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Employing typicality in optimal control theory: Addressing large Hilbert spaces
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Controlling the dynamics of quantum systems is a crucial task in quantum science and technology. Obtaining
the driving field that transforms the quantum systems into its objective is a typical control task. This task is
hard, scaling unfavorably with the size of the quantum map. To tackle this issue we employ typicality to assist
in finding the control field for such transformation. To demonstrate the method we choose the control task of
cooling the fine-structure states of the aluminum monofluoride molecule, at relatively high temperature. As a
result high-rotational states are occupied, meaning a high effective Hilbert space. Using quantum typicality, we
demonstrate that we can simulate an ensemble of states, enabling a control task addressing simultaneously many
states. We employ this method to find a control field for cooling molecules with a large number of internal sates,
corresponding to high initial temperatures.
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I. INTRODUCTION

Controlling quantum phenomena has been a primary goal
in quantum physics and chemistry. Quantum control theory
addresses this topic and has evolved rapidly over the last three
decades [1]. One of the aims of quantum control theory is to
establish a series of systematic methods to manipulate and
control quantum systems. Quantum control theory has been
realized in physical chemistry, atomic and molecular physics,
and quantum optics. A fundamental issue of quantum control
theory is controllability [2]. Controllability concerns the exis-
tence of a control solution for a specific task. This problem
has practical importance since it closely connects with the
universality of quantum computation and the possibility of
achieving atomic or molecular state-to-state transformations.
In finite-dimensional quantum systems, the controllability cri-
teria can be expressed in terms of the structure and rank of the
corresponding Lie groups and Lie algebras [3,4].

The existence of a controllable task does not supply a
constructive method allowing one to obtain the control field.
For this task, iterative schemes have been developed typically
based on constrained optimization [5–11]. The computation
complexity of calculating a control solution increases signif-
icantly with the dimension of the quantum map and less so
with the total Hilbert space size [7].

In our case, the problem is twofold; First, our primary
step for each iteration requires solving the time-dependent
Schrödinger equation. This has to be done for each participat-
ing initial state. The computation complexity scales between
M × N log N and M × N2 where N is the size of Hilbert space
of our system and M the number of time steps, which in turn
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scale as M ∝ O(�E × t ), where t is the time interval and �E
the energy range [12].

Second, the number of iterations for solving a unitary
control problem and the complexity class of the cooling trans-
formation is estimated to scale between K and K!, where K
is the size of the transformation [7]. Altogether the control
problem is computationally highly complex [13].

This challenge requires establishing methods able to re-
duce L < K , the effective number of states required for
optimization. To address this task, we will employ the proper-
ties of quantum typicality.

Quantum typicality states that a single quantum state can
typically well describe local expectation values of a quantum
ensembles. This statement applies to Schrödinger-type dy-
namics in high-dimensional Hilbert spaces. As a consequence,
individual dynamics of expectation values converge to the
ensemble’s average [14]. We will harness the properties of
quantum typicality to calculate the control field by employing
random phase wave functions (RPWFs).

The random phase wave function method uses an ensem-
ble of pure states, generating an efficient representation of
the mixed state of the entire system. The convergence of the
RPWF method becomes faster as the size of the Hilbert space
increases. This size significantly increases with the initial
system temperature.

There are many ways of cooling particles; one of the most
effective is radiative cooling. The basic technique is to lo-
cate a closed loop of stimulated excitation and spontaneous
emission. The cooling is achieved by entropy removal by
spontaneous emission. This technique has been employed to
reduce the temperature of translational as well as internal
degrees of freedom of atomic and molecular species [15–19].

The present study aims to develop an optimal control algo-
rithm aimed at cooling molecular internal degrees of freedom
[16]. This problem is a multistate control task.
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A possible control objective for cooling could be to con-
centrate the population on the ground state, as shown in [20].
For high temperatures, this objective is too demanding. We
therefore choose a sequential approach that will concentrate
the population on a submanifold of lower angular momentum.
Once this goal is achieved, we repeat the process with a lower
angular momentum restriction. Indirectly the procedure will
monotonically increase the purity of the state P = Tr{ρ̂2}. An
alternative control objective is to increase the purity together
with additional constraints in the control equation [21]. We
choose the first option since for high-entropy states the gradi-
ent of purity will be very small.

