, information that is stored in quantum

correlations is lost. For example, if we start with a pure entangled bipartite state

|ψ〉 ∈ H1 ⊗H2, then by tracing out one of the subsystems, the other one becomes

a mixed state.

Another standpoint for the density operator relies on the complexity of the en-

vironment and the random phase postulate. We assume that the Hamiltonian of

the joint system S ∨R is time independent and non-degenerate. This state can be

written as,

|Ψ(t)〉 =
∑

i,j

ci,j(t) |ψi〉 ⊗ |φj〉 ∈ HS∨R,

with the coefficients ci,j = 〈ψiφj|Ψ〉, and the states |ψi〉 ∈ HS and |φj〉 ∈ HR. The

operator Â represents an observable of the system S, and the expectation value is

given by,

〈
Â
〉

= 〈Ψ| Â⊗ Î |Ψ〉 =
∑

i,j

c∗i (t)cj(t) 〈ψi| Â |ψj〉 , with ci(t) =
∑

j

ci,j(t) |φj〉 .

In actual experiments the average of many identical recurrences is taken over a time

interval τ and are not instantaneously in time. This time interval is much shorter

than the resolving time of the measurement apparatus, but long compared to the
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fluctuations time scale of the environment, such that the random phase postulate

holds. It is postulated that the phases are averaged to zero on the time interval τ

(indicated by an over-line),

c∗i (t)cj(t) = λiδij, such that
∑

i

λi = 1.

The expectation value of the operator Â is then given by,

〈
Â
〉

=
∑

i

λi 〈ψi| Â |ψi〉 .

The time average can be interpreted as an average with respect to a stationary

mixed state.

The density operator can now be identified as a non-negative trace class operator

of trace one belonging to Banach space T (H) of operators acting on the Hilbert space

H. The states defined by the density operator form a convex set with the pure stats

as the extreme points. According to the spectral theorem the density operator can

be represented in a diagonal form,

ρ̂ =
∑

i

λi |ψi〉 〈ψi| , (2.1)

such that
∑

i λi = 1 and λi ≥ 0. The density operator corresponds to a pure state

if and only if it is a rank one projector. Mixing of the density operator is quantified

by the purity function, defined as,

P = Tr
(
ρ̂2
)
≤ 1. (2.2)

Here, Tr (·) is denoted the trace operation, and equality holds if and only if the

state ρ̂ is a pure state. Other measures for mixing (information) will be discussed

in section 2.3.

Dynamics:

The dynamics of the density operator of isolated systems is described by the von-

Neumann equation [von Neumann 1955]:

dρ̂

dt
= −i

[
Ĥ, ρ̂

]
. (2.3)
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Here Ĥ is the Hamiltonian and the generator of the dynamics, and [·, ·] stands for

the commutator. The formal solution of Eq.(2.3) is given by,

ρ̂(t) = U(t, 0)ρ̂(0), with U(t, 0) · def
= Û(t, 0) · Û †(t, 0), (2.4)

and

Û(t, 0) = T exp

[
−i
∫ t

0

Ĥ(s)ds

]
. (2.5)

Here T stands for the time ordering operator, and without loss of generality we take

the initial time to zero.

Observables:

In quantum mechanics an observable is a physically measured quantity represented

by linear self-adjoint operators. The set of all linear bounded operators2 equipped

with the operator norm ‖ · ‖∞ is a Banach space B(H). The average of the observable

A is given by, 〈
Â
〉

= Tr
(
ρ̂Â
)
. (2.6)

For any linear bounded map Λ on T (H) there exists a dual map Λ∗ on B(H) such

that3,

Tr
(

(Λρ̂)Â
)

= Tr
(
ρ̂(Λ∗Â)

)
, ∀ ρ̂ ∈ T (H) and Â ∈ B(H). (2.7)

It is now clear that the equation of motion for the operators (the Heisenberg equa-

tion) is the adjoint of the von-Neumann equation,

dÂ

dt
= i
[
Ĥ, Â

]
+
∂Â

∂t
, (2.8)

where the partial derivative is added in case the operator Â does explicitly depend

on time. The solution of Eq.(2.8) is given Â(t) = U †(t, 0)Â(0).

2.1.2 Open Quantum System: Reduced Description

As discussed in section 2.1, in most practical cases we are interested in the reduced

dynamics of the subsystem S under the influence of reservoir R. The Hilbert space

of the joint system is given by the tensor product of the system and reservoir Hilbert

spaces, HS∨R = HS ⊗ HR. The total Hamiltonian of S ∨ R can be taken to be of

the form:

Ĥtot = ĤS ⊗ ÎR + ÎS ⊗ ĤR + ĤSR. (2.9)

2Unbounded observables are treated as limits of sequences of bounded ones, see also the dis-
cussion in [Alicki 2001].

3In the special case of closed dynamics Λ = U and Λ∗ = U†.
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Here ĤS and ĤR are the self Hamiltonians of the system and the reservoir, re-

spectively, and ĤSR is the Hamiltonian describing the interaction between the two

systems. The joint states ρ̂(t) ∈ HS∨R follow the von-Neumann Eq.(2.3) with the

Hamiltonian Ĥtot (see Eq.(2.9)). The reduced dynamics of S denoted by ρ̂S(t) is

given by taking the partial trace over the reservoir,

ρ̂S(t) = Λ(t, 0)ρ̂S(0)
def
= TrR

(
Û(t, 0)ρ̂(0)Û †(t, 0)

)
. (2.10)

The map Λ(t) describes the state change of the reduced system S and maps the

space T (HS) into itself,

Λ(t) : T (HS)→ T (HS). (2.11)

A crucial assumption to obtain a completely positive dynamical map is that the

initial state is a tensor product ρ̂(0) = ρ̂S(0) ⊗ ρ̂R, and the reservoir state ρ̂R is

a fixed reference state4. Working in the orthonormal diagonal basis of {φj} of the

reservoir ρ̂R =
∑

j λj |φj〉 〈φj|, we can then express the propagator as,

Û(t, 0) =
∑

ij

V̂ij(t, 0)⊗ |φi〉 〈φi| , (2.12)

where V̂ij are operators acting on the reduced system S. Eq.(2.10) can now be

expressed as,

Λ(t)ρ̂S(0) =
∑

n

K̂nρ̂S(0)K̂†n, (2.13)

where we have defined K̂n
def
=
√
λjV̂ij(t, 0), and relation

∑
n K̂nK̂

†
n = ÎS holds.

The operators K̂n are also known as the Kraus operators [Kraus 1971], and

Eq.(2.13) is the most general form of a completely positive dynamical maps5 de-

scribing irreversible time evolution of an open system. It can also be shown that for

every such {K̂n} there exist a unitary operator Û acting on HS ⊗HR [Alicki 2001].

Complete positivity:

A positive map Λ is a map between C*-algebras that maps a linear positive operator

Â into a linear positive operator Λ(Â) = Ã,

Λ : Â→ Ã. (2.14)

It is assumed to be unity preserving if Λ(Î)→ Î. Complete positivity (CP) imposes

more restrictive demands on the map Λ than positivity do. The idea is that the CP

4This assumption implies that the state of the reservoir does not change significantly during
the evolution.

5Generally, the term dynamical maps refers to completely positive maps.
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map preserves positivity with respect to tensor product operation6. If map Λ acts

on T (HS) then CP implies that the trivial extension Λ⊗ id maps positive operators

from the extended space into positive operators,

Λ⊗ id : Â⊗ B̂ → Ã⊗ B̂ (2.15)

Here, id denotes the identity map of some auxiliary space and B̂ is an operator

belonging to that space. Physically, CP maps are essential for the description of

open quantum systems. A dynamical map of a quantum system should allow the

probabilistic interpretation of the density operator also when it is coupled to a

reservoir. In composed classical systems positivity is a sufficient requirement from

reduced maps. This is not true in the quantum case where existence of entangled

states leads to the requirement of CP maps. A known example that makes use

of positive but not of CP maps is the Peres-Horodeccki criterion for two quantum

system to be separable [Peres 1996, Horodecki 1996]. The criterion relies on the

fact the the partial transpose operation is a positive map but not a CP one. Then

the eigenvalues of the composite density operator become negative if the states are

entangled7.

2.1.3 Quantum Dynamical Semigroups

The map defined by Eq.(2.13) represent a map for a fixed time t ≥ 0. In order to

describe the time evolution of an open system we define the one-parameter fam-

ily {Λ(t), t ≥ 0} of dynamical maps. Generally, this family of maps satisfies a

complicated integro-differential equation. However, in many physical scenarios the

class of dynamical semigroups provide a good approximation of the evolution, that

now becomes Markovian. Physically, the Markovian approximation is justified when

the reservoir correlation functions decay faster then the intrinsic time scale of the

system. Therefore, any information that transfers from the system to the environ-

ment is lost, leading to a ”no-memory” effect. We elaborate on the validity of the

approximation in the following section.

The term semigroup implies that the time evolution forms a family of maps which

does not form a full group. It lacks the negative range of the parameter t, which

implies that the inverse property required from a group is missing. Physically, this

property is the manifestation of irreversible dynamics which allows us to distinguish

the future from the past. To summarize, the quantum dynamical semigroup is a

continuous one-parameter family of maps {Λ(t), t ≥ 0} which satisfy the properties:

6The tensor product of two positive maps is not necessarily positive.
7Generally, the criterion is only a necessary condition. The exception is for the case of a

dimension lower then 6D where it is also sufficient.
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1. Λ(0) = I.

2. Λ(t) is completely positive and trace preserving.

3. Λ(t)Λ(s) = Λ(t+ s) t, s ≥ 0 semigroup (Markovian) property.

4. limt→0‖Λ(t)x− x‖ = 0 ∀x ∈ B strongly continuous property.

5. ‖Λ(t)‖ ≤ 1 contraction semigroup property.

Based on the mathematical properties (1-5) it is possible to define the generator of

the semigroup L such that,
d

dt
ρ̂S = Lρ̂S (2.16)

Lindblad and separately Gorini, Kossakowski and Sudarshan introduced the most

general structure of the generator L of the dynamical semigroup [Lindblad 1976,

Gorini 1976a]. The Markovian master equation known as the LGKS equation or as

the Lindblad equation takes the form8,

d

dt
ρ̂S = Lρ̂S def

= −i[Ĥ, ρ̂S] +
∑

j

V̂j ρ̂SV̂
†
j +

1

2

{
V̂ †j V̂j, ρ̂S

}
. (2.17)

Here {·, ·} is the anticommutator, the V̂j are bounded operators9 acting on HS, and

Ĥ is the effective Hamiltonian of the system S. Typically, this Hamiltonian can

be identified as the free Hamiltonian of the system plus correction terms resulting

from the coupling to the reservoir. The first term on the rhs of Eq.(2.17) generates

a unitary evolution, whereas the second term referred to as the dissipator, and

thus responsible for the manifestation of decoherence and dissipation processes. It

is worth noting that the generator L does not uniquely determine a microscopic

physical model of the joint system S ∨ R. The generator is invariant under the

certain transformations for the operators Ĥ and V̂j [Breuer 2002]. The necessity

in a microscopic derivation of a Markovian master equation (MME) is discussed in

section 2.1.4 and chapter 3.

The Heisenberg representation:

As was discussed in section 2.1.1 one can introduce the dual map Λ∗, and the adjoint

master equation (the Heisenberg representation) takes the form,

d

dt
Â = L†ρ̂S def

= i[Ĥ, Â] +
∑

j

V̂ †j ÂV̂j +
1

2

{
V̂ †j V̂j, Â

}
, (2.18)

8This form is known as the diagonal form introduced by Lindblad.
9Except for few cases there is no general characterization for unbounded operators.
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with Â ∈ B(HS). Solving the master equation in the Heisenberg representation

has advantages over solving the full density operator evolution. In many cases

we will be interested only in the expectation values of some measured quantities.

This fact can reduce significantly the dimensions of the problem. For example, in

the standard thermalizing master equation with a non degenerate Hamiltonian the

population and the coherences are decoupled, and the population of a certain level

is given by solving a small set of differential equations. The full state of the system

can be reconstructed by calculating all the expectation values of the Lie algebra of

the system. Generally, a full reconstruction of the state will scale as the solution

of Eq.(2.17). Nevertheless, in many cases we can use symmetries to reduce the

dimensions of the problem. For example, if the initial state of harmonic oscillator

is a Gaussian state, then it will remain Gaussian along the dynamics and only the

first two moments are necessary to retrieve the full state. Given a set of operators

{Âk}Mk=1 that forms a closed set under the operation L†, i.e.

L†Âk =
M∑

j=1

lkjÂj with lkj ∈ C, (2.19)

we can write a closed linear system of coupled differential equations for the expec-

tation values
〈
Âk

〉
.

2.1.4 MME: Microscopic Derivations

The derivation of the MME Eq.(2.17) introduced by LGKS is axiomatic and lacks

the microscopic physical motivation. Chapter 3 indicates the importance of a mi-

croscopic derivation. It is shown that applying arbitrary dissipative LGKS terms

to some Hamiltonian may result in violation of the second law of thermodynamics.

In the following we discuss three scenarios for which the Markov limit offers a good

approximation for physical models. All these models will be of use in the next chap-

ters. In section 2.2.2 we will review how MME of LGKS type can be deduced from

stochastic master equations (SME). In this section we concentrate on the physical

validity of the approximations rather than on the mathematical details, and prop-

erties of thermal reservoirs will be discussed. The rigorous derivations can be found

in many text books [Alicki 1987, Breuer 2002, Weiss 1998, Louisell 1990] and also

in the appendix of chapter 5.

Weak coupling limit:

We begin with the Hamiltonian description of the joint system S ∨R (see Eq.(2.9)).

The system Hamiltonian is of the form, ĤS =
∑

k εk |k〉 〈k|. The interaction Hamil-
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tonian ĤSR is considered weak and can be expressed as10,

ĤSR = λ
(
V̂ ⊗ R̂

)
with V̂ ∈ B(HS), R̂ ∈ B(HR). (2.20)

Here λ is the small parameter, and the evolution is approximated up to second

order in λ. The weak coupling between the system and the reservoir also implies

that the state of the reservoir is only negligibly affected by its interaction with the

system. The state of the system on the other hand can change significantly as a

result of the interaction. Unlike the reservoir the system is considered small and

consequently the interaction becomes meaningful. The state of the joint system can

now be characterized by a tensor product at all times,

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂R. (2.21)

This approximation is known as the Born approximation. In fact, this assumption

can be weakened, it is sufficient to require that the reservoir correlation functions

are negligibly effected from the interaction [Gardiner 2004]. Another assumption

that is made is TrR(ĤSRρ̂(0)) = 0. This implies that the interaction has no diagonal

elements in the diagonal basis of ĤR. This assumption can always be satisfied by

redefining the system Hamiltonian accordingly.

Next, the Markov approximation is performed. This approximation implies that

the integro-differential equation for ρ̂S is now simplified to a standard first order dif-

ferential equation. The dynamics now becomes similar to classical Markov processes,

the knowledge of the state ρ̂S at a single point in time t0 will determine the state for

all times t > t0. Physically, the Markov approximation is valid for evolution times t

such that t� τR. Here, τR is the typical time scale where the correlation functions

of the reservoir decay. This assumptions also implies that the reservoir should be

considered as infinitely large with a continuous spectrum. Then the Poincare recur-

rence time becomes infinite and any information about the system is lost. Obtaining

the LGKS structure require additional assumptions on the intrinsic time scale of the

system. This assumption is known as the rotating wave approximation, where terms

oscillating fast on the evolution time scale are neglected. That is t � |ω − ω′|−1,

where ω are the Bohr frequencies of the system S. We remark that the averaging

procedure above over time t should always be much smaller than the decay time of

10The interaction can be easily generalized to ĤSR = λ
∑
k V̂k⊗R̂k. Here we consider the simple

case of a single coupling.
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the system S. In the Schrödinger representation the MME can be written as,

d

dt
ρ̂S = −i

[
ĤS + Ĥ ′, ρ̂S

]
+
∑

ω∈R±
γ(ω)

(
V̂ (ω)ρ̂SV̂

†(ω)− 1

2

{
V̂ †(ω)V̂ (ω), ρ̂S

})
.

(2.22)

Here the V̂ (ω) are the eigenoperators of the system satisfying [ĤS, V̂
†(ω)] = ωV̂ †(ω)

and V̂ (−ω) = V̂ †(ω). In this case the operator V̂ in Eq.(2.20) is given by the sum,

V̂ =
∑

ω∈R±
V̂ (ω). (2.23)

The addition to the unitary part, Ĥ ′, is a shift to the energy levels of the system

caused by the interaction with the reservoir,

Ĥ ′ =
∑

ω

S(ω)V̂ †(ω)V̂ (ω), (2.24)

with,

S =
1

2i

[(∫ ∞

0

dseiωs
〈
R̂†(s)R̂(0)

〉)
− h.c.

]
, (2.25)

where h.c. stand for the hermitian conjugate. This Lamb type shift is proportional

to λ2 and typically can be neglected compared to the system Hamiltonian ĤS. The

positive rate γ(ω) is given by the Fourier transform of the correlation function of

the reservoir,

γ(ω) =

∫ ∞

−∞
dseiωs

〈
R̂†(s)R̂(0)

〉
(2.26)

The weak coupling limit can be used as a good approximation for describing the

dynamics of atoms and molecules interacting with electromagnetic fields or for spins

coupled to phonons. The first rigorous derivation of the MME in the weak coupling

limit was introduced by Davies [Davies 1974], and a very nice summary of that

derivation can be found in [Alicki 2006]. The weak coupling limit MME can also be

obtained from the Nakajima-Zwanzig projection operators method [Nakajima 1958,

Zwanzig 1960].

Low density limit:

The quantum master equation for an N-level system interacting with free Bose/Fermi

gas was derived rigorously by Dümcke [Dumcke 1985]. Physically, this limit describe

the dissipation and excitation of the internal degrees of freedom of a low density gas

(the system S) due to collisions between the gas particles. In this scenario the

reservoir R is considered as the translational degrees of freedom of the gas particles.
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The system Hamiltonian has a discrete spectrum,

ĤS =
∑

k

εk |k〉 〈k| , (2.27)

and the reservoir Hamiltonian takes the form,

ĤR =

∫
d3pE(p) |p〉 〈p| . (2.28)

Here |p〉 is the momentum eigenstate and E(p) is the kinetic energy of the free

particle. The density matrix of the reservoir normalized to one particle in the

volume V is expressed as,

ρ̂R =
1

V

∫
d3pG(p) |p〉 〈p| , (2.29)

withG(p) the momentum probability distribution of the gas particles. At low density

and at thermal equilibrium G(p) is simply given by the Maxwell distribution. The

interaction between S and R is given by a scattering process. After collision the

momentum of the particle change from p to p′ and the internal levels changes from

|l〉 to |k〉. Within the scattering theory [Landau 1958], the scattering amplitude can

be written as,

〈k, p′|S |l, p〉 = δ(p′ − p)δkl − 2πiδ (εk + E(p′)− εl − E(p))T (k, p′|l, p), (2.30)

where S and T are the familiar scattering matrix. In order to derive a MME an

averaging procedure is carried out (similar to the rotating wave approximation in

the weak coupling limit). The assumption of low gas density implies that the time

between collisions is long compared to the collision time. Since we are interested in

the long time behavior, which is the typical time between collisions, then averaging

on this time scales will eliminate terms involving the collision time and a MME

of the form of Eq.(2.22) can be deduced. In this scenario the eigen-operators V̂ω

correspond to the transitions operators |k〉 〈l| ∈ B(HS), where ω ∈ {εk − εl}. The

relaxation rate can be expressed as11,

γ(ω) = 2πn

∫
dp

∫
dp′G(p)δ (εk + E(p′)− εl − E(p)) |T (k, p′|l, p)|2. (2.31)

Here, n is the density of the gas and the delta function reflects energy conservation.

Below a critical temperature the density n should be replaced by the density of the

exited states. This changes the scaling of γ(ω) with the temperature (see chapter

11Here we also assume that the system Hamiltonian has a non degenerate spectrum.
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5).

Singular coupling limit:

In this scenario the interaction Hamiltonian takes the form Eq.(2.20), but now we

are not restricted to small λ, and the interaction can become strong (singular). By

rescaling the Hamiltonian ĤR → ε−2ĤR and ĤSR → ε−1ĤSR in the limit ε → 0,

the decay of the correlations in the reservoir are accelerated and the interaction

becomes singular [Gorini 1976b]. This limit implies that the reservoir correlations

are approximated to a delta function, i.e.
〈
R̂(s)R̂(0)

〉
∝ δ(s). Physically, this is

reasonable only if the spectral density of the reservoir is flat in a wide enough range

of frequencies that contain the Bohr frequencies of the system S. Since the rotating

wave approximation is not essential in order to obtain the LGKS form, the MME

can be represented as,

d

dt
ρ̂S = −i[Ĥs + Ĥ ′, ρ̂S] + γ

(
V̂ ρ̂SV̂

† +
1

2

{
V̂ †V̂ , ρ̂S

})
, (2.32)

with the constant rate,

γ =

∫ ∞

−∞
ds
〈
R̂(s)R̂(0)

〉
, (2.33)

and S in Eq.(2.24) becomes

S =
1

2i

[(∫ ∞

0

dseiωs
〈
R̂(s)R̂(0)

〉)
− h.c.

]
, (2.34)

The structure of Eq.(2.32) can also be derived when the reservoir is considered

as a classical stochastic surroundings [Luczka 1991]. In this case, the interaction

Hamiltonian is modeled as HSR = ξ(t)V̂ , where ξ(t) is a real random variable sat-

isfying 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 ∝ δ(t − t′). This is known as the white-noise

idealization. One should also note that if [ĤS, V̂ ] = 0, then energy dissipation is

absent in the dynamics and only decoherence processes accrue. This follows imme-

diately from the double commutator structure in the MME, and is often referred to

as pure dephasing. In chapter 6 we will see that the structure of Eq.(2.32) is also

related to continuous measurements and can be derived from a stochastic differential

equations approach.

Thermal reservoirs:

An important class of reservoirs are the thermal reservoirs, which are usually termed

heat baths or thermal baths. These types of reservoirs are of spacial interest in the

study of quantum thermal devices where the heat bath becomes an integral part of

the device. In the microscopic derivations above we assumed that the state of the
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reservoir R is a stationery fixed state along the dynamics. Now, we additionally

assume that the reservoir is in a Gibbs state (thermal state). The density operator

of a thermal state has eigenvectors that coincide with those of the Hamiltonian and

its eigenvalues are related to the energy levels. A thermal state can be expressed as,

ρ̂th =
exp(−βĤ)

Z
, (2.35)

where Z is the normalization factor (or the partition function from statistical me-

chanics), Z = Tr(exp(−βĤ)), and β
def
= 1/kBT is the inverse temperature (in the

remainder of the thesis we set the Boltzmann factor kB = 1 ).

If we assume that R is a thermal bath with the Gibbs state, then in the

weak coupling limit the Kubo-Martin-Schwinger (KMS) condition holds [Kubo 1957,

Martin 1959] (see Appendix for details),

〈
R̂†(t)R̂(0)

〉
=
〈
R(0)R†(t+ iβ

〉
. (2.36)

Applying this relation to Eq.(2.26), we obtain that the Fourier transform of the

correlation function satisfy,

γ(−ω) = e−βωγ(ω), (2.37)

and the system S has a unique stationary state which is the thermal state ρ̂∞S =

exp(−βĤS)/Z with the bath temperature β. The dissipation part of Eq.(2.22) can

be expressed as,

LDρ̂S =
∑

ω∈R+

γ(ω)
(
V̂ (ω)ρ̂SV̂

†(ω)− 1/2{V̂ †(ω)V̂ (ω), ρ̂S}
)

(2.38)

+ e−βωγ(ω)
(
V̂ (ω)†ρ̂SV̂ (ω)− 1/2{V̂ (ω)V̂ †(ω), ρ̂S}

)
.

If we further assume that ĤS has a non degenerate spectrum then the off diagonal

terms are decoupled from the diagonal ones. The detailed balance condition is

satisfied and the rate γ can be deduced from Fermi’s golden rule.

To prove that the thermal state is the stationary state in the low density limit we

have to assume that besides a non degenerate Hamiltonian the micro-reversibility

condition is satisfied [Dumcke 1985], that is T (k, p′|l, p) = T (l,−p|k,−p′). The

structure of the generator in the singular coupling limit can also be restored by the

thermelaizing generator in the high temperature limit. When βω → 0 Eq.(2.38)

reduces to Eq.(2.32). In the appendix of chapter 5 we present comprehensive ther-

modynamic relations satisfied by thermal baths.
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2.1.5 Driven open quantum system

In the previous sections we assumed that the system Hamiltonian ĤS is time inde-

pendent. In this section we discuss few scenarios that MME in the weak coupling

limit holds for driven open quantum systems. This is highly relevant for the study

of quantum devices where control fields are typically applied to the system. In this

case the system Hamiltonian can be expressed as,

ĤS(t) = Ĥ0 + ĤD(t), (2.39)

where Ĥ0 is the free system Hamiltonian, and ĤD(t) represents the time dependent

driving Hamiltonian. The interaction with the reservoir is assumed weak and is

similar to Eq.(2.20) (with the small parameter λ). The reduced dynamics of S is

formally given by,

ρ̂S(t) = Λ(t)ρ̂S(0). (2.40)

The cumalant expansion of Λ(t) reads,

Λ(t) = exp

(∑

n

λnKn(t)

)
. (2.41)

In the Born approximation the expansion is terminated at n = 2. The first cumalant

vanishes, K1 = 0, and we have Λ(t) ' exp (λ2K2(t)). The Markov approximation

implies that12,

K2(t) '
∫ t

0

dsL(s), (2.42)

where L(s) is the time dependent generator in the LGKS form. Generally, when

ĤS(t) is time dependent, the Markov approximation is not justified, and non-

Markovian13 processes will dominate the dynamics. Next, we review shortly several

scenarios where the Markov limit holds also for time dependent Hamiltonians.

Adiabatic driven systems:

The adiabatic theorem for closed quantum systems state that if the Hamiltonian

changes slowly enough then the system remains in the instantaneous eigenstate of

that Hamiltonian. We can define the adiabatic time scale,

τ−1
A

def
= max

m6=n
| 〈εb(t)| ∂t |εa(t)〉 , for t ∈ [0, tf ], (2.43)

12For short times K2(t) ∼ t2, the Markov approximation implies that K2(t) is linear in time.
13Non-Markovianity has been studied extensively in the past decade. Nevertheless, the structure

of the generator which leads to a CP dynamics is still an open problem. For a nice review on the
subject see [Rivas 2014].
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where |εa(t)〉 is the instantaneous eigenstate of ĤS with the eigenenergy εa(t). τA

represents the temporal change in the instantaneous eigenstates. If this time is much

longer than a certain timescale τ , then ĤS is said to be adiabatic with respect to τ .

For example, the adiabatic theorem holds if τA � τint, with,

τ−1
int (t)

def
= min

m6=n
|εa(t)− εb(t)|. (2.44)

τint is the longest time scale of the intrinsic evolution (or just the inverse of the min-

imal instantaneous Bohr frequency). In this limit, transitions between eigenstates

are suppressed at time t and the state follows the instantaneous eigenstates of ĤS.

The first rigorous derivation of the MME in the weak coupling limit for adiabatic

time dependent Hamiltonian was introduced by Davies and Spohn [Davies 1978].

Since then, a wide variety of derivations with different limitations were suggested,

for details see the recent comprehensive study [Albash 2012] and references therein.

To derive a MME in this limit the reservoir must “experience” the instantaneous

system. Similar to the time independent case the Markov approximation holds for

long enough times for which the correlation function of the reservoir decay, i.e.

t � τR. In addition, we now require that the change in the instantaneous eigen-

basis is small compared to the reservoir time scale, τA(t)� τR. In order to perform

the rotating wave approximation and to obtain the LGKS form we assume that

τA(t)� τS(t). where we defined,

τ−1
S (t) = min

ω(t)6=ω′(t)
|ω(t)− ω′(t)|, (2.45)

with ω(t) the instantaneous Bohr frequencies. Thus, for the averaging procedure,

the Hamiltonian must be constant over many inverse Bohr frequencies. In the

Schrödinger representation the MME now takes the form,

d

dt
ρ̂S = −i

[
ĤS(t) + Ĥ ′(t), ρ̂S

]
+
∑

ω(t)

γ(ω(t))

(
V̂ω(t)ρ̂SV̂

†
ω (t)− 1

2

{
V̂ †ω (t)V̂ω(t), ρ̂S

})
,

(2.46)

where now the rates γ are time dependent and the V̂ω(t) are the instantaneous eigen-

operators of ĤS(t). Some examples in the context of quantum thermal devices can

be found in [Geva 1994, Alicki 2015, Alicki 2016].

Periodically driven systems:

In this scenario we treat two limiting cases, the strong driving limit and the weak

driving limit. In the strong driving limit we make use of the Floquet theory

[Hänggi 1998, Tannor 2007] to obtain the effective Bohr frequencies and to de-
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compose the system-reservoir interaction Hamiltonian to its Fourier components

[Alicki 2006]. The strong driving “dresses” the system S and the reservoir “experi-

ence” this effective system. The periodic Hamiltonian reads,

ĤS(t+ τ) = Ĥ(t), τ = 2π/ν, (2.47)

with the period time τ . The Floquet unitary operator is defined as,

F (s)
def
= U(s+ τ, s). (2.48)

The Floquet eigenvectors |φj〉 satisfy,

F (0) |φj〉 = e−iεjτ |φj〉 , (2.49)

and

U(t) |φj〉 = e−iεjτ
∑

n∈Z
e−itnν |φj(n)〉 , (2.50)

where {|φj(n)〉} from a complete basis and εj are the Floquet quasi-energies. As-

suming the interaction Eq.(2.20), the operator V̂ is decomposed in the Floquet

basis,

V̂n(ω) =
∑

m∈Z

∑

ω=εj−εi
〈φj(m+ n)| V̂ |φi(m)〉 |φj〉 〈φi| , (2.51)

with ω the effective Bohr frequencies. To perform the rotating wave approximation

we average over time t such that t� max |ω−ω′+mν|−1 with m ∈ Z. This implies

that t � τ , which means that the averaging should be done over many cycles of

the driving field. If the dipole approximation is carried out, the Rabi frequency Ω

becomes a relevant time scale in the problem. The difference of two Bohr frequencies

is now proportional to the Rabi frequency, Ω ∼ ω − ω′ (an example can be found

in chapter 5). This imposes an additional restriction. As was discussed above, the

decay time scale of the system γ−1 should be greater than the coarse-grained time,

that is γ−1 � t. Since t � Ω−1 we have γ−1 � Ω−1. Physically, this means that

the Rabi frequency should be larger than the width of the spectral line γ. This is

achieved in the strong driving limit. “The reservoir has enough time to experience

the dressed system with the new spectrum shifted by the Rabi frequency”. The

MME can be expressed as,

d

dt
ρ̂S = −i

[
ĤS + Ĥ ′, ρ̂S

]
+
∑

n∈Z

∑

ω∈R±
γ(ω+nν)

(
V̂n(ω)ρ̂SV̂

†
n (ω)− 1

2

{
V̂ †n (ω)V̂n(ω), ρ̂S

})
.

(2.52)
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The dissipative term14 in Eq.(2.52) is a sum of LGKS generators that correspond

to the effective Bohr frequencies ω. If the reservoir is a thermal bath then any

such generator and any sum of them possess a unique stationary state. A rigorous

derivation of the MME can be found in [Alicki 2006] and in chapter 5. Some explicit

examples are found in [Levy 2012b, Szczygielski 2013].

The other limit we treat is the weak driving limit where we assume the dipole

approximation. In this case, if the spectral line width is much bigger than the split-

ting of the energy levels due to driving, i.e. γ � Ω, then the reservoir “experiences”

the spectrum of the free Hamiltonian. We can then approximate the dynamics using

Eq.(2.22) by changing only the unitary part, which now also consists of the driving

Hamiltonian. A study of this approximation can be found in [Rivas 2010].

2.2 Quantum measurements and feedback control

In this section we introduce the necessary theoretical background for chapter 6.

We give a very brief introduction to the field of continuous quantum measurement

(monitoring) and feedback control. Progress in quantum technologies and devices

hinges on the understanding and the ability to control quantum phenomena. The

aim of quantum control theories is to develop protocols to prepare entangled states,

coherent states, or any other state possessing novel properties for specific applica-

tions. Quantum control theory strategies can be divided into two categories, the

closed-loop control and the opened-loop control. In opened-loop methods the con-

trol is determined in advance according to some control law. Finding the control law

is usually accomplished by one of two ways, optimal control approach [Glaser 2015]

or shortcuts to adiabaticity control approach [Torrontegui 2013]. In the closed-loop

strategies, the controllers are determined according to information gained about the

state of the system by measuring it [Rabitz 2000, Wiseman 2010]. The two common

methods in this category are the learning control method and the quantum feed-

back control method. In this thesis we concentrate on the latter, where an active

monitoring of the system determines in real time the feedback Hamiltonian applied

to the system.

Many devices are regulated by monitoring and a feedback loop. The purpose is

to control its timing, adjust its frequency, amplitude, and other physical properties

to match the different parts of the device. The main idea is the following: By

monitoring the system we gain some information about its state and according to

this information we can adjust the controls to change the state of the system as

desired. Moreover, feedback can speed up processes, tune the state of the system in

14The Hamiltonian Ĥ ′ can be expressed as in Eq.(2.24) with a Floquet decomposition in mind.
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real time, reduce fluctuations in a robust way, and from a thermodynamic standpoint

it allows us to optimally use our available resources.

Quantum monitoring and feedback control is quite similar to the classical theory,

but with one important exception. In the classical theory the measurement usually

does not affect the state of the system (e.g., one can measure the speed or the

position of a car without affecting it). In the quantum world this is no longer true.

Measurement requires interacting with the system which inevitably influences the

state of the quantum system (E.g., if we perform a projective measurement our state

will collapse to the measured eigenstate). Consequently, quantum properties such

as coherence, entanglement, and superposition will be demolished. Weak quantum

measurements are employed to overcome this problem. This means that we gain

very little information about the system on the average, but we also only slightly

disturb it. Then, by applying a feedback loop we can retrieve the quantum features.

There is extensive literature on the subject, and some nice introduction and advance

material can be found in [Wiseman 2010, Barchielli 2009, Clerk 2010, Zhang 2014],

and references therein.

2.2.1 Stochastic differential equations

We next introduce some basic concepts from the field of stochastic differential equa-

tions that will be relevant to the quantum treatment of monitoring and feedback

control. More details can be found in the appendix and for a comprehensive study

we recommend the book by Gardiner [Gardiner 1985].

Chapman-Kolmogorov equations:

The Chapman-Kolmogorov equation (CKE) is an equation for the conditional prob-

ability of a Markovian stochastic process X(t). The joint probability p(x, y) for two

random variables x and y can be expressed in terms of the conditional probability,

p(x|y) and p(y|x), and the probability distributions p(y) and p(x),

p(x, y) = p(x|y)p(y) = p(y|x)p(x). (2.53)

Assuming a Markov process X(t), the CKE can be expressed as,

p(x1, t1|x3, t3) =

∫
dx2 p(x1, t1|x2, t2)p(x2, t2|x2, t2) for t1 ≥ t2 ≥ t3. (2.54)

Here, p(x1, t1|x3, t3) is the conditional probability that event x1 will occur at time t1

given the event x3 have occurred at time t3. The differential Chapman-Kolmogorov

equation (DCKE) reveals the physical aspects of the process described. The equation
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reads,

∂tp(z, t|y, t′) =

∫
dx [Γ(z|x, t)p(x, t|y, t′)− Γ(x|z, t)p(z, t|y, t′)] (2.55)

−
∑

i

∂

∂zi
[Ai(z, t)p(z, t|y, t′)] +

∑

i,j

∂2

2∂zi∂zj
[Bij(z, t|y, t′)p(z, t|y, t′)] .

The equation describes three processes known as jumps, drift and diffusion. For

the case Ai = Bi,j = 0 we obtain a Master equation which describes the jump pro-

cess. Γ(z|x, t) is the rate of change in the conditional probability due to jump from

a state x to z. This equation reminds us of the MME Eq.(2.17) in the quantum

treatment. Nevertheless, in the quantum treatment we have also information about

the coherence which is absent in the classical case15. Assuming Γ(z|x, t) = 0 the

DCKE reduces to the Fokker-Planck equation (FPE). The vector A(z, t) is recog-

nized as the drift vector and the matrix B(z, t) as the diffusion matrix16. For the

case where A(z, t) and B(z, t) are time independent (or weakly dependent) the so-

lution p(z, t+ ∆t|y, t) is given by the Gaussian distribution with a variance matrix

B(z, t) and mean y + A(z, t)∆t.

Wiener Processes (Brownian motion):

Setting the drift vector to zero and the diffusion coefficient to one in the FPE

and considering the initial condition p(w, t0|w0, t0) = δ(w − w0), the process X(t)

becomes the well known Wiener process W (t). The solution of the equation,

∂t p(w, t|w0, t0) =
∂2

2∂w2
p(w, t|w0, t0), (2.56)

is given by

p(w, t|w0, t0) =
1√

2π(t− t0)
exp

(
−(w − w0)2

2(t− t0)

)
. (2.57)

The mean value and the variance of the Wiener process are 〈W (t)〉 = w0 and

〈(W (t)− w0)2〉 = t − t0. Although the mean value of W (t) is constant the mean

square diverges as t → ∞, thus the sample path may differ extremely from one

to another. While the Wiener process is continuous it is not differentiable, which

means that the speed is almost certainly infinite. We can define a Wiener increment,

dW (t)
def
= W (t+ dt)−W (t) for dt ≥ 0, (2.58)

15As discussed above, in the weak coupling limit when the spectrum of ĤS is discrete the
coherence and the population are decoupled and a similar equation is obtained for the population.

16It is a positive semidefinit symmetric matrix.
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which satisfies the relations,

〈dW (t)〉 = 0, (2.59)
〈
dW (t)2

〉
= dt. (2.60)

This will be of further use.

Itô stochastic differential calculus:

The simplest stochastic differential equation (SDE) also known as the Langevin

equation takes the form
dx

dt
= a(x, t) + b(x, t)ξ(t) (2.61)

where a(x, t) and b(x, t) are known functions and ξ(t) is a rapidly fluctuating ran-

dom term, that is 〈ξ(t)ξ(t′)〉 = δ(t − t′), and we also require that 〈ξ(t)〉 = 0 (this

can always be absorbed into a(x, t)). Note that idealization of delta correlated noise

results in an infinite variance. Examples of a more realistic noise process are the

Ornstien-Uhlenbeck process and the random telegraph signal for which the correla-

tion time is finite, γ
2

exp(−γ |t− t′|). In the limit γ → ∞ this function becomes a

delta function, which is one possible approach to model ξ(t).

Another approach is to consider the integral form of the Langevin equation and

to identify the integral of ξ(t) as the Wiener process,

W (t) =

∫ t

0

dsξ(s). (2.62)

Notice the paradox that the integral of ξ(t) is W (t), but we stated before that W (t)

is not differentiable, which means that the Langevin equation (2.61) does not exist.

Nevertheless, the integral equation,

x(t)− x(0) =

∫ t

0

a(x(s), s)ds+

∫ t

0

b(x(s), s)ξ(s)ds, (2.63)

is consistent, and we can interpret ξ(t)dt = dW (t) as the Wiener increment. The

stochastic Itô integral is mathematically and technically more convenient to use

and prove theorems but not always gives the best physical interpretation. The

Stratonovich integral (see appendix) is the preferable candidate for physical inter-

pretation since it assumes that ξ(t) is real noise with a finite correlation time. After

calculating measurable quantities this time can be assumed to be infinitesimally

small. In Addition, the Stratonovich integral allows us to use ordinary calculus. In

chapter 6 we will see that this becomes significant when we wish to define thermo-

dynamic work.
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The Itô SDE obeying Eq.(2.63) is expressed as,

dx(t) = a (x(t), t) dt+ b (x(t), t) dW (t). (2.64)

The SDE for arbitrary function f (x(t)) is given by expanding df up to second order

in dW which results in the Itô formula,

df (x(t)) =

(
f ′ (x(t)) a (x(t), t) +

1

2
f ′′ (x(t)) b (x(t), t)2

)
dt+f ′ (x(t)) b (x(t), t) dW (t).

(2.65)

More details about the Itô and Stratonovich calculus are detailed in the appendix.

2.2.2 Quantum measurements

Quantum measurement lies at the heart of quantum mechanics theory. It provides

the last link in the chain connecting the “quantum world” with the “classical” one. In

this section we present a short introduction to the theory of quantum measurement.

Classical measurements:

We start with some basic concepts in the classical measurement theory, also known

as Bayesian statistical inference. The classical measurement theory is based on the

Bayes theorem. Using Eq.(2.53) and knowledge of the current prior system state

p(x), we can express the posterior state conditioned on the outcome value y,

p′(x|y) =
p(y|x)p(x)

p(y)
. (2.66)

Here, the prime emphasizes that this is the posterior state and p(y) =
∑

x p(y|x)p(x)

in the denominator guarantees that the state is normalized. We can also define the

unconditional posterior state by averaging over all possible measurement results,

p′(x) =
∑

y

p′(x|y)p(y). (2.67)

The terms conditional and unconditional are sometimes replaced by the terms se-

lective and non-selective, respectively17.

Bayes law can be generalized to treat the scenario that the state is changing

due to measurement (back action on the system). Say, the system state is p(x) and

for simplicity we take X to be a discrete random variable and Y the result of the

measurement. Then the state changing operation is described by n × n matrix By

whose elements By(x|x′) are the probability that the measurement will enforce the

17In the case of non-disturbing measurement the unconditional posterior state is the same as the
prior state, p′(x) = p(x).
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system to make a transition from a state X = x′ to a state X = x, given that Y = y

was obtained. Thus for all x′ and all y

By(x|x′) ≥ 0,
∑

x

By(x|x′) = 1. (2.68)

Then the posterior system state is given by,

p′(x|y) =

∑
x′ Oy(x|x′)p(x′)

p(y)
, (2.69)

where we have defined the new matrix,

Oy(x|x′) def
= By(x|x′)p(y|x′), (2.70)

and used the relation, P (y) =
∑

x,x′ Oy(x|x′)p(x′) to normalize the state. We also

note that this map is a positive map.

Quantum projective measurements:

Traditional descriptions of measurements in quantum mechanics are often referred to

as projective measurements, and were formulated by von Neumann [von Neumann 1955].

It is postulated that the measurement process instantaneously collapses the state of

the quantum system into one of the eigenstates of the measured observable. That

is, if we have an observable Â, then according to the spectral theorem it can be

diagonalized,

Â =
∑

λ

λΠ̂λ, (2.71)

where {λ} are real eigenvalues of Â and Π̂λ is the projection operator into the

subspace of eigenstates of Â with an eigenvalue λ. If the spectrum {λ} is non-

degenerate18 then the projector is rank-1 projector Πλ = |λ〉 〈λ|. The probability

to obtain a particular value λ in the measurement is pλ = Tr
(
ρ̂Π̂λ

)
. Then the

conditional (posterior) state of the system after measuring the value λ is,

ρ̃λ =
Π̂λρ̂Π̂λ

pλ
, (2.72)

where the tilde on top of ρλ indicates a state resulting from measurement19. If

we wish to describe the unconditional state of the system, that is if we make the

18In the general case, we have rank-Nλ projector Π̂λ =
∑Nλ

j=1 |λ, j〉 〈λ, j|.
19To avoid cumbersome notations we omitted the hat on top of ρ.



2.2. Quantum measurements and feedback control 29

measurement but ignore the result, then the state is given by,

ρ̃ =
∑

λ

pλρ̃λ =
∑

λ

Π̂λρ̂Π̂λ. (2.73)

If the state of the system before measurement was pure, and we make a measurement

but ignore the result then in general after measurement the state will be mixed.

That is, a projective measurement unlike unitary operation is usually an entropy

increasing operation, unless one keeps track of the measurement results. We can

further say that a projective measurement decreases the purity of the unconditional

state unless the prior state ρ̂ can be diagonalized in the same basis as can Â.

Indirect quantum measurements:

Although the projective measurements is the simplest description of quantum mea-

surement it is not the most adequate. Typically, in real experiments the measure-

ment is not performed directly on the quantum system of interest S but rather on

a probe system P that interacts with S. By measuring the change in the system P
and because the systems S and P are correlated due to the interaction, it is possible

to gain knowledge on the system of interest S. We assume that the initial state

of the joint systems is a product state, σ̂(0) = ρ̂P ⊗ ρ̂S, where ρ̂S ∈ T (HS) and

ρ̂P ∈ T (HP ). In addition, we take the initial state ρ̂P = |χ〉 〈χ| to be a pure state20.

The state of S ∨ P follows a unitary dynamics Û for a duration time τ , and then a

projective measurement21 is performed on the probe system P . The unnormalized

final joint state after measurement is then given by,

σ̃(t) =
(

Π̂r ⊗ Î
)
Û(τ) (ρ̂P ⊗ ρ̂S) Û †(τ)

(
Π̂r ⊗ Î

)
. (2.74)

Π̂r is the projection operator that operates on Hilbert space HP . Tracing out the

probe system P and normalizing it, we obtain the state of S conditioned on the

measurement output r for the probe,

ρ̃rS(τ) =
M̂rρ̂SM̂

†
r

Tr
(
M̂ †

rM̂rρ̂S

) , (2.75)

where M̂r are measurement operators acting on HS and are given by,

M̂r = 〈r| Û(τ) |χ〉 . (2.76)

20This procedure can be extended to mixed states and is known as insufficient measurement.
21The measurement is assumed to be much shorter than the evolution time τ .
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These operators satisfy the relation,
∑

r M̂
†
rM̂r = Î and are of the form of a Kraus

operator (see section 2.1.2), which implies that Eq.(2.75) defines a completely posi-

tive map. The probability of measuring the value r is given by,

pr = Tr
(
M̂ †

rM̂rρ̂S

)
, (2.77)

and the operator Êr = M̂ †
rM̂r is then identified as the probability operator (or

effect), and the unconditioned state can be expressed as
∑

r M̂rρ̂SM̂
†
r .

The structure of Eq.(2.75) defines a general measurement on a quantum system

which is referred to as the posetive-operator-value-measure (POVM). The idea is

that instead of having a probability distribution over all the space we have proba-

bility positive operators that are associated with the subsets belonging to the set of

outcomes of the measurement. If we label the outcomes by r and chose a subsetM
of the outcomes then the probability of obtaining an outcome from this subset is,

Prob (r ∈M) =
∑

r∈M
pr =

∑

r∈M
Tr
(
M̂ †

rM̂rρ̂S

)
= Tr

(∑

r∈M

(
M̂ †

rM̂r

)
ρ̂S

)
. (2.78)

Apart from providing a more adequate and general description of quantum measure-

ment, indirect measurements can describe simultaneously the measurement of two

non-commutative observables as long as accuracy does not violate the Heisenberg

uncertainty principle.

Continuous quantum measurement:

Continuous quantum measurement (Monitoring) is yet another important class of

quantum measurements. There are few approaches to describe the continuum limit

of measurements [Wiseman 2010]. These are known as quantum filtering where a

stochastic differential equation for the operators (Heisenberg picture) is derived, or

quantum trajectories where a stochastic Schrödinger equation or a stochastic master

equation (SME) in the Schrödinger picture is used to describe the dynamics. Here,

we will focus on the latter.

The description begins with a quantum system S that is weakly coupled to

the environment. By measuring the state of the environment we can obtain some

knowledge about the quantum system S as discussed above. Since in many “real”

scenarios the measurement can be weak it is required to monitor the reservoir for

some time in order for the effect to accumulate. The time scale of monitoring should

be large compared to the reservoir correlation functions decay time but short com-

pared to the decay time of the system S. Now, if the reservoir is being monitored

and the results are being ignored, then the conditioned state of S evolves according
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to the standard MME in LGKS form. If the results of monitoring are registered

then, because of the system-reservoir interaction, the state of the system is now

conditioned on the outcome of the measurement. This approach is referred to as

quantum trajectories. In this scenario we expect an additional noise term to the

MME that will vanish once it is averaged over many realizations. Such stochastic

equations are called unraveling since they unravel the MME. Obviously there are

infinite unraveling SME which will produce the same averaged dynamics (the same

MME). The typical procedure to derive the SME is to identify the measurement

operators {Mr} of the POVM as infinitesimal jump operators which have determin-

istic and stochastic parts. Then expending Eq.(2.75) up to order dt will result in

a SME. Examples of this procedure for photodetection, homodyne and heterodyne

detection can be found in [Wiseman 2010].

In chapter 6 we extended the result of [Diósi 1988] for monitoring both quadra-

tures of the harmonic oscillator. We briefly present the main steps of [Diósi 1988]

in deriving the SME. In order to monitor the position x̂ of a free particle we assume

that the instantaneous measured position is selected at random from a Gaussian

probability distribution,

px̄ = Tr
(
ρ̂
√
α/π exp

[
−α (x̂− x̄)2]), (2.79)

with the random variable x̄ and variance α which represents the accuracy parameter.

The conditioned state after the measurement is then given by,

ρ̃x̄ =
Mx̄ρ̂M

†
x̄

px̄
, (2.80)

with,

Mx̄ = 4
√
α/π exp

[
−1

2
α (x̂− x̄)2

]
. (2.81)

To attain the continuum limit the process is repeated at small time intervals ∆t and

satisfying the limit,

α, ∆t → 0 and
α

∆t
= γ = const. (2.82)

This means that we gain very little knowledge from measurement in the small in-

terval ∆t but the ratio is fixed. The random variable x̄ is defined only for instants

of measurement processes. This implies that in the continuum limit this variable

should be replaced by x̄→ x̄(t), where x̄(t) is continuous but its differential should

not exist. The differential of x̄(t) should be understood as an Itô differential that
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satisfies,

x̄dt = 〈x̂〉σ +
dW√
γ
, (2.83)

with dW the Wiener increment that obeys the relations (2.58) and the average 〈·〉σ
is taken with respect to the conditioned stochastic state σ̂. Applying the Itô calculus

and keeping the terms of the order dt the SME in Itô form for the conditioned state

reads,

dσ̂ = −i
[
Ĥ, σ̂

]
dt− γ

4
[x̂, [x̂, σ̂]] dt+

√
γ{x̂− 〈x̂〉σ , σ̂}dW (2.84)

Taking the stochastic mean M, the unconditional state is obtained from the con-

ditional stochastic one, i.e. Mσ̂ = ρ̂, and the SME (2.84) reduces to the familiar

MME,
d

dt
ρ̂ = −i

[
Ĥ, σ̂

]
− γ

4
[x̂, [x̂, σ̂]] (2.85)

In chapter 6 we consider monitoring both quadratures x̂ and p̂ in the context of

stabilizing and optimizing the performance of the quantum flywheel.

2.2.3 Feedback control

Feedback control is a process that uses information gained from measuring the state

of the system in order to control it at later times. When applied to monitored

quantum systems, feedback control can be performed in real-time before the quan-

tum state collapses to a classical state. In this manner, quantum effects can be

protected, noise can be reduced and controlling the state of the system becomes

robust. In chapter 6 we will see that the feedback control plays an important role

in optimizing the thermodynamic performance of the quantum flywheel. Feedback

control based on monitoring requires to detect a continuous signal and applying a

feedback Hamiltonian which depends on that signal. Generally, there is a delay be-

tween the signal being measured and the time it is fed back to the system according

to the engineered Hamiltonian. Solving such a problem is typically complicated,

resulting in nonlinear and non-Markovian dynamics. Simplification can be achieved

if we assume that the delay time goes to zero [Wiseman 2010]. Then, the feedback

Hamiltonian is proportional to the signal at that time and by averaging over all the

trajectories a MME can be derived.

The heuristic description is the following: after deriving the SME for the moni-

toring process we can now apply the infentisimal change in the evolution due to the

feedback Hamiltonian,

σ̂ + dσ̂ → e−iĤf (t)dt (σ̂ + dσ̂) eiĤf (t)dt. (2.86)

Here, σ̂ is the stochastic state conditioned on the signal output, and Ĥf is the feed-
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back Hamiltonian which now possess a stochastic part since it is proportional to

the stochastic signal output. Using the Itô calculus and expanding the terms up to

order dt we obtain the SME which now accounts also for the feedback control oper-

ation. Taking the stochastic mean we end up with MME describing the dynamics

of monitoring and feedback.

2.3 Thermodynamics in the quantum regime

The field of thermodynamics in the quantum regime is concerned with the deli-

cate relation between standard and non-equilibrium thermodynamics with quantum

mechanics treating small systems well below the thermodynamic limit. Among

the main topics investigated are: thermalization of closed and open quantum sys-

tems, thermodynamic resource theories, information and thermodynamics, single

shot thermodynamics, quantum fluctuation relations, and quantum thermal ma-

chines. For more information on these topics see recent reviews [Campisi 2011,

Kosloff 2013, Kosloff, R. and Levy, A. 2014, Vinjanampathy 2015, Goold 2016] and

references therein. In the present thesis we are concerned with the study of quan-

tum thermal devices and the methodology employed is the theory of open quantum

systems as discussed above.

2.3.1 Basic concepts and definitions

Entropy and relative entropy:

The notion of entropy was introduced by Clausius in the mid-19th Century. It

was defined as an extensive thermodynamic variable which is useful to characterize

quasi-thermodynamic processes. The change in entropy for a reversible process is

given by,

dS =
δQ

T
, (2.87)

where δQ is heat obtained or given by the system and T is the temperature in which

the process occurs. This definition is referred to as the thermodynamic entropy.

several decades later, statistical mechanics supplied the relation between thermo-

dynamic entropy and the microscopic properties of the system. According to the

Gibbs formula the entropy of the system is expressed as,

S = −
∑

j

pj ln pj, (2.88)

with pj being the probability of occupying a microstate that corresponds to the

energy Ei. In the microcanonical ensemble the infinitesimal change in the Gibbs
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entropy reduces to Eq.(2.87).

In quantum mechanics the entropy of a system which is described by a density

operator ρ̂, is defined by the von Neumann entropy,

S(ρ̂)
def
= −Tr(ρ̂ ln ρ̂) (2.89)

In the diagonal basis of ρ̂ =
∑

j pj |φj〉 〈φj| the von Neumann entropy takes the form

of the Gibbs entropy22.

S(pj) = −
∑

j

pj ln pj, where pj ≥ 0 and
∑

j

pj = 1. (2.90)

The von Neumann entropy is a measure of the uncertainty in the details of the system

and is invariant under a change of basis. The entropy is non-negative and equal to

zero if and only if the state is a pure state (then we have maximal knowledge of

the system). The entropy is maximized if the state is fully mixed (in equilibrium),

which implies that all {pi} are equal. For the Gibbs state Eq.(2.35) the entropy

satisfies the known relation,

S = β (U − F ) , (2.91)

where β is the inverse temperature, and we have identified the internal energy U =

Tr(ρ̂Ĥ) and the free energy F = β−1 lnZ. The von Neumann entropy is a concave

function which defines many mathematical properties and relations. These can be

found in the appendix.

The relative entropy of two density operators ρ̂ and σ̂ is defined as,

S(ρ̂|σ̂)
def
= Tr(ρ̂ ln ρ̂)− Tr(ρ̂ ln σ̂) (2.92)

This quantity measures the distance between two states. For example, if we consider

a composite system described by the state ρ̂, then the relative entropy with respect

to the uncorrelated state σ̂ = ρ̂1 ⊗ ρ̂2 measure information loss (change in entropy)

that results from tracing over the subsystems,

S(ρ̂|ρ̂1 ⊗ ρ̂2) = S(ρ̂1) + S(ρ̂2)− S(ρ̂). (2.93)

Here ρ̂1(2) = Tr2(1)ρ̂. The relative entropy is non-negative and equals zero if and only

if ρ̂ = σ̂. It is also invariant under a unitary transformation, i.e. S(Û ρ̂Û †|Û σ̂Û †) =

S(ρ̂|σ̂). If σ̂ is a Gibbs state, Eq.(2.35), then the relative entropy measures the

22This is also the form of the Shannon entropy from information theory, only pj is now understood
as the probability of an event j. In quantum mechanics it is sometimes more convenient to interpret
the von Neumann entropy in this context.
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distance between the free energy,

S(ρ̂|σ̂) = β (F (ρ̂)− F (σ̂)) . (2.94)

Many of the relative entropy properties are based on the fact that it is jointly convex

In the appendix we present some of these important relations in detail.

Ergotropy and passive states:

An important concept in quantum thermodynamics is the amount of maximal work

that can be extracted from a system using a unitary cyclic operation only. This

implies that the von Neumann entropy does not change during the process and the

spectrum of the system is the same at the initial and final times. In the literature

this amount of work is termed ergotropy [Allahverdyan 2004]. The unitary operation

can be expressed as,

Û(τ, 0) = T exp

[
−i
∫ τ

0

Ĥ + V̂ (s)ds

]
, with V̂ (τ) = V̂ (0) = 0. (2.95)

Here, we assume that the cyclic process initiated at time 0 and terminated at time

τ , and V̂ (s) is a time dependent control Hamiltonian. The maximal available work

is then defined as,

Wmax
def
= Tr

(
ρ̂Ĥ
)
−min

Û
Tr
(
Û(τ, 0)ρ̂Û †(τ, 0)Ĥ

)
, (2.96)

where Ĥ is the system Hamiltonian at the beginning and at the end of the process

and ρ̂ is the initial state of the system. The minimum is taken over all the unitary

transformations acting on the Hilbert space of the system. This definition is related

to the notion of passive states.

A passive state ρ̂pass is a state that no work can be extracted from it by a

unitary operation, implying that for all unitaries Û the inequality Tr
(
ρ̂passĤ

)
≤

Tr
(
Û ρ̂passÛ

†Ĥ
)

holds. It was shown by Pusz and Woronowicz [Pusz 1978] that for

the Hamiltonian,

Ĥ =
∑

k

εk |k〉 〈k| with εk + 1 ≥ εk, (2.97)

the state ρ̂pass is passive if and only if,

ρ̂pass =
∑

k

λk |k〉 〈k| with λk+1 ≤ λk. (2.98)

We conclude that a system is passive if and only if its state is diagonal in the energy

eigenbasis, and its eigenvalues are non-increasing with energy. Then, in order to
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extract maximal work from a state we have to find the unitary operation that will

transform the state into a passive one.

We note that any Gibbs state is a passive state but conversely this is not nec-

essarily true. A unitary operation that transforms an arbitrary state into a Gibbs

state does not necessarily exist. In case the passive state of the system is a Gibbs

state then the maximal work available reduces to the maximal thermodynamic work

given by the difference in the free energy of the initial and final states, both evalu-

ated by the final temperature. In the context of passive states, the Gibbs state is

referred to as a complete passive state. If we consider n copies of the state ρ̂ and

look at the composite system ρ̂⊗ρ̂⊗· · · , then ρ̂ is completely passive if for all integer

n the composite system is also a passive state. It can be shown [Lenard 1978] that

this condition is satisfied only by the Gibbs state and the ground state. In addition,

a thermal state is the passive state of any Gaussian state (including coherent and

squeezed states). The notion of passivity and ergotropy come in hand in the study of

quantum storage devices [Levy 2016, Alicki 2013, Binder 2015] and the availability

of work from correlations [Perarnau-Llobet 2015].

2.3.2 The laws of thermodynamics

The laws of thermodynamics introduces the basic concepts of the thermodynamic

quantities, energy, heat, work, entropy, temperature and the relation between them.

These relations characterize systems at thermal equilibrium. In the following we

introduce the laws of thermodynamics in the context of quantum mechanics. Since

we are interested in quantum thermal devices that operate far from equilibrium we

present the laws in their dynamical form adapting concepts from non-equalibrium

thermodynamics.

The first law:

The first law of thermodynamics is a conservation law of energy which determines

that the energy of an isolated system is constant and can be divided into two types;

heat- which is an uncontrolled and wasteful form of energy, and work - which is

controlled and useful. The increment in the internal energy is then given by,

dU = δQ+ δW. (2.99)

Here δQ and δW are the infinitesimal change in heat and work respectively. δ

indicates that these quantities are not full differentials, and depend on the thermo-

dynamic path, i.e. they are not a state functions, thus they don’t correspond to

observables. For a given quantum system described by the density operator ρ̂ and
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the Hamiltonian Ĥ, the internal energy is defined according to,

U
def
= Tr

(
ρ̂Ĥ
)
. (2.100)

Taking the time derivative of Eq.(2.100) we obtain the dynamical form of the first

law in terms of energy flow,

d

dt
U = Tr

(
˙̂ρĤ
)

+ Tr
(
ρ̂Ḣ
)
. (2.101)

If the system is a closed quantum system, which implies that the dynamics is gen-

erated by Ĥ, then Tr
(

˙̂ρĤ
)

= 0. In this scenario the energy flow in the system is

caused only by the second term on the rhs of Eq.(2.101). Since the system is isolated

and follow a unitary dynamics the entropy generation in the process is zero and we

can identify the power with the change in the time dependent control Hamiltonian,

P = Tr
(
ρ̂Ḣ
)
. (2.102)

The work23 is then given by integrating the power over the process time,

W
def
=

∫ t

0

Pds. (2.103)

If the Hamiltonian is time independent (no external field is applied to the system)

and it is weakly coupled to a thermal bath, then all the energy flow results from

the exchange of heat with the bath24. In this scenario the second term on the rhs

of Eq.(2.101) vanishes and we can identify the heat current,

J
def
= Tr

(
˙̂ρĤ
)
. (2.104)

Integrating J over time we obtain the heat24 supplied to the system,

Q =

∫ t

0

Jds. (2.105)

Equation (2.101) can then be expressed as,

dU = Jdt+ Pdt. (2.106)

When the system is simultaneously driven by an external field and weakly cou-

23Here the term work and heat refer to the average work and heat over an ensemble.
24The assumption of a thermal bath is important for defining heat current properly. Some

authors mistakenly reported quantum engines that exceeds the Carnot efficiency. They misapplied
the Carnot bound because they identified the energy flow out of a squeezed bath as the heat
current.
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ple to a thermal bath, these definitions of heat and work become less clear and

extra care should be taken [Levy 2012b]. In the following we discuses this issue in

detail. We further notice that the Hamiltonian in Eq.(2.104) is the bare system

S Hamiltonian. This makes sense only if the the system-bath interaction is weak

and the energy from interaction can be neglected. For strong coupling it is not

clear how to account for the interaction energy. To overcome this problem differ-

ent approaches where suggested, some of them are based on the Green’s function

approach [Esposito 2015], the polaron transformation [Gelbwaser-Klimovsky 2015],

and the idea of heat exchangers [Uzdin 2016, Katz 2008]. Instead of gaining infor-

mation about the dynamics of the process (calculating heat flows), it is possible to

perform a two point measurement and obtain the heat exchanged during the process.

In this approach we first measure the initial internal energy of the system S, then

we let it interact with the thermal bath (the interaction can be strong in this case),

and at the end of the process we again measure the internal energy. The difference

between the initial and final energy can be identified as heat. The main drawback

from this procedure is that the first measurement destroy all the quantum features

of the system.

The Hamiltonian and the state of the system are typically stochastic in the theory

of monitoring and feedback control. Since stochastic fluctuations are microscopic,

the thermodynamic definition of the internal energy is given by the stochastic mean

of the microscopic energy,

U = M
[
Tr
(
ρ̂Ĥ
)]
. (2.107)

This leads to the generalization of Eq.(2.106) [Levy 2016],

dU = M
[
Tr
(
dσ̂Ĥ

)]
+ M

[
Tr
(
σ̂dĤ

)]
≡ Jdt+ Pdt., (2.108)

where both σ̂ and Ĥ are stochastic and conditioned on the measurement signal. The

differentials in Eq.(2.108) must be Stratonovich ones instead of those of Ito. For the

Ito differentials the rhs should contain the so-called Ito correction M
[
Tr
(
dσ̂dĤ

)]

which would jeopardize the split of dU between heat flow and power. This implies

that any systematic calculation of heat flow and power requires to transform the

final SME from Ito into Stratonovich form (see appendix). In case that only the

state is stochastic Eq.(2.108) reduces back to Eq.(2.106).

Heat flow and power for the LGKS master equation- As mentioned earlier

the definition for the heat flow (2.104) is valid for constant Hamiltonian in the weak

system-bath coupling limit. The description given by the thermal LGKS master

equation, Eq.(2.22), is then consistent with this definition. The heat flow reduces



2.3. Thermodynamics in the quantum regime 39

to the form,

J(t) = Tr
(

(Lρ̂(t))Ĥ
)
, (2.109)

where L is the dissipative term of the master equation (2.38). The relation can also

be expressed as,

J(t) = β−1Tr((Lρ̂(t)) ln ρ̂th) (2.110)

where β−1 is the bath temperature and ρ̂th is the Gibbs state of the system S with

the same temperature. When the system is fully equalibriated then Lρ̂th = 0 and

the heat current vanishes. This definition can be extended for a system coupled to

a number of thermal bath25. The heat flow from the i bath is then,

J i(t) = −β−1
i Tr

(
(Lρ̂(t)) ln ρ̂ith

)
. (2.111)

In section 2.1.5 we introduced few scenarios for which a MME of the LGKS form

can be deduced for a driven open quantum system. For adiabatic driven systems the

definitions for the power and heat flow introduced in equation (2.102) and (2.104)

holds true, where now the Hamiltonian includes the interaction with the external

field. Some examples can be found in [Geva 1994, Alicki 2015, Alicki 2016]. For

strong periodic driving these definitions are modified. This is one of the results of

[Levy 2012b] (see chapter 5), and we next summaries the main results. For a thermal

bath the LGKS generator Eq.(2.52) in the interaction picture can be written as the

sum of generators that correspond to the quasi Bohr frequencies (see section 2.1.5),

L =
∑

n∈Z

∑

ω

Lnω, (2.112)

with,

Lnωρ̂S = γ(ω + nν)

(
V̂n(ω)ρ̂SV̂

†
n (ω)− 1

2

{
V̂ †n (ω)V̂n(ω), ρ̂S

})
(2.113)

+ γ(ω + nν)e−β(ω+nν)

(
V̂ †n (ω)ρ̂SV̂n(ω)− 1

2

{
V̂n(ω)V̂ †n (ω), ρ̂S

})
.

Each Lnω generator in itself has the LGKS structure and posses a Gibbs-like sta-

tionary state of the form,

ρ̂∞nω = Z−1 exp

(
ω + nν

ω
βĤ

)
. (2.114)

Using the decomposition (2.112) the local heat current which corresponds to energy

25Here we assume that the baths are not correlated which implies that the dynamics is given by
the sum of the LGKS generators.
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exchange ω − nν can be identified as,

Jnω(t) = β−1Tr((Lnωρ̂(t)) ln ρ̂∞nω). (2.115)

Thus, heat is flowing in channels corresponding to the quasi energies obtained from

the Floquet analysis. The power can be calculated from the first law of thermody-

namics, i.e. P (t) = U̇(t)− J(t) with, J(t) =
∑

nω Jnω(t). For weak periodic driving

in the dipole approximation the standard definitions (2.102) and (2.104) holds with

a local generator and the Hamiltonian now contains also the interaction with the

external field.

The second law

The second law of thermodynamics is one of the most fundamental laws in physics.

It concerns with irreversibility of thermodynamic process and imposes a direction

to the arrow of time. The second law can be expressed in several ways and there is

a huge number of different formulations. The first step towards establishing the law

was introduced by Carnot who set a limitation on the efficiency of all heat engines

working between two thermal baths. The efficiency is bounded because of wasted

energy in the form of heat that can not be converted into work. The Clausius

formulation of the second law and maybe the most intuitive one states that heat

cannot spontaneously flow from a cold body to a hot body without external work

being performed on the system. The second law can also be expressed in terms of

entropy. This formulation determines that the entropy of a closed system will always

tend to stay the same or increase with time, i.e. ∆S ≥ 0.

In quantum mechanics it is possible to show that the change in the entropy of

the total closed system S ∨ R (the universe) is always non-negative if initially the

systems S and R are not correlated [Peres 2006]. Making this assumption we write

the initial joint state as a tensor product ρ̂i = ρ̂iS ⊗ ρ̂iR. The final joint state is then

given by ρ̂f = Û ρ̂iÛ † where, Û is the global unitary evolution of the total system.

The change in the entropy of both subsystems is then,

∆SS + ∆SR ≡ (S(ρ̂fS)− S(ρ̂iS)) + (S(ρ̂fR)− S(ρ̂iR)) (2.116)

= S(ρ̂fS) + S(ρ̂fR)− S(ρ̂i)

= S(ρ̂fS) + S(ρ̂fR)− S(ρ̂f )

≡ S(ρ̂f |ρ̂fS ⊗ ρ̂fR) ≥ 0.

The second equality is the consequence of the assumption of no initial correlations,

the third equality stems from the fact that the von Neumann entropy is invariant

under a unitary transformations, and the last inequality results from the fact the
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the relative entropy is a non-negative quantity.

The description above is somewhat static and presents a global viewpoint of

the second law. The entropy balance of the subsystems composing a closed system

is non-decreasing. In thermodynamics of quantum devices we are often interested

in the description of the local open system alone. Based on concepts from non-

equilibrium thermodynamics the local form of the balance equation for the entropy

reads,
dS

dt
= σ + ζ. (2.117)

Here S is the local entropy of the open system, ζ is the entropy flux, that is the

entropy per unite time exchanged between the open system and its environment,

and σ is the entropy production. If the environment is composed of thermal baths

and the system-baths entropy exchange is only due to heat, then ζ =
∑

i Ji/Ti,

where Ji and Ti are the heat and temperature of the bath i respectively26. The

dynamical standpoint of the second law applied to open systems states that the

entropy production σ is non-negative.

Sphon introduced the proof that a quantum dynamical semigroup will always

result with σ ≥ 0 [Spohn 1978]. The proof is based on the identification of the

entropy production as the time derivative of the relative entropy with respect to a

stationary state ρ̂o of the the dynamical semigroup map Λ(t).

σ(ρ̂(t))
def
= − d

dt
Tr(ρ̂(t)|ρ̂o), with ρ̂(t) = Λ(t)ρ̂(0), and Λ(t)ρ̂o = ρ̂o. (2.118)

Here ρ̂ is understood as the open system state ρ̂ ≡ ρ̂S. Taking the explicit derivative

one obtains,

σ(ρ̂(t)) = −Tr((Lρ̂(t)) ln ρ̂(t)) + Tr((Lρ̂(t))ρ̂o). (2.119)

The first term on the rhs of the equation is just derivative of the von Neumann

entropy (the local entropy). If we consider a thermal bath then the stationary state

is a thermal state, ρ̂o = ρ̂th, and according to (2.110) the second term on the rhs

is just the heat flow divided by the temperature, −J/T . Equation (2.117) is then

satisfied for a thermal environment. This result motivates the definition (2.118) for

the entropy production. The proof by Spohn for σ(ρ̂(t)) ≥ 0 is general and holds for

any dynamical semigroup with a stationary state ρ̂o. The proof is based on the fact

that the map ρ̂ 7→ σ(ρ̂) is a convex functional, which in itself is a result of Lieb’s

theorem and the LGKS structure. We remark here that in the microscopic regime

one can define a family of second laws which generalize the standard second law.

Details and implications can be found in [Brandão 2015, Lostaglio 2015].

26Generally ζ also accounts for entropy flux due to matter exchange between the system and the
environment. In this thesis we concentrate on heat exchange only.
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The third law

The third law of thermodynamics has two different formulations, both can originally

be traced back to the work by Nernst. These are known as the Nernst heat theorem

and the unattainability principle [Fowler 1939]. The first formulation is a static

(equilibrium) one and states that the the entropy of any pure substance in ther-

modynamic equilibrium approaches zero as the temperature approaches zero. If the

substance has defects and the ground state is degenerate then the entropy approaches

to a constant number that is related to the level of degeneracy. This implies that the

entropy change of a system undergoing a reversible isothermal process approaches

zero as the temperature approaches the absolute zero temperature, i.e. ∆ST→0 = 0.

The second formulation states that it is impossible by any procedure, no matter how

idealized, to reduce any assembly to absolute zero temperature in a finite number of

operations. Chapter 5 is dedicated to the study of the third law of thermodynamics

from a dynamical quantum mechanics standpoint[Levy 2012b, Levy 2012a]. This

approach allows to quantify the third law in terms of characteristic exponents of the

cooling process.

2.3.3 Quantum thermal machines

Up to this point we reviewed some basic concepts and the mathematical tools em-

ployed in the study of thermodynamics of quantum devices. We now proceed and

introduce the main ingredients to establish quantum thermal machines with the in-

tention of exploring thermodynamics in the quantum regime. The study of quantum

thermal machines which operate far from thermal equilibrium typically requires a

well-defined quantum system coupled to two or more thermal reservoirs or some

external drive. These components can then serve as building blocks for constructing

different quantum thermal machines such as quantum heat engines, quantum refrig-

erators and quantum energy storage devices. To some extent for the thermal device

to operate in a nontrivial manner three or more reservoirs should be involved in the

process. Otherwise energy will flow in a trivial way from the cold to the hot bath.

The study of quantum thermal device can be traced back to the pioneered work

of Scovil and DuBois from 1959 [Scovil 1959]. In their work they considered the

three level maser as a heat engine and showed that its efficiency is bounded by

the Carnot efficiency (see figure 2.1). The proof is very simple, levels 1 and 3 are

connected to a hot bath at temperature Th using a filter that matches the transition

frequency ωh. The same is done to level 2 and 3 with the cold bath at temperature

Tc, which matches the transition frequency ωc. Here we take ωh > ωc and Th > Tc.
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Figure 2.1: Illustration of the three level heat engine. The working medium is a
three level system operating between two thermal baths with temperatures Th and
Tc.

Using the Boltzmann factor we obtain the ratios of the populations,

p2

p3

= exp

(
ωc
Tc

)
, and

p3

p1

= exp

(
−ωh
Th

)
. (2.120)

Work can be extracted out of the engine if there is a population inversion between

level 1 and 2. This is achieved when p2/p1 > 1. We can express this ratio in terms

of the efficiency η and the Carnot efficiency ηC , which are defined as

η
def
=

Benefit

Cost
=
ωh − ωc
ωh

, and ηC = 1− Tc
Th
. (2.121)

Then the ratio p2/p1 takes the form,

p2

p1

= exp

(
ωh − ωc
Tc

(
η−1ηC − 1

))
, (2.122)

and work can be extracted out if η < ηC , which completes the proposition. This

model is static and a simplifying model, the only quantum feature it displays is

the discrete spectrum of the quantum system. About twenty years later Alicki

[Alicki 1979] and Kosloff [Kosloff 1984] employed the theory of open quantum system

in order to study quantum heat engines. Doing so they introduced dynamics to

field of quantum thermal machines. This also made quantum properties such as

coherence, entanglement and superposition visible and significant to the study of

quantum thermodynamics.

Quantum thermal machines can be classified into two main categories: recipro-

cating stroke machines and continuous ones. The first category includes the four

stroke and two stroke engines which typically utilize the Otto or the Carnot cy-

cle. Here the working segments (the adiabats27) are isolated from the heat trans-

fer segments which are the isotherms in the Carnot cycle [Geva 1992, Lloyd 1997,

27Here we refer to thermodynamic adiabats, this should not be confused with quantum adiabatic
process.
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Bender 2002, Quan 2007, Esposito 2010], and the isochores in the Otto cycle

[Feldmann 1996, Feldmann 2000, Rezek 2006, Henrich 2007, Allahverdyan 2008].

The adiabats are modeled by a time-dependent external control Hamiltonian. Since

now the Hamiltonian typically does not commute with itself in different times fric-

tion effects are present. Reduction in the efficiency can then be traced to the in-

ability of the system to stay in the instantaneous energy basis during the segment

[Feldmann 2003]. Coherence terms that are created during the external driving pro-

cess are then eliminated during the heat transfer segments, which leads to losses. If

the driving is performed in quantum adiabatic manner these losses can be prevented,

nevertheless, the power out put tends to zero. This is the manifestation of finite

time thermodynamics and the trade off between power and efficiency. The heat

transfer segments are typically modeled by the LGKS MME. We note that in order

to operate the machines as engines or refrigerators the system does not have to fully

equalibrate on the heat transfer segments. Then the dynamical description of the

LGKS MME comes in hand, yet, one should make sure that the interaction time

with the baths are sufficiently long in order to apply the Markov approximation.

The second category consist of continuous quantum machines [Kosloff 1984,

Geva 1996, Linden 2010, Levy 2012c, Levy 2012b, Correa 2014b], see also review on

the subject [Kosloff, R. and Levy, A. 2014] and references therein. In theses types

of machines the quantum system (working medium) is connected simultaneously to

all the components of the device. To construct a continuous engine or refrigera-

tor a non linear interaction involving minimum of three energy currents is essential

[Martinez 2013]. The description of such devices is typically more involved then the

one described above for the stroke machines. The quantum system is now driven

externally while it is coupled to two or more heat baths and a microscopic derivation

of the master equation is essential. As was discussed in section 2.1.5 the LGKS mas-

ter equation can be derived microscopically for adiabatically or periodically driven

systems under some limiting assumptions. While in the stroke engines we are inter-

ested in the limiting cycle of the devices for the continuous machines we are focusing

on the steady state (yet out of equilibrium) operation of the devices. Optimizing

the power results in reduction of the efficiency similar to the expected behavior from

finite time thermodynamics.
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Abstract – Clausius statement of the second law of thermodynamics reads: Heat will flow spon-
taneously from a hot to cold reservoir. This statement should hold for transport of energy through
a quantum network composed of small subsystems each coupled to a heat reservoir. When the
coupling between nodes is small, it seems reasonable to construct a local master equation for each
node in contact with the local reservoir. The energy transport through the network is evaluated
by calculating the energy flux after the individual nodes are coupled. We show by analyzing the
most simple network composed of two quantum nodes coupled to a hot and cold reservoir, that
the local description can result in heat flowing from cold to hot reservoirs, even in the limit of
vanishing coupling between the nodes. A global derivation of the master equation which prediag-
onalizes the total network Hamiltonian and within this framework derives the master equation, is
always consistent with the second law of thermodynamics.

Copyright c© EPLA, 2014

Introduction. – Transport of energy in and out
of a quantum device is a key issue in emerging
technologies. Examples include molecular electronics,
photovoltaic devices, quantum refrigerators and quantum
heat engines [1–3]. A quantum network composed of
quantum nodes each coupled to local reservoir and to other
nodes constitutes the network. The framework for describ-
ing such devices is the theory of open quantum systems.
The dynamics is postulated employing completely posi-
tive quantum master equations [4,5]. Solving the dynam-
ics allows to calculate the steady-state transport of energy
through the network.

It is desirable to have the framework consistent with
thermodynamics. The first law of thermodynamics is a
conservation law of energy; the energy of an isolated sys-
tem is constant and can be divided into heat and work [6].
The dynamical version of the second law of thermodynam-
ics states that for an isolated system the rate of entropy
production is non-negative [7]. For a typical quantum de-
vice the second law can be expressed as

d

dt
ΔSu =

dSint

dt
+

dSm

dt
−

∑

i

Ji

Ti
≥ 0, (1)

where dSint

dt is the rate of entropy production due to in-
ternal processes, expressed by the von Neumann entropy.
dSm

dt is the entropy flow associated with matter entering

the system, and the last term is the contribution of heat
flux, Ji, from the reservoir i.

Microscopic derivation of a global Markovian mas-
ter equation (MME) of Linblad-Gorini-Kossakowski-
Sudarshan (LGKS) form [4,5], for the network is usually
intricate. The local approach simplifies this task [8–14].
It is commonly considered that if the different parts of the
network are weakly coupled to each other, a local master
equation is sufficient to describe all the properties of the
network. We will show that the local approach is only
valid for local observables such as the population of each
node, and is not valid for non-local observables describing
energy fluxes.

The network model. – The simplest network model
composed of two nodes shown in fig. 1 and is sufficient to
demonstrate the distinction between the local and global
approach. Heat is transported between two subsystems A
and B, where each is coupled to a single heat bath with
temperature Th and Tc. The two subsystems are weakly
coupled to each other. The global Hamiltonian is of the
form

Ĥ = ĤA + ĤB + ĤAB + Ĥh + Ĥc + ĤAh + ĤBc. (2)

The bare network Hamiltonian, is Ĥ0 = ĤA+ĤB where
the node Hamiltonians are ĤA = ωhâ

†â and ĤB = ωcb̂
†b̂,
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Fig. 1: (Colour on-line) The heat transfer network model; heat
is transferred from a hot bath at temperature Th to the a colder
bath at temperature Tc. The heat current is mediated by two
coupled subsystems A and B, where subsystem A is connected
to the hot bath and subsystem B is connected to the cold bath.

which are composed of either two harmonic oscillators
(HO) or of two two-level systems (TLS), depending on
the commutation relation.

ââ† + δâ†â = 1, ââ + δââ = 0,

b̂b̂† + δb̂†b̂ = 1, b̂b̂ + δb̂b̂ = 0 (3)

with δ = 1 for the TLS and δ = −1 for oscillators. The
interaction between the system A and B is described by
the swap Hamiltonian, ĤAB = ε(â†b̂ + âb̂†), with ε > 0.
The hot (cold) baths Hamiltonians are denoted Ĥh(c),
where Th > Tc. The system-bath interaction is given by,
ĤAh = gh(â + â†) ⊗ R̂h and ĤBc = gc(b̂ + b̂†) ⊗ R̂c,
with R̂h(c) operators belonging the hot (cold) bath Hilbert
space, and gh(c) are the system-baths coupling parameters.

The dynamics of the reduced system A + B is governed
by the Master equation,

d

dt
ρ̂s = −i[Ĥ0 + ĤAB, ρ̂s] + Lhρ̂s + Lcρ̂s. (4)

With the LGKS dissipative terms, Lh(c), which differ for
the local and global approaches. At steady state the heat
flow from the hot (cold) bath is given by

Jh(c) = Tr[(Lh(c)ρ̂s)(Ĥ0 + ĤAB)], (5)

where ρ̂s is the steady-state density operator.

Local approach. – In the local approach it is assumed
that the inter-system coupling does not affect the system
bath coupling. Therefore in the derivation of the MME
the Hamiltonian ĤAB is ignored and the dissipative terms
takes the form,

Lhρ̂s = γh

(
âρ̂sâ

† − 1

2
{â†â, ρ̂s}

+ e−βhωh

(
â†ρ̂sâ − 1

2
{ââ†, ρ̂s}

))
, (6)

and

Lcρ̂s = γc

(
b̂ρ̂sb̂

† − 1

2
{b̂†b̂, ρs}

+ e−βcωc

(
b̂†ρ̂sb̂ − 1

2
{b̂b̂†, ρ̂s}

))
. (7)

when the node-to-node coupling is zero, ĤAB = 0, each
of the local master equations, eq. (6) and eq. (7), drives

the local node to thermal equilibrium. The dynamics
of the network is completely characterized by the expec-
tation values of four operators: Two local observables
〈â†â〉, 〈b̂†b̂〉, and two AB correlations 〈X̂〉 ≡ 〈â†b̂ + âb̂†〉
and 〈Ŷ〉 ≡ i〈â†b̂ − âb̂†〉 with 〈 · 〉 ≡ Tr{ρ̂s·}. For the
dynamics we obtain

d

dt
〈â†â〉 = − γh(1 + δe−βhωh)〈â†â〉 + γhe−βhωh − ε〈Ŷ〉,

d

dt
〈b̂†b̂〉 = − γc(1 + δe−βcωc)〈b̂†b̂〉 + γce

−βcωc + ε〈Ŷ〉,
d

dt
〈X̂〉 = − 1

2

(
γh(1 + δe−βhωh) + γc(1 + δe−βcωc)

)
〈X̂〉

+ (ωh − ωc)〈Ŷ〉,
d

dt
〈Ŷ〉 = − 1

2

(
γh(1 + δe−βhωh) + γc(1 + δe−βcωc)

)
〈Ŷ〉

− (ωh − ωc)〈X̂〉 + 2ε(〈â†â〉 − 〈b̂†b̂〉).

(8)

The rates γh(c) > 0 depend on the specific properties of the
bath and its interaction with the system. Equations (8)
fulfill the dynamical version of the first law of thermody-
namics: The sum of all energy (heat) currents at steady
state is zero, Jh + Jc = 0. The heat flow from the hot
heat bath can be cast in the form (see [15] for details)

Jh = (eβcωc − eβhωh)F , (9)

where F is a function of all the parameters of the system,
which is always positive, and is different for the HO and
TLS medium. The Clausius statement for the second law
of thermodynamics implies that heat can not flow from
a cold body to a hot body without external work being
performed on the system. It is apparent from eq. (9), that
the direction of heat flow depends on the choice of pa-
rameters. For ωc

Tc
< ωh

Th
heat will flow from the cold bath

to the hot bath, thus the second law is violated even at
vanishing small AB coupling, cf. fig. 2. The breakdown
of the second law has been examined in several models,
see [16] and references therein. In [16] a Fermionic trans-
port model between two heat baths at the same temper-
ature was studied in the weak system-bath coupling limit
MME and was compared to a solution within the formal-
ism of nonequilibrium Green functions. At steady state,
the current between the baths according to the weak cou-
pling MME is nonzero, which implies a violation of the
second law in the sense that heat flows constantly between
two heat baths at the same temperature. This sort of vio-
lation can also be observed in eq. (9) when taking Th = Tc.
It was claimed in [16] that the violation of the second law
is a consequence of neglecting higher-order coherent pro-
cesses between the system and the baths due to the weak
coupling limit. In fact, the treatment introduced in [16]
corresponds to the local approach described above. Next,
we introduce a proper weak coupling MME, which always
obeys the second law of thermodynamics.

Global approach. – The global approach is based on
the holistic perception where the MME is derived in the
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Jh =

(
eβcω− − eβhω−

)
γ−

c γ−
h ω−

sin−2(θ)eβhω− (−1 + eβcω−) γ−
c + eβcω+ (−1 + eβhω−) cos−2(θ)γ−

h

+

(
eβcω+ − eβhω+

)
γ+

c γ+
h ω+

eβhω+ (−1 + eβcω+) cos−2(θ)γ+
c + sin−2(θ)eβcω+ (−1 + eβhω+) γ+

h

, (13)

Fig. 2: (Colour on-line) The rate of entropy production ΔSu in
the local description, as function of ωh and Th. The blue area
corresponds to negative entropy production rate, a clear viola-
tion of the second law. The borderline between the blue and
the red zones corresponds to ωh/Th = ωc/Tc. Here Tc = 10,
ωc = 5, ε = 10−4 and κ = 10−7.

eigen-space representation of the combined system A+B.
The reduced system, A+B, is first diagonalized, then the
new basis set is used to expand the system-bath interac-
tions. Finally, the standard weak system-bath coupling
procedure is introduced to derive the MME [17,18]. This
approach accounts for a shift in the spectrum of the sub-
systems A and B due to the coupling parameter ε. But
more importantly, it creates an effective coupling of the
system A with the cold bath and of the system B with
the hot bath. This indirect coupling absent in the local
approach is crucial, and essentially saves the second law
of thermodynamics. The global MME, by construction,
obeys Spohn’s inequality and therefore is consistent with
the second law of thermodynamics [19].