There is a correlation between increasing purity, lowering
entropy, and effective temperature. The effective temperature
Teff is defined by a passive Gibbs state which has the same von
Neumann entropy [22,23]. This passive state can be related
to a thermal Gibbs state with a fixed temperature. In general,
one can find a unitary transformation that can transform our
system to a passive state with equal entropy. The field of study
of cold and ultracold molecules has rapidly grown in the last
decade. Cold molecules have an essential role in many active
areas in science among tests of fundamental physics, cold
chemistry, quantum technologies, and quantum information
[16,24–29].

Another crucial consideration in cooling internal degrees
of freedom in molecules is enforcing a close transition cycle.
Excitation may result in the molecule ending in a differ-
ent state outside the closed loop after decay; thus, cooling
molecules by laser excitation is complicated, and only a few
examples exist [29].

We choose optimal control theory to overcome the molec-
ular complexity and enforce closed-loop solutions. Controlled
laser fields are employed to remove frequencies that damage
the required transition, and the control can steer a quantum
system from its initial state to its final one (target state).
Optimal control theory (OCT) was created to do this task with
maximum fidelity (defined by the user).

OCT is employed for an isolated system to obtain the
field leading to the target state. However, this alone cannot
result in a colder state (pure state); entropy is invariant under
unitary transformation. Therefore cooling requires dissipation
that can change the entropy (purity) of our quantum system.
In cases with distinct timescale separation between the unitary
control and the dissipative step [30], we set an objective for
the unitary part which is determined by the dissipation. The
unitary dynamics is aimed to shape the system into a state that
will be cooled at longer timescales by uncontrolled interac-
tion with the environment. See below (Sec. III A) for a more
detailed description of the multistate control.

Assuming that the ultimate target of the process is to reach
a pure, single state, any proposed mechanism for the pro-
cess has to maintain the population of the single-target state
while allowing the population of all other states to repopulate
selectively. However, as was shown in [31,32], the specific
choice of the precooling transformation is a subtle issue. For
achieving this step, an ensemble of a single rovibrational state
should be created.

Our control objective is to design and enhance the initial
preparation; it can be used as a purification method to add
molecules that are not resonant with magneto-optical trap [33]

transition and thus increase the number density of the initial
ensemble.

Specifically, we choose to cool the fine-structure levels
of the aluminum monofluoride (AlF) molecule with a large
total orbital angular momentum at 30 K, typical of supersonic
beams. Spectroscopic measurements and detailed analysis
[34] have shown that such a task is feasible using optimal
control theory. This molecule belongs to a family of molecules
where the vibrational manifold is closed due to a Franck-
Condon (FC) coefficient close to one [35,36]. The obstacle
in achieving this task is the large initial number of rotational
states.

The paper is arranged as follows: Sec. II describes the
model in which we implemented our tools. Section III
describes the theoretical tools used for achieving control.
Section IV presents the results, which are discussed and sum-
marized in the concluding Sec. V.

II. THE MODEL

The model we employ describes the rovibrational structure
of the AlF molecule. The state of the systems is defined by the
combined density operator of two rovibrationic subspaces:

ρ̂ = ρ̂� ⊗ P̂� + ρ̂� ⊗ P̂� + ρ̂c ⊗ Ŝ+ + ρ̂∗
c ⊗ Ŝ−, (1)

where P̂�/� are the projection operators of the ground and
excited electronic states, Ŝ+/− are the electronic raising and
lowering operators, ρ�/� is the density operator for the rovi-
brational ensemble within the ground and excited electronic
states, and ρ̂c is the density operator of the nuclear coherence
between the surfaces. For AlF, we assume an initial tempera-
ture of ∼30 K, for which the population of the states occupies
up to J = 11 (144 sublevels on the ground 1� state).