In it’s diagonal form the Hamiltonian Ĥ0+ĤAB is given
by

ĤS = ω+d̂†
+d̂+ + ω−d̂†

−d̂−. (10)

Where we have defined the operators d̂+ = â cos(θ) +
b̂ sin(θ) and d̂− = b̂ cos(θ) − â sin(θ), with cos2(θ) =
ωh−ω−
ω+−ω−

and ω± = ωh+ωc

2 ±
√

(ωh−ωc

2 )2 + ε2. For Bosons,

the commutation relations of the operators are preserved,
i.e. [d̂±, d̂†

±] = 1, where all other combinations are zero.
For TLS nodes the expressions are more intricate and
therefore we restrict the analysis to the harmonic nodes.
Following the standard weak coupling limit, in the regime

where ω− > 0 the dissipative terms of the MME reads,

Lhρ̂s = γ+
h cos2(θ)

(
d̂+ρ̂sd̂

†
+ − 1

2
{d̂†

+d̂+, ρ̂s}

+ e−βhω+

(
d̂†

+ρ̂sd̂+ − 1

2
{d̂+d̂†

+, ρ̂s}
))

+ γ−
h sin2(θ)

(
d̂−ρ̂sd̂

†
− − 1

2
{d̂†

−d̂−, ρ̂s}

+ e−βhω−

(
d̂†

−ρ̂sd̂− − 1

2
{d̂−d̂†

−, ρ̂s}
))

(11)

and

Lcρ̂s = γ+
c sin2(θ)

(
d̂+ρ̂sd̂

†
+ − 1

2
{d̂†

+d̂+, ρ̂s}

+ e−βcω+

(
d̂†

+ρ̂sd̂+ − 1

2
{d̂+d̂†

+, ρ̂s}
))

+ γ−
c cos2(θ)

(
d̂−ρ̂sd̂

†
− − 1

2
{d̂†

−d̂−, ρ̂s}

+ e−βcω−

(
d̂†

−ρ̂sd̂− − 1

2
{d̂−d̂†

−, ρ̂s}
))

(12)

with γ±
h(c) = γh(c)(ω±). The calculated steady-state heat

flow from the hot bath is given by

see eq. (13) above

which is positive for all physical choice of parameters.
Rewriting eq. (11) and eq. (12) in the local basis, the ef-
fective coupling of subsystem A with the cold bath and of
subsystem B with the hot bath is immediately apparent
(see [15] for details). These equations converge to eq. (6)
and eq. (7) for ε = 0.

To further study the dynamics of A and B, the explicit
form of heat baths is specified, characterizing the rates
γ [20]:

γl ≡ γl(Ω) = π
∑

k

|gl(k)|2δ(ω(k) − Ω)[1 − e−βlω(k)]−1,

(14)
where ω(k) are the frequencies of the baths modes. For
the case of a 3-dimensional phonon bath with a linear
dispersion relation the relaxation rate can be expressed
as

γl(Ω) = κΩ3[1 − e−βlΩ]−1, (15)

where κ > 0 embodies all the constants and is proportional
to the square of the system-bath coupling.

The steady-state observables of the local and global
approached are compared in fig. 3 as a function of the
node-to-node coupling strength ε. For local observables
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Fig. 3: (Colour on-line) The heat current Jh and the popula-
tion as a function of the coupling parameter ε evaluated in the
local (blue line) and the global (red line) approaches. The pop-
ulation of subsystem A (dashed line), and the heat flow from
the hot bath Jh (solid line). Here Th = 12, Tc = 10, ωh = 10,
ωc = 5 and κ = 10−4.

such as the local population n̂A ≡
〈
â†â

〉
the two ap-

proaches converge to the thermal population when ε �
{ωh, ωc,

√
|ωh − ωc|}. However, the non-local observables

such as the current Jh deviate qualitatively. In the lo-
cal approach when ωc

Tc
< ωh

Th
the second law is violated:

the heat flow becomes negative for all values of the cou-
pling ε while for the global approach Jh is always positive,
cf. fig. 3.

The local approach is also not reliable even for parame-
ters where the second law is obeyed: ωc

Tc
> ωh

Th
. Deviations

from the exact global approach appear in the favorable do-
main of small ε, as seen in fig. 4 displaying Jh for a wide
range of ωh. It is noteworthy that the behavior of the
heat flows observed in fig. 4 will be the same for all ε, also
when ε � κ. The only domain where the global approach
breaks down is on resonance, when ωh = ωc and ε < κ.
At this point, the secular approximation is not justified
since the two Bohr frequencies ω± are not well separated,
and on the time scale 1/κω3, one can not neglect rotating
terms such as ei2ε [21].

Additional insight is obtained when examining the co-
variance matrix for the two-mode Gaussian state (see [15]
for details). The correlations between subsystems A and
B is fully determined by the set of correlation func-
tions {cor(xA, xB), cor(xA, pB), cor(pA, xB), cor(pA, pB)}.
Here {x, p} are the position and momentum coordinates
of the subsystems. In both approaches cor(xA, xB) and
cor(pA, pB) are equal for small ε. The two additional cor-
relations, cor(xA, pB) and cor(pA, xB), vanish at steady
state in the global approach, where in the local approach
they remain finite. Thus, in the local approach the nodes
are over correlated compared to the global approach. It
should be noted that in steady state none of the ap-
proaches generate entanglement. The two-mode Gaussian
state is a separable state according to the separability cri-
terion for continuous variable systems [22,23].

Fig. 4: (Colour on-line) Comparison between the local (blue
line) and the global (red line) approaches. The population of
subsystem A (dashed line), and the heat flow from the hot
bath Jh (solid line), as a function of ωh. The inset describes
the domain of near resonance ωh ≈ ωc. Here Th = 12, Tc = 10,
ωc = 5, ε = 10−3 and κ = 10−7.

To summarize: As expected, the local dynamical
approach is incorrect for strong coupling between the sub-
systems. In the weak coupling limit, local observables con-
verge to their correct value. The non-local observables
such as heat currents are qualitatively and quantitatively
erroneous in the local MME. A strong indication is the
violation of the second law of thermodynamics. The com-
pletely positive LGKS generator is a desired form for the
master equation. However, for consistency with the phys-
ical world, a microscopic global derivation of the master
equation is required. Such approaches are consistent with
thermodynamics [24–28].
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I. LOCAL APPROACH HEAT FLOW

The heat flow from the hot bath calculated in the local approach is given by:

Jh = ωhγh
(
e−βhωh − 〈a†a〉

(
δe−βhωh + 1

))
− εγh

2
〈X〉

(
δe−βhωh + 1

)

placing the steady state solution of Eq.(8) for 〈a†a〉 and 〈X〉, we obtain:

Jh =
(
eβcωc − eβhωh

) 4ε2γcγhe
βcωc+βhωh(ωcγheβcωc(eβhωh+δ)+γcωheβhωh(eβcωc+δ))

γ3cγhe
2βhωh(eβcωc+δ)3(eβhωh+δ)+2γ2c(eβcωc+δ)2eβcωc+βhωh

· ··

×(γ2h(eβhωh+δ)2+2ε2e2βhωh)+γcγhe2βcωc(eβcωc+δ)(eβhωh+δ)
· ··

×(4e2βhωh ((ωc−ωh)2+2ε2)+γ2h(eβhωh+δ)2)+4ε2γ2he
3βcωc+βhωh(eβhωh+δ)2

II. THE GLOBAL GENERATOR IN THE LOCAL REPRESENTATION

The global approach creates an indirect coupling of the subsystems with the baths. This

indirect coupling is evident once we write the the global generator in the local representation,

for example, Eq. (11) takes the form:

Lhρs = γ+h c
4
(
âρ̂sâ

† − 1
2
{â†â, ρ̂s}+ e−βhω+(â†ρ̂sâ− 1

2
{ââ†, ρ̂s})

)

+ γ−h s
4
(
âρ̂sâ

† − 1
2
{â†â, ρ̂s}+ e−βhω−(â†ρ̂sâ− 1

2
{ââ†, ρ̂s})

)

+ γ+h c
2s2
(
b̂ρ̂sb̂

† − 1
2
{b̂†b̂, ρs}+ e−βhω+(b̂

†
ρ̂sb̂− 1

2
{b̂b̂†, ρ̂s})

)

+ γ−h c
2s2
(
b̂ρ̂sb̂

† − 1
2
{b̂†b̂, ρs}+ e−βhω−(b̂

†
ρ̂sb̂− 1

2
{b̂b̂†, ρ̂s})

)

+ γ+h c
3s
(
âρ̂sb̂

†
+ b̂ρ̂sâ

† − 1
2
{â†b̂ + b̂

†
â, ρs}+ e−βhω+(â†ρ̂sb̂ + b̂

†
ρ̂sâ− 1

2
{â†b̂ + b̂

†
â, ρs})

)

− γ−h cs3
(
âρ̂sb̂

†
+ b̂ρ̂sâ

† − 1
2
{â†b̂ + b̂

†
â, ρs}+ e−βhω−(â†ρ̂sb̂ + b̂

†
ρ̂sâ− 1

2
{â†b̂ + b̂

†
â, ρs})

)

where we have defined s ≡ sin(θ) and c ≡ cos(θ).

III. THE COVARIANCE MATRIX AND THE CORRELATION FUNCTIONS

We define a vector of the position and momentum operators ξ = (xA pA xB pB).

The covariance matrix is defined through Vij = 〈{∆ξi,∆ξj}〉, using the definitions

{∆ξi,∆ξj} = 1
2
(∆ξi∆ξj + ∆ξj∆ξi) and ∆ξi = ξi−〈ξi〉. The steady state coveraiance matrix

is given by

2



V local =




〈a†a〉+ 1
2

0 1
2
〈X〉 −1

2
〈Y 〉

0 〈a†a〉+ 1
2

1
2
〈Y 〉 1

2
〈X〉

1
2
〈X〉 1

2
〈Y 〉 〈b†b〉+ 1

2
0

−1
2
〈Y 〉 1

2
〈X〉 0 〈b†b〉+ 1

2




V global =



〈d†+d+〉c2+〈d

†
−d−〉s2+ 1

2
0 (〈d†+d+〉−〈d

†
−d−〉)cs 0

0 〈d†+d+〉c2+〈d
†
−d−〉s2+ 1

2
0 (〈d†+d+〉−〈d

†
−d−〉)cs

(〈d†+d+〉−〈d
†
−d−〉)cs 0 〈d†+d+〉s2+〈d

†
−d−〉c2+ 1

2
0

0 (〈d†+d+〉−〈d
†
−d−〉)cs 0 〈d†+d+〉s2+〈d

†
−d−〉c2+ 1

2




with s ≡ sin(θ) and c ≡ cos(θ). The structure of the covariance matrix in both

approaches immediately imply that the two subsystems are separable [1].

The correlation functions are defined by:

cor(ξi, ξj) =
〈∆ξi∆ξj〉√
〈∆ξ2i 〉〈∆ξ2j 〉

[1] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).
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A quantum absorption refrigerator driven by noise is studied with the purpose of determining the

limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously

to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and

Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics.

The third law is quantified; the cooling power J c vanishes as J c / T�
c , when Tc ! 0, where � ¼ dþ 1

for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic

field, where d is the dimension of the bath.
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The absorption chiller is a refrigerator which employs
a heat source to replace mechanical work for driving a
heat pump [1]. The first device was developed in 1850
by the Carré brothers which became the first useful
refrigerator. In 1926, Einstein and Szilárd invented an
absorption refrigerator with no moving parts [2]. This
idea has been incorporated recently to an autonomous
quantum absorption refrigerator with no external inter-
vention [3,4]. The present study is devoted to a quantum
absorption refrigerator driven by noise; for an experi-
mental realization, cf. [5]. The objective is to study the
scaling of the optimal cooling power when the absolute
zero temperature is approached.

This study is embedded in the field of quantum thermo-
dynamics, the study of thermodynamical processes within
the context of quantum dynamics. Historically, consistence
with thermodynamics led to Planck’s law, the basics of
quantum theory. Following the ideas of Planck on black
body radiation, Einstein five years later (1905) quantized
the electromagnetic field [6]. Quantum thermodynamics is
devoted to unraveling the intimate connection between
the laws of thermodynamics and their quantum origin
[3,4,7–22]. In this tradition, the present study is aimed
toward the quantum study of the third law of thermody-
namics [23,24], in particular, quantifying the unattainabil-
ity principle [25]: What is the scaling of the cooling power
J c of a refrigerator when the cold bath temperature ap-
proaches the absolute zero J c / T�

c when Tc ! 0?
The quantum trickle.—The minimum requirement for

a quantum thermodynamical device is a system con-
nected simultaneously to three reservoirs [26]. These
baths are termed hot, cold, and work reservoir as de-
scribed in Fig. 1. A quantum description requires a
representation of the dynamics working medium and
the three heat reservoirs. A reduced description is em-
ployed in which the dynamics of the working medium
is described by the Heisenberg equation for the operator

Ô for open systems [27,28]:

d

dt
Ô ¼ i

@
½Ĥs; Ô� þ @Ô

@t
þLhðÔÞ þLcðÔÞ þLwðÔÞ;

(1)

where Ĥs is the system Hamiltonian and Lg are the

dissipative completely positive superoperators for each
bath (g ¼ h; c; w). A minimal Hamiltonian describing
the essence of the quantum refrigerator is composed of
three interacting oscillators:

Ĥs ¼ Ĥ0 þ Ĥint;

Ĥ0 ¼ @!hâ
yâþ @!cb̂

yb̂þ @!wĉ
yĉ;

Ĥint ¼ @!intðâyb̂ ĉþâb̂yĉyÞ:
(2)

Ĥint represents an annihilation of excitations on the
work and cold bath simultaneous with creating an

FIG. 1 (color online). The quantum trickle: A quantum heat
pump designated by the Hamiltonian Ĥs is coupled to a work
reservoir with temperature Tw, a hot reservoir with temperature
Th, and a cold reservoir with temperature Tc. The heat and work
currents are indicated. In the steady state, J h þ J c þ P ¼ 0.
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excitation in the hot bath. In an open quantum system,
the superoperators Lg represent a thermodynamic iso-

thermal partition allowing heat flow from the bath to
the system. Such a partition is equivalent to the weak
coupling limit between the system and bath [11]. The
superoperators Lg are derived from the Hamiltonian:

Ĥ ¼ Ĥs þ Ĥh þ Ĥc þ Ĥw þ Ĥsh þ Ĥsc þ Ĥsw; (3)

where Ĥg are bath Hamiltonians and Ĥsg represent system

bath coupling. Each of the oscillators is linearly coupled to a

heat reservoir, for example, for the hot bath: Ĥsh ¼
�shðâÂy

h þ âyÂhÞ. Each reservoir individually should

equilibrate the working medium to thermal equilibrium
with the reservoir temperature. In general, the derivation
of a thermodynamically consistent master equation is tech-
nically very difficult [29]. Typical problems are approxi-
mations that violate the laws of thermodynamics. We
therefore require that the master equations fulfill the ther-
modynamical laws. Under steady state conditions of opera-
tion, they become:

J h þ J c þ P ¼ 0; �J h

Th

� J c

Tc

� P
Tw

� 0; (4)

where J k ¼ hLkðĤÞi. The first equality represents conser-
vation of energy (first law) [8,9], and the second inequality
represents positive entropy production in the universe
�u � 0 (second law). For refrigeration, Tw � Th � Tc.
From the second law, the scaling exponent � � 1 [12].

Gaussian-noise-driven refrigerator.—In the absorption
refrigerator, the noise source replaces the work bath and its
contact @!wĉ

yĉ, leading to

Ĥ int ¼ fðtÞðâyb̂þ âb̂yÞ ¼ fðtÞX̂; (5)

where fðtÞ is the noise field. X̂ ¼ ðâyb̂þ âb̂yÞ is the
generator of a swap operation between the two oscillators

and is part of a set of SUð2Þ operators, Ŷ ¼ iðâyb̂� âb̂yÞ,
Ẑ ¼ ðâyâ� b̂yb̂Þ and the Casimir operator N̂ ¼ ðâyâþ
b̂yb̂Þ.

We first study a Gaussian source of white noise charac-
terized by zero mean hfðtÞi ¼ 0 and delta time correlation
hfðtÞfðt0Þi ¼ 2��ðt� t0Þ. The Heisenberg equation for a

time-independent operator Ô reduced to

d

dt
Ô ¼ i½Ĥs; Ô� þLnðÔÞ þLhðÔÞ þLcðÔÞ; (6)

where Ĥs ¼ @!hâ
yâþ @!cb̂

yb̂. The noise dissipator for
Gaussian noise isLnðÔÞ ¼ ��½X̂; ½X̂; Ô�� [30]. The same
master equation is obtained for a system subject to a weak

quantum measurement of the operator X̂ [28]. The next
step is to derive the quantum master equation of each
reservoir. We assume that the reservoirs are uncorrelated
and also uncorrelated with the driving noise. These con-
ditions simplify the derivation of Lh, which become the
standard energy relaxation terms driving oscillator !hâ

yâ

to thermal equilibrium with temperature Th, and Lc drives

oscillator @!bb̂
yb̂ to equilibrium Tc [28]:

LhðÔÞ ¼ �hðNh þ 1ÞðâyÔ â�1
2fâyâ; ÔgÞ

þ �hNhðâ Ô ây � 1
2fâây; ÔgÞ;

LcðÔÞ ¼ �cðNc þ 1Þðb̂yÔ b̂�1
2fb̂yb̂; ÔgÞ

þ �cNcðb̂ Ô b̂y � 1
2fb̂b̂y; ÔgÞ:

(7)

In the absence of the stochastic driving field, these
equations drive oscillators a and b separately to thermal

equilibrium provided that Nh ¼ ½expð@!h

kTh
Þ � 1��1 and

Nc ¼ ½expð@!c

kTc
Þ � 1��1. The kinetic coefficients �h=c are

determined from the bath density functions [11].
The equations of motion are closed to the SUð2Þ set

of operators. To derive the cooling current J c ¼
hLcð@!cb̂

yb̂Þi, we solve for stationary solutions of N̂

and Ẑ, obtaining

J c ¼ @!c

ðNc � NhÞ
ð2�Þ�1 þ ��1

h þ ��1
c

: (8)

Cooling occurs for Nc > Nh ) !h

Th
> !c

Tc
. The coefficient of

performance (COP) for the absorption chiller is defined by

the relation COP ¼ J c

J n
; with the help of Eq. (8), we obtain

the Otto cycle COP [31]:

COP ¼ !c

!h �!c

� Tc

Th � Tc

: (9)

A different viewpoint starts from the high temperature
limit of the work bath Tw based on the weak coupling limit
in Eqs. (2) and (3); then

LwðÔÞ ¼ �wðNw þ 1Þðâyb̂ Ô b̂yâ� 1
2fâyâ b̂ b̂y; ÔgÞ

þ �wNwðâb̂yÔâyb̂� 1
2fââyb̂yb̂; ÔgÞ; (10)

where Nw ¼ ½expð@!w

kTh
Þ � 1��1. At a finite temperature,

LwðÔÞ does not lead to a closed set of equations. But in
the limit of Tw ! 1 it becomes equivalent to the Gaussian

noise generator: LwðÔÞ¼��=2ð½X̂;½X̂;Ô��þ½Ŷ;½Ŷ;Ô��Þ,
where � ¼ �wNw. This noise generator leads to the same
current J c and COP as Eqs. (8) and (9). We conclude that
Gaussian noise represents the singular bath limit equivalent
to Tw ! 1. As a result, the entropy generated by the noise
is zero.
The solutions are consistent with the first and second

laws of thermodynamics. The COP is restricted by the
Carnot COP. For low temperatures, the optimal cooling
current can be approximated by J c ’ !c�cNc. Coupling
to a thermal bosonic field such as an electromagnetic or
acoustic phonon field implies �c / !d

c , where d is the heat
bath dimension. Optimizing the cooling current with re-
spect to !c, one obtains that the exponent � quantifying
the third law J c / T�

c is given by � ¼ dþ 1.
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Poisson-noise-driven refrigerator.—Poisson white noise
can be referred to as a sequence of independent random
pulses with exponential interarrival times. These impulses
drive the coupling between the oscillators in contact with
the hot and cold bath leading to [32]

dÔ

dt
¼ ði=@Þ½ ~H; Ô� � ði=@Þ�h�i½X̂; Ô�

þ �

�Z 1

�1
d�Pð�Þeði=@Þ�X̂Ôeð�i=@Þ�X̂ � Ô

�
; (11)

where ~H is the total Hamiltonian including the baths. � is
the rate of events, and � is the impulse strength averaged
over a distribution Pð�Þ. Using the Hadamard lemma and
the fact that the operators form a closed SUð2Þ algebra, we
can separate the noise contribution to its unitary and dis-
sipation parts, leading to the master equation

dÔ

dt
¼ ði=@Þ½ ~H; Ô� þ ði=@Þ½Ĥ0; Ô� þLnðÔÞ: (12)

The unitary part is generated with the addition of the

Hamiltonian Ĥ0 ¼ @�X̂ with the interaction

� ¼ ��

2

Z
d�Pð�Þ½2�=@� sinð2�=@Þ�:

This term can cause a direct heat leak from the hot to cold
bath. The noise generator Lnð�̂Þ can be reduced to the

form LnðÔÞ ¼ ��½X̂; ½X̂; Ô��, with a modified noise
parameter:

� ¼ �

4

�
1�

Z
d�Pð�Þ cosð2�=@Þ

�
:

The Poisson noise generates an effective Hamiltonian

which is composed of ~H and Ĥ0, modifying the energy
levels of the working medium. This new Hamiltonian
structure has to be incorporated in the derivation of the
master equation; otherwise, the second law will be vio-
lated. The first step is to rewrite the system Hamiltonian in
its dressed form. A new set of bosonic operators is defined:

Â1 ¼ â cosð�Þ þ b̂ sinð�Þ;
Â2 ¼ b̂ cosð�Þ � â sinð�Þ:

(13)

The dressed Hamiltonian is given by

Ĥ s ¼ @�þÂ
y
1 Â1 þ @��Â

y
2 Â2; (14)

where ��¼!hþ!c

2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð!h�!cÞ=2�2þ�2
p

and cos2ð�Þ ¼
!h���
�þ���

Eq. (14) impose the restriction �� > 0, which can

be translated to !h!c > �2. The master equation in the
Heisenberg representation becomes

dÔ

dt
¼ ði=@Þ½Ĥs; Ô� þLhðÔÞ þLcðÔÞ þLnðÔÞ; (15)

where

LhðÔÞ ¼ �h
1c

2ðÂ1ÔÂy
1 � 1

2fÂ1Â
y
1 ; ÔgÞ þ �h

2c
2ðÂy

1 ÔÂ1

� 1
2fÂy

1 Â1; ÔgÞ þ �h
3s

2ðÂ2ÔÂy
2 � 1

2fÂ2Â
y
2 ; ÔgÞ

þ �h
4s

2ðÂy
2 ÔÂ2 � 1

2fÂy
2 Â2; ÔgÞ;

LcðÔÞ ¼ �c
1s

2ðÂ1ÔÂy
1 � 1

2fÂ1Â
y
1 ; ÔgÞ þ �c

2s
2ðÂy

1 ÔÂ1

� 1
2fÂy

1 Â1; ÔgÞ þ �c
3c

2ðÂ2ÔÂy
2 � 1

2fÂ2Â
y
2 ; ÔgÞ

þ �c
4c

2ðÂy
2 ÔÂ2 � 1

2fÂy
2 Â2; ÔgÞ; (16)

where s ¼ sinð�Þ and c ¼ cosð�Þ, and the noise generator

L nðÔÞ ¼ ��½Ŵ; ½Ŵ; Ô��; (17)

where Ŵ ¼ sinð2�ÞẐþ cosð2�ÞX̂ and a new set of
operators which form an SUð2Þ algebra is defined:

X̂ ¼ ðÂy
1 Â2 þ Ây

2 Â1Þ, Ŷ ¼ iðÂy
1 Â2 � Ây

2 Â1Þ, and Ẑ ¼
ðÂy

1 Â1 � Ây
2 Â2Þ. The total number of excitations is ac-

counted for by the operator N̂ ¼ ðÂy
1 Â1 þ Ây

2 Â2Þ. The
generalized heat transport coefficients become 	kþ ¼ �k

2 �
�k
1 and 	k� ¼ �k

4 � �k
3 for k ¼ h; c. Applying the Kubo

relation [33,34] �k
1 ¼ e�@�þ
k�k

2 and �k
3 ¼ e�@��
k�k

4

leads to the detailed balance relation

�k
1

	kþ
¼ 1

e@�þ
k � 1
� Nkþ;

�k
3

	k�
¼ 1

e@��
k � 1
� Nk�:

In general, 	k� is temperature-independent and can be
calculated specifically for different choices of spectral
density of the baths. For an electromagnetic or acoustic
phonon field, 	k� / �d�. The heat currents J h, J c, and J n

are calculated by solving the equation of motion for the
operators at steady state and at the regime of low tempera-
ture, where cos2ð�Þ � 1 and sin2ð�Þ � 0:

dN̂

dt
¼ � 1

2
ð	hþ þ 	c�ÞN̂� 1

2
ð	hþ � 	c�ÞẐ

þ ð	hþNhþ þ 	c�Nc�Þ;
dẐ

dt
¼ � 1

2
ð	hþ þ 	c�ÞẐ� 1

2
ð	hþ � 	c�ÞN̂

þ ð	hþNhþ � 	c�Nc�Þ � 4�Ẑ:

(18)

Once the set of linear equations is solved, the exact

expression for the heat currents is extracted: J h ¼
hLhðĤsÞi, J c ¼ hLcðĤsÞi, and J n ¼ hLnðĤsÞi. For sim-
plicity, the distribution of impulses in Eq. (11) is chosen
as Pð�Þ ¼ �ð�� �0Þ. Then the effective noise parameter
becomes

� ¼ �

4
½1� cosð2�0=@Þ�: (19)

The energy shift is controlled by

� ¼ ��

2
½2�0=@� sinð2�0=@Þ�: (20)
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Figure 2 shows a periodic structure of the heat current
J c and the entropy production �c ¼ �J c=Tc with the
impulse �0. The second law of thermodynamics is obtained
by the balance of the large entropy generation on the hot
bath compensating for the negative entropy generation of
cooling the cold bath. The COP for the Poisson-driven
refrigerator is restricted by the Otto and Carnot COP:

COP ¼ ��
�þ ���

� !c

!h �!c

� Tc

Th � Tc

: (21)

The heat current J c is given by

J c � @��
Nc� � Nhþ

ð2�Þ�1 þ ð	hþÞ�1 þ ð	c�Þ�1
: (22)

The scaling of the optimal cooling rate is now accounted
for. The heat flow is maximized with respect to the impulse
�0 by maximizing � [Eq. (19)], which occurs for �0 ¼ n �

2

(n ¼ 1; 2; . . . ). On the other hand, the energy shift �2

[Eq. (20)] should be minimized. The optimum is obtained
when �0 ¼ �

2 . The cooling power of the Poisson noise case

[Eq. (22)] is similar to the Gaussian one [Eq. (8)]. In the
Poisson case, also the noise driving parameter � is re-
stricted by !c. This is because � is restricted by �� �
0, and therefore � is restricted to scale with !c. In total,
when Tc ! 0, J c / Tdþ1

c .
The optimal scaling relation J c / T�

c of the autono-
mous absorption refrigerators should be compared to the
scaling of the discrete four-stroke Otto refrigerators [35].
In the driven discrete case, the scaling depends on the
external control scheduling function on the expansion
stroke. For a scheduling function determined by a constant
frictionless nonadiabatic parameter, the optimal cooling
rate scaled with � ¼ 2. Faster frictionless scheduling pro-
cedures were found based on a bang-bang type of optimal
control solutions. These solutions led to a scaling of

� ¼ 3=2 when positive frequencies were employed and
J c / �Tc= logTc when negative imaginary frequencies
were allowed [36,37]. J c / Tc was obtained in the limit
of large energy levels for a swap-based Otto cycle [38].
The drawback of the externally driven refrigerators is that
their analysis is complex. The optimal scaling assumes that
the heat conductivity � � !c and that noise in the controls
does not influence the scaling. For this reason, an analysis
based on the autonomous refrigerators is superior.
We thank Robert Alicki for his remarks and suggestions.
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The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute
zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ
of the cooling process dT (t)

dt
∼ −T ζ when approaching absolute zero, T → 0. A continuous model of a quantum

refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators
or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three
heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of
cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator.
When optimized, both cases lead to the same exponent ζ , showing a lack of dependence on the form of the
working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the
properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered:
a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the
interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically
driven open systems and its implication for thermodynamics are outlined.

DOI: 10.1103/PhysRevE.85.061126 PACS number(s): 05.30.−d, 03.65.Yz, 05.70.Ln, 07.20.Pe

I. INTRODUCTION

Thermodynamics was initially formed as a phenomenolog-
ical theory, with the fundamental rules assumed as postulates
based on experimental evidence. The well-established part of
the theory concerns quasistatic macroscopic processes near
thermal equilibrium. Quantum theory, on the other hand, treats
the dynamical perspective of systems at atomic and smaller
length scales. The two disciplines rely upon different sets
of axioms. However, one of the first developments, namely
Planck’s law, which led to the basics of quantum theory,
was achieved thanks to consistency with thermodynamics.
Einstein, following the ideas of Planck on blackbody radiation,
quantized the electromagnetic field [1].

With the establishment of quantum theory, quantum ther-
modynamics emerged in the quest to reveal the intimate
connection between the laws of thermodynamics and their
quantum origin [2–19]. In this tradition, the present study is
aimed toward the quantum study of the third law of thermody-
namics [20–24], in particular quantifying the unattainability
principle. Apart from the fundamental interest in the emer-
gence of the third law of thermodynamics from a quantum
dynamical system, cooling mechanical systems reveal their
quantum character. As the temperature decreases, degrees of
freedom freeze out, leaving a simplified dilute effective Hilbert
space. Ultracold quantum systems contributed significantly to
our understanding of basic quantum concepts. In addition, such
systems form the basis for emerging quantum technologies.
The necessity to reach ultralow temperatures requires a focus
on the cooling process itself, namely quantum refrigeration.

The minimum requirement for constructing a continuous
refrigerator is a system connected simultaneously to three
reservoirs [25]. These baths are termed hot, cold, and work
reservoir, as described in Fig. 1. This framework has to
be translated to a quantum description of its components,
which includes the Hamiltonian of the system Hs and the
implicit description of the reservoirs. We present a careful

study on the influence of different components and cooling
mechanisms on the cooling process itself. Namely, we consider
a working medium composed of two harmonic oscillators or
two two-level systems (TLSs). Two generic models of the cold
heat bath are considered: a phonon and an ideal Bose/Fermi
gas heat bath. Another classification of the refrigerator is
due to the character of the work reservoir. The first studied
example is a heat-driven refrigerator, an absorption refrigerator
model proposed in Ref. [24], where Tw $ Th ! Tc.1 In a
power-driven refrigerator, the work reservoir represents zero
entropy mechanical work, which is modeled as a periodic
time-dependent interaction Hamiltonian.

The models studied contain universal quantum features of
such devices. The third law of thermodynamics is quantified by
the characteristic exponent ζ of the change in temperature of
the cold bath dTc(t)

dt
∼ −T

ζ
c when its temperature approaches

absolute zero, Tc → 0. The exponent ζ is determined by a
balance between the heat capacity of the cold bath and the heat
current Jc into the cooling device. When the performance of
the refrigerator is optimized, the final third-law characteristics
are found to be independent of the refrigerator type.

The analysis is based on a steady-state operational mode of
the refrigerator. Then the first and second laws of thermody-
namics have the form

J̃h + J̃c + P = 0, − J̃h

Th

− J̃c

Tc

− P
Tw

! 0, (1)

where J̃k are the stationary heat currents from each reservoir.
The first equality represents conservation of energy (first
law) [3,4], and the second inequality represents non-negative
entropy production in the Universe, "u ! 0 (second law). The

1A similar idea was also proposed in Phys. Rev. Lett. 108, 120603
(2012) by Cleuren et al. However, one can show that this model
violates the third law. The reason for this will be discussed elsewhere.
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Hs
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J c

J h

J c+J h+P =0

J c  J h   P 
Tc    Th   Tw

−     −      −      ≥0

FIG. 1. (Color online) A quantum heat pump designated by
the Hamiltonian Hs coupled to a work reservoir with temperature
Tw , a hot reservoir with temperature Th, and a cold reservoir with
temperature Tc. The heat and work currents are indicated. In steady
state, Jh + Jc + P = 0.

fulfillment of the thermodynamic laws is employed to check
the consistency of the quantum description. Inconsistencies
can emerge either from wrong definitions of the currents Jk or
from erroneous derivations of the quantum master equation.
In Appendix A, we present a short and heuristic derivation
of such a consistent Markovian master equation based on the
rigorous weak coupling [26] or low density [27] limits for a
constant system’s Hamiltonian. Its generalization to periodic
driving proposed in Ref. [28] and based on the Floquet theory is
briefly discussed in Appendix B. In Appendix C the definition
of heat currents is proposed which satisfies the second law of
thermodynamics, not only for the stationary state but also
during the evolution from an arbitrary initial state of the
system. It allows us also to compute an averaged power in
the stationary state. Finally, in Appendix D we discuss the
condition on the interaction with a bosonic bath, to assure the
existence of the ground state.

II. QUANTUM ABSORPTION REFRIGERATORS

We develop and discuss in detail the model of a quantum
absorption refrigerator proposed in Ref. [24]. We extend the
results of Ref. [24] treating in the same way the original model
with two harmonic oscillators and its two two-level systems
counterpart to stress the universality of the proposed cooling
mechanism. The advantage of the absorption refrigerator is
its underlying microscopic model with a time-independent
Hamiltonian.

A. Absorption refrigerator model

The model consists of two harmonic oscillators or two
TLSs (A and B) which are described by two pairs of
annihilation and creation operators satisfying the commutation
or anticommutation relations

aa† + εa†a = 1, aa + εaa = 0,

bb† + εb†b = 1, bb + εbb = 0 (2)

with ε = 1 for the TLS and ε = −1 for oscillators. Each
subsystem A (B) is coupled to a hot (cold) bath at the
temperature Th (Tc). A collective coupling of the system A + B
to the third “work bath” at the temperature Tw $ Th > Tc

generates heat transport. The nonlinear coupling to the “work
bath” is essential. A linearly coupled working medium cannot
operate as a refrigerator.2 The Hamiltonian of the working
medium A + B is given by

H = ωha
+a + ωcb

+b, ωh > ωc, (3)

and the interaction with the three baths (hot, cold, and work)
is assumed to be of the following form:

Hint = (a + a+) ⊗ Rh + (b + b+) ⊗ Rc

+ (ab+ + a+b) ⊗ Rw, (4)

with R(·) being the corresponding bath operator. The third term
in Eq. (4) contains the generator of a swap operation between
A and B subsystems [29].

Applying now the derivation of the Markovian dynamics
based on the weak-coupling limit (see Appendix A), one
obtains the following Markovian master equation involving
three thermal generators:

dρ

dt
= − i

h̄
[H,ρ] + Lhρ + Lcρ + Lwρ, (5)

where

Lhρ = 1
2γh([a,ρa†] + e−βhωh [a†,ρa] + H.c.), (6)

Lcρ = 1
2γc([b,ρb†] + e−βcωc [b†,ρb] + H.c.), (7)

Lwρ = 1
2γw([ab†,ρa†b] + e−βw(ωh−ωc)[a†b,ρab†] + H.c.),

(8)

and βc > βh $ βw are inverse temperatures for the cold, hot,
and work bath, respectively.

The values of relaxation rates γh,γc,γw > 0 depend on the
particular models of heat baths, and their explicit form is
discussed in Appendix A. Notice that one can add also the gen-
erators describing pure decoherence (dephasing) in the form

Dhρ = − 1
2δh[a†a,[a†a,ρ]] ,

Dcρ = − 1
2δc[b†b,[b†b,ρ]] , δh,δc > 0, (9)

which, however, do not change the evolution of diagonal
matrix elements and therefore have no influence on the cooling
mechanism at the stationary state. The generator Lw is not
ergodic in the sense that it does not drive the system A + B to
a Gibbs state because it preserves a total number of excitations
a†a + b†b. This fault can be easily repaired by adding to Lw

a term of the form (6) or/and (7) but with the temperature Tw.
However, we assume that the processes described by Eqs. (6)–
(8) dominate and additional contributions can be neglected.

B. The cooling mechanism

The stationary “cold current” describing heat flux from the
cold bath to the working medium can be computed using the

2E. Martinez and J. P. Paz (unpublished).
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definitions presented in Appendix C. The cooling of the cold
bath takes place if this current is positive,

J̃c = ωcTr[(Lcρ̃)b†b] > 0. (10)

To compute J̃c, we need the following equations for the mean
values of the relevant observables n̄h = Tr(ρa†a) and n̄c =
Tr(ρb+b), which can be derived using the explicit form of the
generators (6)–(8):

d

dt
n̄h = −γh(1 + εe−βhωh )n̄h + γhe

−βhωh

+ γw(n̄c − n̄h) − R, (11)

d

dt
n̄c = −γc(1 + εe−βcωc )n̄c + γce

−βcωc

+ γw(n̄h − n̄c) + R, (12)

where R is the nonlinear rate

R = γw(1 − e−βw(ωh−ωc))Tr[ρ(b+b)(aa+)]. (13)

Equations (11)–(13) can be solved analytically in the high-
temperature limit for the work bath βw → 0, which implies
R → 0. Under this condition, the stationary cold current reads

J̃c = ωcγw

× (eβcωc + ε)−1 − (eβhωh + ε)−1

1 + γw[γ−1
h (1 + εe−βhωh )−1 + γ−1

c (1 + εe−βcωc )−1]
.

(14)

The cooling condition J̃c > 0 is equivalent to a very simple
one,

ωc

ωh

<
Tc

Th

. (15)

One can similarly compute the other heat currents to obtain
the coefficient of performance (COP),

COP = Jc

Jw

= ωc

ωh − ωc

, (16)

which becomes the Otto cycle COP [14,30].
We are interested in the final stage of the cooling process

when the temperature Tc is close to absolute zero and
hence we can assume that γc(Tc) ' γh(Th). Optimizing the
cooling current means keeping essentially constant the value
of ωc/Tc [31]. This leads to the following simplification of the
formula (14):

J̃c ( ωcγce
−ωc/kBTc . (17)

III. PERIODICALLY DRIVEN REFRIGERATOR

An alternative to driving the refrigerator by a “very hot” heat
bath is to apply a time-dependent perturbation to the system of
the two harmonic oscillators. One can repeat the derivation for
two TLSs, but the final expressions for the currents are more
intricate and therefore we restrict ourselves to the oscillator
working medium. The time-dependent Hamiltonian reads

H (t) = ωha
†a + ωcb

†b + λ(e−i*t a†b + ei*t ab†), (18)

where * denotes the driving frequency which is chosen to be
in resonance * = ωh − ωc and λ > 0 measures the strength

of the coupling to the external field. Interaction with the baths
is given by

Hint = (a + a†) ⊗ Rh + (b + b†) ⊗ Rc. (19)

The general derivation of the weak-coupling limit Marko-
vian master equation with periodic driving is discussed in
Appendix B and is essential for consistency with the second
law of thermodynamics [6]. The master equation has the form

d

dt
ρ(t) = −i[H (t),ρ(t)] + Lh(t)ρ(t) + Lc(t)ρ(t) (20)

with Lh(c)(t) = U (t,0)Lh(c)U (t,0)†, which under resonance
conditions can be derived directly without applying the full
Floquet formalism.

The main ingredients of the derivation are as follows:
(i) Transformation to interaction picture. The bath operators

transform according to the free baths Hamiltonian, and the
system operators transform according to the unitary propagator
(under resonance conditions),

U (t,0) = T exp
{
−i

∫ t

0
H (s)ds

}
= e−iH0t e−iV t , (21)

where

H0 = ωha
†a + ωcb

†b, V = λ(a†b + ab†). (22)

(ii) Fourier decomposition of the interaction part,

a(t) = U (t,0)†aU (t,0) = eiV t [eiH0t ae−iH0 ]e−iV t

= cos(λt)e−iωht a − i sin(λt)e−iωht b, (23)

which gives the Fourier decomposition [compare with
Eq. (B3)]

a(t) = 1√
2

(e−i(ω+
h )t d+ + e−i(ω−

h )t d−) (24)

and

b(t) = 1√
2

(e−i(ω+
c )t d+ − e−i(ω−

c )t d−), (25)

where d+ = a+b√
2

, d− = a−b√
2

, and ω±
h(c) = (ωh(c) ± λ). Simi-

larly, we can calculate a†(t),b†(t).
(iii) Performing the weak-coupling approximation, the total

time-independent (interaction picture) generator has the form

L = L(+)
h + L(−)

h + L(+)
c + L(−)

c , (26)

where

L(+)
h(c)ρ = 1

4γ
(+)
h(c)([d+,ρd

†
+] + e−βh(c)ω

+
h(c) [d†

+,ρd+] + H.c.)

(27)

and

L(−)
h(c)ρ = 1

4γ
(−)
h(c)([d−,ρd

†
−] + e−βh(c)ω

−
h(c) [d†

−,ρd−] + H.c.)

(28)

with the relaxation rates γ
(±)
h(c) = γh(c)(ωh(c) ± λ) discussed

explicitly in Appendices A and B. Any such generator and any
sum of them possess a unique stationary state (under condition
ωh(c) ± λ > 0),

ρ̃
(+)
h(c) = Z−1exp[−βh(c)ω

+
h(c)d

†
+d+] (29)
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and

ρ̃
(−)
h(c) = Z−1exp[−βh(c)ω

−
h(c)d

†
−d−]. (30)

The steady (time-independent) heat currents can be computed
using the definitions of Appendix C. For example, the heat
current from the cold bath is given by the sum of entropy
flows, which are related to the quasienergies ωc ± λ, times the
bath temperature,

J̃c = −kBTc{Tr[(L(+)
c ρ̃) ln ρ̃(+)

c ] + Tr[(L(−)
c ρ̃) ln ρ̃(−)

c ]}. (31)

This current can be calculated analytically. The result is the
following:

J̃c = 1
2

[

ω−
c

(eβcω
−
c − 1)−1 − (eβhω

−
h − 1)−1

[γ (−)
h (1 − e−βhω

−
h )]−1 + [γ (−)

c (1 − e−βcω
−
c )]−1

+ω+
c

(eβcω
+
c − 1)−1 − (eβhω

+
h − 1)−1

[γ (+)
h (1 − e−βhω

+
h )]−1 + [γ (+)

c (1 − e−βcω
+
c )]−1

]

.

(32)

Similarly to Sec. II B when the temperature Tc is close to
absolute zero, we can assume γ (−)

c ' γ
(−)
h and γ (+)

c ' γ
(+)
h

while keeping λ/Tc < ωc/Tc as constants. This simplifies
formula (32),

J̃c ( 1
2 [ω+

c γ
(+)
c e−ω+

c /kBTc + ω−
c γ

(−)
c e−ω−

c /kBTc ]. (33)

Notice that the cold current does not vanish when λ tends to
zero, which obviously should be the case. This is due to the fact
that the derivation of master equations in the weak-coupling
regime involves time-averaging procedures eliminating certain
oscillating terms. This procedure makes sense only if the
corresponding Bohr frequencies are well-separated. In our
case, it means that ω−

c should be well separated from ω+
c ,

which implies that λ ∼ ωc. Indeed, if both ωc and λ vanish,
the cold current vanishes as well. This problem of time scales
in the weak-coupling Markovian dynamics has been discussed,
for constant Hamiltonians, in Ref. [32] (see also [33] for the
related “dynamical symmetry breaking” phenomenon).

IV. THE DYNAMICAL THIRD LAW
OF THERMODYNAMICS

There exist two seemingly independent formulations of the
third law of thermodynamics, both originally stated by Nernst
[20,22]. The first is a purely static (equilibrium) one, also
known as the Nernst heat theorem, and can simply be phrased
as follows:

(a) The entropy of any pure substance in thermodynamic
equilibrium approaches zero as the temperature approaches
zero.

The second is a dynamical one, known as the unattainability
principle:

(b) It is impossible by any procedure, no matter how
idealized, to reduce any assembly to absolute zero temperature
in a finite number of operations [34].

Different studies investigating the relation between the two
formulations have led to different answers regarding which
of these formulations implies the other, or if neither does.
Although interesting, this question is beyond the scope of

this paper. For further considerations regarding the third law,
we refer the reader to Refs. [23,34–38]. In particular, in
Refs. [37,38] the validity of the static formulation (a) has been
confirmed for a large class of open quantum systems. We shall
use a more concrete version of the dynamical third law, which
can be expressed as follows:

(b′) No refrigerator can cool a system to absolute zero
temperature at finite time.

This formulation enables us to quantify the third law,
i.e., evaluating the characteristic exponent ζ of the cooling
process dT (t)

dt
∼ −T ζ for T → 0. Namely, for ζ < 1 the system

is cooled to zero temperature at finite time. As a model
of the refrigerator, we use the above-discussed continuous
refrigerators with a cold bath modeled either by a system of
harmonic oscillators (bosonic bath) or the ideal gas at low
density, including the possible Bose-Einstein condensation
effect. To check under what conditions the third law is valid, we
consider a finite cold bath with the heat capacity cV (Tc) cooled
down by the refrigerator with the optimized time-dependent
parameter ωc(t) and the additional parameter λ(t) for the
case of a periodically driven refrigerator. The equation which
describes the cooling process reads

cV [Tc(t)]
dTc(t)

dt
= −Jc[ωc(t),Tc(t)], t ! 0. (34)

The third law would be violated if the solution Tc(t) reached
zero at finite time t0. Now we can consider two generic models
of the cold heat bath.

A. Harmonic oscillator cold heat bath

This is a generic type of quantum bath including, for
example, an electromagnetic field in a large cavity or a finite
but macroscopic piece of solid described in the thermodynamic
limit. We assume the linear coupling to the bath and the
standard form of the bath’s Hamiltonian,

Hint = (b + b†)

(
∑

k

[g(k)a(k) + ḡ(k)a†(k)]

)

,

HB =
∑

k

ω(k)a†(k)a(k), (35)

where a(k),a†(k) are annihilation and creation operators for
mode k. For this model, the weak-coupling limit procedure
leads to the generator (7) with the cold bath relaxation rate

γc ≡ γc(ωc) = π
∑

k

|g(k)|2δ(ω(k) − ωc)[1 − e−ω(k)/kBTc ]−1.

(36)

For the bosonic field in d-dimensional space, where k is a
wave vector, and with the linear low-frequency dispersion law
[ω(k) ∼ |k|], we obtain the following scaling properties at low
frequencies (compare Appendix D):

γc ∼ ωκ
cω

d−1
c [1 − e−ωc/kBTc ]−1, (37)

where ωκ
c represents scaling of the coupling strength |g(ω)|2,

and ωd−1
c is the density of modes scaling. This implies the
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following scaling of the cold current:

Jc ∼ T d+κ
c

[
ωc

Tc

]d+κ 1
eωc/Tc − 1

. (38)

Optimization of Eq. (38) with respect to ωc leads to the
frequency tuning ωc ∼ Tc and the final current scaling,

J opt
c ∼ T d+κ

c . (39)

Consider that for low temperatures the heat capacity of the
bosonic systems scales like

cV (Tc) ∼ T d
c , (40)

which finally produces the following scaling of the dynamical
equation (34):

dTc(t)
dt

∼ −(Tc)κ . (41)

Notice that in a similar way the same scaling (41) is
achieved for the periodically driven refrigerator (33), with the
optimization tuning ωc,λ ∼ Tc. As a consequence, the third
law implies a rather unexpected constraint on the form of
interaction with a bosonic bath,

κ ! 1. (42)

For standard systems such as electromagnetic fields or acoustic
phonons with the linear dispersion law ω(k) = v|k| and the
form factor g(k) ∼ |k|/

√
ω(k), the parameter κ = 1, as for low

ω, |g(ω)|2 ∼ |k|. However, the condition (42) excludes exotic
dispersion laws ω(k) ∼ |k|α with α < 1, which nevertheless
produce the infinite group velocity forbidden by the relativity
theory. Moreover, the popular choice of Ohmic coupling is
excluded for systems in dimension d > 1. The condition (42)
can also be compared with the condition

κ > 2 − d, (43)

which is necessary to assure the existence of the ground state
for the bosonic field interacting by means of the Hamiltonian
(35) (see Appendix D).

B. Ideal Bose/Fermi gas cold heat bath

We consider now a model of a cooling process where part B
of the working medium is an (infinitely) heavy particle with the
internal structure approximated (at least at low temperatures)
by a TLS immersed in a low density gas at temperature Tc.
The Markovian dynamics of such a system was rigorously
derived by Dumcke [27] in the low density limit and N -level
internal structure. The form of the corresponding LGKS
generator is presented in Appendix A. For our case of TLS, we
have only one Bohr frequency ωc, because elastic scattering
corresponding toω = 0 does not influence the cooling process.
Cooling occurs due to the nonelastic scattering, giving the
relaxation rate (Appendix A)

γc = 2πn

∫
d3 ,p

∫
d3 ,p′δ(E( ,p′) − E( ,p) − h̄ωc)

× fTc
( ,pg)|T ( ,p′, ,p)|2 (44)

with n the particle density, fTc
( ,pg) the probability distribution

of the gas momentum strictly given by the Maxwell distri-
bution, and ,p and ,p′ the incoming and outgoing gas particle

momentum, respectively. E( ,p) = p2/2m denotes the kinetic
energy of gas particle.

At low energies (low temperature), scattering of neutral
gas in three dimensions can be characterized by the s-wave
scattering length as , having a constant transition matrix, |T |2 =
( 4πas

m
)2. For our model, the integral (44) is calculated as

γc = (4π )4
(

βc

2πm

) 1
2

a2
s nωcK1

(
βcωc

2

)
e

βcωc
2 , (45)

where Kp(x) is the modified Bessel function of the second
kind. Note that formula (45) is also valid for a harmonic
oscillator instead of TLS, assuming only linear terms in the
interaction and using the Born approximation for the scattering
matrix.

Optimizing formula (17) with respect toωc leads toωc ∼ Tc

and to scaling of the heat current,

J opt
c ∼ n(Tc)

3
2 . (46)

When the Bose gas is above the critical temperature for
the Bose-Einstein condensation, the heat capacity cV and
the density n are constants. Below the critical temperature,
the density n in formula (44) should be replaced by the density
nex of the exited states, having both cV ,nex ∼ (Tc)

3
2 , which

finally implies

dTc(t)
dt

∼ −(Tc)
3
2 . (47)

In the case of Fermi gas at low temperatures, only the small
fraction n ∼ Tc of fermions participates in the scattering
process and contributes to the heat capacity; the rest is “frozen”
in the “Dirac sea” below the Fermi surface. Again, this effect
modifies in the same way both sides of Eq. (34), and therefore
(47) is still valid. Similarly, a possible formation of Cooper
pairs below the critical temperature does not influence the
scaling (47).

V. CONCLUSIONS

We have introduced and analyzed two types of continuous
quantum refrigerators, namely an absorption refrigerator and
a periodically driven refrigerator. The latter required us to
present new definitions for heat flow for periodically driven
open systems. These definitions are in line with the second
law and are applicable for a time-independent Hamiltonian
as well. Unlike the first and second laws, the third law of
thermodynamics does not define a new state function. In
its first formulation (cf. Sec. IV), the third law provides a
reference point for scaling the entropy and becomes intuitive
when thinking in terms of quantum states or levels. The second
formulation, (b′) in Sec. IV, which states that no refrigerator
can cool a system to absolute zero temperature at finite time,
provides information on the characteristic exponent ζ , the
speed of cooling, and gives an insight and restriction on the
properties of realistic systems.

Universal behavior of the final scaling near absolute zero
is obtained. The third law does not depend on the bath
dimension. The type of refrigerator, either absorption or
a periodically driven refrigerator, does not influence the
characteristic exponent, nor does a different medium, i.e., a
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harmonic oscillator and a TLS produce the same scaling. The
characteristic exponent is governed only by the feature of the
heat bath and its interaction with the system. For a harmonic
oscillator heat bath, the third law imposes a restriction on the
form of the interaction between the system and the bath, κ ! 1,
allowing only physical coupling and dispersion relations, thus
for phonons with a linear dispersion relation ζ = κ = 1. For an
ideal Bose/Fermi gas heat bath, ζ = 3/2, which implies faster
cooling of the phonon bath than the gas bath. This distinction
between the two baths may occur due to particle conservation
for the gas, indicating a more efficient extraction of heat by
eliminating particles from the system. The key component of a
realistic refrigerator is the heat transport mechanism between
the heat bath and the working medium. This mechanism
determines the third-law scaling. The working medium is a
nonlinear device combining three currents. If it is optimized
properly by adjusting its internal structure, it does not pose a
limit on cooling.
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APPENDIX A: THERMAL GENERATORS FOR A
CONSTANT HAMILTONIAN

Consider a system and a reservoir (bath), with a “bare”
system Hamiltonian H 0 and the bath Hamiltonian HR ,
interacting via the Hamiltonian λHint = λS ⊗ R. Here, S
(R) is a Hermitian system (reservoir) operator and λ is the
coupling strength (a generalization to more complicated Hint
is straightforward). We assume also that

[ρR,HR] = 0, Tr(ρR R) = 0. (A1)

The reduced, system-only dynamics in the interaction
picture is defined as a partial trace,

ρ(t) = .(t,0)ρ ≡ TrR[Uλ(t,0)ρ ⊗ ρRUλ(t,0)†], (A2)

where the unitary propagator in the interaction picture is given
by the ordered exponential,

Uλ(t,0) = T exp
{−iλ

h̄

∫ t

0
S(s) ⊗ R(s) ds

}
, (A3)

where

S(t) = e(i/h̄)HtSe−(i/h̄)Ht , R(t) = e(i/h̄)HRtRe−(i/h̄)HRt . (A4)

Notice that S(t) is defined with respect to the renormalized,
physical, H and not H 0, which can be expressed as

H = H 0 + λ2H corr
1 + · · · . (A5)

The renormalizing terms containing powers of λ are Lamb-
shift corrections due to the interaction with the bath, which
cancel afterward the uncompensated term H − H 0, which, in
principle, should also be present in Eq. (A3). The lowest-order
(Born) approximation with respect to the coupling constant λ

yields H corr
1 , while the higher-order terms (· · · ) require going

beyond the Born approximation.
A convenient, albeit not used in the rigorous derivations,

tool is a cumulant expansion for the reduced dynamics,

.(t,0) = exp
∞∑

n=1

[λnK (n)(t)]. (A6)

One finds that K (1) = 0 and the Born approximation (weak
coupling) consists of terminating the cumulant expansion at
n = 2, hence we denote K (2) ≡ K:

.(t,0) = exp[λ2K(t) + O(λ3)]. (A7)

One obtains

K(t)ρ = 1

h̄2

∫ t

0
ds

∫ t

0
duF (s − u)S(s)ρS(u)†

+ (similar terms), (A8)

where F (s) = Tr[ρRR(s)R]. The similar terms in Eq. (A8) are
of the form ρS(s)S(u)† and S(s)S(u)†ρ.

The Markov approximation (in the interaction picture)
means in all our cases that for long enough time, one can
use the following approximation:

K(t) ( tL, (A9)

where L is a Linblad-Gorini-Kossakowski-Sudarshan (LGKS)
generator. To find its form, we first decompose S(t) into its
Fourier components,

S(t) =
∑

{ω}
eiωt Sω,S−ω = S†

ω, (A10)

where the set {ω} contains Bohr frequencies of the Hamiltonian

H =
∑

k

εk|k〉〈k|, ω = εk − εl . (A11)

Then we can rewrite the expression (A8) as

K(t)ρ = 1

h̄2

∑

ω,ω′

SωρS
†
ω′

∫ t

0
ei(ω−ω′)udu

∫ t−u

−u

F (τ )eiωτdτ

+ (similar terms) (A12)

and use two crucial approximations:
∫ t

0
ei(ω−ω′)udu ≈ tδωω′ ,

∫ t−u

−u

F (τ )eiωτdτ ≈ G(ω) =
∫ ∞

−∞
F (τ )eiωτdτ ! 0. (A13)

This makes sense for t $ max{1/(ω − ω′)}. Apply-
ing these two approximations, we obtain K(t)ρS =
(t/h̄2)

∑
ω SωρSS

†
ωG(ω) + (similar terms), and hence it fol-

lows from Eq. (A9) that L is a special case of the LGKS
generator derived for the first time by Davies [26]. Returning to
the Schrödinger picture, one obtains the following Markovian
master equation:

dρ

dt
= − i

h̄
[H,ρ] + Lρ,

(A14)

Lρ ≡ λ2

2h̄2

∑

{ω}
G(ω)([Sω,ρS†

ω] + [Sωρ,S†
ω]).
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Several remarks are in order:
(i) The absence of off-diagonal terms in Eq. (A14),

compared to Eq. (A12), is the crucial property of the Davies
generator which can be interpreted as a coarse-graining in time
of fast oscillating terms. It implies also the commutation of L
with the Hamiltonian part [H,·].

(ii) The positivity G(ω) ! 0 follows from Bochner’s theo-
rem and is a necessary condition for the complete positivity of
the Markovian master equation.

(iii) The presented derivation showed implicitly that the
notion of bath’s correlation time, often used in the literature,
is not well-defined—Markovian behavior involves a rather
complicated cooperation between system and bath dynamics.
In other words, contrary to what is often done in phe-
nomenological treatments, one cannot combine arbitrary H’s
with a given LGKS generator. This is particularly important
in the context of thermodynamics of controlled quantum
open system, where it is common to assume Markovian
dynamics and apply arbitrary control Hamiltonians. Erroneous
derivations of the quantum master equation can easily lead to
violation of the laws of thermodynamics.

If the reservoir is a quantum system at a thermal equilibrium
state, the additional Kubo-Martin-Schwinger (KMS) condition
holds,

G(−ω) = exp
(

− h̄ω

kBT

)
G(ω), (A15)

where T is the bath’s temperature. As a consequence of
Eq. (A15), the Gibbs state

ρβ = Z−1e−βH , β = 1
kBT

(A16)

is a stationary solution of Eq. (A14). Under mild conditions
(e.g., “the only system operators commuting with H and
S are scalars”), the Gibbs state is a unique stationary state
and any initial state relaxes toward equilibrium (“zeroth law
of thermodynamics”). A convenient parametrization of the
corresponding thermal generator reads

Lρ = 1
2

∑

{ω!0}
γ (ω){([Sω,ρS†

ω] + [Sωρ,S†
ω])

+ e−h̄βω([S†
ω,ρSω] + [S†

ωρ,Sω])}, (A17)

where finally

γ (ω) = λ2

h̄2

∫ +∞

−∞
Tr(ρR eiHRt/h̄ R e−iHRt/h̄R) dt. (A18)

A closer look at the expressions (A17) and (A18) shows that
the transition ratio from the state |k〉 to the state |l〉 is exactly
the same as that computed from the Fermi Golden Rule,

W (|in〉 → |fin〉) = 2π
h̄

|〈in|V |fin〉|2δ(Efin − Ein). (A19)

Namely, one should take as a perturbation V = λS ⊗ R, an ini-
tial state |in〉 =| k〉 ⊗ |E〉, a final state |fin〉 =| l〉 ⊗ |E′〉 (|E〉
denotes the reservoir’s energy eigenstate), and integrate over
the initial reservoir’s states with the equilibrium distribution
and over all the final reservoir’s states.

The above interpretation allows us to justify the extension
of the construction of a thermal generator to the case of a heat

bath consisting of noninteracting particles at low density n
and thermal equilibrium (see [27] for a rigorous derivation). In
this case, a fundamental relaxation process is a scattering of a
single bath particle with the system described by the scattering
matrix T . The scattering matrix can be decomposed as T =∑

{ω} Sω ⊗ Rω, where now Rω are single-particle operators.
Then the structure of the corresponding master equation is
again given by Eq. (A17) with

γ (ω) = 2πn

∫
d3 ,p

∫
d3 ,p′δ(E( ,p′) − E( ,p) − h̄ω)M( ,p)|

× Tω( ,p′, ,p)|2 (A20)

resembling a properly averaged expression (A19). Here the
initial (final) state has a structure |k〉 ⊗ | ,p〉 (|l〉 ⊗ | ,p′〉), M( ,p)
is the equilibrium (Maxwell) initial distribution of particle
momenta, with | ,p〉 being the particle momentum eigenvector,
and E( ,p) is the kinetic energy of a particle. The perturbation
V in Eq. (A19) is replaced by the scattering matrix T (equal
to V for the Born approximation) and finally

Tω( ,p′, ,p) = 〈 ,p′|Rω| ,p〉. (A21)

APPENDIX B: THERMAL GENERATORS
FOR PERIODIC DRIVING

In order to construct models of quantum heat engines
or powered refrigerators, we have to extend the presented
derivations of the Markovian master equation to the case of
periodically driven systems. Fortunately, we can essentially
repeat the previous derivation with the following amendments:

(i) The system (physical, renormalized) Hamiltonian is now
periodic,

H (t) = H (t + τ ), U (t,0) ≡ T exp
{

− i

h̄

∫ t

0
H (s) ds

}
,

(B1)

and the role of constant Hamiltonian is played by H defined
as

H =
∑

k

εk|k〉〈k|, U (τ,0) = e−iH t/h̄. (B2)

(ii) The Fourier decomposition (A10) is replaced by the
following one:

U (t,0)† S U (t,0) =
∑

q∈Z

∑

{ω}
ei(ω+q*)t Sωq, (B3)

where * = 2π/τ and {ω} = {εk − εl}. The decomposition of
the above follows from the Floquet theory, however for our
model we can obtain it directly using the manifest expressions
for the propagator U (t,0).

(iii) The generator in the interaction picture has the form

L =
∑

q∈Z

∑

{ω}
= Lωq, (B4)

where

Lωqρ = 1
2γ (ω + q*){([Sωq,ρS

†
ωq] + [Sωqρ,S

†
ωq ])

+ e−h̄β(ω+q*)([S†
ωq,ρSωq ] + [S†

ωqρ,Sωq])}. (B5)
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Returning to the Schrödinger picture, we obtain the following
master equation:

dρ(t)
dt

= − i

h̄
[H (t),ρ(t)] + L(t)ρ(t), t ! 0, (B6)

where

L(t) = L(t + τ ) = U(t,0)LU(t,0)†,
(B7)

U(t,0)· = U (t,0) · U (t,0)†.

In particular, one can represent the solution of Eq. (B6) in the
form

ρ(t) = U(t,0)eLtρ(0), t ! 0. (B8)

Any state satisfying Lρ̃ = 0 defines a periodic steady state
(limit cycle),

ρ̃(t) = U(t,0)ρ̃ = ρ̃(t + τ ), t ! 0. (B9)

Finally, one should notice that in the case of multiple couplings
and multiple heat baths, the generator L can always be
represented as an appropriate sum of the terms like (A17).

APPENDIX C: HEAT FLOWS AND POWER
FOR PERIODICALLY DRIVEN OPEN SYSTEMS

We consider a periodically driven system coupled to several
heat baths with the additional index j labeling them. Then the
generator in the interaction picture has the form

L =
M∑

j=1

∑

q∈Z

∑

{ω!0}
Lj
ωq, (C1)

where any single Lj
ωq has a structure of Eq. (B5) with the

appropriate γj (ω). Notice that a single component Lj
ωq is also

a LGKS generator and possesses a Gibbs-like stationary state
written in terms of the averaged Hamiltonian H ,

ρ̃j
ωq = Z−1 exp

{
−ω + q*

ω

H

kBTj

}
. (C2)

The corresponding time-dependent objects satisfy

Lj
qω(t)ρ̃j

qω(t) = 0, Lj
qω(t) = U(t,0)Lj

qωU(t,0)†,
(C3)

ρ̃j
qω(t) = U(t,0)ρ̃j

qω = ρ̃j
qω(t + τ ).

Using the decomposition (C1), one can define a local heat
current which corresponds to the exchange of energy ω + q*
with the j th heat bath for any initial state,

J j
qω(t) = ω + q*

ω
Tr

{[
Lj

qω(t)ρ(t)
]
H̃ (t)

}
, H̃ (t) = U(t,0)H,

(C4)

or in the equivalent form,

J j
qω(t) = −kBTj Tr

{[
Lj

qω(t)ρ(t)
]

ln ρ̃j
qω(t)

}
. (C5)

The heat current associated with the j th bath is a sum of
the corresponding local ones,

J j (t) = −kBTj

∑

q∈Z

∑

{ω!0}
Tr

{[
Lj

qω(t)ρ(t)
]

ln ρ̃j
qω(t)

}
. (C6)

In order to prove the second law, we use Spohn’s inequality [3],

Tr([Lρ][ln ρ − ln ρ̃]) " 0, (C7)

which is valid for any LGKS generator L with a stationary
state ρ̃.

Computing now the time derivative of the entropy S(t) =
−kBTrρ(t) ln ρ(t) and applying (C7), one obtains the second
law in the form

d

dt
S(t) −

M∑

j=1

J j (t)
Tj

! 0, (C8)

where S(t) = −kBTr[ρ(t) ln ρ(t)].
The heat currents in the steady state ρ̃(t) are time-

independent and given by

J̃ j = −kBTj

∑

q∈Z

∑

{ω!0}
Tr

[(
Lj

qωρ̃
)

ln ρ̃j
qω

]
. (C9)

They satisfy the second law in the form
M∑

j=1

J̃ j

Tj

" 0 (C10)

while, according to the first law,

−
M∑

j=1

J̃ j = −J̃ = P̄ (C11)

is the averaged power (negative when the system acts as a heat
engine). Notice that in the case of a single heat bath, the heat
current is always strictly positive except for the case of no
driving, when it is equal to zero.

Notice that for the constant Hamiltonian, the above for-
mulas are also applicable after removing the index q, which
implies also that

∑M
j=1 J̃ j = 0.

APPENDIX D: VAN HOVE PHENOMENON

A natural physical stability condition which should be
satisfied by any model of an open quantum system is that its
total Hamiltonian should be bounded from below and should
possess a ground state. In the case of systems coupled linearly
to bosonic heat baths, it implies the existence of the ground
state for the following bosonic Hamiltonian [compare with
Eq. (35)]:

Hbos =
∑

k

{ω(k)a†(k)a(k) + [g(k)a(k) + ḡ(k)a†(k)]}.

(D1)

Introducing a formal transformation to a new set of bosonic
operators,

a(k) 2→ b(k) = a(k) + ḡ(k)
ω(k)

, (D2)

we can write

Hbos =
∑

k

ω(k)b†(k)b(k) − E0, E0 =
∑

k

|g(k)|2

ω(k)
(D3)

with the formal ground state |0〉 satisfying

b(k)|0〉 = 0 for all k. (D4)
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For the interesting case of an infinite set of modes {k}, labeled
by the d-dimensional wave vectors, two problems can appear:

(i) The ground state energy E0 can be infinite, i.e., it does
not satisfy

∑

k

|g(k)|2

ω(k)
< ∞. (D5)

(ii) The transformation (D2) can be implemented by a unitary
one, i.e., b(k) = Ua(k)U † if and only if

∑

k

|g(k)|2

ω(k)2
< ∞. (D6)

Nonexistence of such a unitary implies nonexistence of the
ground state (D4) (in the Fock space of the bosonic field), and
this is called the van Hove phenomenon [39].

While the divergence of the sums (D5) and (D6) (or
integrals for the infinite volume case) for large |k| can
be avoided by applying the ultraviolet cutoff, the stronger
condition (D6) puts restrictions on the form of g(k) at low
frequencies. Assuming that ω(k) = v|k| and g(k) ≡ g(ω), the
condition (D6) is satisfied for the following low-frequency
scaling in the d-dimesional case:

|g(ω)|2 ∼ ωκ , κ > 2 − d. (D7)
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In this work we present the concept of a quantum flywheel coupled to a quantum heat engine. The flywheel
stores useful work in its energy levels, while additional power is extracted continuously from the device. Generally,
the energy exchange between a quantum engine and a quantized work repository is accompanied by heat, which
degrades the charging efficiency. Specifically when the quantum harmonic oscillator acts as a work repository,
quantum and thermal fluctuations dominate the dynamics. Quantum monitoring and feedback control are applied
to the flywheel in order to reach steady state and regulate its operation. To maximize the charging efficiency one
needs a balance between the information gained by measuring the system and the information fed back to the
system. The dynamics of the flywheel are described by a stochastic master equation that accounts for the engine,
the external driving, the measurement, and the feedback operations.

DOI: 10.1103/PhysRevA.93.052119

I. INTRODUCTION

A flywheel is a device that stores kinetic energy in the
rotational motion of the wheel and supplies it on demand.
In many devices the flywheel is an essential component for
extracting work from an engine. The main tasks of a flywheel
are twofold: transducing discrete energy into continuous power
and storing useful work. This energy reserve can be rapidly
drained on demand, ultimately extracting more power than
the charging engine can supply. Miniaturizing heat engines
and refrigerators received much attention in the past decade.
Experimental setups of such devices were constructed in the
micrometers domain [1,2], and recently the operation of a
single-atom heat engine was reported [3]. Many theoretical
studies of these devices were extended to the quantum domain,
concentrated on the study of efficiency, power extraction,
and thermodynamic laws (see reviews [4–8] and references
therein). Work extraction from quantum systems and their
charging were also studied extensively [9–12].

Any realistic engine is regulated by monitoring and a
feedback loop. The purpose is to control its timing, adjust its
frequency and amplitude to match the other parts of the device,
and to compensate for unpredictable disturbances. Recent
theoretical studies demonstrated that quantum properties such
as coherence and correlations enhance the work extracted from
the system [13–17]. Future quantum technologies aiming to
exploit these quantum features will encounter the issue of
regulating the device. Standard ideal quantum measurements
will demolish these features. Therefore, to overcome this
problem a conceivable approach to regulate the quantum
device is by continuous weak measurements (monitoring)
and feedback control. Another fundamental problem which is
demonstrated in this study and that is resolved by monitoring
and feedback control is the unlimited entropy increase of the
work repository; i.e., proliferating fluctuations catastrophically
heat up the flywheel.

In this paper we introduce the concept of a quantum
flywheel as part of a quantum heat engine. The flywheel is
composed of a quantum harmonic oscillator (HO) interacting
with a two-qubit quantum heat engine. It is worth comparing
this setup to two cases. The first is when the HO (the flywheel)

is driven by a laser field in the semiclassical approximation
instead of being driven by a quantum heat engine. In this case,
energy is constantly flowing into the HO and in principle can
be fully extracted back as useful work. The entropy of the
HO will not change under the driving of the laser field. The
second is when the flywheel (the HO) is replaced by an external
classical field. In such case the engine would operate in steady
state and power can continuously be extracted from the engine
(see Appendix A). However, we will see that when all the parts
of the device are quantized, i.e., the medium of the engine is
a single qubit and the work repository is a quantum HO, the
flywheel will be subject to a fatal growth of fluctuations and
establishment of steady state is impossible. The HO is unstable
even when an external driving field is utilized to extract power
and stabilize it. Note that the instability we are facing is not the
amplification of the energy in the flywheel. Such instability
will accrue in any unbounded system that is constantly fed
with energy. In this study we are interested in the quality of the
energy stored in the flywheel and in overcoming the destructive
fluctuations. By applying monitoring and feedback control we
obtain a steady-state operation for the flywheel, continuously
gaining power, and storing useful work in the flywheel that
later can be extracted.

Monitored and controlled quantum heat engines are still
to be realized experimentally; however, the individual compo-
nents already exist. Quantum monitoring and feedback control
experiments exists for various HO’s such as electromagnetic
cavity, nanomechanical oscillators, trapped particles, and
superconducting circuits; see the review [18] and references
therein. Single microscopic quantum heat engine realizations
are still under development with only a few examples available
[3,19].

II. HEAT ENGINE OPERATION

The basic concept of a quantum heat engine (similar to the
classical one) consists of two thermal heat baths at different
temperature, a working medium, and a work repository. In
the quantum counterpart the working medium is quantized
and the work repository can be an external classical field
[4,20] or it can be quantized as well [21]. Here we consider

2469-9926/2016/93(5)/052119(9) 052119-1 ©2016 American Physical Society



AMIKAM LEVY, LAJOS DIÓSI, AND RONNIE KOSLOFF PHYSICAL REVIEW A 93, 052119 (2016)

FIG. 1. General scheme of a heat engine with a flywheel.
(a) The state of two qubits of the heat engine, coupled to heat baths
at temperatures Th and Tc, is represented as a two-qubit state with
population inversion between the second and third energy levels. The
size of the sphere represents the population in each level. (b) The
population inversion in the engine corresponds to a heat bath with
the inverse negative temperature β−

e . This bath is coupled to the har-
monic oscillator (flywheel), increasing exponentially its energy and
the width of phase-space probability distribution. (c) Measurement
of the quadratures of the harmonic oscillator, resulting in the signal
c̄. The signal is then fed back to the oscillator to ensure a steady state.
(d) Energy flow chart of the different components in the steady state
of the flywheel.

the operation of a continuous quantum engine for which the
heat baths and the work repository are coupled simultaneously
and continuously to the working medium [4]. The working
medium is comprised of two qubits, with the Hamiltonians
Ĥa = ωhâ

†â and Ĥb = ωcb̂
†b̂. Each qubit is weakly coupled

to a different heat bath with the inverse temperature βh and
βc, where the indexes h and c stand for hot and cold.
The dynamics of the qubits follow the standard thermalizing
master equation of Lindblad-Gorini-Kossakowski-Sudarshan
(LGKS) [22–24]. The asymptotic two-qubit state ρ̂∞

h ⊗ ρ̂∞
c

is the product of the thermal equilibrium Gibbs states of the
two qubits, respectively, at hot and cold temperatures 1/βh

and 1/βc. Satisfying the heat engine conditions, βh/βc <

ωc/ωh < 1, population inversion is obtained between the third
level |10〉 and the second level |01〉 [see Fig. 1(a)]. The
populations of these states are given by p10 = nh(1 − nc) and
p01 = nc(1 − nh). Here, nh(c) = [exp(βh(c)ωh(c)) + 1]−1 are
the thermal occupation numbers in ρ̂∞

h(c). The second and the
third levels are treated as an effective two-level system (TLS)
with the energy gap ωo = ωh − ωc (we take � = kB = 1). The
state of this TLS is a Gibbs state with a negative effective
temperature

1

β−
e

= ωh − ωc

βhωh − βcωc

< 0. (1)

We exploit the TLS population inversion to “charge”
a quantum harmonic oscillator (HO) with useful work.
The Hamiltonian of the HO and the TLS-HO interaction
Hamiltonian are given by Ĥo = ωoĉ

†ĉ and K̂ = ig(â†b̂ĉ −
âb̂†ĉ†), respectively. Given that the thermalization time of
the qubits is much shorter then the internal time scale,
g
√

〈ĉ†ĉ〉 + 1 � �h(c)[1 + exp (−βh(c)ωh(c))], the TLS can be
considered heuristically as a heat bath with negative temper-
ature weakly coupled to the HO. We prove that indeed the
state ρ̂ of the HO satisfies the standard thermalizing master
equation extended to negative temperature 1/β−

e , which in the
interaction picture of Ĥo takes the form

dρ̂

dt
= Leρ̂ ≡ �e(ĉρ̂ĉ† − Hĉ†ĉρ̂)

+�ee
−β−

e ωo (ĉ†ρ̂ĉ − Hĉĉ†ρ̂). (2)

The damping rate �e is proportional to the squared coupling
g2, and depends on the parameters of the engine, such as
the occupations nh(c) and the rates �h(c) (see Appendix B).
The notation H stands for the Hermitian part of everything
coming after it (different from the convention in Ref. [25]).
A rigorous derivation of Eq. (2) can be found in Appendix B.
The following results are not limited to the specific medium
of the engine and will apply to any dynamics that will lead to
the thermalizing master equation with negative temperature.
For example the two qubits can be replaced by a three-level
system or two HO’s. As long as the three-body interaction K̂

is kept, the structure of Eq. (2) with negative temperature is
preserved. The only difference would be the specifics of the
relaxation rate �e.

Since β−
e < 0 the master equation (2) has no steady-state

solution, energy will constantly flow into the flywheel. The
parameters containing the superscript − are negative. The
standard equations remain valid for the mean amplitude 〈ĉ〉t
and the occupation 〈ĉ†ĉ〉t :

d〈ĉ〉t
dt

= −(κ−
e + iωo)〈ĉ〉t , (3)

d〈ĉ†ĉ〉t
dt

= −2κ−
e 〈ĉ†ĉ〉t + �ee

−β−
e ωo , (4)

where the amplitude damping rate

κ−
e = 1

2�e(1 − e−β−
e ωo ) (5)

takes negative values since β−
e < 0 (Appendix B). Therefore

both 〈ĉ〉t and 〈ĉ†ĉ〉t (and all higher moments) diverge exponen-
tially with time [see Fig. 1(b)] resulting in the instability of the
dynamics against small perturbations. In particular, an initial
Gibbs state maintains its form but with an exponentially grow-
ing temperature 1/βt = ωo/ ln (1 + 〈ĉ†ĉ〉−1

t ). Thus, ρ̂(t) ∝
exp (−βtωoĉ

†ĉ) is an unstable solution of the master equation
(2). Any small perturbation will divert it from the class of Gibbs
states. A more general class of solutions, displaced Gibbs
states ρ̂(t) ∝ exp [−βtωo(ĉ − 〈ĉ〉t )†(ĉ − 〈ĉ〉t )], with effective
temperature 1/βt = ωo/ ln [1 + (〈ĉ†ĉ〉t − |〈ĉ〉t |2)

−1
] will, in

principle, be suitable for work extraction. But this option is
misleading since the instability of the above solutions is not
yet resolved.
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A reasonable approach to stabilize the flywheel while
extracting additional power is achieved by driving the HO
via a resonant oscillating external field. The field is expressed
by the time-dependent Hamiltonian, Ĥd (t) = −iεd ĉ

†e−iωot +
H.c. The master equation in the interaction picture (2) becomes
modified by a static Hamiltonian term (see Appendix C):

dρ̂

dt
= Leρ̂ − εd [ĉ† − ĉ,ρ̂o]. (6)

Indeed, Eq. (6) leads to a stationary amplitude with a rotating
phase: 〈ĉ〉t = −(εd/κ

−
e )e−iωot . Nevertheless, the stationary

state remains unstable, the occupation number and higher
moments diverge invariably. Driving in itself cannot solve the
instability issue. Unlimited growth of quantum and thermal
fluctuations must be suppressed by active control of the
flywheel.

III. MEASUREMENT AND FEEDBACK CONTROL

A. Monitoring

Continuous measurement, i.e., monitoring, is the first task
towards implementing feedback control [25]. By applying
monitoring and feedback control we can stabilize the flywheel
and charge it with useful work. Consider a time-continuous
measurement of both quadratures x̂ = 1√

2
(ĉ† + ĉ) and ŷ =

i√
2
(ĉ† − ĉ) of the HO. Generalizing the result of [26], we

simultaneously monitor x̂ and ŷ [see Fig. 1(c)]. The dynamics
is described by a stochastic master equation (SME) for
the density operator σ̂ conditioned on both measurement
signals x̄,ȳ (see Appendix D). The stochastic mean M of the
conditional state yields the unconditional state, i.e., Mσ̂ = ρ̂

satisfying a corresponding master equation of the usual LGKS
structure. It differs from the master equation of Eq. (6) by the
additional monitoring term

Lmρ̂ = γm

4
(ĉρ̂ĉ† − Hĉ†ĉρ̂ + ĉ†ρ̂ĉ − Hĉĉ†ρ̂), (7)

where γm is the measurement strength. This generator corre-
sponds to an infinite-temperature heat bath. Hence, the act of
monitoring additionally heats the flywheel and contributes to
the undesirable proliferating fluctuations of the HO.

B. Feedback control

Stabilization is accomplished by a feedback loop condi-
tioned on the measured signals x̄,ȳ. As a result, the HO is
kept in the vicinity of the constant rotating amplitude set
by the external driving. The feedback Hamiltonian in the
Schrödinger picture is given by Ĥf (t) = −iκf c̄(t)ĉ† + H.c.,
where c̄ = 1√

2
(x̄ + iȳ) is the complex representation of the

two real signals x̄ and ȳ, and κf is the feedback strength.
By setting the value of κf the steady state of the flywheel is
guaranteed. The feedback is applied on top of the monitored
evolution [27], σ̂ + dσ̂ → e−iĤf dt (σ̂ + dσ̂ )eiĤf dt , yielding a
SME for the conditional state, Appendix E. Averaging over
many realizations, the master equation of the unconditional
state reads

dρ̂

dt
= (Le + Lm + Lf )ρ̂ − εd [ĉ† − ĉ,ρ̂]. (8)

The dissipative contribution of the feedback is

Lf σ̂ =
(

κ2
f

γm

+ κf

)
(ĉσ̂ ĉ† − Hĉ†ĉσ̂ )

+
(

κ2
f

γm

− κf

)
(ĉ†σ̂ ĉ − Hĉĉ†σ̂ ). (9)

For κf > γm this corresponds to a thermal bath of positive
temperature. Entering the regime 0 < κf < γm, the cooling
effect of Lf within the sum Le + Lm + Lf becomes enhanced
although Lf ceases to be a mathematically correct dissipator
in itself. Equation (8) can be written in a compact form,

dρ̂

dt
= �(ĉρ̂ĉ† − Hĉ†ĉρ̂)

+�e−βωo (ĉ†ρ̂ĉ − Hĉĉ†ρ̂) − εd [ĉ† − ĉ,ρ̂], (10)

where � and β are determined by

� = �e + γm

4
+ κ2

f

γm

+ κf , (11)

e−βωo� = �ee
−β−

e ωo + γm

4
+ κ2

f

γm

− κf . (12)

The effective temperature 1/β becomes positive by setting
the feedback strength above the threshold: κf > −κ−

e . To sum-
marize, as a result of the feedback the negative-temperature
heat bath and the negative amplitude damping rate κ−

e for HO
become an effective positive-temperature heat bath with the
amplitude damping rate κf + κ−

e > 0.

IV. STEADY STATE AND WORK EXTRACTION

For sufficiently strong feedback κf , satisfying κf + κ−
e >

0, Eq. (10) is a standard thermalizing master equation with
resonant external driving. It has a unique stationary state which
in the Schrödinger picture is a thermal state with rotating
displacement also known as a thermal coherent state (see
Appendix E),

ρ̂∞ ∝ exp[−βωo(ĉ − c∞e−iωot )†(ĉ − c∞e−iωot )]. (13)

where c∞ = − εd

κf +κ−
e

< 0. Hence, the mean amplitude rotates,

〈ĉ〉∞ = c∞e−iωot , its phase is shifted by −π/2 with respect to
the external driving. The average population is given by the
sum of the Bose statistic no and the yield of displacement

〈ĉ†ĉ〉∞ = 1

eβωo − 1
+ |c∞|2 ≡ no + |c∞|2. (14)

We distinguish two opposing regimes of the steady-state
operation of the flywheel. The first is the deep quantum
regime, no,|c∞|2 � 1, where the flywheel is operating in the
vicinity of its ground state. The second is the classical regime
in which both the thermal occupation and the displacement
are large numbers, no,|c∞|2 � 1. The two crossed regimes
also present peculiar quantum features. Recall that weak
coupling condition sets an asymptotic upper limit on the
total occupation in Eq. (14). This implies asymptotic upper
limits on the temperature 1/β, excluding too high thermal
occupations no, as well as on the driving strength εd , confining
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FIG. 2. Charging efficiency as function of measurement strength
γm and feedback strength κf . The percentage of useful work out
of the entire energy stored in the flywheel has a maximum for the
ratio γm/κf = 2, and it is further maximized for κf approaching its
threshold |κ−

e | = 5 × 10−8. Here: ωo = 1, β−
e = −10−1, �e = 10−6,

and εd = 9 × 10−2.

the displacements 〈ĉ〉∞. Thus, accessibility to the classical
regime depends on the physical properties of the two-qubit
heat engine and its coupling g to the flywheel. The steady
state (13) becomes a displaced Gibbs state and as such, it is
suitable for work extraction. The internal energy of the steady
state is given by E = ωo(no + |c∞|2). Applying a unitary
displacement transformation can bring the state in Eq. (13)
into a Gibbs state (passive state) with the temperature 1/β.
Thus, the part of the internal energy that is due to c∞ can all
be extracted by the unitary operation as the maximum useful
work

W = ωo|c∞|2 = ωoε
2
d

(κf + κ−
e )2

, (15)

which is independent of the strength γm of the monitoring. The
charging efficiency of the flywheel can be defined as the ratio
between useful work and the internal energy stored in the HO
(see Fig. 2),

η = W
E = 1

1 + no/|c∞|2 . (16)

The efficiency is improved for small thermal occupation no

and large displacement c∞. The occupation no becomes small
when the effective temperature 1/β is reduced. Interestingly,
this singles out the optimum measurement strength γm which
has so far remained unconstrained. From Eqs. (11) and (12)
we find that 1/β takes its minimum value with the choice
γm = 2κf obtaining minimum for no and maximum for the
charging efficiency:

η|γm=2κf
= 1

1 + �e

2ε2
d

e−β−
e ωo (κf + κ−

e )2
. (17)

The efficiency ηγm=2κf
together with the extractable work W

reach higher values if we increase the displacement |c∞|. In
particular, the efficiency approaches its maximal value 1 when
the feedback κf approaches its lower threshold, κf → −κ−

e .
A different technique to maximize both the efficiency and the
work is by increasing εd , i.e., applying a stronger driving field.

Nevertheless, as was already mentioned, these two approaches
are limited by the weak-coupling condition.

V. ENERGY FLOWS IN STEADY STATE

A macroscopic flywheel at rest requires an input work
(initial push) to reach the vicinity of steady state. At this point
the output power is larger than the input power. Regulating the
flywheel also has energetic costs that should be accounted for.
These energetic considerations, in principle, also apply to the
quantum flywheel. However, the related calculations require
a novel approach to heat flow and power in quantum systems
under stochastic control.