The Liouville–von Neumann equation governs the evolu-
tion of the system:

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] + LD(ρ̂). (2)

The first term is the coherent dynamical part governed by
the Hamiltonian, and the second is the dissipative part of the
dynamics. This equation represents the dynamics of an open
quantum system.

For optical transitions with multiple pulses, there is a dis-
tinct three timescale separation between the various processes:
(1) the unitary light-induced step occurs on the picosecond
timescale, (2) the incoherent decay takes place in tens of
nanoseconds, and finally (3) the pulse repetition rate is in the
MHz to KHz range.

Each cooling cycle could be separated within this picture
into two parts: (1) first, the short-time interaction occurs
between the external field and the molecular system. Since
this step is unitary, the density operator can be decomposed
to energy eigenstates, and each component can be com-
puted in a wave function framework. Then (2) a slow and
field-free, spontaneous decay takes place. In this step, the
coherences developed between energy eigenstates during the
laser-controlled stage are erased.
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The Hamiltonian, which governs the unitary part of the
dynamics, can be written as

Ĥt = Ĥ0 + V̂t ,

Ĥ0 = Ĥ� ⊗ P̂� + Ĥ� ⊗ P̂�,
(3)

where Ĥ�/� is the ground and excited rotational Hamiltonian
and P̂�/� the associated projection operators. The interaction
of the system with light, assumed to be linearly polarized to
the laboratory z axis is described by V̂t :

V̂t = −μ̂z ⊗ [Ŝ+εz(t ) + Ŝ−εz(t )∗], (4)

where μ̂z is the transition dipole moment along the z spatial
direction and εz(t ) represents the time-dependent field along
the same direction.

For mildly cold temperatures (Tinitial � 30 K) and high
vibrational frequencies, we can assume that the molecules
are initially in their ground v = 0 state. Ĥg/e are the field-
free rotational Hamiltonians for the ground vibrational state.
Moreover, for the AlF and chemically similar molecules, vi-
brational excitations in the electronic transition are negligible
due to the highly restricting FC factors [37]. The model can
thus be restricted to v = 0.

Under the Hund’s case a, applicable to our case, the rota-
tional states of the model are expanded by the rotational tensor
basis [38]

|J,�M〉 =
[

2J + 1

4π

] 1
2

DJ
M,�(φ, θ, 0), (5)

where J is the total molecular angular momentum, and M
and � are the projections on the spatial (Z) and molecular (z)
axes, respectively. Here DJ

M� is the rotational tensor. For the
ground electronic 1� state, the projection of the spatial elec-
tronic angular momentum on the molecular axis is 0 (L = S =
0), therefore � = 0, and J = R. The rotational Hamiltonian
becomes

Ĥrot = BeR̂
2 = BeĴ

2
, (6)

where Be is the rotational constant for the electronic state e
and R is the nuclear rotational angular momentum operator,
which is equal to R = J − L − S, L is the electronic or-
bital angular momentum, and S is the electronic spin angular
momentum.

The 1� energies are then

E (1�; J ) = B�J (J + 1), (7)

and its corresponding eigenstates can be defined by |J�M〉
with � = 0. In the excited 1� state � = ±1.

The rotational Hamiltonian for the excited state, 1�, is

Ĥrot(r) = B�R̂
2 = B�(Ĵ − L̂)2, (8)

its energies are

E (1�; J ) = B�[J (J + 1) − 1], (9)

and the corresponding eigenstates are |J�M〉 where � = ±1.
The transitions between the two electronic states 1� → 1�

are dictated by dipole selection rules (�J = 0,±1), denoted
as R, Q, and P branches, respectively. The coupling elements

can be found by calculating the overlap of any two eigenvec-
tors with the dipole operator,∫

DJ ′
M ′�′ (θ, φ, 0)D1

0q(θ, φ, 0)DJ
M�(θ, φ, 0) d�

= 8π

(
J 1 J ′

−M 0 M ′

)(
J 1 J ′

−� q �′

)
, (10)

where D1
0q(θ, φ, 0) corresponds to the transition dipole mo-

ment μ. The value of q is determined for a given transition
case and is equal to q = � − �′.