The standard definition of thermodynamic heat flow J and
power P in open quantum systems is given [28] by the time
derivative of the internal energy E = tr[ρ̂Ĥ ] in the following
manner:

dE = tr[dρ̂Ĥ ] + tr[ρ̂dĤ ] ≡ J dt + Pdt. (18)

The Hamiltonian and the state of the system are typi-
cally stochastic in the theory of monitoring and feedback
control. Since stochastic fluctuations are microscopic, the
thermodynamic definition of the internal energy is given by
the stochastic mean of the microscopic energy, Mtr(σ̂ Ĥ ).
This leads to the following generalization of the standard
thermodynamic relation:

dE = Mtr[dσ̂ Ĥ ] + Mtr[σ̂ dĤ ] ≡ J dt + Pdt. (19)

The differentials in Eq. (19) must be Stratonovich ones instead
of those of Ito. For the Ito differentials the right-hand side
should contain the so-called Ito correction Mtr[dσ̂dĤ ] which
would jeopardize the split of dE between heat flow and power.
In Appendix F we derive a lower bound on the extractable
power, demonstrating that the power is gained from the device
and not consumed by it.

We summarize the plausible structure of energy currents
[see Fig. 1(d)]. The steady-state energy balance contains five
different currents: Ė = Je + Jm + Jf + Pd + Pf = 0. The
heat flowing into the flywheel has two contributions, the first
is from the engine, Je, the second is from the monitoring
device, Jm. Power from the driving field, Pd , is also consumed
by the flywheel, and serves as an input power activating the
flywheel. This power is overcompensated by the output power
Pf realized by the feedback. In addition, the outflow Jf cools
the flywheel, thereby stabilizing it and lowering the entropy
produced in the flywheel as a result of the engine and the
monitoring operations. In the case β−

e → 0− of no population
inversion in the engine, the heat flow Je and the consumable
power must vanish. The work in Eq. (15) stored in the flywheel
reaches its minimal, yet positive, value W = ωoε

2
d/κ

2
f .

VI. SUMMARY

Population inversion, corresponding to negative tempera-
ture 1/β−

e in a few-level quantum heat engine was established
a long time ago [29] and has been considered in detail [30].
In this paper we have shown that the heat engine operation is
equivalent to a negative-temperature heat bath in the standard
dynamical sense. Thus, its influence on the work repository is
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the typical thermalizing master equation extended to negative
temperature 1/β−

e .
Work extraction is still an outstanding issue because of the

spread of thermal and quantum noise over the work repository,
which in our case is a quantum HO. If the HO is replaced by an
idealized classical field, all the energy flowing out of the engine
can in principle be extracted as power. If the HO is driven by
a coherent laser field instead of the quantum heat engine then
all energy stored in the flywheel can be extracted from it as
work. However, when the work repository is quantized and the
heat engine medium is a single qubit, the work exchange is
accompanied with heat exchange, which degrades the charging
efficiency. In this paper we introduced a generic approach
that can be applied to resolve such problems. Specifically,
we demonstrated the difficulties of storing useful work in
a quantum harmonic oscillator. Overcoming the unlimited
growth of fluctuations, regulating and stabilizing the flywheel
is achieved by applying monitoring and feedback control to
the system.

The steady state, the power, and the stored extractable
energy of the flywheel are determined analytically. While
the amount of work stored in the flywheel is independent
of the accuracy of the monitoring, the charging efficiency is
optimized for a particular ratio between the monitoring and the
feedback strength. Thus, a maximum is achieved by balancing
the information gained by monitoring the flywheel with the
information fed back to the flywheel. The balance coincides
with minimum temperature of the flywheel. Breaking this
balance implies that the phase-space distribution is no longer
optimal for work extraction from the flywheel. Note that
to obtain steady-state operation one could cool the HO
by coupling it to a cold thermal bath instead of applying
monitoring and feedback control. A second cold bath would
mean a new thermodynamic resource in addition to the heat
engine with its two heat baths. We wished, however, to
investigate how to exploit the thermodynamic resource given
by the heat engine itself, using additional control mechanisms
only. A more crucial point is that by monitoring and feedback
we can optimize the charging efficiency and obtain a regime of
operation that no thermal bath will allow. In this regime, where

κf < γm, the cooling is enhanced and the dynamics cannot be
described by a thermal bath.

This model is a prototype of an analytically tractable model
of a quantum heat engine coupled to a single degree-of-
freedom work repository, operating continuously in steady
state under quantum control. Experiments which employ quan-
tum monitoring and feedback strategies are becoming common
[18,31–33]. Future advances in quantum technologies depend
on our ability to control and manipulate quantum systems. A
firm theoretical foundation relating systems that are subject to
quantum monitoring and feedback control with basic concepts
of thermodynamics is still missing.
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APPENDIX A: POWER EXTRACTION VIA CLASSICAL
PERIODIC FIELD

Steady-state power extraction without storing work is
possible by just by driving the engine directly without the
flywheel. Power is gained by amplification of a classical
rotating field in resonance with the two TLS’s. The interaction
Hamiltonian is given by K̂(t) = −iε(âb̂† eiωot − â†b̂ e−iωot ).
For weak driving, the master equation for the two TLS’s, ρ̂hc,
in the interaction picture of Ĥh and Ĥc is

dρ̂hc

dt
= −[ε(âb̂† − â†b̂),ρ̂hc] + Lhρ̂hc + Lcρ̂hc, (A1)

where Lh(c) are defined in Eq. (B1). The master equation
(A1) possesses a unique stationary state. The stationary output
power

− P∞ = 4ε2ωo(nh − nc)

4ε2
[
�−1

h (1 − nh) + �−1
c (1 − nc)

] + �h(1 + e−βhωh) + �c(1 + e−βcωc )
> 0 (A2)

is positive. This implies that steady-state power extraction can
be obtained from a periodically driven field. Note that for
strong driving there is also a steady-state power extraction
from the engine. Nevertheless, the master equation (A1) must
be modified. Derivation of a master equation driven by a strong
periodic field can be found in [20].

APPENDIX B: TRIPARTITE HEAT ENGINE

We use an interaction picture for its convenience especially
for our master equations. The stochastic master equations of
monitoring and feedback are presented in the Schrödinger
picture for transparency. Heat flow and power are, as a rule,

defined in the Schrödinger picture. We derive the master
equation for the harmonic oscillator (HO) subject to the
operation of the engine. The quantum heat engine is comprised
of two two-level systems (TLS’s), with the Hamiltonians
Ĥh = ωhâ

†â and Ĥc = ωcb̂
†b̂. The two TLS’s are coupled to

a hot and a cold heat bath, respectively, at temperatures Th >

Tc. The dynamics follow the Lindblad-Gorini-Kossakowski-
Sudarshan dynamics [22,23], and in the interaction picture of
Ĥh(c) the corresponding master equations read

dρ̂h

dt
= �h[âρ̂hâ

† − Hâ†âρ̂h + e−βhωh (â†ρ̂hâ − Hââ†ρ̂h)]

≡ Lhρ̂h,
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dρ̂c

dt
= �c[b̂ρ̂cb̂

† − Hb̂†b̂ρ̂c + e−βcωc (b̂†ρ̂cb̂ − Hb̂b̂†ρ̂c)]

≡ Lcρ̂c, (B1)

where �h(c) are the damping rates. (In our convention, different
from that of Ref. [25], H denotes the Hermitian part of all that
stands after it.) The heat baths bring the TLS’s to thermal
equilibrium states ρ̂∞

h(c) with the occupation numbers nh(c) =
1/(eβh(c)ωh(c) + 1), and with the inverse temperatures βh(c) =
1/Th(c), respectively.

The two TLS’s are then weekly coupled to a quantum
HO of the self-Hamiltonian Ĥo = ωoĉ

†ĉ, via the tripartite
Hamiltonian

K̂ = −igâb̂†ĉ† + H.c. (B2)

We work in resonance, ωo = ωh − ωc, and in the weak
coupling regime for which a local master equation holds [34].
The master equation in the interaction picture for the tripartite
state ρ̂3 of the TLS’s coupled to the HO is written as

dρ̂3

dt
= (L + K)ρ̂3, (B3)

with L = Lh + Lc and

Kρ̂3 = −i[K̂,ρ̂3]. (B4)

We will derive the effective master equation for the HO state ρ̂

assuming that the TLS’s are initially in their equilibrium states
ρ̂∞

hc = ρ̂∞
h ⊗ ρ̂∞

c and the initial state of the tripartite system
is the product state ρ̂3(0) = ρ̂∞

hc ⊗ ρ̂(0). The solution of the
master equation (B3) can be written in the implicit form

ρ̂3(t) = ρ̂3(0) +
∫ t

0
ds eL(t−s)Kρ̂3(s), (B5)

which we can confirm by taking the time derivative of both
sides of the equation, and using the relation Lρ̂3(0) = 0.
Inserting the above solution into the right-hand side of
Eq. (B3), we obtain

dρ̂3(t)

dt
= Kρ̂3(0) + (L + K)

∫ t

0
ds eL(t−s)Kρ̂3(s). (B6)

We assume that ρ̂3(s) ≈ ρ̂∞
hc ⊗ ρ̂(s). This assumption is

justified when the thermalization time of the TLS’s is faster
than the time scale in which the system is changed significantly
due to coupling (B2). Taking the partial trace over the TLS’s

dρ̂(t)

dt
= trhc

[
K

∫ t

0
ds eL(t−s)Kρ̂∞

hc ⊗ ρ̂(s)

]
. (B7)

Here we have used the relations trhc[Kρ̂∞
hc ] = 0 and

trhc[L
∫ t

0 eL(t−s)Kρ̂∞
hc ] = 0. Performing the standard Marko-

vian approximations [24] we obtain

dρ̂(t)

dt
= trhc

[
K

∫ ∞

0
ds eLsKρ̂∞

hc ⊗ ρ̂(t)

]
, (B8)

which can be written explicitly as

dρ̂

dt
= −trhc

[
K̂,

∫ ∞

0
ds eLs

[
K̂,ρ̂∞

hc ⊗ ρ̂
]]

= −trhc

∫ ∞

0
ds[(eL†sK̂),[K̂,ρ̂∞

hc ⊗ ρ̂]]. (B9)

Making use of the relation

eL†sK̂ = K̂ exp

[
−1

2

∑
l=h,c

�l(1 + e−βlωl )s

]
, (B10)

we have

dρ̂

dt
= (2g)2∑

l=h,c �l(1 + e−βlωl )
[〈ââ†〉∞〈b̂†b̂〉∞(ĉρ̂ĉ† − Hĉ†ĉρ̂)

+〈â†â〉∞〈b̂b̂†〉∞(ĉ†ρ̂ĉ − Hĉĉ†ρ̂)], (B11)

where 〈·〉∞ stands for the expectation value with respect to
the TLS’s thermal equilibrium states ρ̂∞

h(c). Finally, the master
equation for the HO subject to the engine operation takes the
form

dρ̂

dt
≡ Leρ̂ = �e(ĉρ̂ĉ† − Hĉ†ĉρ̂)

+�ee
−β−

e ωo (ĉ†ρ̂ĉ − Hĉĉ†ρ̂), (B12)

where

�e = (2g)2 (1 − nh)2(1 − nc)nc

�h(1 − nc) + �c(1 − nh)
, (B13)

and the output temperature of the heat engine is

β−
e = βhωh − βcωc

ωh − ωc

, (B14)

which is a function of the TLS’s excitation energies and
temperatures only. We operate the system as a heat engine,
i.e., Th/Tc > ωh/ωc > 1, the effective temperature is negative,
i.e., 1/β−

e < 0, and the HO will not reach a stable asymptotic
state, as we show below. The master equation (B12) together
with the Hamiltonian Ĥo yield closed evolution equations for
the mean amplitude 〈ĉ〉t as well as for the occupation 〈ĉ†ĉ〉t :

d〈ĉ〉t
dt

= −(κ−
e + iωo)〈ĉ〉t , (B15)

d〈ĉ†ĉ〉t
dt

= −2κ−
e 〈ĉ†ĉ〉t + �e e−β−

e ωo , (B16)

where

κ−
e = 1

2�e(1 − e−β−
e ωo ) < 0 (B17)

is the standard amplitude damping constant. This time it is
negative since β−

e < 0 therefore both 〈ĉ〉t and 〈ĉ†ĉ〉t diverge
exponentially with time. In particular, a thermal state remains
thermal, the temperature is increasing exponentially as can be
shown by the simple solution of Eq. (B16) for the occupation.
Note, however, that our model is only valid in the weak
coupling regime where the thermalization time is shorter than
the internal time scale. This implies that the occupation must
be limited by

g
√

〈ĉ†ĉ〉 + 1 � �h(c)(1 + e−βh(c)ωh(c) ). (B18)

APPENDIX C: EXTERNAL DRIVING

Coupling the HO to a resonant oscillating external field.
Via such driving one would expect to extract power. Consider
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the time-dependent Hamiltonian in the Schrödinger picture,

Ĥd (t) = −iεd (ĉ† e−iωot − ĉ eiωot ), (C1)

where εd > 0. In the interaction picture, the master equation
(B12) is modified by an additional static Hamiltonian:

dρ̂

dt
= Leρ̂ − εd [ĉ† − ĉ,ρ̂]. (C2)

Now the right-hand side of Eq. (B15) of the mean ampli-
tude acquires an additional term −εd e−iωot . This allows an
exceptional stationary solution of constant amplitude with the
rotating phase:

〈ĉ〉t = − εd

κ−
e

e−iωot = const × e−iωot . (C3)

This solution is unstable since all neighboring solutions
exponentially diverge with t . As to the occupation 〈ĉ†ĉ〉t , the
right-hand side of Eq. (B16) acquires the additional linear term
−εd (〈ĉ†〉t − 〈ĉ〉t ), hence the occupation remains exponentially
divergent; there is no steady-state solution under external
driving. The stability issue of the HO is still not resolved.

APPENDIX D: MONITORING

Continuous measurement, i.e., monitoring, is the first task
towards feedback control on the system [25]. Here we consider
the time-continuous measurement of both quadratures x̂ =

1√
2
(ĉ† + ĉ) and ŷ = i√

2
(ĉ† − ĉ) of the HO. Generalizing the

result of [26] for monitoring simultaneously x̂ and ŷ, we can
write the following stochastic master equation (SME) in the
Schrödinger picture for the density matrix σ̂ conditioned on
both measurement signals x̄,ȳ:

dσ̂ = −i[Ĥo,σ̂ ]dt − γm

8
[x̂,[x̂,σ̂ ]]dt − γm

8
[ŷ,[ŷ,σ̂ ]]dt

+H√
γm(x̂ − 〈x̂〉σ )σ̂ dξx + H√

γm(ŷ − 〈ŷ〉σ )σ̂ dξy.

(D1)

All expectation values 〈·〉σ are understood in the stochastic
conditional state σ̂ . The measurement signals satisfy

x̄dt = 〈x̂〉σ dt + dξx√
γm

, ȳdt = 〈ŷ〉σ dt + dξy√
γm

. (D2)

Here dξx,dξy are Ito increments of independent standard
Wiener processes, satisfying

(dξx)2 = (dξy)2 = dt, dξxdξy = 0, Mdξx = Mdξy = 0,

(D3)
with the symbol M for stochastic mean, and γm for the
measurement strength. (Note that we changed γm in Ref. [26]
for γm/2.) We can return to complex notation, i.e., we rewrite
the above equations in terms of ĉ,ĉ† and the corresponding
complex signal c̄ = (x̄ + iȳ)/

√
2. We define the complex

Wiener increment as

dξ = dξx + idξy√
2

, (D4)

which satisfies

(dξ )2 = (dξ ∗)2 = 0, dξ ∗dξ = dt, Mdξ = Mdξ ∗ = 0.

(D5)

The SME (D1) of the conditional state becomes

dσ̂ = −i[Ĥo,σ̂ ]dt + γm

4
(ĉρ̂ĉ† − Hĉ†ĉσ̂ + ĉ†ρ̂ĉ − Hĉĉ†σ̂ )

+√
γmH[(ĉ − 〈ĉ〉σ )dξ ∗ + H.c.]σ̂ ≡ −i[Ĥo,σ̂ ]dt

+Lmσ̂dt + √
γmH[(ĉ − 〈ĉ〉σ )dξ ∗ + H.c.]σ̂ . (D6)

Equations (D2) of the real signals take the following form for
the complex signal:

c̄ dt = 〈ĉ〉σ dt + dξ√
γm

. (D7)

Applying this time-continuous measurement to the HO which
is coupled to the heat engine and driven by the external field,
cf. Eq. (C2), we get the following SME:

dσ̂ = −i[Ĥo,σ̂ ]dt + (Le + Lm)σ̂ dt − εd [ĉ†eiωot − ĉ,σ̂ ]dt

+√
γmH[(ĉ − 〈ĉ〉σ )dξ ∗ + H.c.]σ̂ . (D8)

The state σ̂ of the HO is the conditioned state on the measured
signal (D7), its stochastic mean is the unconditional density
matrix: Mσ̂ = ρ̂. Taking the stochastic mean M of both sides
of the SME, we are left with the master equation of the
unconditional state:

dρ̂

dt
= (Le + Lm)ρ̂ − εd [ĉ† − ĉ,ρ̂]. (D9)

As a result of the measurement, additional heat flows into
the oscillator, the damping rate becomes �e + γm, and the
inverse “temperature” β−

e is modified but remains negative.
The exceptional steady amplitude (C3) exists with the modified
parameters, but it is unstable like all other solutions.

APPENDIX E: FEEDBACK CONTROL

Using the measured signal in Eq. (D7), we control the state
of the HO in the vicinity of the constant rotating amplitude set
by the external driving in such a way that we get a true stable
steady state. Consider the following feedback Hamiltonian in
the Schrödinger picture:

Ĥf (t) = −iκf c̄(t)ĉ† + H.c. (E1)

Here κf is the feedback strength. We apply the feedback [27]
on top of the monitored evolution described by Eq. (D8):

σ̂ + dσ̂ → e−iĤf dt (σ̂ + dσ̂ )eiĤf dt . (E2)

Expanding the right-hand side into a series, keeping first-order
terms in dt , and keeping in mind that |dξ |2 = dt , the terms
that are left for evaluation are −i[Hf dt,σ̂ ], −i[Hf dt,gσ̂ ],
and − 1

2 [Hf dt,[Hf dt,σ̂ ]]. The final SME including feedback
reads

dσ̂ = −i[Ĥo,σ̂ ]dt + (Le + Lm + Lf )σ̂ dt

− εd [ĉ†eiωot − ĉ e−iωot ,σ̂ ]dt − κf√
γm

[ĉ†dξ − ĉdξ ∗,σ̂ ]

+√
γmH[(ĉ − 〈ĉ〉σ )dξ ∗ + H.c.]σ̂ . (E3)
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The dissipative contribution of the feedback reads

Lf σ̂ =
(

κ2
f

γm

+ κf

)
(ĉσ̂ ĉ† − Hĉ†ĉσ̂ )

+
(

κ2
f

γm

− κf

)
(ĉ†σ̂ ĉ − Hĉĉ†σ̂ ). (E4)

For κf > γm this corresponds to a thermal bath of positive
temperature. Entering the regime 0 < κf < γm, the cooling
effect of Lf within the sum Le + Lm + Lf becomes enhanced
although Lf ceases to be a mathematically correct dissipator
in itself. Taking the stochastic mean over Eq. (E3) we obtain
the master equation of the unconditional state which in the
interaction picture takes this form:

dρ̂

dt
= (Le + Lm + Lf )ρ̂ − εd [ĉ† − ĉ,ρ̂]. (E5)

What we have for the HO dynamics is the following: The
HO is excited by the negative-temperature (1/β−

e ) bath Le due
to population inversion, heated by the infinite-temperature bath
Lm due to noise of monitoring, and cooled by the feedback Lf .
On top of this, the external driving shifts the Hamiltonian Ĥo.
We write the full master equation (E5) in a compact form:

dρ̂

dt
= �(ĉρ̂ĉ† − Hĉ†ĉρ̂) + �e−βωo (ĉ†ρ̂ĉ − Hĉĉ†ρ̂)

− εd [ĉ† − ĉ,ρ̂], (E6)

where � and β are determined by

� = �e + γm

4
+ κ2

f

γm

+ κf , (E7)

e−βωo� = �e e−β−
e ωo + γm

4
+ κ2

f

γm

− κf . (E8)

We turn the effective temperature β positive by choosing
the feedback strength above the following threshold:

κf > −κ−
e = 1

2�e(e−β−
e ωo − 1). (E9)

Note that the driving on the right-hand side of the master
equation (E6) can be absorbed into the standard thermal
dissipator at (inverse) temperature β if we displace ĉ,ĉ† by
a suitable real number. Accordingly, the master equation (E6)
must have a unique stationary state which is the following
displaced thermal state of the HO:

ρ̂∞ = N exp[−βωo(ĉ − c∞)†(ĉ − c∞)], (E10)

with the static real displacement in interaction picture:

c∞ = − εd

κf + κ−
e

< 0. (E11)

In the Schrödinger picture the stationary state is a thermal state
with the rotating displacement:

ρ̂∞ ⇒ N exp[−βωo(ĉ − c∞e−iωot )†(ĉ − c∞e−iωot )]. (E12)

Hence the mean amplitude rotates, and its phase is shifted by
−π/2 with respect to the external driving:

〈ĉ〉∞ = c∞ e−iωot . (E13)

The average population is the Planckian thermal value plus the
yield of displacement:

〈ĉ†ĉ〉∞ = 1

eβωo − 1
+ |c∞|2 ≡ no + |c∞|2. (E14)

We use the redundant expression |c∞|2 for c2
∞ to capture

an occasionally different phase convention of driving. Both
terms on the right-hand side diverge at the edge of the regime
of operation κf + κ−

e → +0 where the model breaks down
because it violates the weak coupling condition (B18).

APPENDIX F: ENERGY FLOWS IN STEADY STATE

Any systematic calculation of heat flow and power requires
us to transform the final SME from Ito into Stratonovich form.
We postpone this very novel task to future research. Rather,
we focus on the minimal calculations and considerations
confirming that our model represents a genuine heat engine.

Next, we show that there is a consumable output power
in the steady-state operation of the flywheel. The total
Hamiltonian has two time-dependent contributions Hd (t) and
Hf (t). Accordingly, the power P consists of two contributions
corresponding to the power invested by the driving and the
power gained from the feedback. The first, in the steady state
Mσ̂ = ρ̂∞, reads

Pd = Mtr

[
σ̂

dĤd

dt

]
= tr

[
ρ̂∞ d

dt
(−iεd ĉ

†e−iωot + H.c.)

]
= −2εdωoc∞ > 0, (F1)

where the positivity indicates power going into (consumed by)
the flywheel. We restrict our calculations for the deterministic
part of feedback, i.e., we replace Ĥf (t) by its deterministic
part Ĥf,det = −iκf 〈ĉ〉σ ĉ† + H.c. As was mentioned before,
considering the stochastic part Ĥf,sto = −iκf /

√
γmĉ†dξ +

H.c. requires the Stratonovich calculus. The power reads

Pf,det = Mtr

[
σ̂

dĤf,det

dt

]
= Mtr

[
σ̂

d

dt
(−κf 〈ĉ〉σ ĉ† + H.c.)

]

= −iκf Mtr

[
dσ̂

dt
ĉ

]
〈ĉ†〉σ + c.c. (F2)

The power in Eq. (F2) is proportional to the (weighted) mean
of the phase drift of the amplitude 〈ĉ〉σ . To calculate dσ̂ we
apply the final SME given in Appendix E. The only relevant
yield is the unitary rotation −iωo〈ĉ〉σ dt since the dissipative
part does not alter the phase of 〈ĉ〉σ and the Ito stochastic part
will cancel out by the mean operation M. Therefore we get

Pf,det = −2κf ωoM|〈ĉ〉σ |2 < 0. (F3)

Negativity means that power is gained (supplied) by feedback.
Although analytical solutions for similar SMEs such as ours
exist [35], we restrict ourselves to a simple guess. Using the
Cauchy-Schwartz relation M|〈ĉ〉σ |2 � |M〈ĉ〉σ |2, we obtain
the lower bound −Pf,det � 2κf ωo|c∞|2 for the stationary
power gained by feedback in the steady-state. Hence the overall
stationary power satisfies the inequality

−Pdet = −Pd − Pf,det � 2ωoε
2
d

−κ−
e

(κf + κ−
e )2

. (F4)
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The sign is negative and thus the consumable power of the
flywheel is positive and bounded from below. We conjecture

that the contribution of the stochastic part Ĥf,sto(t) of driving
cannot invalidate the positivity of the consumable power.
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Chapter 7

Conclusions and outlook

Thermodynamic irreversibility is not inherent in quantum mechanics. It is mani-

fested by assumptions made on the quantum system and its environment (see section

2.3.2). If initially the system and the environment (the rest of the universe) are cor-

related it is not unacceptable that in future the entropy will decrease, leading to

a violation of the second law. Nevertheless, as far as our current observations go,

the second law is valid. Thus, any approximated treatment of quantum mechan-

ics should respect restrictions set by the thermodynamic laws. In chapter 3 we

uncovered a common flaw in the literature using thermodynamic arguments. We

then introduced a quantum thermodynamic consistent framework for analyzing en-

ergy flow thorough a quantum network using a global LGKS master equation. This

framework reflects the global nature of quantum mechanics and should be applied

when studying quantum devices operating out of equilibrium.

Based on this work, Trushechkin and Volovich [Trushechkin 2016] developed a

perturbative treatment of inter-site couplings in the local description of open quan-

tum networks. They suggested to add correction terms to the local LGKS generator.

In practice, these terms can be obtained by expanding the global LGKS generator

in orders of inter-site coupling strength. Although this treatment successfully solves

the problem of violating the second law, it is not necessarily easier to apply than

the accurate global approach. Later works attempted to approach the problem

we introduced by applying different techniques: The repeated interaction scheme

[Barra 2015]; the Redfield quantum master equation [Purkayastha 2016]; and the

stochastic Liouville-von Neumann equation [Stockburger 2016].

In chapter 4 we coined the concept of quantum absorption refrigerator as an

autonomous quantum device that exploits noise or heat to drive a cooling process.

It was proposed that the minimal model of an autonomous refrigerator must in-

volve three energy currents via a non-linear interaction. Later, it was shown in

[Martinez 2013] that it is impossible to build a quantum absorption refrigerator us-

ing linear networks, therefore, such refrigerators require non-linearity as a crucial
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ingredient.

The idea of a quantum absorption refrigerator aroused great interest and many

studies followed. In [Correa 2014b] the efficiency at a maximum cooling power and

the effect of squeezing the heat source that drives an absorption cooling cycle was

considered. Entanglement in an absorption refrigerator composed of three qubits

was shown to enhance the cooling process, implying that quantum refrigerators

can outperform classical ones [Brunner 2014]. The transient regime of a quantum

absorption refrigerator was also investigated [Mitchison 2015, Das 2016] suggesting

protocols for single-shot cooling. A study [Correa 2014a] examining a parallel mul-

tistage quantum absorption refrigerator suggested that the construction introduced

in chapters 4 and 5 is the optimal compromise between performance and complexity.

This indicates that it should be considered for practical applications of absorption

cooling to quantum technologies.

Suggestions for experimental realizations were soon to follow. Among these are:

A quantum refrigerator system composed of three rf-SQUID qubits [Chen 2012]; an

electronic quantum absorption refrigerator based on four quantum dots [Venturelli 2013];

quantum absorption refrigerators in an atom-cavity systems [Mitchison 2016]; and

a quantum absorption refrigerator with a circuit QED architecture in Josephson

junction [Hofer 2016]. The study of quantum absorption refrigerators is developing

tremendously nowadays. Noise and heat are free resources and in many cases are

unavoidable in experiments. The concept of quantum absorption cooling suggests

exploiting these resources for our needs, making it significant for future nano-scale

quantum devices. Additional studies of quantum absorption refrigerators can be

found in [Gelbwaser-Klimovsky 2013, Silva 2015, Silva 2016].

The formulation of the third law of thermodynamics presented in chapter 5

sets the limitation on the optimal cooling speed, binding any refrigerator when ap-

proaching the absolute zero. This formulation unravels the relation between the

two known formulations of the law, the unattainability principle and Nernst’s heat

theorem. For a cooling process, the unattainability principle is quantified by the

scaling of the cooling speed with temperature, whereas Nernst’s heat theorem is

quantified by the scaling of heat extraction speed with temperature. This quan-

tification resolves the dispute regarding the preeminence of the formulations. It is

suggested that the unattainability principle is superior to Nernst’s heat theorem,

and sets stronger limitations on the cooling process. In [Levy 2012a] (appendix

A) we comment on a refrigeration mechanism powered by photons introduced in

[Cleuren 2012]. We show that the proposed model upholds Nernst’s heat theorem

but violates the unattainability principle. This is another example of how consis-

tency with the laws of thermodynamics and their appropriate formulation can reveal

flaws when applying approximations to study models of quantum devices.
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An additional advantage of the formulation introduced in chapter 5 is its uni-

versality. The characteristic exponent does not depend on the type of the quantum

refrigerator. The dimension of the substance being cooled also does not play a role.

This behavior can be traced back to the scaling of the density of modes and the

heat capacity with temperature which nullifies the dependence on dimension. The

characteristic exponent depends only on the type of interaction between the working

medium and the substance being cooled. The relation of this coupling with the dis-

persion relation of a Bosonic field excludes exotic dispersion laws that are forbidden

by the relativity theory. This implies that the formulation of the third law predicts

independently of relativity theory the finite group velocity property.

Kolář et al. [Kolář 2012] have challenged the unattainability principle by look-

ing for systems with exotic dispersion laws such as magnons and materials that

exhibit effects of fractal disorder. We note that these kinds of systems are typi-

cally integrable systems which implies that they will not thermalize, making them

unsuitable for examining the third law. In [Masanes 2014] the authors attempted

to derive the third law of thermodynamics by quantifying the resources needed to

cool a system to any particular temperature. By obtaining a lower bound on the

achievable temperature which depends on time they showed consistency with the

formulation introduced in chapter 5. This formulation was also shown to hold for

suggested realizations of nonlinear dc thermoelectric devices [Whitney 2013], and

for a four-level refrigerator driven by photons [Wang 2015].

Another novel and important result of chapter 5 is the definitions for the heat

currents when the quantum device is strongly driven by an external periodic field and

simultaneously coupled to heat reservoirs. The external field “dresses” the quantum

system and heat flows through channels corresponding to the quasi-Bohr frequencies

obtained from the Floquet analysis. As a consequence of the strong driving, heat

leaks are manifested in the quantum refrigerator, thus heat will flow from the hot

to the cold reservoir, leading to a reduction in the efficiency of the cooling process.

Once the mechanisms that causes heat leaks are understood we can attempt and

overcome these by applying different control protocols.

In physics, the second quantum revolution, termed by Dowling and Milburn

[Dowling 2003], is the perception that we humans are no longer passive observers of

the quantum world, but can now actively manipulate it. Developing and improving

quantum control techniques pave the road to this revolution. Quantum thermo-

dynamics provides the complimentary information about the quantum properties

that can be exploited as resources for future quantum technologies and set restric-

tions on its operations. The aim of quantum control theories is to develop protocols

for preparing entangled states, coherent states, or any other state possessing novel

properties for specific applications.



84 Chapter 7. Conclusions and outlook

Relating quantum control theories with thermodynamics would be extremely

beneficial. On the one hand, thermodynamics sets limitations on physical processes.

Including such restrictions gained from the study of quantum thermodynamics to

quantum control theories will introduce additional physical constraints on manipu-

lating quantum systems and will set bounds on the achievable fidelity of the target

state. On the other hand, by applying quantum control theories to thermodynamics

in the quantum regime we can optimally exploit resources to drive thermodynamic

processes. The first attempt to do so was introduced in chapter 6, where we applied

quantum monitoring and feedback control to manage a charging process of a quan-

tum energy storage device. It was shown that when the storage device is a quantum

harmonic oscillator, fluctuations dominate the dynamics leading to divergence of the

thermodynamic properties of the flywheel. Gaining information about the state of

the system in real time by monitoring it, and then using this information to apply a

feedback Hamiltonian, we attain a steady state operation of the device. A balance

between information gained from monitoring the device and information fed back

to the device is found to maximize the charging efficiency.

Although constructing quantum energy storage devices may seem like a futuris-

tic technology, some of these concepts were recently demonstrated in the laboratory

[Roßnagel 2016]. In this experiment, a single atom heat engine was constructed.

The working medium is a single ion trapped in a linear Paul trap that interacts

with a cold bath on one side of the trap and with a hot bath on the other side.

The output is used to drive an harmonic oscillator (increasing the axial potential

energy of the trapped ion). In order to stabilize the harmonic oscillator, an addi-

tional resource in the form of laser cooling is introduced, and more power is invested

in cooling than actually can be stored in the harmonic oscillator. Applying the

concept proposed in chapter 6 of quantum monitoring feedback control would make

this process energetically profitable. In such an experimental setup feedback control

can be achieved by monitoring the oscillations of the ion in the trap and change

accordingly the trap potential. We conclude that by relating thermodynamics with

quantum monitoring and feedback control we can optimally exploit the available

quantum-thermodynamic resources. This will have significant implications in de-

signing and managing energetic processes of future quantum devices.

Many of the quantum control methods are applicable to closed quantum systems.

Since any realistic quantum system is coupled to the environment, full control over

the dynamics requires manipulating the environment. Typically, the environment

poses an enormous number of degrees of freedom that are not directly accessible to

the experimentalists in the laboratory. Instead of attempting to isolate the system

from its environment using different protocols, we propose to optimally control it

under a set of thermodynamic constraints that would mimic the environment’s in-
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fluence. As an example, it might be possible to extend shortcuts to adiabaticity

control methods [Torrontegui 2013] to open quantum systems.

Quantum thermodynamics is a growing field of research which nowadays receives

recognition in many branches of quantum mechanics. There are different approaches

studying thermodynamics in the quantum regime. These are: quantum thermody-

namic resource theories, information and thermodynamics, single shot thermody-

namics, quantum fluctuation relations, and the approach taken in this thesis, viz.

the study of quantum thermal machines. The field of quantum thermodynamics will

benefit from relating these different approaches in a common language.

The future of the filed, just like in any other field of science, crucially depends on

experiments. As a theoretician, revealing novel quantum thermodynamic signatures

are necessary for identifying and quantifying quantum effects in thermodynamics of

quantum systems. Such ideas are presented in appendices B and C, where we in-

troduced quantum thermodynamic signatures in the operation of quantum thermal

machines. That is, for a given set of thermal resources and thermodynamic measure-

ments (for example, power output) we can determine if the device exploits coherence

in its operation. This theoretical result is now being tested in collaboration with an

experimental group on superconducting circuits.

Another direction for future research is relating quantum thermodynamics with

quantum sensing and metrology. This will provide insight on the energetic and en-

tropic cost for attaining a certain accuracy in measurement. For given resources

that depend on the experimental setup, thermodynamic considerations will set fun-

damental bounds on the ability to measure physical properties at optimal precision.

It is applicable to a wide variety of systems, from magnetoreception in migrating

species to quantum clocks.

”Excellently observed,” answered Candide; ”but let us cultivate our garden.” –

Voltair, Candide or Optimism, 1759
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Comment on ‘‘Cooling by Heating: Refrigeration
Powered by Photons’’

In a recent Letter, Cleuren et. al. [1] proposed a model of
a refrigerator composed of two metallic leads connected to
two coupled quantum dots and powered by (solar) photons.
In their analysis the refrigerator can cool one of the leads to
arbitrarily low temperature, Tr ! 0, with the cooling flux
_Qr / Tr. We comment that this model strongly violates the
dynamical version of the third law of thermodynamics.
Furthermore, under more realistic assumptions concerning
transitions between dot levels mediated by an electromag-
netic field, we show that their model will not operate as a
refrigerator.

There are seemingly two independent formulations of
the third law. The first, known as the Nernst heat theorem,
implies that the entropy flow from any substance at abso-
lute zero is zero. Consider a system coupled simulta-
neously to a few heat baths with the aim to cool one of
these baths to zero temperature. The entropy flow from this

bath, given by � _Qk

Tk
, satisfies the Nerst theorem if the heat

current _Qk flowing from the bath to the system scales like
/ T�

k with �> 1.
The second formulation of the third law is a dynamical

one, known as the unattainability principle: No refrigerator
can cool a system to absolute zero temperature at finite
time. The dynamics of the cooling process is governed by
the equation

_QkðTkðtÞÞ ¼ �cVðTkðtÞÞdTkðtÞ
dt

; (1)

where cV is heat capacity of the bath. Putting _Qk / T�
k and

cV / T�, � � 0, we can quantify this formulation by eval-
uating the characteristic exponent � of the cooling process,

dTðtÞ
dt

/ �T� ; T ! 0; � ¼ �� �: (2)

Namely, for � < 1 the bath is cooled to zero temperature in
a finite time. This formulation is more restrictive than the
Nernst heat theorem and imposes limitations on the spec-
tral density and the dispersion law of the heat bath [2].

The model of the refrigerator presented in Ref. [1]
strongly violates the unattainability principle. For an elec-
tron reservoir at low temperatures, heat capacity is cV / T.
The heat current of the refrigerator of Ref. [1] is _Qr / Tr,
therefore, one obtains � ¼ 0, and zero temperature is
reached at finite time.

Finding the flaw in the analysis of Ref. [1] is not a trivial
task. A possible explanation emerges from the assumption
made in Ref. [1] that transitions between lower and higher
levels within the individual dots are negligible. However,
photon- assisted tunneling between dots produces a rather
weak tunneling current [3], while quenching transition

rates in the individual dots are at least comparable and
hence cannot be neglected.
A modified master equation that includes quenching

transitions can be constructed for a five-level system: _~p ¼
M � ~p, where ~p ¼ ðp0; pld; prd; plu; pruÞT . Here, p0 is the
probability of finding no electron in the double dots and pij

is the probability of finding one electron in the correspond-
ing energy level, with l for left, r for right, d for down, and
u for up. The 5� 5 matrix M contains all transition rates,
including quenching transition within the individual dots.
Using this modified model, we can show analytically that,
under the technical assumption that strictly positive
quenching rates are equal for both dots, the condition for
cooling ( _Qr > 0) and the condition of zero net electric
current cannot be simultaneously satisfied at the stationary
state. On the other hand, a crucial condition for this device
to operate as a refrigerator [1] is that there is no net electric
charging of the baths (leads). Otherwise, the electric cur-
rent flowing through the device must be compensated by an
external flow of electrons from the hot to the cold bath
which would annihilate the cooling effect.
In conclusion, transitions in the individual dots, which

are always present in real systems, cannot be neglected
when treating electron transport in the double-dot systems.
The dynamical form of the third law is a strong tool for
testing designs of such nanodevices acting as refrigerators.
Quantum models of refrigerators powered by heat (absorp-
tion refrigerators), which do not violate the third law, were
studied in Refs. [2,4,5].
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Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures
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Quantum heat engines (QHE) are thermal machines where the working substance is a quantum object. In
the extreme case, the working medium can be a single particle or a few-level quantum system. The study of
QHE has shown a remarkable similarity with macroscopic thermodynamical results, thus raising the issue
of what is quantum in quantum thermodynamics. Our main result is the thermodynamical equivalence of all
engine types in the quantum regime of small action with respect to Planck’s constant. They have the same
power, the same heat, and the same efficiency, and they even have the same relaxation rates and relaxation
modes. Furthermore, it is shown that QHE have quantum-thermodynamic signature; i.e., thermodynamic
measurements can confirm the presence of quantum effects in the device. We identify generic coherent
and stochastic work extraction mechanisms and show that coherence enables power outputs that greatly
exceed the power of stochastic (dephased) engines.

DOI: 10.1103/PhysRevX.5.031044 Subject Areas: Quantum Physics

I. INTRODUCTION

Thermodynamics emerged as a practical theory for
evaluating the performance of steam engines. Since
then, the theory proliferated and has been utilized in
countless systems and applications. Eventually, thermody-
namics became one of the pillars of theoretical physics.
Amazingly, it survived great scientific revolutions such as
quantum mechanics and general relativity. To a certain
extent, thermodynamics even contributed to these theories
(e.g., black hole entropy and temperature).
Despite its success, it is not expected that thermody-

namics will hold all the way to the atomic scale, where the
number of particles in the relevant substance is small or
even equal to 1. Thus, it was anticipated that in the quantum
regime new thermodynamic effects will surface. However,
quantum-thermodynamic systems (even with a single
particle) show a remarkable similarity to the macroscopic
system described by classical thermodynamic. When the
baths are thermal, the Carnot efficiency limit is equally
applicable for a small quantum system [1,2]. Even classical
fluctuation theorems hold without any alteration [3–5].
Since real engines have a finite cycle time, they cannot

be in an exact equilibrium state and perform as a reversible
machine. Consequently, the efficiency is always lower than
the Carnot limit. Furthermore, the performance of a real
engine is more severely limited by heat leaks, friction, and

heat transport. This led to the study of efficiency at
maximal power [6–9] and finite-time thermodynamics
[10,11]. In analogy to the classical case, nonadiabatic
couplings in finite-time quantum evolution give rise to a
new quantum frictionlike mechanism [12,13]. However,
this friction effect is not a generic feature of quantum heat
machines. It can be avoided by applying different schemes.
(See Ref. [14], or the multilevel embedding scheme in
Sec. II E of this paper. See also the discussion in Ref. [15].)
Is there really nothing generic, new, and profound in

the thermodynamics of small quantum system? Can
classical thermodynamics and stochastic analysis predict
and explain any observed thermodynamic effect in quan-
tum heat machines? Do quantum effects always lead to
friction and losses, or can they boost the heat machine
performance? In this work, we present a generic thermo-
dynamic behavior that is purely quantum in its essence and
has no classical counterpart. Furthermore, it is shown that
in the quantum regime, the generic coherent work extrac-
tion mechanism can significantly outperform the stochastic
work extraction mechanism.
Quantum thermodynamics is the study of thermodynamic

quantities such as temperature, heat, work, and entropy in
microscopic quantum systems or even for a single particle.
This study includes dynamical analysis of engines and
refrigerators in the quantum regime [1,14,16–40], theoreti-
cal frameworks that take into account single-shot events
[41,42], and the study of thermalization mechanisms
[43–45]. Another topic of interest in quantum thermody-
namics is algorithmic cooling [46–50]. For updated reviews
on quantum thermodynamics, we recommendRefs. [51,52].
Several proposals for quantum-heat-engine realization

and experimental setup have been studied [53–57].
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However, as will be explained later, only some of them are
suited for exploring the quantum effects studied here. We
hope our findings will motivate experimentalists to come
up with more schemes that can probe the coherent work
extraction regime.
Recently, some progress on the role of quantum coher-

ence in quantum thermodynamics has been made [58–64].
In addition, quantum coherence has been shown to quanti-
tatively affect the performance of heat machines [65–67]. In
this work, we associate coherence with a specific thermo-
dynamic effect and relate it to a thermodynamic work
extraction mechanism.
Heat engines can be classified by their different sched-

uling of the interactions with the baths and the work
repository. These types include the four-stroke, two-stroke,
and the continuous engines (these engine types will be
described in more detail later). The choice of engine type is
usually guided by convenience of analysis or ease of
implementation. Nevertheless, from a theoretical point of
view, the fundamental differences or similarities between
the various engine types are still uncharted. This is
particularly true in the microscopic quantum regime. For
brevity, we discuss engines, but all our results are equally
applicable to other heat machines such as refrigerators and
heaters.
Our first result (21)–(23) is that all three engine types are

thermodynamically equivalent in the limit of small engine
action (weak thermalization and a weak driving field).
The equivalence holds also for transients and for states
that are very far from thermal equilibrium. On top of
providing a thermodynamic unification limit for the various
engine types, this equivalence also establishes a connection
to quantum mechanics, as it crucially depends on phase
coherence and quantum interference. In particular, the
validity regime of the equivalence is expressed in terms
of ℏ.
Our second result (32) is the identification of a quantum-

thermodynamic signatures. Let us define a quantum sig-
nature as a signal extracted from measurements that
unambiguously indicates the presence of quantum effects
(e.g., entanglement or interference). The Bell inequality
for the EPR experiment is a good example. A quantum-
thermodynamic signature is a quantum signature obtained
from measuring thermodynamic quantities. We show that it
is possible to set an upper bound on the work output of a
stochastic, coherence-free engine. Any engine that sur-
passes this bound must have some level of coherence.
Hence, work exceeding the stochastic bound constitutes a
quantum-thermodynamic signature. Furthermore, we dis-
tinguish between a coherent work extraction mechanism
and a stochastic work extraction mechanism. This explains
why in the equivalence regime, coherent engines produce
significantly more power compared to the corresponding
stochastic engine. We estimate that our findings can be
verified with present-day experimental capabilities. For a

suggested realization in solid-state superconducting qubits,
see Ref. [68].
The equivalence derivation is based on three ingredients.

First, we introduce a multilevel embedding framework that
enables the analysis of all three types of engines in the same
physical setup. Next, a “norm action” smallness parameter,
s, is defined for engines using Liouville space. The third
ingredient is the symmetric rearrangement theorem that is
used to show why all three engine types have the same
thermodynamic properties despite the fact that they exhibit
very different density matrix dynamics.
In Sec. II, we describe the main engine types and

introduce the multilevel embedding framework. Next, in
Sec. III, the multilevel embedding and the symmetric
rearrangement theorem are used to show the various
equivalence relation of different engine types. After dis-
cussing the two fundamental work extraction mechanisms,
in Sec. IV, we present a quantum-thermodynamic signature
that separates quantum engines from stochastic engines. In
Sec. V, the over-thermalization effect in coherent quantum
heat engines is studied. Finally, in Sec. VI, we conclude and
discuss extensions and future prospects.

II. HEAT ENGINES TYPES AND THE
MULTILEVEL EMBEDDING SCHEME

Heat engines are either discrete or continuous. Discrete
engines include the two-stroke and four-stroke engines,
whereas a turbine is a continuous engine [69]. These engine
types appear in the macroscopic world as well as in the
microscopic (quantum) realm. Here, we present a theoreti-
cal framework where all three types of engines can be
embedded in a unified physical framework. This framework,
termed “multilevel embedding,” is an essential ingredient in
our theory as it enables a meaningful comparison between
different engine types.

A. Heat and work

A heat engine is a device that uses at least two thermal
baths in different temperatures to extract work. Work is the
transfer of energy from the engine to some external
repository without changing the entropy of the repository.
For example, increasing the excitation number of an
oscillator, increasing the photon number in a specific
optical mode (lasing), or increasing the kinetic energy in
a single predefined direction. “Battery” or “flywheel” are
terms often used in this context of work storage [70,71]. We
shall use the more general term “work repository.” Heat, on
the other hand, is an energy exchange between the system
and a thermal bath that involves entropy change in the bath.
In the weak system-bath coupling limit, the heat is related
to the temperature, via the well-known relation dQ ¼ TdS,
where dS is the entropy change in the bath.
In the elementary quantum heat engines, the working

substance is comprised of single particle (or a few at the
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most). Thus, the working substance cannot reach equilib-
rium on its own. Furthermore, excluding a few nongeneric
cases, it is not possible to assign an equation of state that
establishes a relation between thermodynamic quantities.
Nevertheless, QHE’s satisfy the second law and therefore
are also bounded by the Carnot efficiency limit [1,72].
Work strokes are characterized by zero contact with the

baths and an inherently time-dependent Hamiltonian. The
unitary evolution generated by this Hamiltonian can change
the energy of the system. On the other hand, the von
Neumann entropy and the purity remain fixed (unitary
evolution at this stage). Hence, the energy change of the
system in this case constitutes pure work. The system’s
energy change is actually an energy exchange with the
work repository.
When the system is coupled to a thermal bath and

the Hamiltonian is fixed in time, the bath can change the
populations of the energy levels. In a steady state, the
system reaches a Gibbs state where the density matrix has
no coherences in the energy basis and the population of the
levels is given by pn;b ¼ e−ðEn=TbÞ=

P
N
n¼1 e

−ðEn=TbÞ, where
N is the number of levels and “b” stands for “c” (cold) or
“h” (hot). In physical models where the system thermalizes
via collision with bath particles, a full thermalization can be
achieved in finite time [15,73–76]. However, it is not
necessary that the baths will bring the system close to a
Gibbs state for the proper operation of the engine. In
particular, maximal efficiency (e.g., in Otto engines) can be
achieved without full thermalization. Maximal power
(work per cycle time) is also associated with partial
thermalization [6,8]. The definitive property of a thermal
bath is its aspiration to bring the system to a predefined
temperature regardless of the initial state of the system. The
evolution in this stage does not conserve the eigenvalues of
the density matrix of the system, and therefore, not only
energy but entropy as well is exchanged with the bath.
Therefore, the energy exchange in this stage is considered
as heat.
In contrast to definitions of heat and work that are based

on the derivative of the internal energy [1,77,78], our
definitions are obtained by energy balance when coupling
only one element (bath or external field) at a time. As we
see later, in some engine types, several agents change the
internal energy simultaneously. Even in this case, this point
of view of heat and work will still be useful for obtaining
consistent and physical definitions of heat and work.

B. Three types of engines

There are three core engine types that operate with two
thermal baths: four-stroke engine, two-stroke engine, and a
continuous engine. A stroke is a time segment where a
certain operation takes place, for example, thermalization
or work extraction. By definition, adjacent strokes in heat
engines do not commute with each other. If they do
commute (for example, see the “cold” and “hot” operations

in the two-stroke engine later), they can be combined into a
single stroke since the total effect of the two strokes can be
generated by applying the two operations simultaneously.
Each stroke is a completely positive (CP) map [79], and

therefore, the one-cycle evolution operator of the engine is
also a CP map. For the extraction of work, it is imperative
that some of the stroke propagators do not commute [80].
Otto engines and Carnot engines are examples of four-

stroke engines. The simplest quantum four-stroke engine is
the two-level Otto engine shown in Fig. 1(a). In the first
stroke, only the cold bath is connected to the system. Thus,
the internal energy changes are associated with heat
exchange with the cold bath. The expansion and compres-
sion of the levels are fully described by a time-dependent
Hamiltonian of the form HðtÞ ¼ fðtÞσz (the baths are
disconnected at this stage). In the second stroke, work is
consumed in order to expand the levels, and in the fourth
stroke, work is produced when levels revert to their original
values. There is a net work extraction since the populations
in stages II and IV are different. In different engines, much
more general unitary transformation can be used to extract
work. Nevertheless, this particular operation resembles the
classical expansion and compression of classical engines.
The work is the energy exchanged with the system during
the unitary stages: W ¼ WII þWIV ¼ ðhE3i − hE2iÞþ
ðhE5i − hE4iÞ. We consider only energy expectation values
for two main reasons. First, investigations of work fluctua-
tions revealed that quantum heat engines follow classical
fluctuation laws [72], and we search for quantum signatures
in heat engines. The second reason is that, in our view,
the engine should not be measured during operation. The
measurement protocol used in quantum fluctuation
theorems [3,4,72] eliminates the density-matrix coher-
ences. These coherences have a critical component in

FIG. 1. (a) A two-level scheme of a four-stroke engine. (b) A
two-particle scheme of a two-stroke engine. (c) A three-level
scheme of a continuous engine.
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the equivalence and quantum signature we study in this
paper. As shown in Sec. IV, measurements or dephasing
dramatically change the engine. Thus, although we fre-
quently calculate work per cycle, the measured quantity
is the cumulative work, and it is measured only at the
end of the process. The averaged quantities are obtained by
repeating the full experiment many times. Engines are
designed to perform a task, and we assume that this
completed task is the subject of measurement. The engine
internal state is not measured.
The heat per cycle taken from the cold bath is

Qc ¼ hE2i − hE1i, and the heat taken from the hot bath
is Qh ¼ hE4i − hE3i. In a steady state, the average energy
of the system returns to its initial value after one cycle [81]
so that hE5i ¼ hE1i. From this result, it follows immedi-
ately that Qc þQh þW ¼ 0; i.e., the first law of thermo-
dynamics is obeyed. There is no instantaneous energy
conservation of internal energy, as energy may be tempo-
rarily stored in the interaction field or in the work
repository.
In the two-stroke engine shown in Fig 1(b), the engine

consists of two parts (e.g., two qubits) [82]. One part may
couple only to the hot bath, and the other may couple only
to the cold bath. In the first stroke, both parts interact with
their bath (but do not necessarily reach equilibrium). In the
second unitary stroke, the two engine parts are discon-
nected from the baths and are coupled to each other. They
undergo a mutual unitary evolution, and work is extracted
in the process.
In the continuous engine shown in Fig. 1(c), the two

baths and the external interaction field are connected
continuously. For example, in the three-level laser system
shown in Fig 1(c), the laser light represented by HwðtÞ
generates stimulated emission that extracts work from the
system. This system was first studied in a thermodynamics
context in Ref. [83], while a more comprehensive dynami-
cal analysis of the system was given in Ref. [84]. It is
imperative that the external field is time dependent. If it is
time independent, the problem becomes a pure heat trans-
port problem where Qh ¼ −Qc ≠ 0. In heat transport, the
interaction field merely “dresses” the level so that the baths
see a slightly modified system. The Lindblad generators are
modified accordingly, and heat flows without extracting or
consuming work [85]. Variations on these engine types
may emerge because of realization constraints. For exam-
ple, in the two-stroke engine, the baths may be continu-
ously connected. This variation and others can still be
analyzed using the tools presented in this paper.

C. Efficiency vs work and heat

Since the early days of Carnot, efficiency received
considerable attention for two main reasons. First, this
quantity is of great interest from both theoretical and
practical points of view. Second, unlike other thermody-
namics quantities, the efficiency satisfies a universal bound

that is independent of the engine details. The Carnot
efficiency bound is a manifestation of the second law of
thermodynamics. Indeed, for Markovian bath dynamics, it
was shown that quantum heat engines cannot exceed the
Carnot efficiency [1]. Recently, a more general approach
based on a fluctuation theorem for QHE showed that the
Carnot bound still holds for quantum engines [72]. Studies
in which higher-than-Carnot efficiency are reported [66] are
interesting, but they use nonthermal baths and therefore, not
surprisingly, deviate from results derived in the thermody-
namic framework that deals with thermal baths. For exam-
ple, an electric engine is not limited to Carnot efficiency
since its power source is not thermal. Although the present
work has an impact on efficiency as well, we focus on work
and heat separately in order to unravel quantum effects. As
will be exemplified later, in some elementary cases, these
quantum effects do not influence the efficiency.

D. Bath description and Liouville space

The dynamics of the working fluid (system) interacting
with the heat baths is described by the Lindblad-Gorini-
Kossakowski-Sudarshan (LGKS) master equation for the
density matrix [79,86,87]:

ℏdtρ¼LðρÞ¼−i½Hs;ρ�þ
X
k

AkρA
†
k−1

2
A†
kAkρ−1

2
ρA†

kAk;

ð1Þ

where the Ak operators depend on the temperature, relax-
ation time of the bath, system bath coupling, and also on the
system Hamiltonian Hs [79]. This form already encapsu-
lates within the Markovian assumption of no bath memory.
The justification for these equations arises from a “micro-
scopic derivation” in the weak system-bath coupling limit
[88]. In this derivation, a weak interaction field couples
the system of interest to a large system (the bath) with
temperature T. This interaction brings the system into a
Gibbs state at temperature T. The Lindblad thermalization
operators Ak used for the baths are described in the next
section. The small Lamb shift is ignored.
Equation (1) is a linear equation, so it can always be

rearranged into a vector equation. Given an index mapping
ρN×N → jρi1×N2 , the Lindblad equation now reads

iℏdtjρi ¼ ðHH þ LÞjρi ≐ Hjρi; ð2Þ

where HH is a Hermitian N2 × N2 matrix that originates
from Hs, and L is a non-Hermitian N2 × N2 matrix that
originates from the Lindblad evolution generators Ak. This
extended space is called Liouville space [89]. In this paper,
we use calligraphic letters to describe operators in Liouville
space and ordinary letters for operators in Hilbert space.
For states, however, jAi will denote a vector in Liouville
space formed from AN×N by “vec-ing” A into a column in
the same procedure ρ is converted into jρi. A short review
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of Liouville space and some of its properties is given in
Appendix A.
In unitary dynamics, the largest energy gap of the

Hamiltonian sets a speed limit on the rate of change of
a state (e.g., rotation speed in the Bloch sphere). SinceH is
not Hermitian, the energy scalar that sets a speed limit on
the evolution speed is the spectral norm (or operator norm)
of H, kHk ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eigðH†HÞ

p
(The spectral norm is the

largest singular value of H [90]). In particular, we show in
Appendix B that the norm action, defined as

s ¼
Zτ

0

kHðtÞkdt; ð3Þ

sets a limit on how much a state can change during a time τ
because of the operation ofH. For time-independent super-
HamiltonianH, the evolution operator in Liouville space is

jρðtÞi ¼ Kjρðt0Þi ¼ e−iHðt−t0Þ=ℏjρðt0Þi: ð4Þ
Writing the evolution operator as an exponent of a matrix
has a significant advantage since commutator exponentia-
tion is avoided. Furthermore, the action has a natural
definition in this formalism. In principal, it should be
possible to reformulate the derivations using density
matrixes and the Kraus operators. However, it seems that
the Hilbert space formalism is far more cumbersome and
complicated (for example, see Refs. [91,92]).
While the Lindblad description works very well for

sufficiently long times, it fails for very short times where
some of the approximation breaks down. In scales where
the bath still has a memory of the system’s past states, the
semigroup property of the Lindblad equation no longer
holds: jρðtþ t0Þi ≠ e−iðHsþLÞðt−t0Þ=ℏjρðt0Þi. This will set a
cutoff limit for the validity of the engine-type equivalence
in the Markovian approximation.
Next we introduce the multilevel embedding scheme that

enables us to discuss various heat engines in the same
physical setup.

E. Multilevel embedding

Let the working substance of the quantum engine be an
N-level system. These levels are fixed in time [i.e., they do
not change as in Fig. 1(a)]. For simplicity, the levels are
assumed to be nondegenerate. We divide the energy levels
into a cold manifold and a hot manifold. During the
operation of the engine, the levels in the cold manifold
interact only with the cold bath, and the levels in the hot
manifold interact only with the hot bath. Each thermal
coupling can be turned on and off as a function of time, but
the aliasing of a level to a manifold does not change in time.
If the manifolds do not overlap, the hot and cold thermal

operations commute and they can be applied at the same
time or one after the other. The end result will be the same.

Nevertheless, our scheme also includes the possibility that
one level appears in both manifolds. This is the case for the
three-level continuous engine shown in Fig. 1(c). For
simplicity, we exclude the possibility of more than one
mutual level. If there are two or more overlapping levels,
there is an inevitable heat transport in the steady state from
the hot bath to the cold bath even in the absence of an
external field that extracts work. In the context of heat
engines, this can be interpreted as heat leak. This “no field–
no transport” condition holds for many engines studied in
the literature. Nonetheless, this condition is not a necessary
condition for the validity of our results.
This manifold division seems sensible for the continuous

engine and even for the two-stroke engine in Fig. 1(b), but
how can it be applied to the four-stroke engine shown in
Fig. 1(a)? The two levels interact with both baths and
also change their energy value in time, contrary to the
assumption of fixed energy levels. Nevertheless, this engine
is also incorporated into the multilevel embedding frame-
work. Instead of two levels as in Fig. 1(a), consider the
four-level system shown in the dashed green lines in Fig. 2.
Initially, only levels 2 and 3 are populated and coupled to

the cold bath (2 and 3 are in the cold manifold). In the
unitary stage, an interaction Hamiltonian Hswap generates a
full swap of populations and coherence according to the
rule 1 ↔ 2; 3 ↔ 4. Now, levels 1 and 4 are populated and 2
and 3 are empty. Therefore, this system fully simulates the
expanding-level engine shown in Fig. 1(a). At the same
time, this system satisfies the separation into well-defined

FIG. 2. In the standard two-level Otto engine, there are two-
level Eg;e (purple arrows) that change in time to E0

g;e. In the
multilevel embedding framework, the levels (E1–4) are fixed in
time (black dashed lines), but a time-dependent field (π pulse,
swap operation) transfers the population (green arrows) to the
other levels. For a swap operation, the two schemes lead to the
same final state and therefore are associate with the same work.
Nonetheless, the multilevel scheme is more general since for
weaker unitary transformation (instead of the π pulse), coher-
ences are generated. We show that this type of coherence can
significantly boost the power output of the engine.
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time-independent manifolds, as defined in the multilevel
embedding scheme.
The full swap used to embed the traditional four-stroke

Otto engine is not mandatory, and other unitary operations
can be applied. This extension of the four-stroke scheme is
critical for our work since the equivalence of engines
appears when the unitary operation is fairly close to the
identity transformation. A full swap turns one diagonal
state into another. Consequently, the steady state of an
engine with full swap operation will not contain any
coherences in the energy basis. As will be shown later, a
partial swap or a different “weaker than full swap” unitary
leads to steady-state coherences that dramatically enhance
the power output. Note that these coherences between the
hot and cold manifold imply a superposition of the cold and
hot states. In other words, in contrast to the full swap case,
the particle is not localized exclusively on either the hot or
cold manifold.
Figures 3(a)–(c) show how the three types of engines are

represented in the multilevel embedding scheme. The
advantage of the multilevel scheme now becomes clear.
All three engine types can be described in the same
physical system with the same baths and the same coupling
to external fields (work extraction). The engine types differ
only in the order of the coupling to the baths and to the
work repository. While the thermal operations commute if
the manifolds do not overlap, the unitary operation never
commutes with the thermal strokes.
In the present paper, we use a direct sum structure for the

hot and cold manifolds. However, when there are two or
more particles in the engine [82], it is more natural to
apply a tensor product structure for the manifolds of the
multilevel embedding scheme.
On the right of Fig. 3, we plotted a “brick” diagram for

the evolution operator. Black stands for unitary trans-
formation generated by some external field, while blue
and red stand for hot and cold thermal coupling,

respectively. When the bricks are on top of each other, it
means that they operate simultaneously. Now we are in a
position to derive the first main results of this paper: the
thermodynamic equivalence of the different engine types in
the quantum regime.

III. CONTINUOUS AND STROKE ENGINE
EQUIVALENCE

We first discuss the equivalence of continuous and four-
stroke engines. Nevertheless, all the arguments are valid for
the two-stroke engines as well, as explained later. Although
our results are not limited to a specific engine model, it
will be useful to consider the simple engine shown in Fig. 4.
We use this model to highlight a few points and also
for numerical simulations. The Hamiltonian part of the
system is

H0 þ cosðωtÞHw; ð5Þ
where H0 ¼ −ðΔEh=2Þj1ih1j − ðΔEc=2Þj2ih2j þ ðΔEc=
2Þj3ih3j þ ðΔEh=2Þj4ih4j, Hw ¼ ϵðtÞj1ih2j þ ϵðtÞj3ih4j þ
H:c: and ω ¼ ðΔEh − ΔEcÞ=2ℏ.
The driving frequency that couples the system to the

work repository is in resonance with the top and bottom
energy gaps. The specific partitioning into hot and cold
manifolds was chosen so that only one frequency (e.g., a
single laser) is needed for implementing the system instead
of two.
We assume that the Rabi frequency of the drive ϵ is

smaller than the decay time scale of the baths, ϵ ≪ γc; γh.
Under this assumption, the dressing effect of the driving
field on the system-bath interaction can be ignored. It is
justified, then, to use “local” Lindblad operators obtained in
the absence of a driving field [85,93]. For plotting purposes
(reasonable duty cycle), in the numerical examples, we
often use ϵ ¼ γc ¼ γh. While this poses no problem
for stroke-engine realizations, for experimental demonstra-
tion of equivalence with continuous engines, one has to
increase the duty cycle so that ϵ ≪ γc; γh. In other words,
the unitary stage should be made longer but with a weaker
driving field.

FIG. 3. Representation of the three types of engines (a)–(c) in
the multilevel embedding framework. In this scheme, the differ-
ent engine types differ only in the order of coupling to the baths
and work repository. Since the interactions and energy levels are
the same for all engine types, a meaningful comparison of
performance becomes possible.

FIG. 4. Illustration of the engine used in the numerical
simulation. By changing the time order of the coupling to Hw
and to thermal baths, all three types of engines can be realized in
the model.
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The Lindblad equation is given by Eq. (1) with the
Hamiltonian (5) and with the following Lindblad operators
in Hilbert space:

A1 ¼ ffiffiffiffiffi
γh

p
e−ðΔEh=2ThÞj4ih1j; ð6Þ

A2 ¼
ffiffiffiffiffi
γh

p j1ih4j; ð7Þ

A3 ¼ ffiffiffiffiffi
γc

p
e−ðΔEc=2TcÞj3ih2j; ð8Þ

A4 ¼ ffiffiffiffiffi
γc

p j2ih3j: ð9Þ

In all the numerical simulations, we use ΔEh ¼ 4,
ΔEc ¼ 1, Th ¼ 5, Tc ¼ 1. The interaction with the baths
or with work repository can be turned on and off at will.
Starting with the continuous engine, we choose a unit

cell that contains exactly 6m (m is an integer) complete
cycles of the drive (τd ¼ 2π=ω) so that τcyc ¼ 6mτd. The
difference between the engine cycle time and the cycles of
the external drive will become clear in stroke engines (also,
the factor of 6 will be clarified).
For the validity of the secular approximation used in the

Lindblad microscopic derivation [79], the evolution time
scale must satisfy τ ≫ ð2πℏÞ=minðΔEh;ΔEcÞ. Therefore,
mmust satisfym ≫ ðℏωÞ=minðΔEh;ΔEcÞ. Note that if the
Lindblad description is obtained from a different physical
mechanism (e.g., thermalizing collisions), then this con-
dition is not required.
Next, we transform to the interaction picture (denoted by

tilde) using the transformation U ¼ e−iH0t=ℏ, and perform
the rotating wave approximation (RWA) by dropping terms
oscillating at a frequency of 2ω. For the RWA to be valid,
the amplitude of the field must satisfy ϵ ≪ ω. The resulting
Liouville space super-Hamiltonian is

~H ¼ Lc þ Lh þ
1

2
Hw: ð10Þ

Note that Lh;c were not modified by the transformation to
the rotating system since ½Lh;c;H0� ¼ 0 in the microscopic
derivation [94]. The oscillatory time dependence has
disappeared because of the RWA and the interaction
picture. There is still an implicit time dependence that
determines which of the terms Lc;Lh;Hw is coupled to the
system at a given time. We point out that when the RWA is
not valid, the dynamics becomes considerably more com-
plicated. First, even the basic unitary evolution has no
simple analytical solution. Second, the Lindblad descrip-
tion of the continuous engine becomes more complicated.
Thus, our analysis is restricted to the validity regime of
the RWA.
The Lindblad Markovian dynamics and the RWA set a

validity regime for our theory. This regime is the default
regime used in quantum open systems (see Refs. [77,79]).
It is intriguing to study how the results presented here are

modified by the breakdown of the RWA or by bath memory
effects. However, this analysis is beyond the scope of the
present paper.
Now that we have established a regime of validity and

the super-Hamiltonian that governs the system, we can
turn to the task of transforming from one engine type to
other types and study what properties change in this
transformation. The engine-type transformation is based
on the Strang decomposition [95–97] for two noncom-
muting operators A and B (the operators may not be
Hermitian):

eðAþBÞdt ¼ e
1
2
AdteBdte

1
2
Adt þO½ðs=ℏÞ3� ≅ e

1
2
AdteBdte

1
2
Adt;

ð11Þ

where the norm action (3), s ¼ ðkAk þ kBkÞdt, must be
small for the expansion to be valid. kAk is the spectral
norm of A. In Appendix C, we derive the condition s ≪
1
2
ℏ for the validity of Eq. (11). We use the symbol ≅ to

denote equality with correction O½ðs=ℏÞ3�.
Let the evolution operator of the continuous engine over

the chosen cycle time τcyc ¼ 6mτd be

~Kcont ¼ e−i ~Hτcyc=ℏ: ð12Þ

By first splitting Lc and then splitting Lh, we get

~Kfour stroke ¼ e−ið3LcÞðτcyc=6ℏÞe−ið32HwÞðτcyc=6ℏÞe−ið3LhÞðτcyc=3ℏÞ

× e−ið32HwÞðτcyc=6ℏÞe−ið3LcÞðτcyc=6ℏÞ: ð13Þ

Note that the system is periodic so the first and last
stages are two parts of the same thermal stroke.
Consequently, Eq. (13) describes an evolution operator
of a four-stroke engine, where the unit cell is symmetric.
This splitting is illustrated in Figs. 5(a) and 5(b). There
are two thermal strokes and two work strokes that
together constitute an evolution operator that describes
a four-stroke engine. The cumulative evolution time as
written above is ðmþmþ2mþmþmÞτd¼6mτd¼ τcyc.
Yet, to maintain the same cycle time as chosen for the
continuous engine, the coupling to the baths and field
were multiplied by 3. In this four-stroke engine, each
thermal or work stroke operates, in total, only a third of
the cycle time compared to the continuous engine. Hence,
the coupling must be 3 times larger in order to generate
the same evolution.
By virtue of the Strang decomposition, ~Kfour stroke ≅

~Kcont if s ≪ ℏ. The action parameter s of the engine

is defined as s ¼ R τcyc=2
−τcyc=2 k ~Hkdt ¼ ð1

2
kHwk þ kLhkþ

kLckÞτcyc. Note that the relation ~Kfour stroke ≅ ~Kcont

holds only when the engine action is small compared
to ℏ. This first appearance of a quantum scale will be
discussed later.
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A. Dynamical aspect of the equivalence

The equivalence of the evolution operators ~Kfour stroke ≅
~Kcont has two immediate important consequences. First,
both engines have the same steady-state solution over one
cycle j~ρsi:

~Kfour strokeðτcycÞj~ρsi ≅ ~KcontðτcycÞj~ρsi ¼ j~ρsi; ð14Þ
�
Lc þ Lh þ

1

2
Hw

�
j~ρsi ¼ 0: ð15Þ

At time instances that are not integer multiples of τcyc, the
states of the engines will differ significantly (O½ðs=ℏÞ1�)
since ~Kfour strokeðt < τcycÞ ≠ ~Kcontðt < τcycÞ. In other
words, the engines are still significantly different from
each other. The second consequence is that the two engines
have the same transient modes as well. When monitored at
multiples of τcyc, both engines will have the same relaxation
dynamics to the steady state if they started from the same
initial condition. In the remainder of the paper, when the
evolution operator is written without a time tag, this means
that we are considering the evolution operator of a
complete cycle.
We point out that there are higher-order decompositions

where the correction terms are smaller than O½ðs=ℏÞ3�.
However, it turns out that these decompositions inherently
involve negative coefficients [98]. A negative coefficient
implies a thermal stroke of the form eþiLdt=ℏ (instead of
e−iLdt=ℏ). This type of evolution cannot be generated by a
Markovian bath. Therefore, among the symmetric decom-
positions, the Strang decomposition seems to be the only
one that can be used for decomposing Markovian thermal
engine evolution operators.

B. Thermodynamic aspect of the equivalence

The equivalence of the one-cycle evolution operators of
the two engines does not immediately imply that the
engines are thermodynamically equivalent. Generally, in
stroke engines, the heat and work depend on the dynamics
of the state inside the cycle, which is very different
(O½ðs=ℏÞ1�) from the constant state of the continuous
engine. However, in this section, we show that all thermo-
dynamics properties are equivalent in both engines up to
O½ðs=ℏÞ3� corrections, similarly to the evolution operator.
We start by evaluating the work and heat in the continuous
engine. By considering infinitesimal time elements where
Lc;Lh, andHw operate separately, one obtains that the heat
and work currents are jcðhÞ ¼ hH0jð1=ℏÞLcðhÞj~ρsðtÞi and
jw ¼ hH0jð1=2ℏÞHwj~ρsðtÞi, where hH0j ¼ jH0i† is the
vectorized form of the field-free Hamiltonian H0 of the
system [see Eq. (5)]. See Appendix A for the use of bracket
notation to describe expectation values hAi ¼ trðAρÞ ¼
hAjρi. In principle, to calculate hAi in the rotating
frame using j~ρsðtÞi, hAj must be rotated as well.
However, because of the property hH0jH0 ¼ 0 shown in
Appendix A, hH0j is not affected by this rotation.
In the continuous engine, the steady state satisfies

j~ρsðtÞi ¼ j~ρsi, so the total heat and work in the steady
state in one cycle are

FIG. 5. Graphical illustrations of the super-Hamiltonians of
various engines (a)–(d). The horizontal axis corresponds to time.
The brick size corresponds to the strength of the coupling to the
work repository or to the baths. The Hamiltonians are related to
each other by applying the Strang decomposition to the evolution
operators (12), (13), and (20). The symmetric rearrangement
theorem ensures that in the limit of small action, any rearrange-
ment that is symmetric with respect to the center and conserves
the area of each color does not change the total power and heat
over one cycle.
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Wcont ¼
�
H0

���� 1

2ℏ
Hw

����~ρs
�
τcyc; ð16Þ

Qcont
cðhÞ ¼

�
H0

���� 1ℏLcðhÞ

����~ρs
�
τcyc: ð17Þ

These quantities should be compared to the work and
heat in the four-stroke engine. Instead of carrying out
the explicit calculation for this specific four-stroke
splitting, we use the symmetric rearrangement theorem
(SRT) derived in Appendix D. Symmetric rearrange-
ment of a Hamiltonian is a change in the order of
couplings ϵðtÞ; γcðtÞ; γhðtÞ that satisfies

R
ϵðtÞdt ¼ const,R

γcðtÞdt ¼ const,
R
γhðtÞdt ¼ const, and with the sym-

metry ϵðtÞ ¼ ϵð−tÞ; γcðtÞ ¼ γcð−tÞ; γcðtÞ ¼ γcð−tÞ. Any
super-Hamiltonian obtained using the Strang splitting
of the continuous engine [for example, Htwo strokeðtÞ,
Hfour strokeðtÞ] constitutes a symmetric rearrangement of
the continuous engine. The SRT exploits the symmetry
of the Hamiltonian to show that symmetric rearrangement
changes heat and work only in O½ðs=ℏÞ3�. In Appendix D,
we show that

Wfour stroke ≅ Wcont; ð18Þ
Qfour stroke

cðhÞ ≅ Qcont
cðhÞ: ð19Þ

Thus, we conclude that up to ðs=ℏÞ3 corrections, the
engines are thermodynamically equivalent. When s ≪ 1,
work, power, heat, and efficiency converge to the same
value for all engine types. Clearly, inside the cycle, the
work and heat in the two engines are significantly different
(O½ðs=ℏÞ1�), but after a complete cycle, they become
equivalent. The symmetry makes this equivalence more
accurate as it holds up to ðs=ℏÞ3 [rather than ðs=ℏÞ2].
Interestingly, the work done in the first half of the cycle is
1
2
Wcont þO½ðs=ℏÞ2�. However, when the contribution of

the other half is added, the O½ðs=ℏÞ2� correction cancels
out and Eq. (18) is obtained (see Appendix D).
We emphasize that the SRT and its implications (18) and

(19) are valid for transients and for any initial state—not
just for steady-state operation. In Fig. 6(a), we show the
cumulative work as a function of time for a four-stroke
engine and a continuous engine. The vertical lines indicate
a complete cycle of the four-stroke engine. In addition
to the parameter common to all examples specified before,
we used ϵ ¼ γc ¼ γh ¼ 10−4, and the equivalence of work
at the vertical lines is apparent. In Fig. 6(b), the field and
thermal coupling were increased to ϵ ¼ γc ¼ γh ¼
5 × 10−3. Now the engines perform differently, even at
the end of each cycle. This example is a somewhat extreme
situation where the system changes quite rapidly (conse-
quence of the initial state we chose). In other cases, such as
steady-state operation, the equivalence can be observed for
much larger action values.

The splitting used in Eq. (13) was based on first splitting
Lc and thenHw. Other engines can be obtained by different
splitting of ~Kcont. For example, consider the two-stroke
engine obtained by splitting Lc þ Lh:

~Ktwo stroke ¼ e−i32ðLcþLhÞðτcyc=3Þe−ið32HwÞðτcyc=3Þ

× e−i32ðLcþLhÞðτcyc=3Þ: ð20Þ
Note that in the two-stroke engine, the thermal coupling has
to be 3

2
stronger compared to the continuous case in order to

provide the same action. Using the SRT, we obtain the
complete equivalence relations of the three main engine
types:

Wtwo stroke ≅ Wfour stroke ≅ Wcont; ð21Þ

Qtwo stroke
cðhÞ ≅ Qfour stroke

cðhÞ ≅ Qcont
cðhÞ; ð22Þ

~Ktwo stroke ≅ ~Kfour stroke ≅ ~Kcont: ð23Þ
Note that since K ¼ e−iH0τcyc ~K, the equivalence of the
evolution operators holds also in the original frame, not
just in the interaction frame. Another type of engine exists
when the interaction with the work repository is carried
out by two physically distinct couplings. This happens

FIG. 6. (a) The equivalence of heat engine types in transient
evolution when the engine action is small compared to ℏ. (a) The
cumulative power transferred to the work repository is plotted as
a function of time. All engines start in the excited state j4i, which
is very far from the steady state of the system. At complete engine
cycles (vertical lines), the power in all engines is the same.
(b) Once the action is increased (here, the field ϵ was increased),
the equivalence no longer holds.
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naturally if E4 − E3 ≠ E2 − E1 so that two different
driving lasers have to be used and the Hamiltonian is
H0 þ cos½ðE2 − E1Þt�Hw1 þ cos½ðE4 − E3Þt�Hw2. In such
cases, one can make the splitting shown in Fig. 5(d). In
this numerical example, we used Hw1 ¼ ϵðtÞj1ih2j þ H:c:
and Hw2 ¼ ϵðtÞj3ih4j þ H:c: Since there are two different
work strokes in addition to the thermal stroke, this engine
constitutes a four-stroke engine.

C. Power and energy flow balance

The average power and heat flow in the equivalence
regime are independent of the cycle time:

PW ¼ W
τcyc

¼
�
H0

���� 1

2ℏ
Hw

����~ρs
�
; ð24Þ

JcðhÞ ¼
QcðhÞ
τcyc

¼
�
H0

���� 1ℏLcðhÞ

����~ρs
�
: ð25Þ

Using the steady-state definition (15), one obtains the
steady-state energy balance equation:

Pw þ Jc þ Jh ¼ 0: ð26Þ
Equation (26) does not necessarily hold if the system is not
in a steady state, as energy may be temporarily stored in the
baths or in the work repository.
Figure 7 shows the power in a steady state as a function

of the action. The action is increased by increasing the time
duration of each stroke (see top illustration in Fig. 7). The
field and the thermal coupling are ϵ ¼ γh ¼ γc ¼ 5 × 10−4.
The coupling strengths to the bath and work repository are
not changed. When the engine action is large compared to
ℏ, the engines behave very differently [Fig. 7(a)]. On the
other hand, in the equivalence regime, where s is small with
respect to ℏ, the power of all engines types converges to the
same value. In the equivalence regime, the power rises
quadratically with the action since the correction to the
power is s3=τcyc ∝ τ2cyc. This power plateau in the equiv-
alence regime is a manifestation of quantum interference
effects (coherence in the density matrix), as will be further
discussed in the next section.
The behavior of different engines for large action with

respect to ℏ is very rich and strongly depends on the ratio
between the field and the bath coupling strength.
Finally, we comment that the same formalism and results

can be extended for the case in which the drive is slightly
detuned from the gap.

D. Lasing condition via the equivalence
to a two-stroke engine

Laser medium can be thought of as a continuous engine
where the power output is light amplification. It iswell known
that lasing requires population inversion. Scovil et al. [83]
were the first to show the relation between the population
inversion lasing condition and the Carnot efficiency.

Using the equivalence principle presented here, the most
general form of the lasing condition can be obtained
without any reference to light-matter interaction.
Let us start by decomposing the continuous engine into

an equivalent two-stroke engine. For simplicity, it is
assumed that the hot and cold manifolds have some overlap
so that, in the absence of the driving field, this bath leads
the system to a unique steady state ρ0. If the driving field is
tiny with respect to the thermalization rates, then the system
will be very close to ρ0 in the steady state.
To see when ρ0 can be used for work extraction, we need

to discuss passive states. A passive state is a state that is
diagonal in the energy basis, and with populations that
decrease monotonically with energy [99]. The energy of a
passive state cannot be decreased (or work cannot be
extracted from the system) by applying some unitary
transformation (the Hamiltonian after the transformation
is the same as it was before the transformation) [70,99].
Thus, if ρ0 is passive, work cannot be extracted from the
device, regardless of the details of the driving field (as long
as it is weak and the equivalence holds).
A combination of thermal baths will lead to an energy

diagonal ρ0. Consequently, to enable work extraction,

FIG. 7. Power as a function of action for various engine types in a
steady state. The four-stroke variant (green line) is described in
Fig. 5(d). The action is increased by increasing the stroke duration
(top illustration). (a) For large action with respect to ℏ, the engines
significantly differ in performance. In this example, all engines
have the same efficiency, but they extract different amounts of heat
from the hot bath. (b) In the equivalence regimewhere the action is
small, all engine types exhibit the same power and also the same
heat flows. The condition s < ℏ=2 that follows from the Strang
decomposition agrees with the observed regime of equivalence.
The time-symmetric structure of the engines causes the deviation
from equivalence to be quadratic in the action.
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passivity must be broken by population inversion.
Therefore, we obtain the standard population inversion
condition. Note that the derivation does not require an
Einstein rate equation or any information on the processes
of emission and absorption of photons.
Furthermore, it now becomes clear that if “coherent

baths” are used [66] so that ρ0 is no longer diagonal in the
energy basis (and therefore no longer passive), it is possible
to extract work even without population inversion.
In conclusion, using the equivalence principle, it is

possible to import known results from work extraction
in stroke schemes to continuous machines.

IV. QUANTUM-THERMODYNAMIC SIGNATURE

Can the measurements of thermodynamics quantities
reveal quantum effects in heat engines? To answer this, we
first need to define the corresponding classical engine.
The term “classical engine” is rather ambiguous. There

are different protocols of modifying the system so that it
behaves classically. To make a fair comparison to the fully
quantum engine, we look for the minimal modification that
satisfies the following conditions:
(1) The dynamics of the device should be fully de-

scribed using population dynamics (no coherences,
no entanglement).

(2) The modification should not alter the energy levels
of the system, the couplings to the baths, and the
coupling to the work repository.

(3) The modification should not introduce a new source
of heat or work.

To satisfy the first requirement, we introduce a dephasing
operator that eliminates the coherences [100] and leads to a
stochastic description of the engine. Clearly, a dephasing
operator satisfies the second requirement. To satisfy the
third requirement, we require “pure dephasing,” a dephas-
ing in the energy basis. The populations in the energy basis
are invariant to this dephasing operation. Such a natural
source of energy-basis dephasing emerges if there is some
scheduling noise [101]. In other words, if there is some
error in the switching time of the strokes.
Let us define a “quantum-thermodynamic signature” as a

signal that is impossible to produce by the corresponding
classical engine as defined above.
Our goal is to derive a threshold for power output that a

stochastic engine cannot exceed but a coherent quantum
engine can.
Before analyzing the effect of decoherence, it is instruc-

tive to distinguish between two different work extraction
mechanisms in stroke engines.

A. Coherent and stochastic work extraction
mechanisms

Let us consider the work done in the work stroke of a
two-stroke engine [as in Fig. 5(c)]:

W ¼ hH0je−ið1=2ℏÞHwτw j~ρi − hH0j~ρi; ð27Þ

where τw is the duration of the work stroke. Writing
the state as a sum of population and coherences
j~ρi ¼ j~ρpopi þ j~ρcohi, we get

W ¼
�
H0

����
X
n¼1

ð−i 1
2ℏHwτwÞ2n−1
ð2n − 1Þ!

����~ρcoh
�

þ
�
H0

����
X
n¼1

ð−i 1
2ℏHwτwÞ2n
ð2nÞ!

����~ρpop
�
: ð28Þ

This result follows from the generic structure of
Hamiltonians in Liouville space. Any H that originates
from a Hermitian Hamiltonian in Hilbert space (in contrast
to Lindblad operators as a source) has the structure shown
in Fig. 8(b) (see Appendix A for Liouville space derivation
of this property). In other words, it connects only pop-
ulations to coherences and vice versa, but it cannot
connect populations to populations directly [102]. In
addition, since hH0j acts as a projection on population
space, one gets that odd powers of Hw can only operate on
coherences and even powers can only operate on popula-
tions. Thus, the power can be extracted using two different
mechanisms: a coherent mechanism that operates on
coherences and a stochastic mechanism that operates on
populations.
The effects of the “stochastic” termsP
n¼1ð−i 1

2ℏHwτwÞ2n=ð2nÞ! on the populations are equiv-
alently described by a single doubly stochastic operator. If
there are no coherences (next section), this leads to a simple
interpretation in terms of full swap events that take place
with some probability.

FIG. 8. Panel (a), left side: Dephasing operations (slanted line,
operator D) commute with thermal baths so the dephased engine
in the left side of (a) is equivalent to the one on the right. In the
new engine, the unitary evolution is replace by DUD. If D
eliminates all coherences, the effect of DUD on the populations
can always be written as a doubly stochastic operator. (b) Any
Hermitian Hamiltonian in Liouville space has the structure shown
in (b). Thus, first-order changes in populations critically depend
on the existence of coherence.
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Continuous engines, on the other hand, have only a
coherent work extraction mechanism. This can be seen
from the expression for their work output,

Pcont ¼
�
H0

���� 1

2ℏ
Hw

����~ρ
�

¼
�
H0

���� 1

2ℏ
Hw

����~ρcoh
�
; ð29Þ

where again we used the population projection property of
hH0j and the structure of Hw [Fig. 8(b)]. We conclude that
in contrast to stroke engines, continuous engines have no
stochastic work extraction mechanism. This difference
stems from the fact that in continuous engines, the steady
state is stationary. Consequently, there are no higher-order
terms that can give rise to a population-population stochas-
tic work extraction mechanism. This is a fundamental
difference between stroke engines and continuous engines.
This effect is pronounced outside the equivalence regime
where the stochastic terms become important (see Sec. V).