At thermal equilibrium, the initial state ρeq is characterized
by

ρ̂eq = 1

Z

∑
j

e−βE j
� |φ j〉〈φ j |, (11)

where β = 1/kbT , the sets |φ j〉 = |J0M〉 and {E j
�} are the

eigenstates and eigenenergies of the ground electronic state,
and Z is the partition function.

The dissipating part of the dynamics is generated by the
Liovillian superoperator LD, Eq. (2). Integrating in time leads
to the transition map �t = eLDt . Assuming that the timescale
between pulses is longer than the spontaneous emission, the
transition map D of the spontaneous emission can be defined.
The matrix elements of D describe the decay from a given
excited state energy eigenstate to a given rotational level
within the ground-state manifold of states. The elements are
calculated employing Fermi’s golden rule:

i→ f = 2π

h̄
|〈 f |μz|i〉|2ρ(�E ), (12)

where 〈 f |μz|i〉 is the matrix element of the electronic tran-
sition dipole between the final and initial states, and ρ(�E )
is the density of states of the radiation in the vacuum at the
energy gap �E . We note hereby that the rotational selection
rules in our system dictate narrow band transitions, which
means that the density of states is nearly constant and the
transition is determined practically by the transition matrix
elements.

As implied by the ergodic theorem [39], for a fully con-
nected, ergodic system, under multiple cycles of a given
field-driven unitary transformation and subsequent decay, any
initial state will coincide finally with the invariant states of
the whole transformation. After many excitation-relaxation
cycles, the memory of the initial state will be erased. The en-
tire transformation can be described by the following: let U be
the unitary superoperator and D be dissipative superoperator;
then there is a stationary state ρ̂ss that will obey

lim
n→∞ (UD)nρ̂ = ρ̂ss, (13)

where ρ̂ can be any initial state, and U• = Û • Û †. That is,
under a given U and D, the system will finally evolve from any
state into the single stationary ρ̂ss. This form is justified when
a timescale separation exists between the unitary dynamics
and spontaneous emission. In our system the pulse duration
is in the sub-ns regime and the dissipation is on the scale
of microseconds. In this way we look for a unitary control
transformation that under a known dissipator will lead into a
purer state [17].
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One can obtain the state ρss by diagonalization of the full
map UD. The first eigenstate corresponds to the stationary
state with a unit eigenvalue, while the next eigenvalue indi-
cates the system’s convergence rate to steady state.

To associate an effective temperature with the obtained
nonthermal state ρss, we employ the von Neuman entropy to
scale the purity and define the effective temperature. The idea
comes from information theory, where the entropy is related to
the probability distribution of an ensemble [40]. The entropy
is defined as

SvN = −tr{ρ̂ ln ρ̂} � −
∑

j

Pj ln Pj, (14)

where ρ̂ is the system’s density matrix, and Pj is the prob-
ability to be in the energy eigenstate j. This is the only
contribution to the entropy, assuming that quantum coher-
ences do not survive the spontaneous emission incoherent
step. Equality will be obtained when the system is diago-
nalized in the energy domain. It is important to note that
entropy is invariant under unitary transformation. Therefore
any steady state reached after cooling can be transformed by
unitary transformation to a passive state with the same entropy
[41]. To define a temperature of any nonthermal state, we
associate it with the temperature of a thermal state with the
same von Neumann entropy [22].

III. METHODS

A. Optimal control theory (OCT)

Quantum optimal control theory is a branch of coherent
control, a quantum-mechanical-based method for controlling
dynamical processes. The basic principle is to control quan-
tum interference phenomena typically by shaping the phase
of laser pulses [5,6,9,42]. OCT is formulated as an extremum
problem and seeks a time-dependent field that minimizes
or maximizes the expectation value of an operator in final
time. Consider a quantum system in an initial state: ρ̂0 =

K∑
k=1

pk|ψ0
k 〉〈ψ0

k |, where the set {ψ0
k } is energy eigenstates of

the system, and here K is the size of a subsystem within the
full Hilbert space of size N . In our case, the control will seek
a field that maximizes the expectation value of the operator Ô
at final time T :

Jmax(εz ) ≡ tr{Ôρ̂T } =
K∑

k=1

pk〈ψk (T )|Ô|ψk (T )〉, (15)

where ψk (T )= Û (T )ψ0
k describes the state that results from

the interaction of the system with the field εz(t ) at the final
time T .

The objective operator Ô chosen is a projection operator,
defined as

Ô = P̂� ⊗
J�=10∑

j

|ψ j〉〈ψ j | + P̂� ⊗
J�=9∑

l

|ψl〉〈ψl |, (16)

where ψ j/l is a set of eigenvectors in of the 1� and 1� elec-
tronic states, respectively. For an ensemble that corresponds
to T = 30 K, 99.9% of the population resides in states up
to J = 11. To ensure a close loop of the cycle that starts off

with Jmax = 11, we choose for the transition a cutoff angular
momentum as J� = 10 and J� = 9. This ensures that the pop-
ulation will concentrate at lower angular momentum without
leakage to higher states. To account for possible transitions to
a higher state the simulation includes all the rotational states
up to J = 12.

The quantum dynamics is enforced by adding an additional
cost term to the functional, according to the Lagrange-
multiplier method:

Jcon =
K∑

k=1

−2Re

T∫
0

〈χk (t )| d

dt
+ iĤ (t )|ψk (t )〉dt, (17)

where {〈χk (t )|} are the set of time-dependent Lagrange func-
tion multipliers. To regularize the solution with a limitation
over the field intensity another penalty term to the functional
is added [43]:

Jpenal(εz ) = −
∫ T

0
αε2

z (t ) dt, (18)

where α is a penalty parameter to the functional. It penalizes
the object of the maximization for using high-intensity fields.

The overall functional is

J = Jmax + Jpenal + Jcon. (19)

The maximization of the generalized objective J is the con-
trol task. Functional derivatives with respect to the various
functional elements are then taken resulting in the following
system of equations

Each of the set of the |χk (t )〉 Lagrange function multipliers
will obey a time-reversed Schrödinger equation

d〈χk (t )|
dt = i〈χk (t )|Ĥ (t ), (20)

and each of the states in our system follows the Schrödinger
equation

d|ψk (t )〉
dt = iĤ (t )|ψk (t )〉 (21)

with the boundary conditions |χk (T )〉 = Ô|ψk (T )〉 [44].
The Krotov iterative method is applied to obtain a mono-

tonic growth of of the generalized objective J at each iteration
with the updated field so that

εn+1
z (t ) = εn

z (t ) − 1

α

K∑
k=1

Im
〈
χn

k (t )
∣∣μ̂z

∣∣ψn+1
k (t )

〉
, (22)

where ε
n

z (t ) denote to the field after the nth iteration.
Note that the scheme of Eqs. (20)–(22) is somewhat similar

to the simultaneous optimization scheme that is required for
unitary transformations and quantum gates [9,45–47]. How-
ever, for cooling, each cycle at the final transformation erases
the relative quantum phases between the various set of initial
states. This leaves the resulting fitness measurement at the
level of classical transition probability between the initial and
final state and removes the need to evaluate quantum phases.
One can compare Eq. (22) to Eq. (47) in Ref. [7].

B. Quantum typicality

Typicality describes a property of a system where a typical
state can present an assembly of similar states. This set of
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states should have a narrow distribution of some feature (e.g.,
drawn according to the same distribution, sharing the same
energy, etc.) and therefore yield a very limited distribution of
expectation values. The typical state will fit the expectation
value of the complete set of states.