B. Engines subjected to pure dephasing

Consider the engine shown in Fig. 8(a). The slanted lines
on the baths indicate that there is an additional dephasing
mechanism that takes place in parallel to the thermalization
[103]. Let us denote the evolution operator of the pure
dephasing by D. In principle, to analyze the deviation from
the coherent quantum engine, first the steady state has to be
solved and then work and heat can be compared. Even for
simple systems, this is a difficult task. Hence, we shall take a
different approach and derive an upper bound for the power
of stochastic engines. It is important that the bound contains
onlyquantities that are unaffected by the level of coherence in
the system. For example, the dipole expectation value, does
contain information on the coherence. We construct a bound
in terms of the parameters of the system (e.g., the energy
levels, coupling strengths, etc.), which is independent of the
state of the system. In the pure dephasing stage, the energy
does not change. Hence, the total energy change in theDUD
stage is associated with work.
Let Dcomp ¼ jpopihpopj be a projection operator on the

population space. This operator generates a complete
dephasing that eliminates all coherences. In such a case,
the leading order in the work expression becomes

W ¼ hH0jDcompe−ið1=2ℏÞHwτwDcompj~ρi

¼ τ2w
8ℏ2

hH0jH2
wj~ρpopi þO½ðs=ℏÞ4�; ð30Þ

where we used hH0jD ¼ hH0j andDcompj~ρi ¼ j~ρpopi. Since
Dcomp eliminates coherences, W does not contain a linear
term in time. Next, by using the following relation,
hH0jBjρi ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihH0jH0ihρjρi
p kBk, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihH0jH0i

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
trðH2

0Þ
p

,
we find that for s ≪ ℏ the power of a stochastic engine
satisfies

Pstoch ≤
z

8ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðH2

0Þ − trðH0Þ2
q

Δ2
wd2τcyc;

z ¼ 1 two-stroke;

z ¼ 1=2 four-stroke; ð31Þ

where Δw is the gap of the interaction Hamiltonian
(maximal eigenvalue minus minimal eigenvalue of Hw),
and d is the duty cycle—the fraction of time dedicated to
work extraction (d ¼ τw=τcyc, e.g., d ¼ 1=3 in all the
examples in this paper). We also used the fact that
hρpopjρpopi is always smaller than the purity hρjρi and
therefore smaller than 1. Note that, as we required, this
bound is state independent, and the right-hand side of
Eq. (31) contains no information on the coherences in the
system. Thus, we conclude that for power measurements,

P > Pstoch ⇒ quantum-thermodynamic signature: ð32Þ

As shown earlier, in coherent quantum engines (in the
equivalence regime), the work scales linearly with τcyc [see
Eqs. (16) and (18)], and therefore, the power is constant as a
function of τcyc. When there are no coherences, the power
scales linearly with τcyc.
Numerical results of power as a function of cycle time

are shown in Fig. 9. The power is not plotted as a function
of action as before because, at the same cycle time, the
coherent engine and the dephased engine have different
actions. The coupling parameters are as in Fig. 7. The
action of the dephased engine is

FIG. 9. The power output of the three types of engines (two-
stroke blue, four-stroke red, continuous black) with and without
dephasing [top horizontal solid lines are without dephasing—
same as in Fig. 7(b)]. The power of the continuous dephased
engine is zero. The dashed lines show the stochastic upper bounds
on the power of two-stroke (dashed blue line) and four-stroke
(dashed red line) engines. Any power measurement in the shaded
area of each engine indicates the presence of quantum interfer-
ence in the engine. This plot also demonstrates that for short cycle
times (low action), coherent engines produce much more power
compared to stochastic dephased engines.
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sdeph ¼
�
kLck þ kLhkþ

���� 12Hw

����þ kLdephasingk
�
τcyc:

ð33Þ

If the dephasing is significant, the action is large and
equivalence cannot be observed. In other words, a fully
stochastic engine in a quantum system has a large action
and cannot satisfy s ≪ ℏ.
The stochastic power bounds for a two-stroke engine

(dashed blue line) and for a four-stroke engine (dashed red
line) define a power regime (shaded areas) that is inacces-
sible to fully stochastic engines. Thus, any power meas-
urement in this regime unequivocally indicates the presence
of quantum coherences in the engine.
In practice, the dephasing time may be very small but

different from zero. When the cycle time is large compared
to the dephasing time, the system behaves as if there is
complete dephasing. If, however, the cycle time is small
with respect to the decoherence time (close to the origin of
Fig. 9), the power will form a plateau of finite power instead
of reducing to zero.
Note that to measure power, the measurement is carried

out on the work repository and not on the engine.
Furthermore, the engine must operate for many cycles to
reduce fluctuations in the accumulated work. To calculate
the average power, the accumulated work is divided by the
total operation time and compared to the stochastic power
threshold (31).
Also, note that a complete dephasing would have

resulted in zero power output for the continuous
engine (29).
In summary, the quantum-thermodynamics signature in

stroke engines can be observed in the weak action limit.

V. OVER-THERMALIZATION EFFECT IN
COHERENT QUANTUM HEAT ENGINE

In all the numerical examples studied so far, the unitary
action and the thermal action were roughly comparable for
reasons that will soon become clear. In this section, we
study some generic features that take place when the
thermal action takes over.
Let us now consider the case where the unitary con-

tribution to the action kHωkτ is small with respect to ℏ. All
the time intervals are fixed, but we can control the
thermalization rate γ (for simplicity, we assume it is the
same value for both baths). Common sense suggests that
increasing γ should increase the power output. At some
stage, this increase will stop since the system will already
reach thermal equilibrium with the bath (or baths in two-
stroke engines). Yet, Fig. 10 shows that there is a very
distinctive peak where an optimal coupling takes place. In
other words, in some cases, less thermalization leads to
more power. We call this effect over-thermalization. This
effect is generic and not unique to the specific model used

in the numerical simulations. The parameters used for the
plot are ϵ ¼ γc ¼ γh ¼ 2 × 10−4, and the number of drives
cycles per engine cycle is m ¼ 600.
The peak and the saturation are a consequence of the

interplay between the two different work extraction mech-
anisms (see Sec. IVA). For low γ, the coherences in the
system are significant, and the leading term in the power is
hH0j−ið1=2ℏÞHwj~ρcohid (where d is the duty cycle). In
principle, all Lindblad thermalization processes are asso-
ciated with some level of decoherence. This decoherence
generates an exponential decay of j~ρcohi that explains the
decay on the right-hand side of the peak. At a certain stage,
the linear term becomes so small that the stochastic second-
order term −ð1=8ℏ2ÞhH0jH2

wj~ρpopid2τcyc dominates the
power. j~ρpopi eventually saturates for large γ, and therefore,
the stochastic second-order term leads to a power
saturation. Interestingly, in the example shown in Fig. 10,
we observe that the peak is obtained when γ and ϵ are
roughly equal. Of course, what really matters is the thermal
actionwith respect to unitary action and not just the values of
the parameters γ and ϵ. We point out that this effect for a
continuous engine can be seen in Fig. 3 of Ref. [20] and in
Fig. 11 of Ref. [104]. In the present work, the mechanism
that generates this general effect has been clarified.
If thermalization occurs faster, the thermal stroke can be

shortened, and this increases the power. However, this
effect is small with respect to the exponential decay of the
coherences. We conclude that even without additional
dephasing as in the previous section, excessive thermal
coupling turns the engine into a stochastic machine. For
small unitary action, this effect severely degrades the power
output. The arguments presented here are valid for any
small-action coherent quantum engine.

FIG. 10. The over-thermalization effect is the decrease of power
when the thermalization rate is increased. Over-thermalization
degrades the coherent work extraction mechanism without
affecting the stochastic work extraction mechanism. When the
coherent mechanism gets weak enough, the power is dominated
by the stochastic power extraction mechanisms and power
saturation is observed (dashed lines). The continuous engine
has no stochastic work extraction mechanism, and therefore, it
decays to zero without reaching saturation.
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VI. CONCLUDING REMARKS

We identified coherent and stochastic work extraction
mechanisms in quantum heat engines. While stroke engines
have both mechanisms, continuous engines only have the
coherent mechanism. We introduced the “norm action” of
the engine using Liouville space and showed that when this
action is small compared to ℏ, all three engine types are
equivalent. This equivalence emerges because, for small
actions, only the coherent mechanism is important. Despite
the equivalence, before the engine cycle is completed, the
state of the different engine type differs by O½ðs=ℏÞ1�. This
also holds true for work and heat. Remarkably, at the end of
each engine cycle, a much more accurate O½ðs=ℏÞ3� equiv-
alence emerges. Furthermore, the equivalence also holds for
transient dynamics, even when the initial state is very far
from the steady state of the engine. It was shown that, for
small actions, the coherent work extraction is considerably
stronger than the stochastic work extraction mechanism.
This enabled us to derive a power bound for stochastic
engines that constitutes a quantum-thermodynamics signa-
ture. Any power measurement that exceeds this bound
indicates the presence of quantum coherence and the
operation of the coherent work extraction mechanism.
Experimental schemes where the work is extracted by

changing the energy levels (e.g., Refs. [53–55]) correspond
to a full swap in the multilevel embedding framework.
Consequently, such setups have an inherently large action,
and they are not suited for demonstrating the effects
presented here. In contrast, the scheme in Ref. [105] seems
highly suitable. There, the unitary operation that makes a
swap between superconducting qubits is generated by
creating a magnetic flux through a superconducting ring.
In the original paper, the authors use a flux that generates a
full swap. However, by using weaker magnetic fields, the
unitary operation will become a partial swap, and it should
be possible to attain the small action regime where the
equivalence can be observed. In addition, NV centers in
diamonds also have the potential for exploring heat engine
equivalence in the quantum regime.
The present derivation makes no assumption on the

direction of heat flows and the sign of work. Thus, our
results are equally applicable to refrigerators and heaters.
It is interesting to try and apply these concepts of

equivalence and quantum-thermodynamic signatures to
more general scenarios: non-Markovian baths, engines
with a nonsymmetric unit cell, and engines with quantum
correlation between different particles (entanglement and
quantum discord). We conjecture that in multiple particle
engines, entanglement will play a similar role to that of
coherence in single-particle engines.
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APPENDIX A: LIOUVILLE SPACE
FORMULATION OF QUANTUM DYNAMICS

Quantum dynamics is traditionally described in Hilbert
space. However, it is convenient, in particular, for open
quantum systems, to introduce an extended space where
density operators are vectors and time evolution is gen-
erated by a Schrödinger-like equation. This space is usually
referred to as Liouville space [89]. We denote the “density
vector” by jρi ∈ C1×N2

. It is obtained by reshaping the
density matrix ρ into a larger single vector with index
α ∈ f1; 2;…N2g. The one-to-one mapping of the two
matrix indices into a single vector index fi; jg → α is
arbitrary but has to be used consistently. The vector jρi is
not normalized to unity, in general. Its norm is equal to the
purity, P ¼ trðρ2Þ ¼ hρjρi, where hρj ¼ jρi† as usual. The
equation of motion of the density vector in Liouville space
follows from dtρα ¼

P
βρβ∂ðdtραÞ=∂ρβ. Using this equa-

tion, one can verify that the dynamics of the density vector
jri is governed by a Schrödinger-like equation in the new
space,

i∂tjρi ¼ Hjρi; ðA1Þ

where the super-Hamiltonian H ∈ CN2×N2

is given by

Hαβ ¼ i
∂ðdtραÞ
∂ρβ : ðA2Þ

A particularly useful index mapping is described in
Ref. [106] and in Ref. [90]. In this mapping, the Liouville
index of jρi is related to the original row and column index
of ρ via α ¼ colþ Nðrow − 1Þ. For this form, H can be
compactly written in term of the original H and A:

H ¼ −iðH ⊗ I − I ⊗ HtÞ

þ i
X
k

	
ðAk ⊗ A�

kÞ −
1

2
I ⊗ ðA†

kAkÞt − 1

2
A†
kAk ⊗ I



;

ðA3Þ

where the superscript t stands for transposition and * for
complex conjugation. H ¼ HH þ L is non-Hermitian for
open quantum systems. HH originates from the Hilbert
space Hamiltonian H, and L from the Lindblad terms. HH

is always Hermitian. The skew-Hermitian part ðL − L†Þ=2
is responsible for purity changes. Yet, in Liouville space,
the Lindblad operators Ak in Eq. (1) may also generate a
Hermitian term ðLþ L†Þ=2. Though Hermitian in
Liouville space, this term cannot be associated with a
Hamiltonian in Hilbert space. If L ¼ 0, K is unitary. It is
important to note that not all eigenvectors ofH in Liouville
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space can be populated exclusively. This is due to the fact
that only positive ρ with unit trace are legitimate density
matrices. The states that can be populated exclusively
describe steady states, while others correspond to transient
changes. We remind the reader that, in this paper, we use
calligraphic letters to describe operators in Liouville space
and ordinary letters for operators in Hilbert space. For
states, however, jAi will denote a vector in Liouville space
formed from AN×N by “vec-ing” A into a column in the
same procedure ρ is converted into jρi.

1. Useful relations in Liouville space

In Liouville space, the standard inner product of two
operators in Hilbert space trA†B reads

trA†B ¼ hAjBi:

In particular, the purity P ¼ hrjri is just the square of the
distance from the origin in Liouville space.
A useful relation for HH is

HHjHi ¼ hHjHH ¼ 0: ðA4Þ
The proof is as follows:

HH
ij;mn ¼ Himδjn −Hnjδim: ðA5Þ

Therefore, using Eq. (A5) we get

HHjHi ¼
X
β

HH
αβHβ ¼

X
mn

HH
ijmnHmn ¼ ½H;H� ¼ 0.

ðA6Þ

This property is highly useful. We stress that Eq. (A4) is a
property of Hermitian operators in Hilbert space, where
both H and H are well defined. A general Hermitian
operator in Liouville space may not have a corresponding
H in Hilbert space.
Another property that immediately follows from

Eq. (A5) is

HH
ii;kk ¼ 0: ðA7Þ

This corresponds to a well-known property of unitary
operation. If the system starts from a diagonal density
matrix, then for short times, the evolution generated byHH,
e−iHHdt ¼ I − iHHdtþOðdt2Þ does not change the pop-
ulation in the leading order.

2. Expectation values and their time evolution
in Liouville space

The expectation value of an operator in Hilbert space is
hAi ¼ trðρAÞ. Since ρ is Hermitian, the expectation value is
equal to the inner product of A and ρ, and therefore,

hAi ¼ trðρAÞ ¼ hρjAi:

The dynamics of hAi under the Lindblad evolution
operator is

d
dt

hAi ¼ −ihAjHjρi þ
�
ρ

���� ddt A
�
: ðA8Þ

Note that in Liouville space there is no commutator term
since H operates on jρi just from the left. If the total
Hamiltonian is Hermitian and time independent, the
conservation of energy follows immediately from apply-
ing Eqs. (A8) and (A4) for A ¼ H.

APPENDIX B: GEOMETRIC MEANING
OF THE NORM ACTION

This appendix establishes the relation between the norm
action and the path length in Liouville space. The action
constitutes an upper bound on the length of the path over
one cycle. The infinitesimal path dl between two states
jρðtþ dtÞi and jρðtÞi in Liouville space is given by

dl2 ¼ kjρðtþ dtÞi − jρðtÞik22
¼ hρðtÞjH†HjρðtÞidt2=ℏ2 þOðdt3Þ; ðB1Þ

where kjρðtþ dtÞi − jρðtÞik22 ¼ trð½ρðtþ dtÞ − ρðtÞ�2Þ.
Consequently, the path in Liouville space is given by

L ¼
Z

τcyc

0

�
dl
dt

�
dt ≤

1

ℏ

Z
τcyc

0

kHkhρjρidt; ðB2Þ

where we have used the property of the spectral norm
hρðtÞjH†HjρðtÞi=hρjρi ≤ kHk2sp. Since the purity hρjρi is
always smaller than 1,

L ≤
1

ℏ

Z
τcyc

0

kHkdt≡ s=ℏ: ðB3Þ

Thus, the path length per cycle in Liouville space is
bounded by the action. For previous uses of the norm
action to quantify quantum dynamics, see Refs. [107–110].
This is also true for times shorter than the cycle time τcyc,

LðτÞ ¼
Z

τ

0

�
dl
dt

�
dt ≤ s=ℏ: ðB4Þ

The triangle inequality implies kjρðτÞi − jρð0Þik2 ≤ LðτÞ;
therefore,

maxðkjρðτÞi − jρð0Þik2Þ ≤ s=ℏ: ðB5Þ

Hence, the action limits the maximal state change during
the cycle. For example, if the action is 10−3ℏ, the state will
change by 10−3 at the most.
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APPENDIX C: STRANG DECOMPOSITION
VALIDITY

Let K be an operator generated by two noncommuting
operators A and B:

K ¼ eðAþBÞdλ; ðC1Þ

where we use dλ ¼ dt=ℏ for brevity. The splitted operator
is

Ks ¼ e
1
2
AdλeBdλe

1
2
Adλ: ðC2Þ

Our goal is to quantify the difference between K and Ks,
kKs −Kk, where k · k stands for the spectral norm. In
principle, other submultiplicative matrix norms can be used
(such as the Hilbert-Schmidt norm). However, the spectral
norm more accurately captures aspects of quantum dynam-
ics [108–111]. K can be expanded as

K ¼
X ðAþ BÞndλn

n!
: ðC3Þ

Ks, on the other hand, is

Ks ¼
X∞

k;l;m¼0

ðA=2Þkdλk
k!

Bldλl

l!
ðA=2Þmdλm

m!

¼
X∞
n¼0

Xn
l¼0

Xn−l
k¼0

ðA=2Þk
k!

Bl

l!
ðA=2Þn−l−k
ðn − l − kÞ! dλ

n: ðC4Þ

Because of the symmetric splitting, the terms up to n ¼ 2
(including n ¼ 2) are identical for both operators.
Therefore, the difference can be written as

kKs −Kk ¼
����
X∞
n¼3

Xn
l¼0

Xn−l
k¼0

ðA=2Þk
k!

Bl

l!
ðA=2Þn−l−k
ðn − l − kÞ! dλ

n

−
X
n¼3

ðAþ BÞndλn
n!

����: ðC5Þ

Next, we apply the triangle inequality and the submulti-
plicativity property to get

kKs −Kk ≤
����
X∞
n¼3

Xn
l¼0

Xn−l
k¼0

kA=2kk
k!

kBkl
l!

kA=2kn−l−k
ðn − l − kÞ! dλ

n

þ
X∞
n¼3

ðkAk þ kBkÞndλn
n!

����: ðC6Þ

Using the binomial formula two times, one finds

X∞
n¼3

Xn
l¼0

Xn−l
k¼0

kA=2kk
k!

kBkl
l!

kA=2kn−l−k
ðn − l − kÞ! dλ

n

¼
X∞
n¼3

ðkAk þ kBkÞndλn
n!

; ðC7Þ

and therefore,

kKs −Kk ≤ 2
X∞
n¼3

ðkAk þ kBkÞndλn
n!

¼ 2R2½ðkAk þ kBkÞdλ�: ðC8Þ

The right-hand side is the Taylor remainder of a power
series of an exponential with ðkAk þ kBkÞdλ as an argu-
ment. The Taylor remainder formula for the exponent
function is RkðxÞ ¼ eξðjxjkþ1Þ=ðkþ 1Þ!, where 0 ≤ ξ ≤ 1
(for now, we assume x < 1). Setting k ¼ 2 and ξ ¼ 1
(worst case), we finally obtain

kKs −Kk ≤
e
3
½ðkAk þ kBkÞdλ�3 ≤

�
s
ℏ

�
3

; ðC9Þ

s ¼ðkAk þ kBkÞdt; ðC10Þ

where we call s the norm action of the evolution operator.
To get an estimation where the leading non-neglected term
of K, ðAþ BÞ2dλ2=2, is larger than the remainder, we
require that

ðkAþ BkÞ2dλ2=2 ≥
�
s
ℏ

�
3

: ðC11Þ

Using the triangle inequality, we get the estimated con-
dition for the Strang decomposition:

s ≤ ℏ=2: ðC12Þ
This condition explains why it was legitimate to limit the
range of x to 1 in the remainder formula.

APPENDIX D: SYMMETRIC REARRANGEMENT
THEOREM

The goal of this appendix is to explain why the
equivalence of evolution operators leads to equivalence
of work and equivalence of heat. In addition, we show why
this is also valid for transients. For the equivalence of the
evolution operator, we require that the super-Hamiltonian is
symmetric and that the action is small:

HðtÞ ¼ Hð−tÞ; ðD1Þ

s ¼
Z þτ=2

−τ=2
kHkdt ≪ ℏ: ðD2Þ
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Let the initial state at time t ¼ −τ=2 be

j~ρii ¼ j~ρð−τ=2i: ðD3Þ
This state leads to a final state at τ=2,

j~ρfi ¼ j~ρðτ=2i: ðD4Þ
Our goal is to evaluate a symmetric expectation value
difference of the form

dAtot ¼ ½hAðt2Þi − hAðt1Þi� þ ½hAð−t1Þi − hAð−t2Þi�
¼ ½hAj~ρðt2Þi − hAj~ρðt1Þi�
þ ½hAj~ρð−t1Þi − hAj~ρð−t2Þi�;

t2; t1 ≥ 0; ðD5Þ
that is, the change in the expectation value of A in the
segment ½t1; t2� and its symmetric counterpart in negative
time [e.g., the green areas in Fig. 11(a)]. When A is equal to
H0, this difference will translate into work or heat. We start
with the expansion

½hAðt2Þi − hAðt1Þi� ¼ hAjKt1→t2 − Ij~ρðt1Þi

¼
�
A

����−iHðt1Þ
δt
ℏ
− 1

2
Hðt1Þ2

δt2

ℏ2

����~ρðt1Þ
�

þO

	�
s
ℏ

�
3


: ðD6Þ

For the negative side, we get

½hAð−t1Þi − hAð−t2Þi� ¼ hAjI −K−t1→−t2 jrð−t1Þi
¼

�
A

����−iHð−t1Þ δtℏ þ 1

2
Hð−t1Þ2 δt

2

ℏ2

����~ρð−t1Þ
�

þO

	�
s
ℏ

�
3


: ðD7Þ

Next, we use the fact that

j~ρðt1Þi ¼ j~ρð0Þi − i
Z

t1

0

HðtÞ dt
ℏ
j~ρð0Þi þO

	�
s
ℏ

�
2


;

ðD8Þ

j~ρð−t1Þi ¼ j~ρð0Þi þ i
Z

t1

0

HðtÞ dt
ℏ
j~ρð0Þi þO

	�
s
ℏ

�
2


:

ðD9Þ

When adding the two segments, the second order terms
cancel out and we get

δAtot ¼ −2ihAjHðt1Þj~ρð0ÞiδtþO

	�
s
ℏ

�
3


: ðD10Þ

Note that the result is expressed using j~ρð0Þi, which is not
given explicitly. To correctly relate it to j~ρð−τ=2Þi, we have
to use the symmetric rearrangement properties of the
evolution operator.

1. Symmetric rearrangement

In Fig. 11(a), there is an illustration of some time-
dependent Hamiltonian with reflection symmetry
HðtÞ ¼ Hð−tÞ. We use H to denote a Liouville space
operator which may be any unitary operation or Markovian
Lindblad operation. Assume that in addition to the sym-
metric bins of interest (green bins), the remainder of the
time is also divided into bins in a symmetric way so that
there is still a reflection symmetry in the bin partitioning
also. Now, we permute the bins in the positive side as
desired and then make the opposite order in the negative
side so that the reflection symmetry is kept. An example of
such an operation is shown in Fig. 11(b). Because of the
Strang decomposition, we know that the total evolution
operator will stay the same under this rearrangement up to
third order:

K−τ
2
→τ

2
¼ T sym½K�−τ

2
→τ

2
þO

	�
s
ℏ

�
3


; ðD11Þ

where T sym½x� stands for evaluation of x after a symmetric
reordering.

2. Symmetric rearrangement theorem

From Eq. (D11), we see that if the initial state is the same
for a system described by K, and for a system described by

FIG. 11. The Hamiltonians in (a) and (b) are related by
symmetric rearrangement of the time segments. Up to a small
correction Oðs3Þ, the change in expectation values of an
observable A that takes place during the green segments is the
same in both cases. This effect explains why work and heat are
the same in various types of engines when s is small compared to
ℏ (equivalence regime).
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T sym½K�, the final state at t ¼ τ=2 is the same for both
systems up to a third-order correction:

����~ρ
�
τ

2

��
¼ T sym

	����~ρ
�
τ

2

��

þO

	�
s
ℏ

�
3


: ðD12Þ

Using Eqs. (D8) and (D9), we see that

j~ρð0Þi ¼ j~ρðτ
2
Þi þ j~ρð− τ

2
Þi

2
þO

	�
s
ℏ

�
2


; ðD13Þ

and because of Eq. (D12), it also holds that

T sym½j~ρð0Þi� ¼ j~ρð0Þi þO

	�
s
ℏ

�
2



¼ j~ρðτ
2
Þi þ j~ρð− τ

2
Þi

2
þO

	�
s
ℏ

�
2


; ðD14Þ

using this in Eq. (D10), we get

δAtot ¼ −2ihAjHðt1Þ
j~ρðτ

2
Þi þ j~ρð− τ

2
Þi

2
δtþO

	�
s
ℏ

�
3


:

ðD15Þ
Expression (D15) no longer depends on the position of the
time segment but only on its duration and on the value ofH.
Thus, the SRT states that the expression above also holds
for any symmetric rearrangement,

dAtot ¼ T sym½dAtot� þO

	�
s
ℏ

�
3


: ðD16Þ

If we replace A by H0 and Hðt1Þ by Lc;Lh, or Hw, we
immediately get the invariance of heat and work to
symmetric rearrangement (up to s3). If j~ρ½−ðτ=2Þ�i is the
same for all engines, then j~ρðτ=2Þi is also the same for all
engine types up to Oðs3Þ. Consequently, for all stroke
engines, the expressions for work and heat are

W ¼ −2ihH0j
Z
t∈tw

HwðtÞ
dt
ℏ

j~ρðτ
2
Þi þ j~ρð− τ

2
Þi

2
þO

	�
s
ℏ

�
3


;

ðD17Þ

QcðhÞ ¼ −2ihH0j
Z

t∈tcðhÞ

LcðhÞðtÞ
dt
ℏ

j~ρðτ
2
Þi þ j~ρð− τ

2
Þi

2

þO

	�
s
ℏ

�
3


: ðD18Þ

Using the identity j~ρðτ=2Þi þ j~ρ½−ðτ=2Þ�i ¼ j~ρðtÞi þ
j~ρð−tÞi þO½ðs=ℏÞ2� that follows from Eq. (D13), the
integration over time of the energy flows jw ¼
hH0jð1=2ℏÞHwj~ρðtÞi and jcðhÞ ¼ hH0jð1=ℏÞLcðhÞj~ρðtÞi

for continuous engines yields expressions (D17) and
(D18) once more. This implies that the SRT (D17) and
(D18) holds even if the different operations Lc;Lh, andHw
overlap with each other.
We emphasize that all the above relations hold for any

initial state and not only in the steady state where
j~ρðτ=2Þi ¼ j~ρ½−ðτ=2Þ�i. The physical implication is that
in the equivalence regime, different engines are thermo-
dynamically indistinguishable when monitored at the end
of each cycle, even when the system is not in its
steady state.
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Abstract: Various engine types are thermodynamically equivalent in the quantum limit of small
“engine action”. Our previous derivation of the equivalence is restricted to Markovian heat baths and
to implicit classical work repository (e.g., laser light in the semi-classical approximation). In this paper,
all the components, baths, batteries, and engines, are explicitly taken into account. To neatly treat
non-Markovian dynamics, we use mediating particles that function as a heat exchanger. We find that,
on top of the previously observed equivalence, there is a higher degree of equivalence that cannot
be achieved in the Markovian regime. Next, we focus on the quality of the battery charging process.
A condition for positive energy increase and zero entropy increase (work) is given. Moreover, it is
shown that, in the strong coupling regime, it is possible to super-charge a battery. With super-charging,
the energy of the battery is increased while its entropy is being reduced at the same time.

Keywords: quantum heat engines; quantum refrigerators; quantum thermodynamics; heat exchanger;
engine equivalence; two-stroke; four-stroke; non-Markovian; strong coupling

1. Introduction

All heat engines, classical and quantum, extract work from heat flows between at least two heat
baths. When the working fluid is very small and quantum , e.g., just a single particle, the dynamics
of the engine can be very different from that of classical engines [1,2]. Nonetheless, some classical
thermodynamic restrictions are still valid. For example, quantum heat engines are limited by the
Carnot efficiency even when the dynamics is quantum. Today, it is fairly well understood why the
Clausius inequality originally conceived for steam engines still holds for small quantum heat machines.

The field of quantum thermodynamics has been intensively studied in recent years. The main
research directions are the study of quantum heat machines, thermodynamic resource theory, and the
emergence of thermal states. See the recent reviews [3–5] and references therein for more information
on these research directions.

The study of quantum heat machines dates back to [6] where it was shown that the lasing
condition for a system pumped by two heat baths corresponds to the transition from a refrigerator
to an engine. See [7,8] for a more detailed analysis of such systems. Since then, various types of heat
machines have been studied: reciprocating, continuous, autonomous and non autonomous, four-stroke
machines, two-stroke machines, Otto engines and Carnot engines in the quantum regime. See [9–45]
for a partial list on heat machine studies in recent years.

Experimentally, a single ion heat engine [46] and an NMR refrigerator [36] have already been
built. Suggestions for realizations in several other quantum systems include quantum dots [47,48],
superconducting devices [49–52], cold bosons [53], and optomechanical systems [34,54,55]. For other
related experiments and their theoretical studies, see [56–60].

Entropy 2016, 18, 124; doi:10.3390/e18040124 www.mdpi.com/journal/entropy



Entropy 2016, 18, 124 2 of 16

The second law was found to be valid for heat machines [9] in the weak system-bath coupling,
where the Markovian dynamics is described by the Lindblad equation. In fact, the second law is
consistent with quantum mechanics regardless of Markovianity as long as proper thermal baths are
used [61]. One of the main challenges in this field is to find “quantum signatures” [1] in the operation
of heat machines—more accurately, to find quantum signatures in thermodynamic quantities such as
work, heat, and entropy production. Clearly, the engine itself is quantum and as such it may involve
quantum features such as coherences and entanglement. The question is whether by measuring
only thermodynamic quantities such as average heat or work, it is possible to distinguish between a
quantum engine and a classical one.

As it turns out, there are thermodynamic effects that are purely quantum, the most relevant
to this work is the equivalence of heat machine types [1]. Other quantum thermodynamic effects
include extraction of work from coherences [62], oscillation in cooling [2], and multiparticle statistics
effects [63]. In resource theory, it seems that quantum coherences in the energy basis also play an
important role and impose restrictions on the possible single shot dynamics [64,65].

The traditional models and analysis of quantum heat machines resemble that of laser physics in
the semi classical approximation. The driving field is often modeled by a classical electromagnetic
field. This field generates a time-dependent Hamiltonian so it is possible to extract pure work from the
system. When the classical field is replaced by a work repository (battery) with quantum description,
the dynamics become more complicated [66]. For example, for an harmonic oscillator battery, the
initial state of the battery has to be fairly delocalized in energy to avoid entropy generation in the
baths [30,67]. This is problematic since an oscillator always has a ground state. See [66] for a detailed
account of this mechanism. In this work, we shall use multiple batteries to extract work by interacting
with the engine via energy conserving unitary evolution. Interestingly, machines without classical
fields have been previously studied [16,30,68]. However, the research goals in these studies are entirely
different from those of the present study.

Another assumption that is almost always used in the analysis of heat machines is that of weak
coupling to the bath. Weak coupling, initial product state assumption, and other approximations lead
to the Lindblad equation for the description of the thermalization process. The Lindblad equation is
widely used in open quantum systems and they describe very well the dynamics in many scenarios.
In other scenarios, such as strong system-bath interactions, or for very short evolution times, the
Lindblad equation fails [69]. In the scheme presented in this paper, we include heat exchangers.
Their role is to enable non-Markovian engine dynamics while still using Markovian baths.

One of the goals of this paper is to show that heat machine equivalence goes beyond the classical
field approximation, and also for very short times where the Markovian approximation does not hold.

A “stroke” of a quantum machine is defined in the following way [1]. It is an operation that takes
place in a certain time segment. In addition, a stroke does not commute with the operations (strokes)
that take place before or after it. This non commutativity is essential for thermodynamic machines.
Without it, the system will reach a state that is compatible with all baths and batteries, and no energy
flows will take place. Different machine types differ in the order of the non commuting operations.
In a two-stroke machine, the first stroke generates simultaneous thermalization of two different
parts of the machine (manifolds) to different temperatures. In the next stroke, a time dependent
Hamiltonian couples the two manifolds and generates a unitary that reduces the energy of the system.
The energy taken from the system is stored in a classical field or in a battery, and is referred to as
work. In a four-stroke engine, the strokes are thermalization of the hot manifold, unitary evolution,
thermalization of the cold manifold, and another unitary evolution. In the continuous machine,
all terminals (baths and work repository) are connected simultaneously: hot bath, cold bath, and
battery/classical field. In this paper, we shall refer to this machine as simultaneous and not continuous
for reasons explained later on.

Due to the abovementioned non commutativity, different machines operate in a different manner,
and, in general, their performances differ (even in cases where they have the same efficiency as in the



Entropy 2016, 18, 124 3 of 16

numerical examples in [1]) . Nonetheless, the thermodynamic equivalence principle presented in [1]
states that in the quantum limit of small action, all machine types are thermodynamically equivalent.
That is, they have the same work per cycle, and the same heat flows per cycle. This equivalence
takes place where the operation of each stroke is very close to the identity operation. This regime
is characterized by “engine action” that is small compared to h̄. This does not mean low power
since a small action cycle can be completed in a short time. Regardless of how close to identity
the operations are, the different machine types exhibit very different dynamics (for example, the
simultaneous machine does not have a pure unitary stage). Nevertheless, the equivalence principle
states that all these differences disappear when looking at the total heat or total work after an integer
number of cycles. The details of the equivalence principle will become clear as we present our results for
the non-Markovian case.

The paper is organized as follows. Section 2 describes the engine and baths setup and introduces
the heat exchangers. In Section 3.1, we derive the equivalence relation in the non-Markovian regime
(short evolution time or strong couplings). The equivalence of heat machine types is valid when the
“engine action” is small compared to h̄. In Section 3.2, it is shown how to choose the initial state of
the batteries in the weak action regime so that their entropy will not change in the charging process
is shown. In addition, we find that, for large action, a different initial battery state is preferable.
In the end of the section, it is shown that, for some initial states of the battery, the machine charges
the battery with energy while reducing the entropy of the battery at the same time (super-charging).
Section 3.3 shows that, in contrast to Markovian machines, it is possible to construct machines with a
higher degree of equivalence. The emphasis is on the very existence of such machines, because their
usefulness is presently unclear. In Section 4, we conclude the paper.

2. The Setup

We describe here the minimal model needed for extending the equivalence principle to short
time dynamics beyond the Markovian approximation. However, the same logic and tools can be
applied to more complicated systems with more levels or more baths. The setup studied in this paper
is shown in Figure 1. Heat is transferred from the bath to the engine (black ellipse) via particles of the
heat exchangers (circles on gears). In each engine cycle, the gears turn and a fresh particle enters the
interaction zone (gray shaded area) where it stays until the next cycle. The engine can only interact
with the particles in the interaction zone. The work repository is a stream of particles, or batteries,
(green circles) that are “charged” with work by the engine. This interaction of the elements with the
engine can be turned on and off as described by the periodic functions fk(t) = fk(t + τcyc), where τcyc

is the machine cycle time. Throughout the paper, we shall use the index “k” as a “terminal index” that
can take the values “h”, “c” or “w” that stand for hot, cold and work repository (battery), respectively.
In what follows, we elaborate on the different elements in the scheme.

2.1. The Heat Exchanger and the Baths

The heat machine equivalence principle [1] calls for a small engine action, which reads in the
present formalism ‖Hek‖ τ � h̄. However, in the microscopic derivation of the Lindblad equation, a
rotating wave approximation is made. The approximation is valid only if τ is large compared to the
oscillation time. This implies that ‖Hek‖ has to be very small in the equivalence regime. Nevertheless,
in principle, small action can be achieved with strong (or weak) coupling ‖Hek‖ and short evolution
time as long as ‖Hek‖ τ � h̄ holds. In this regime, which is the subject of this paper, the dynamics is
highly non-Markovian. Non-Markovian bath dynamics is, in general, very complicated and strongly
depend on the specific bath realization. Heat machines and the second law in the presence of strong
coupling have been discussed in [70–72].

To overcome the complicated dynamics and to obtain results that are universal and not bath-realization
dependent, we add heat exchangers to our setup. Heat exchangers are abundant in macroscopic heat
machines. In house air conditioning, a coolant fluid is used to pump heat from the interior space to an
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external cooling unit. Water in a closed system is used in car engines to transfer heat to the radiator
where air can cool the water. Perhaps the simplest example is the cooling fins that are used to cool
devices like computer chips. The metal strongly interacts with the chip and conduct the heat to the
fins. Then, the weak coupling with the air cools the fins. The interaction with the air is weak but, due
to the large surface, it accumulates into a large heat transfer that cools the chip.

In the quantum regime, heat exchangers enable the following simplifications. Firstly, they separate
the system interaction scales from the bath interaction scales. The system can undergo non-Markovian
dynamics with the heat exchangers while the baths can thermalize the heat exchangers using standard
weak coupling Markovian dynamics. Secondly, they enable starting each engine cycle with a known
environment state (the particles in the interaction zone). Most importantly, this environment state is in
a product state with the system and contains no memory of previous cycles. Thirdly, it eliminates the
dependence on all bath parameters except the temperature. This means that, from the point of view of
the machine, all different bath realizations are equivalent. This bath parameter independence holds as
long as the bath fully thermalizes the heat exchanger particles.

Figure 1. (a) heat machine scheme with heat exchangers (gears). Various engine types can be
implemented in this scheme by controlling the coupling function fc,h,w(t) to the engine (ellipse). In each
cycle, the gears turn and the work repository shifts so that new particles enter the interaction zone (gray
shaded area). The heat exchangers enable the use of Markovian baths while having non-Markovian
engine dynamics. This includes strong coupling and/or short time evolution. In this model, the
work is stored in many batteries (work qubit in green); (b) the engine level diagram. This machine
is based on two-body energy conserving unitaries. This is in contrast to other machines that employ
three-body interaction.

In our scheme, the coolant fluids consist of Nc and Nh particles in each heat exchanger
(particles around the gears in Figure 1a). The particles in the gear cyclically pass through the bath
and the machine interaction zone (gray shaded area) with periods of Nc,hτcyc. Note that the gears in
Figure 1a are merely an illustration of the heat exchanger concept. The heat exchanger can be realized,
for example, by adjacent superconducting qubit or by moving neutral atoms with light. The particles
may interact strongly and in a non-Markovian way with the system. On the other hand, the particles
interact weakly with the bath but for a sufficiently long time so that they fully thermalize when they
leave the bath. After the exchanger particles exit the bath, they are in a thermal state and in a product
state with the system (the bath removes all correlation to the machine). In each cycle of the engine, a
different exchanger particle interacts with the system. Nc,h are analogous to the size of the “cooling



Entropy 2016, 18, 124 5 of 16

fin”. Their number is chosen so that within the Markovian, weak-coupling limit to the baths, for all
practical purposes, they have sufficient time to fully thermalize.

Under the assumptions above, it does not matter what the exact details of the Markovian bath
are (e.g., its thermalization time and correlation time). It only needs to induce thermal state via weak
coupling (to avoid strong interaction issues). In this regime, the thermalization can be described by the
Lindblad equation [69]. However, because of the heat exchanger full thermalization assumption, there
is no need for an explicit solution.

The work repository is basically a heat exchanger without a bath. It may have a conveyor belt
geometry as shown in Figure 1a, or it may be cyclic like the heat exchanger. The considerations of
choosing the initial state of the batteries particles (work repository) will be discussed later.

The model can be extended by letting the system interact with more than one heat exchanger
particle at a time, or by not fully thermalizing the particles. However, it seems like these types of
extensions eliminate the advantages of using heat exchangers to begin with. The simple setup described
above is sufficient to exemplify the equivalence principle in short time non-Markovian dynamics.

2.2. The Engine

The engine core shown in Figure 1b is a three-level system. Levels 1 and 3 constitute the hot
manifold with an energy gap Eh, levels 1 and 2 constitute the cold manifold with a gap Ec, and the
work manifold comprises levels 2 and 3. The more general notion of manifold separation in quantum
heat machines is described in [1].

The hot (cold) manifold can interact only with the hot (cold) heat exchanger. This interaction can
be switched on and off without any energetic cost as explained in the next section. The same holds for
the work repository. If the engine qutrit interacts only with one heat exchanger, the hot for example,
then the hot manifold of the system will eventually reach a Gibbs state at temperature Th.

For the engine operating regime, we want the thermal strokes to create population inversion that
would be used to excite the batteries to higher energies. This simple engine structure facilitates
the construction of thermal machines using only two-body interactions rather than three-body
interactions [16,30,68].

2.3. The Coupling of the Engine to the Heat Exchangers and to the Work Repository

In our model, the particles in the heat exchangers are all qubits. The energy gaps of the qubits
in the heat exchangers are equal to the energy gaps of their corresponding manifold in the engine
qutrit. As explained earlier, in each engine cycle, the heat exchanger dials turn and a new thermal
particle is available to interact with the system. These exchanger particles are not initially correlated
to the engine, so the initial state (in each cycle) of the particles in the engine interaction zone is
ρtot(t = 0) = ρc ⊗ ρh ⊗ ρw ⊗ ρe where ρe is the engine state and ρc,h,w are the bath and work repository
particles that are in the interaction zone of the system. The rest of the particles are not required until
the next cycle of the machine.

The coupling between the engine and the hot bath particles has the form:

Hint = ∑
k=c,h,w

fk(t)Hek, (1)

where fk(t) are the controllable periodic scalar couplings (switches in Figure 1a and dashed lines in
Figure 1b) introduced earlier. Hek are energy conserving Hamiltonian: If Hk is the Hamiltonian of
the exchanger particle and He is the qutrit engine Hamiltonian, then energy conserving interaction
satisfies: [Hek, He + Hk] = 0. This condition is the standard assumption in thermodynamic resource
theory. It is used to define “thermal operations”, and it ensures that energy is not exchanged with the
controller that generates Hek. The total energy in the exchangers, work repositories and the engine is
not affected by Hek. Thus, Hek can only redistribute the total energy but not change it.
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The simplest form of Hint is Hek = aka†
ek + a†

k aek where ak is the annihilation operator for the
k exchanger particle, and aek is the annihilation operator for hot manifold in the engine. These Hek
Hamiltonians generate a partial (or a full) swap between the k manifold in the machine and the
terminal k. This operation is slightly more complicated than the standard partial swap as will be
explained in the battery section.

In the beginning of each cycle, the engine starts in a product state with its immediate environment.
This inserts a Markovianity scale to the model since there is no bath memory from cycle to cycle.
Nonetheless, there are still important non-Markovian aspects in the intra-cycle dynamics. The full
Markovian dynamics is obtained in the weak collision limit [73–77], where in each thermal stroke, the
engine interacts weakly with many particles of the heat exchanger.

In the simultaneous machine, all the fk are turned on and off together in order to couple the
machine to different particles in the heat exchangers. Thus, the couplings are not fixed in time as in
the Markovian continuous machine. While Markovian continuous machines do not have a cycle time,
the simultaneous machines have a cycle time τcyc determined by the rate that particles of the heat
exchangers enter the interaction zone.

2.4. The Work Repository

There are two major thermodynamic tasks: one is to produce work, and the other is to change
the temperature of an object of interest. While cooling can be done either by investing work
(power refrigerator) or by using only heat baths (absorption refrigerator), engines always involve the
production of work. Often, the receiver of the work is not modeled explicitly. Instead, a classical field
is used to drive the system and harvest the work. This is equivalent to a repository that is big and
hardly changes its features due to the action of the engine.