Quantum typicality was first noted by Schrödinger and von
Neumann when they were trying to incorporate statistical me-
chanics with quantum mechanics. They inferred that the wave
function of a complex system can have statistical properties
[48].

In their approach, when discussing thermalization in
isolated quantum systems, one should focus on physical
observables instead of wave functions or density matrices
describing the entire system. This approach is similar to eigen-
value thermaliziation hypothesis (ETH), in which the focus is
put on macroscopic observables and “typical” configuration.
ETH implies that the expectation values of local observables
and their fluctuations in isolated quantum systems relax to
(nearly) time-independent values that can be described us-
ing traditional statistical mechanics ensembles. This has been
verified in several quantum lattice systems and, according to
ETH, should occur in generic many-body quantum systems.
ETH states that the eigenstates of generic quantum Hamilto-
nians are “typical” in the sense that the statistical properties
of physical observables are the same as those predicted by the
microcanonical ensemble. [49,50]

Our quantum typicality refers to an idea that anticipates
that almost all quantum systems will have similar dynamical
properties [51].

C. Random phase states

Controlling the dynamics of an extensive system is practi-
cally impossible when the system becomes large and complex.
Formally our control strategy requires all the thermally popu-
lated � states in Eqs. (15) and (17).

We know from Ref. [52] that sampling quantum states at
random can be seen to be induced by the sampling of unitaries
at random. Sampling a set of unitaries, which are bounded,
means we sample a set of actions we can apply to our state,
which is global.

We will now sample using a random state, as follows:

|ψ (�θ )〉 = 1√
K

K∑
j

eiθ j |φ j〉, (23)

where �θ = (θ1, θ2, . . . , θK ) is a vector of random phases, K is
the size of the relevant states for the transformation, and |φ j〉
is a basis set of the full system [53–56]. Employing a random
set defined by different �θ we can resolve the identity

Î = lim
L→∞

1

L

L∑
l=1

|ψ (�θl )〉〈ψ (�θl )|. (24)

Employing now L random states to sample the control and
relying on quantum typicality we expect L < K < N .

IV. RESULTS

Our primary goal in this study is to develop a method to
enable control systems with large Hilbert space. The objective
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FIG. 1. The controlled infidelity F (log scale), of different num-
ber random phase sampling, as a function of the number of iterations
required to converge the control (≈ 99% at the target state). The
number of RPWF L is assigned by different colors in the legend. The
number of states of each model influences the number of iterations,
increasing monotonically. Inset: The numerical effort (log scale) as a
function of the number of random phase states. The numerical effort
is a function of Hilbert space size times the number of iterations,
showing a polynomial scaling.

of the present model was to cool by increasing the system’s
purity at the final steady state after multiple cycles using the
OCT algorithm. It is important to note that this objective
is a multistate problem. We have shown that such a task is
possible for smaller systems [17], but the main drawback is
the computation scaling of the problem with the system’s size.

Assuming that the target of the process is to reach a
colder state, any proposed mechanism for the process has to
maintain the population of the target state while allowing the
population of all other states to repopulate selectively. After
many excitation-relaxation cycles, the memory of the initial
state will be erased, and the obtained transformation will be
of which mentioned in Eq. (13). In this model, rotational
cooling of AlF (Sec. II), we defined the cost function Jmax

to populate states which through spontaneous emission will
populate lower J values and penalize increase in J values; see
above, Eq. (16). To control this type of system we have cre-
ated several realizations for an increasing number of random
states L to control the transformation. We want to check the
following:

(1) Can the total transformation be faithfully represented?
(2) If it does, how many states L are required to converge

the entire system’s population, and in turn the cooling trans-
formation [see Eq. (16)], sufficiently?

A. Approximated optimal control under RPWF

The optimal field should depend on the random phases of
the initial state of the system. This behavior has been observed
for state-to-state quantum objectives when the Hilbert space
size increased [57]. The idea of using RPWF is the hope that
the effect of different phases will be averaged out with the
increase of L.