When the work repository is modeled explicitly, various complications arise. First, the state of the
battery may change significantly (especially if the battery starts close to its ground state) and therefore
affect the operation of the engine (back action). Second, as entanglement starts to form between the
battery and the system, the reduced state of the battery gains entropy. The energy exchange can no
longer be considered as pure work. In an ideal battery, the energy increases without any accompanying
entropy change. This feature is captured by the entropy pollution measure: ∆S/∆ 〈E〉 [78,79]. In a
good battery, this number is very small and can even be negative as will be shown later.

To avoid the back action problem we will use multiple batteries. In the present scheme, it is
sufficient to use qubits or qutrits. That is, instead of raising one weight by a large amount, we raise
many weights just a little. In some cases, this is indeed the desired form of work. For example, an
engine whose purpose is to prepare many particles with population inversion that are later used as a
gain medium for a laser.

As with the heat exchanger, the batteries will be connected to the engine sequentially, one in
each cycle (the k =′ ω′ in Equation (1)). The reduced state of a terminal particle k (may belong to the
heat exchanger or to the battery) after the engine operated on it, will be denoted by ρ′k = tr 6=j[ρ

′
tot]. In

general, after the cycle, the terminal particle may be strongly correlated to the engine.
The initial state of the battery is a key issue that dramatically affects the entropy pollution and the

quality of charging the battery with work. Nevertheless, it is not directly related to the issue of heat
machine equivalence so we will discuss the battery initial state only in Section 3.

2.5. Heat and Work

The heat that flows into the cold (hot) bath in one cycle is given by the change in the energy of the
heat exchanger particle after one cycle:

Qcycle
c(h) = tr[(Ucycρtot(0)U†

cyc − ρtot(0))Hc(h) ⊗ 11else], (2)
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where Ucyc is the evolution operator generated by Hint over one cycle of the machine. Writing this in
terms of the state of the whole system, rather than using the reduced state of the bath, is very useful.
To evaluate the total change in the bath energy, we need to know the global transformation over one
cycle Ucyc. The internal dynamics, which are machine dependent, have no impact on the total heat. All
engines that have the same Ucyc will have the same amount of heat per cycle. This is in contrast to the
equivalence in the Markovian Lindblad formalism [1]. There, a symmetric rearrangement theorem had
to be applied to show that the total heat per cycle is the same for different machines. In the present case,
when the one cycle evolution is equivalent for different types of machines, Equation (2) immediately
implies equivalence of heat and work per cycle. Equivalence of all heat and work energy flows implies
that the efficiency W/Qh is the same as well for different machine types in the equivalence regime.

As for energy exchanges with the work repository ∆ 〈Hw〉, we replace Hc(h) by Hw in Equation (2).
In order to identify it with work, it is required that no entropy is generated in the work repository.

3. Results

3.1. The Equivalence of Heat Machines in the Non-Markovian Regime

The construction of various heat machine types in the same physical system was studied in [1],
and it is based on operator splitting techniques. In particular, the Strang splitting [80–82] for two non
commuting operators A and B is e(A+B)dt = e

1
2 AdteBdte

1
2 Adt + O(dt3). Starting with the simultaneous

machine operator where all terminals are connected simultaneously:

Ũsimul
cyc = e

−i[He+ ∑
k=c,h,w

Hk+Hek ]τcyc
,

= U0Usimul
cyc , (3)

Usimul
cyc = e−i[Hec+Heh+Hew ]τcyc , (4)

where U0 = e−i(He+Hc+Hh+Hw)τcyc , the single-particle coherence evolution operator can be singled
out from the total evolution operator since [He +Hc +Hh +Hw, Hint] = 0. All of the population
change is generated by Usimul

cyc In fact, Usimul
cyc is the evolution operator in the interaction picture. Energy

observables like heat look the same in the interaction picture (U†
0 Hc,h,wU0 = Hc,h,w). In practice, all

states should be evolved with Usimul
cyc only. The bare Hamiltonians Hk are used only for calculating

the energy observables. Thus, the single-particle coherences associated with interaction-free time
evolution U0 do not affect the population dynamics and observables like energy that are diagonal in
the energy basis. The fact that U0 commutes with Usimul

cyc means that outcome of the operation does not
depend on the time the operation is carried out (time invariance).

This type of single-particle coherences should be distinguished from inter-particle coherences.
Since the energy gaps in the machine and the terminal are matched, the inter-particle coherences
are between degenerate states. For example, the states |0c1e〉 and |1c0e〉 are degenerate, and so are
the pairs {|0h3e〉 , |1h0e〉} and {|0w3e〉 , |1w2e〉}. The crossed lines in Figure 1b show the pairs of
two-particle degenerate states. These inter-particle coherences are essential for the dynamics. Their
complete suppression leads to a Zeno effect that halts all the dynamics in the engine. The inter-particle
coherences are generated and modified by the interaction terms and hence cannot be separated from the
rest of the evolution like the single-particle coherences. Note that changes in inter-particle coherence
translate to population changes in the subspaces of individual particles.

When starting in a product state where the inter-particle coherences are zero, the energy transfer
(population changes) is of order dt2 while the coherence generation is of order dt. This is due to
the fact that unitary transformation converts population to coherences and coherence to population
(see Figure 8 in [1]). In thermodynamic resource theory, phases are often dismissed as non-essential,
but we stress that this is true only for the single-particle coherences.
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To study the relations between the simultaneous engine and the two-stoke engine, we apply the
Strang decomposition which yields the following product form

Usimul
cyc = e−iHew

τcyc
2 e−i(Hec+Heh)τcyc e−iHew

τcyc
2 + O[(

s
h̄
)3],

= U I I stroke + O[(
s
h̄
)3], (5)

where s is the “engine norm action” s = (‖Hec‖sp + ‖Heh‖sp + ‖Hew‖sp)τcyc and ‖·‖sp is the spectral

norm of the operator [1]. When this number is small compared to h̄, U I I−stroke
cyc → Usimul

cyc . Note that the
first term and the third term in U I I−stroke

cyc are two parts of the same stroke. The operator splits this way
since the Strang splitting can only create symmetric units cells. A similar splitting can be done for the
four-stroke engine exactly as shown in [1]. One immediate conclusion follows from the equivalence of
the one cycle evolution operators: if different machine types start in the same initial condition, their state
will coincide when monitored stroboscopically at tn = nτcyc. While at tn = nτcyc the states of different
machine types will differ by O[( s

h̄ )
3] at the most, at other times they will differ by O[ s

h̄ ]. This expresses
the fact that the machine types are never identical at all times. They differ in the strongest order
possible O[ s

h̄ ], unless complete cycles are considered. Since the one cycle evolution operators are
equivalent, it follows from Equation (2) that for the same initial engine state:

Qsimul
h(c)

∼= QI I stroke
h(c)

∼= QIV stroke
h(c) , (6)

where Qsimul refers to the heat transferred in time of τcyc in the particle machine. The ∼= stands for

equality up to correction
∥∥∥Hc(h)

∥∥∥O[( s
h̄ )

4]. Note that the cubic term does not appear in Equation (6).

Due to lack of initial coherence, the O[( s
h̄ )

3] correction contributes only to the inter-particle coherence
generation but not to population changes. Hence, the population changes differ only in order O[( s

h̄ )
4].

In transients, the system energy changes from cycle to cycle so, in general, it is not correct to use energy
conservation to deduce work equality from heat equality. Nevertheless, work equality follows from
Equations (2) and (5) when using Hw instead of Hc(h).

This establishes the equivalence of heat (and work) even very far away from steady state operation
or thermal equilibrium provided all engines start with the same state. This behavior is very similar to the
Markovian equivalence principle [1], but there is one major difference. Since each cycle starts in a
product state, the leading order in heat and work is O[( s

h̄ )
2] and not O[ s

h̄ ] as in the Markovian case.
The linear term in the work originates from the single-particle coherence generated by the classical
driving field. Without this coherence, the power scales as (Qcyc

h + Qcyc
c )/τcyc ∝ τcyc. Thus, as shown

in Figure 2a, for small action, the power grows linearly with the cycle time. On the other hand, as
explained earlier, the correction to the power is only of order O[( s

h̄ )
4]/τcyc = O[( s

h̄ )
3] since there is no

cubic correction to the work.
Let us consider now the steady state operation. Despite Equation (6), it is not immediate that the

heat will be the same for different machine types in steady state. In Equation (6), the initial density
matrix is the same for all machine types. However, different types may have slightly different initial
states, which may affect the total heat. To study equivalence in steady state operation, we first need to
define what steady state means when the bath and batteries are included in the analysis. The whole
system is in a continuous transient: the hot bath gets colder, the cold bath gets hotter, and the batteries
are charged. Nonetheless, the reduced state of the engine relaxes to a limit cycle ρ̄e(t) = ρ̄e(t + τ) or
explicitly ρ̄e = tr 6=e[Ucyc(ρc ⊗ ρh ⊗ ρw ⊗ ρ̄e)Ucyc]. To see the relation between steady states of different
machines, we choose the steady state of one machine, for example ρ̄simul

e , and apply the two-stroke
evolution operator to it:

ρ̄′e = tr 6=e[U I I stroke
cyc (ρc ⊗ ρh ⊗ ρw ⊗ ρ̄simul

e )U I I stroke
cyc ]

= ρ̄simul
e + O[(

s
h̄
)4]. (7)
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The cubic order is absent because, if there are no initial inter-particle coherences, then the cubic
term only generates inter-particle coherences. Hence, the reduced state of the system is not modified
by the cubic correction of the two-stroke evolution operator. From Equation (7), we conclude that
the steady states are equal for both machines up to quartic corrections in the engine action. From
Equation (6), it follows that heat and work in steady state are also equal in all machine types, up to
quartic correction. Figure 2a shows the power in steady state for the three main types of machines as
well as for a higher order six-stroke machine that will be discussed in the last section. Let the power
of the machine (work per cycle divided by cycle time) be denoted by P. In Figure 2b, we plot the
normalized power P/Psimul where it is easier to see that the correction in the power of one machine
with respect to the other is quadratic. This graph shows that the equivalence of non-Markovian machines
is actually similar to that of Markovian machines. The difference is that the reference simultaneous
power is constant (in action) in the Markovian case and linearly growing (small action) in the present
case. Figure 2b shows that the equivalence is a phenomenon that takes place in a regime and not only
at the (ill defined) point τcyc = 0. The same holds for the Markovian case.

Figure 2. (a) In the non-Markovian regime the main machine types: four-stroke, two-stroke and
simultaneous machine, have the same power when the engine action is small compared to h̄. In contrast
to the Markovian case here the power is not constant but grows linearly for small action. The action is
increased by increasing the time duration of each stroke. The red and blue dashed curves show how
the 4-stroke and 2-stroke engines are modified when a dephasing stroke is included. This demonstrates
that the thermodynamic equivalence is a quantum coherence effect; (b) The equivalence become more
visible when plotting the relative power of each machine with respect to the simultaneous machine.
The 6-stroke machine, based on the Yoshida decomposition, is unique to the non-Markovian case and
has a wider range of equivalence.

At this point, we wish to discuss the quantumness of the equivalence principle in the current
setup. In [1], it was suggested to use dephasing in the energy basis to see if the machine is stochastic or
quantum. If a dephasing stroke is carried out before the unitary stroke and the result is not affected,
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then the machine operates as a stochastic machine. In the four-stroke engine and in the two-stroke
engine described in Equation (5), the battery is accessed twice during the cycle. The first interaction
with the battery creates some inter-particle coherence between the battery and the engine. As a
result, the next interaction with the battery (the second work stroke) starts with nonzero inter-particle
coherence. Thus, adding dephasing after the first work stroke will affect the power gained in the
next work stroke. This is shown by the red and blue dashed curves in Figure 2a. The power of
the simultaneous engine is zero if we continuously dephase the system (Zeno effect). We conclude
that, although there is no coherence that carries over from one cycle to the next, as in the Markovian
case, coherence is still needed for the equivalence principle to hold. This time, the coherence is an
inter-particle coherence between degenerate states.

So far, we ignored the nature of the energy transferred to the battery, i.e., if it is heat or work. If it
is pure work, the device is an engine, whilst if it is heat, the device functions as an absorption machine
(only heat bath terminals). However, the equivalence principle is indifferent to this distinction. If the
action is small, two-stroke, four-stroke, and simultaneous machines will perform the same. In the next
section, however, we study the conditions under which the entropy of the batteries is not increased
and the device performs as a proper engine.

3.2. Work Extraction

3.2.1. The Initial State of the Battery in Strong and Weak Coupling

So far, we have not explicitly addressed the question of work extraction and whether the energy
transferred to the batteries is actually pure work or heat. For engines, the goal is to make the entropy
pollution ∆Sw/∆ 〈Hw〉 as small a possible. Figure 3 shows the well known expression for the entropy
of a qubit as a function of the excited state population pw. The von Neumann entropy and the Shannon
entropy of single particles are identical since there are no single-particle coherences. The energy of the
battery is proportional to the excited state population, so the x axis also indicates the energy of the
battery. If the battery starts with a well defined energy state, that is the ground state pw = 0, then a
small increase in the energy will result in a large entropy generation in the battery. In fact, for small
changes, this is the worst starting point (the origin in Figure 3). However, if we choose to start with a
very hot battery at pw = 1/2, (Tw → ∞), the entropy increase will be very small if ∆pw is small. Thus,
by using many batteries in a fully mixed state where each is only slightly changed (∆pw � 1), it is
possible to reach the ∆Sw/∆ 〈Hw〉 → 0 limit. This is in accordance with the claims that Tw → ∞ limit
of an absorption refrigerator, is analogous to a power refrigerator [83]. The price for this choice of the
initial state of the battery is that the number of batteries diverges as ∆Sw/∆ 〈Hw〉 → 0.

Figure 3. For infinitesimal changes (weak coupling), it is preferable to start with a battery qubit that is
close to the fully mixed state (point A) where dS/dE = 0. For larger changes, it is preferable to generate
a permutation that conserves the entropy and creates population inversion (B→ C line). While ∆S = 0
for the battery is analogous to classical field work repositories, in two-level batteries, it is possible to
super-charge the batteries (E → F) so that their energy is increased while their entropy is reduced
(see also Figure 4).
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Figure 4. For a given engine, the changes in energy (black) and entropy (red) of the battery are plotted
as a function of the initial excited state probability pw of the battery. a, b and c are the population
of levels 1–3 of the engine just before the interaction with the battery starts. The shaded area shows
the super-charging regime where the battery is not only charged but also purified. This can only be
done by strong interaction between the engine and the battery. The left border corresponds to regular
charging where the energy is increased but the entropy of the battery remains the same.

In the semi-classical field approximation, the field generates a unitary operation that does not
change the entropy of the system. This is often addressed as pure work as there is no entropy change
in the system. However, when modeling the classical field explicitly, one finds that the source of the
classical field actually gains some entropy. To counter this effect, the battery has to be prepared in
a special state [30,67] or a feedback scheme must be applied [84]. Here, we suggest doing the exact
opposite and applying an interaction that will generate a unitary transformation on the battery but
will generate some entropy in the engine. Consider Point B in Figure 3, a full swap to Point C will
increase the energy but will leave the entropy fixed. In general, this will increase the entropy of the
machine. Let the initial state of the engine be ρe = diag{a, b, c} and the initial state of the work qubit be
ρw = diag{1− pw, pw}. After a full swap interaction we get:




a
b

c




e

,

(
1− pw

pw

)

w

→




a
(1− a)(1− pw)

(1− a)pw




e

,

(
b + a(1− pw) 0

0 c + apw

)

w

. (8)

If a = 0, a regular full swap takes place between levels 2 and 3 of the engine and levels 1 and 2
of the battery. If a = 1, there is no population in level 2&3 so nothing happens and levels 1&2 of the
battery remain unchanged. This rule follows from the condition that guarantees energy conservation
ρ′e − ρe = −(ρ′w − ρw). Any population change in one particle must be compensated by an opposite
change in the other particle (the energy levels are equal in our model). Now, we demand that this
transformation of the battery will generate a full swap, that is ρ′w = diag{pw, 1− pw}. This leads to the
condition c + apw = 1− pw or

pw =
1− c
1 + a

. (9)
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Note that pw defines a temperature through the Gibbs factor: pw/(1− pw) = exp(−Ew/Tw).
After the full swap, the temperature of levels 2&3 of the engine, is now Tw. It is simple to show
from the positivity of the quantum mutual information that the entropy of the engine has increased.
This entropy increase is associated with the formation of correlation (for the full swap it is strictly
classical). When the total population on the subspace of interest on both sides is not equal (e.g., a 6= 0
in the example above), classical correlation forms. If the engine is measured, the marginal distribution
of the battery changes. Another way to see the presence of correlation is the following. The unitary
conserves the total entropy. However, the entropy of the reduced state of the battery does not change
while the reduced entropy of the engine does change. This implies that the mutual information is
larger than zero. This classical correlation formation can be avoided by replacing the qubit batteries
with qutrit batteries whose initial state is ρw = diag{a, c, b} (note the flip of b and c). In this case, the
full swap operation will not generate any correlation between the engine and the battery.

The full swap is a strong coupling operation. Here, strong coupling was used to make a more
efficient battery charging mechanism compared to the Tw → ∞ alternative in the weak coupling limit.

3.2.2. Beyond the Semi-Classical Limit of the Driving Field

When the work repository can be described by a classical field, no entropy accounting is carried
out for the work repository. However, for an explicit battery the possible changes in the entropy of the
battery have to be studied. In this subsection, it is shown that these changes can actually be useful. As
illustrated in the E→ F trajectory in Figure 3, it is possible to increase the energy while reducing the
entropy. We name this process “super-charging”. In a regular charging, the energy increases but the
entropy of the battery remains fixed. This corresponds to executing a unitary operation on the battery.
In sub-charging, the energy is increased but so is the entropy. Heat flow to a thermal bath in the weak
system-bath coupling limit is an example of sub-charging. Strictly speaking, in super-charging, the
machine does not exactly correspond to an engine, since the energy change in the battery is associated
with an entropy change as well. Nevertheless, this change in entropy is a welcomed one, as entropy
reduction is hard to achieve and often requires some additional resources. In Figure 4, we show an
explicit example for an initial engine state with populations {a, b, c} = {0.056, 0.074, 0.4} as a function
of the initial exited state population of the battery pw. The shaded area corresponds to super-charging.
The left boundary of the shaded regime corresponds to regular charging and is given by the dS = 0
condition Equation (9). The right boundary is given by the condition ∆E = 0. Using Equation (8)
∆E = 0 leads to the right boundary condition pw = c/1− a = c/(b + c). This condition means that
population ratio in the engine qutrit and in the battery is the same. Hence, nothing happens when the
swap is carried out. This zero change in population also leads to ∆S = 0 at this point.

3.3. Higher Order Splittings

The regime of equivalence studied in Section 3.1 and in [1] is determined by the use of the Strang
decomposition for the evolution operator. Although higher order decompositions do exist, they
involve coefficients with alternating signs [85]. In the Markovian case, this is not physical since a
bath that generates evolution of the form exp(−Lt) is not physical (where exp(+Lt) is the standard
Lindblad evolution). In the present paper, instead of non unitary evolution of the reduced state of
the engine, we consider the global evolution operator of all the components. The global evolution is
unitary and its generators, the interaction Hamiltonian, are all Hermitian. Hence, there is no problem
to have for example exp(+iHect) instead of exp(−iHect). It simply means an interaction term with
opposite sign. This facilitates the use of higher order decompositions in order to make machines with
more strokes and a larger regime of equivalence.

In [86], Yoshida introduced a very elegant method to construct higher order decompositions.
Let Us2(t) = Usimul(t) + O[( s

h̄ )
4] stand for an evolution operator that has a correction of order s3 with
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respect to Usimul(t). It can be, for example, a four-stroke or two-stroke engine. As shown in [86], a
fourth order evolution operator Us4(t) can be constructed from Us2(t) in the following way:

Us4(t) = Us4(x1t)Us4(x0t)Us4(x1t), (10)

{x0, x1} = { −21/3

1− 21/3 ,
1

1− 21/3 },

where Us4(t) = Usimul(t) + O[( s
h̄ )

5]. By applying the same arguments as before, when the cycle starts
with fresh uncorrelated bath and battery particles, the correction to the work and heat are O[( s

h̄ )
6]. The

Yoshida method is powerful since it can be repeated, with different x0, x1 coefficients, to gain operators
that are even closer to the simultaneous machine. Physically, Equation (10) can be interpreted as a
regular Us2(t) machine where the stroke durations alternate every cycle. Figure 2b shows the ratio of
the power of various engines with respect to the simultaneous engine. While in the Strang four-stroke
and two-stroke machine, the power deviation from the simultaneous machine is second order in the
action, the power of the Yoshida engine of order four deviates from the simultaneous machine only in
the fourth order in the action.

Two-stroke and four-stroke engines naturally emerge from practical considerations.
Two-stroke engines emerge when it is easier to thermalize simultaneously the hot and cold manifolds.
Four-stroke engines emerge when it is easier to thermalize one manifold at a time. In contrast,
the Yoshida decomposition Equation (10) does not split the simultaneous engine into more basic
or simpler operations compared to the two-stroke and four-stroke machines. Thus, the practical
motivation for actually constructing Yoshida-like higher order machines is not obvious at all at this
point. Nevertheless, our main point in this context is that higher order machines are forbidden in
Markovian dynamics and are allowed in the non-Markovian machines studied here.

4. Conclusions

It has been demonstrated that the principle of thermodynamic equivalence of heat machine types
is valid beyond Markovianity. We find higher order equivalence relations that do not exist in the
Markovian regime. In addition, it was shown that the strong coupling limit enables delivery of finite
work to the battery without increasing its entropy. It also enables charging and reducing the entropy
of the battery at the same time. In our setup, we introduced heat exchangers to mediate between
the machine and the baths. Heat exchangers significantly simplify the analysis, but they also have a
significant practical value. They remove the strong dependence on the finer properties of the baths
and allow more flexible machine operating regimes while still using a simple Markovian bath.
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Appendix D

Open quantum systems

D.1 The KMS condition

The Kubo-Martin-Schwinger (KMS) condition is a property satisfied by systems at

thermal equilibrium. The state of the system can be represented by the Gibbs state,

ρ̂th =
exp(−βĤ)

Z
, (D.1)
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where Z is the normalization factor (or the partition function from statistical me-

chanics), Z = Tr(exp(−βĤ)), and β
def
= 1/kBT is the inverse temperature. Let

the dynamics of the system be generated by the Hamiltonian Ĥ, then we have

[ρ̂th, Û(t)] = 0 where Û(t) = exp(−iĤt). The expectation value of two operators

acting on the Hilbert space of the system satisfies the relation,

〈
Â(t)B

〉
=
〈
BÂ(t+ iβ

〉
with Â(t) = Û †(t)AÛ(t). (D.2)

This relation follows immediately from the cyclic property of the trace and from

Eq.(D.1). Applying this relation to the bath correlation functions we obtain,

〈
R̂†(t)R̂(0)

〉
=
〈
R̂(0)R̂†(t+ iβ)

〉
. (D.3)

The function F (t) =
〈
R̂†(t)R̂(0)

〉
is of a positive type and according to the Bochner’s

theorem it follows that its Fourier transform is also positive,

γ(ω) =

∫ ∞

−∞
eiωtF (t) ≥ 0. (D.4)

This gives the proof that the rates γ(ω) are non-negative. Furthermore, the Fourier

transform of Eq.(D.3) implies the relation,

γ(−ω) = e−βωγ(ω). (D.5)
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D.2 Liouville space representation

Quantum dynamics is traditionally described in Hilbert space. However, it is conve-

nient, in particular, for open quantum systems, to introduce an extended space where

density operators are vectors and time evolution is generated by a Schrödinger-like

equation. This space is usually referred to as the Liouville or Hilbert-Schmidt space.

Suppose the density operator ρ̂ is represented by an n × n matrix. The set of all

n × n matrices form a linear space of dimension n2. Under appropriate conditions

this linear space can have a Hilbert space construction using the scalar product

defined as,

(ρ̂1, ρ̂2) = Tr
{
ρ̂†1ρ̂2

}
. (D.6)

With such a construction we consider ρ̂ as an n2 vector, |ρ〉 ∈ C1×n2
. Similarly,

we consider the super-operator L, which is an operator that operates on elements

in this linear space, as an n2 × n2 matrix, L̂ ∈ Cn2×n2
. The one to one mapping of

two matrix indexes into a single vector index {i, j} → α is arbitrary but has to be

used consistently. The equation of motion of the density vector in Liouville space

follows from
d

dt
ρ̂α =

∑

β

ρ̂β
∂

∂ρ̂β

(
d

dt
ρ̂α

)
. (D.7)

It is now easy to verify that the dynamics in the Liouville space is governed by a

Schrödinger-like equation,
d

dt
|ρ〉 = −iL̂ |ρ〉 , (D.8)

with

L̂αβ = ρ̂β
∂

∂ρ̂β

(
d

dt
ρ̂α

)
. (D.9)

A particularly useful index mapping is known as the vec-ing mapping [Roger 1994,

Machnes 2014]. Here the n × n density matrix is flattened into an n2 vector. The

flattening is done by ordering the columns of ρ̂ one below the other, so the {i, j}
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entry of the matrix ρ̂ is the (j − 1)n+ i entry of the vector |ρ〉. The corresponding

map for the super operators are the following: For the commutator

[
Ĥ, ρ̂

]
→
(
Î ⊗ Ĥ − ĤT ⊗ Î

)
|ρ〉 . (D.10)

For the dissipative part

V̂ ρ̂V̂ † →
((

Â†
)T
⊗ V̂

)
|ρ〉 (D.11)

V̂ †V̂ ρ̂ →
(
Î ⊗ V̂ †V̂

)
|ρ〉 (D.12)

ρ̂V̂ †V̂ →
((

V̂ †V̂
)T
⊗ Î
)
|ρ〉 . (D.13)

Here T is the transpose operation. Finally we obtain,

L̂ = Î ⊗ Ĥ − ĤT ⊗ Î +
(
V̂ †
)T
⊗ V̂ − 1

2

(
Î ⊗ V̂ †V̂ +

(
V̂ †V̂

)T
⊗ Î
)
. (D.14)

For more details and additional matrix-vector representations, see [Am-Shallem 2015].
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Appendix E

Stochastic differential equations

E.1 Stochastic integration

Let us define a function G(t) and a Wiener increment dW , the stochastic integral∫ t
t0
G(t′)dW (t′) is of the form of Riemann-Stieltjes integral. We divide the interval
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[t0, t] to n subintervals such that t0 ≤ t1 ≤ ..tn−1 ≤ t and ti−1 ≤ τi ≤ ti. The

stochastic integral is defined as the limit of partial sums,

Sn =
n∑

i=1

G(τi) (W (ti)−W (ti−1)) . (E.1)

Note that Sn depends on the choice of τi. For the Itô stochastic integral we chose

τi = ti−1 (this is no longer the Riemann-Stieltjes integral) and we finally have,

∫ t

t0

G(t′)dW (t′) = ms lim
n→∞

n∑

i=1

G(ti−1) (W (ti)−W (ti−1)) . (E.2)

Here we defined the mean square limit, ms limn→∞Xn = X as the convergence of

Xn to X in the mean square, i.e.

lim
n→∞

∫
dωp(ω) (Xn(ω)−X(ω))2 ≡ lim

n→∞

〈
(Xn −X)2〉 = 0. (E.3)

Alternative to the Itô integral is the Stratonovich integral. In this case the function

W (t) in the integrand is evaluated at the point (W (ti) +W (ti−1)) /2,

S

∫ t

t0

W (t′)dW (t′) ≡ ms lim
n→∞

∑

i

W (ti) +W (ti−1)

2
∆Wi =

1

2

(
W (t)2 −W (t0)2

)

(E.4)
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E.2 The Itô stochastic differential equation

The most satisfactory interpretation of the Langevin equation (2.61) is the stochastic

integral equation

x(t)− x(0) =

∫ t

0

dt′a (x(t′), t′) +

∫ t

0

dW (t′)b (x(t′), t′) (E.5)

The Itô integral is mathematically and technically more convenient to use and prove

theorems but not always gives the best physical interpretation. The Stratonovich

integral is the better candidate for physical interpretation since it assumes that ξ(t) is

real noise with a finite correlation time. After calculating measurable quantities this

time can be taken as infinitesimally small. Additionally, the Stratonovich integral

allows us to use ordinary calculus. A stochastic quantity obeys the Itô SDE,

dx(t) = a (x(t), t) dt+ b (x(t), t) dW (t) (E.6)

if for all t and t0,

x(t) = x(0) +

∫ t

0

dt′a (x(t′), t′) +

∫ t

0

dW (t′)b (x(t′), t′) . (E.7)

The discrete version of the SDE takes the form

xi+1 = xi + a(xi, ti)∆ti + b(xi, ti)∆Wi t0 < t1 < ... < tn = t. (E.8)

In order to calculate xi+1 we add a deterministic term a(xi, ti)∆ti and a stochastic

term b(xi, ti)∆Wi to xi. Note that ∆Wj is independent of xi for all j ≥ i.
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The conditions for the existence and uniqueness in time interval [t0, T ] are:

1. Lipschitz condition: ∀ x, y and t ∈ [t0, T ] ∃K such that |a(x, t)− a(y, t)|+
|b(x, t)− b(y, t)| ≤ K |x− y|

2. Growth condition: ∀ t ∈ [t0, T ] ∃K such that |a(x, t)|2+|b(x, t)|2 ≤ K2
(
1 + |x|2

)
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E.3 The Stratonovich stochastic differential equa-

tion

The solution of the Itô SDE (E.6) can be represented using the Stratonovich integral,

x(t) = x(t0) +

∫ t

t0

dt′α (x(t′), t′) + S

∫ t

t0

dW (t′)β (x(t′), t′) (E.9)

where we have,

S

∫ t

t0

dW (t′)G (x(t′), t′) = ms lim
n→∞

∑

i

G

(
x(ti) + x(ti−1)

2
, ti−1

)
∆Wi

Next, we show the relation between α, β and a, b. We note that,

S

∫ t

t0

dW (t′)β (x(t′), t′) '
∑

i

β

(
x(ti) + x(ti−1)

2
, ti−1

)
∆Wi.

Using the Itô SDE (E.6) and the Itô formula Eq.(2.65), and defining β(ti) ≡
β (x(ti), ti) we can write,

β

(
x(ti) + x(ti−1)

2
, ti−1

)
= β

(
x(ti−1) +

1

2
dx(ti−1), ti−1

)

= β(ti−1) +
1

2

(
a(ti−1)∂xβ(ti−1) +

1

2
b(ti−1)2

)
(ti − ti−1)

+
1

2
b(ti−1)∂xβ(ti−1) (W (ti)−W (ti−1)) .

Plugging this relation into Eq.(E.9) and keeping terms up to dW 2 we obtain the

relation between Itô and Stratonovich integrals (where x(t) is the solution of the Itô
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SDE).

S

∫ t

t0

dW (t′)β (x(t′), t′) =

∫ t

t0

dW (t′)β (x(t′), t′) +
1

2

∫ t

t0

dt′b (x(t′), t′) ∂xβ(x(t′), t′).

(E.10)

This relation is not general for an arbitrary function.

If we set α(x, t) = a(x, t)− 1
2
b(x, t)∂xb(x, t) and β(x, t) = b(x, t) then,




dx = adt+ bdW (t) Ito SDE

dx = (a− 1
2
b∂xb)dt+ bdW (t) Stratonovich SDE

(E.11)

or conversely,




dx = αdt+ βdW (t) Stratonovich SDE

dx = (α + 1
2
β∂xβ)dt+ βdW (t) Ito SDE

(E.12)
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Appendix F

Entropy properties

F.1 Technical preliminaries

A real function f defined on a closed convex subset C of R with a non-empty interior

is convex if,

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), (F.1)
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where 0 ≤ λ ≤ 1 and x, y ∈ C. The function is strictly convex if the equality is

only attained for x = y or λ = 0 or 1. Integrating Eq.(F.1) we obtain for a convex

function

f

(∑

j

λjxj

)
≤
∑

j

λjf(xj), 0 ≤ λj,
∑

j

λj = 1. (F.2)

If µ is a probability and f is convex then Jensen’s inequality holds

∫

C

f(x)µ(dx) ≥ f

(∫

C

xµ(dx)

)
. (F.3)

If f is twice continuously differentiable in C then convexity is equivalent to 0 ≤
∂2f

∂xi∂xj
. If f is once continuously differentiable then convexity can be expressed as,

f(y) ≥ f(x) + (y − x)∇f(x)

thus f remains above every tangent plane. A function f is concave if −f is convex.

Some Lemmas:

• If f and g are convex and g is non-decreasing, then h(x) = g(f(x)) is also
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convex.

• If f is concave and g is convex and g is non-increasing, then h(x) = g(f(x)) is

also convex.

• For a self-adjoint operator Â acting on Hilbert space H and for a convex

function f we have,

f
(
〈ϕ| Â |ϕ〉

)
≤ 〈ϕ| f(Â) |ϕ〉 .

• For Â and B̂ Hermitian matrices such that [a, b] contains the eigenvalues of

the matrices and for convex f ∈ [a, b] and 0≤ λ ≤1 we have ,

Tr
[
f
(
λÂ+ (1− λ)B̂

)]
≤ λTr

[
f(Â)

]
+ (1− λ)Tr

[
f(B̂)

]
.

• (Klein) For Â and B̂ Hermitian matrices such that (a, b) contains the eigenval-

ues of the matrices and for f ∈ (a, b) which is once continuously differentiable

we have,

Tr
[
f(B̂)

]
≥ Tr

[
f(Â) + (B̂ − Â)f ′(Â)

]
,

If f is strictly convex equality holds if Â = B̂.

Lieb’s theorem: For Â and B̂ positive operators, X̂ arbitrary fixed operator and

0 ≤ λ ≤ 1 the functional

fλ(Â, B̂) = −Tr
[
X̂†ÂλX̂B̂1−λ

]

is jointly convex in its arguments.
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Using this theorem one can prove strong subaddivity of the von Neumann en-

tropy. Also by taking Â = B̂ = ρ̂ we get the convex functional fλ(ρ̂) = −Tr
[
X̂†ρ̂λX̂ρ̂1−λ

]
.

Taking the derivative with respect to λ at λ = 0 we obtain the convex functional

−Tr
[(
X̂ρ̂X̂† − X̂†X̂ρ̂

)
ln ρ̂
]
.

F.2 The von Neumann entropy

The von Neumann entropy is defined as,

S(ρ̂)
def
= −Tr [−ρ̂ ln ρ̂] = −

∑

i

pi ln pi pi ≥ 0
∑

i

pi = 1 (F.4)
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Properties:

• For any density matrixρ̂ and unitary operator Û on Cd we have S(ρ̂) =

S(Û ρ̂Û †).

• For any density matrix ρ̂ on Cd we have 0 ≤ S(ρ̂) ≤ ln d.

• S(ρ̂) is a concave function on the space of density matrices. Thus any collection

of densities ρ̂iand for 0 ≤ λi,
∑

i λi = 1 we have

∑

i

λiS(ρ̂i) ≤ S

(∑

i

λiρ̂i

)

equality holds if and only if all ρ̂i are equal to each other.

• S(ρ̂1 ⊗ ρ̂2) = S(ρ̂1) + S(ρ̂2).

• S(λρ̂1 ⊕ (1− λ)ρ̂2 = λS(ρ̂1) + (1− λ)S(ρ̂2) + η(λ) + η(1− λ).

• Subadditivity - S(ρ̂12) ≤ S(ρ̂1) + S(ρ̂2).

• Strong subadditivity - S(ρ̂123) + S(ρ̂2) ≤ S(ρ̂12) + S(ρ̂23).

• Triangle inequality - |S(ρ̂1)− S(ρ̂2)| ≤ S(ρ̂12).

• Bistochastic completely positive maps Λ are entropy increasing S(Λσ) ≥ S(σ).

A completely positive unital preserving transformation (meaning the adjoint

map preserves the unity) is bistochastic if it preserves the trace.
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F.3 Relative entropy

The relative entropy is defined as,

S(ρ̂|σ̂)
def
= Tr [ρ̂ ln ρ̂]− Tr [ρ̂ ln σ̂] (F.5)

For the canonical Gibbs state σ = exp(−βĤ)/Z we have,

S(ρ̂|σ̂) = Tr
[
ρ̂βĤ

]
− S(ρ̂) + ln z = βF (ρ̂)− βF (σ̂) (F.6)

here F (ρ̂) is the nonequilibrium free energy F (ρ̂)
def
= Tr [ρ̂βH]− S(ρ̂)

β
.

The entropy of a combined system with respect to its corresponding uncorrelated

state is given by,

S(ρ̂|ρ̂1 ⊗ ρ̂2) = S(ρ̂1) + S(ρ̂2)− S(ρ̂) (F.7)
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Properties:

• Positivity- S(ρ̂|σ) ≥ 0 equality holds only for ρ̂ = σ.

• Invariant under unitary transformation.

• Additivity- S(ρ̂1 ⊗ ρ̂2|σ1 ⊗ σ̂2) = S(ρ̂1|σ̂1) + S(ρ̂2|σ̂2).

• Jointly convexity- S(λρ̂1 + (1 − λ)ρ̂2|λσ̂1 + (1 − λ)σ̂2) = λS(ρ̂1|σ1) + (1 −
λ)S(ρ̂2|σ̂2).

• Lower bound- S(ρ̂|σ̂) ≥ 1
2
‖ρ̂− σ̂‖2

1.

• Decreasing under partial trace- S(ρ̂1|σ̂1) ≤ S(ρ̂|σ̂).

• Under the CPTP map S(Λ(t)ρ̂|ρ̂o) ≤ S(ρ̂|ρ̂o), where ρ̂o is a stationary state.

• For the dynamical semigroup Λ(t) = exp(Lt), the entropy production is non-

negative, − d
dt
S(Λ(t)ρ̂|ρ̂o) ≥ 0, where ρ̂o is a stationary state.
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טמפרטורה גבוהה כגורם המניע ורעש פאסוני ואף מקשרים תוצאות אלו למדידה קוונטית חלשה ולהשפעתו של אמבט ב

 תהליך קירור.

בכדי לווסת התקנים קוונטים תרמים אנו מציגים לראשונה שימוש במדידה קוונטית חלשה ובקרה באמצעות משוב. באופן 

זה אנו משפרים את יעילות הטעינה של התקן אחסון האנרגיה הקוונטי באופן ניכר ומייצבים את הפלקטואציות ההרסניות 

המתקבלת ממדידת המערכת לאינפורמציה המוזנת חזרה למערכת באמצעות במערכת. אנו מראים כי יחס בין אינפורמציה 

 המשוב ממקסמת את יעילות הטעינה. דינמיקה זו מתוארת באמצעות משוואות מסטר סטוכסטיות.

בנוסף אנו מציגים את התפקיד של קוהרנטיות בתרמודינמיקה של התקנים קוונטים. בתחום של פעולה חלשה של 

הרנטיות במערכת מגדילה באופן משמעותי את כמות העבודה שניתן לחלץ מההתקן. בנוסף, בתחום ההתקנים,  המצאות קו

פעולה זה, מנועים קוונטים שונים מציגים מדדים תרמודינמיים זהים. על ידי גילוי של חסמים על פעולת מנוע סטוכסטי 

 וונטים בתהליכים תרמודינמיים.     קוונטיות אשר מעידות על שימוש במשאבים ק-קלאסי אנו מציגים חתימות תרמו

  



 תקציר
את  הקשר בין תרמודינמיקה  ללמודבמטרה עבודת מחקר זו מתמקדת בהבטיים תרמודינמים של התקנים קוונטים 

ומכניקת הקוונטים. תרמודינמיקה היא אחת מאבני היסוד של הפיסיקה בימינו. התאוריה עוסקת בתהליכים אנרגטיים 

מקרוסקופיות  תחת אילוצים. באמצעות מספר פרמטרים מצומצם ניתן לאפיין תרמודינמית   ואנטרופיים במערכות

עוסקת בדינמיקה ובתכונות של מערכות מיקרוסקופיות. בהתבסס  מכניקת הקוונטיםת לעומת זאת, מערכות בשיווי משקל.

ץ לשיווי משקל. תרמודינמיקה על הנחות ספורות התאוריה חוזה את הדינמיקה המלאה של מערכות פיסיקליות, גם מחו

 .קוונטית הינו תחום מחקר המבקש לחשוף את הקשר האינטימי בין שתי התאוריות

הגישה של עבודת מחקר זו היא ניתוח פעולתם של התקנים קוונטים תרמים, באופן זה ניתן ללמוד על הקשר בין 

וונטים, מקררים קוונטים והתקנים קוונטים תרמודינמיקה ומכניקת הקוונטים. דוגמאות להתקנים אלו הם: מנועים ק

לאחסון אנרגיה. התקנים אלו מתארים מערכות קוונטיות מחוץ לשיווי משקל תרמודינמי שמתקבלות באמצעות צימוד 

המערכת למספר אמבטים פסיביים או אקטיביים במקביל. כלים מהתאוריות של מערכות קוונטיות פתוחות, מדידה 

משוב משמשים לניתוח המודלים. התמקדות  בגדלים כגון יעילות ההתקן, זרימת אנרגיה קוונטית ובקרה באמצעות 

 והקשר שלהם לתופעות קוונטיות כגון קורלציות קוונטיות וקוהרנטיות חושף היבטים יסודיים וטכנולוגים של התאוריות.

ונטי וביצירת שפה משותפת ההיבט המהותי של המחקר מתייחס לאופן בו חוקי התרמודינמיקה מתגלמים בתחום הקו 

קוונטי של המערכות. בפרט, אנו מציגים תיאור של הולכת אנרגיה בין שני אמבטי חום דרך מערכות -לתיאור תרמודינמי

קוונטיות. עבודה זו מעידה על טעות נפוצה בספרות המדעית שנעשית בתיאור מערכות שכאלה באמצעות משוואות מסטר. 

את  מבטא אנו מציגים עולה בקנה אחד עם החוק השני של התרמודינמיקה, ויתרה מכןאנו מוכיחים כי הפורמליזם ש

האופי הגלובלי של מכניקת הקוונטים. כמו כן אנו מציעים הגדרות לגדלים תרמודינמיים כגון חום ועבודה עבור מערכות 

פן חזק לשדה מחזורי חיצוני עם חוקי התרמודינמיקה. מערכות אלו מצמודות באו עקביותקוונטיות מורכבות ומוכיחים 

 ובו זמנית למספר אמבטים בטמפרטורות שונות. 

אנו מציעים ניסוח דינאמי של החוק השלישי של התרמודינמיקה שמאפשר לכמת את מהירות הקירור האופטימלית כאשר 

מציעים  אנחנו זהשואפים לטמפרטורת האפס המוחלט. אנו מראים כי ניסוח זה עליון לניסוחים אחרים של החוק, באופן 

פתרון לסוגיה ארוכת שנים בנושא. בהקשר זה אנו גם מציגים התנהגות אוניברסלית של מקררים קוונטים כאשר 

 הטמפרטורה שואפת לאפס המוחלט.

משאבים ופרוטוקולים חדשים להניע תהליכים תרמודינמיים במשטר הקוונטי.  גלותהיבט נוסף של עבודת מחקר זו הוא ל

עיון חדשני של מקרר קוונטי סופג אשר מנצל מקור רעש או מקור חום כדי להניע תהליך קירור. מקרר זה אנו מציגים ר

 פעול באופן אוטונומי ואינו דורש בקרה חיצונית אקטיבית. בפרט, אנו בחנים את השפעתם של רעש גאוסי
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