Figure 1 displays the infidelity F = 1 − Jmax of the con-
trol for systems with a different number of random states L as
a function of the number of iterations. For good comparability,
each control with L number of RPWF was initiated with the
same guess field.
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We studied a controlled scheme employing a single field
polarized on the Z axis. The initial population distributed
among different random states corresponds to a system with
J = 11 so that the full Hilbert space is of the size N = 430.
The target was to move the population to all the states in the
Hilbert space, up to an excited state at J � 10 and eliminate
any transitions to higher J states that open decay channels to
even higher states. The control field was taken as the one that
manipulates the system towards the target state with a fitness
of F = 99%. However, this fidelity fits only the contracted
space and is therefore an approximation; later we will show
that the same field acting on the full space system results in
lower fidelity. Thus, some population is leaking outside the
desired closed loop of cooling. To ensure that the control end
up in cooling we demand high fidelity for this approximated
solution.

In Fig. 1 we observe that the number of random phase
states L employed in the control simulation influences the
number of iteration. The trend reflects the increase complexity
of multistate control. As the number of states increases, the
control requires more destructive and constructive interfer-
ence. Finding the control becomes harder in terms of the
number of iterations. In the inset we show how the numerical
effort increases subexponentially, i.e., polynomially. The ef-
fort is defined by the following: NEffort = log(NI × LRP ) [7,44]
where LRP is the number of random phase states used in this
model and NI states the number of iterations needed for the
control algorithm to converge to the predetermined threshold.

We noted that one can employ control fields obtained from
a small L as an initial guess to a larger L, the so-called
the pilot fields method [57]. Our attempt to use the method
enabled to filter out the frequency spectrum. However, beyond
that, the pilot guess field did not significantly improve the
convergence. This is probably due to the fact that this step
is not the rate-determining step of the problem (see below).

We now move to a more careful look at the relation be-
tween the obtained control fields for a different number of
random phase states. Figure 2 displays the frequency and
time comparison between for fields with different number of
random phase states. The frequencies are computed within the
rotating frame and are presented in the dressed state picture
with respect to the resonance frequency, which lies in the vis-
ible regime. Examining the optimized control fields for each
of the different random phase cases shows the following:

(1) When comparing to the initial guess, chosen to be
∼500 ps in length, additional frequencies are obtained. In
addition a shift in the low frequencies is observed.

(2) All the control fields show 99% identical spectrum in
the frequency domain up to ∼3 cm−1. Deviations are observed
in the high-frequency range. The different frequencies result
from further interference resulting from adding random phase
states and constitute the fine-tuning part of the pulse. This fine
tuning is the part responsible for high fidelity from 90% to
99%. To verify the importance of the frequency components
we applied the resulted field, filtering out high frequencies
from it. The obtained fitness was 90.5%, and the pulse was
found to lead to heating (see below for technical details)

(3) As we have seen, the solution for the different number
random phase is distinct in the high-frequency range (when
asking for high fidelity); as a result, the idea of using a seed
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FIG. 2. Field analysis in the frequency (up) time of time (down)
domains. In both panels, the initial Guess field is in blue. (Top) The
optimal control field for L = 1, 3, 6, 9 random phase optimizations
up to the frequency of ∼3 cm−1 (superimposed on each other). The
insert shows the high-frequency range of L = 1 compared to L =
9 where differences in the optimal field can be observed. (Bottom)
Time domain: (blue) the initial guess field and (red) the difference
between the guess and optimal field for L = 3. One can notice the
addition of higher frequencies.

pulse for accelerating the iteration process had only marginal
effect.

B. Application of the full map transformation

The fidelity that was achieved in Fig. 1 measures the ob-
tained quality of the transformation for the truncated set of
random phase states. This by itself does not imply a compara-
ble fidelity for the actual transformation of the thermal system.
The main assessment of this work is that high fidelity for a
large enough set of random phase states will lead eventually to
a better description of the optimal field for the whole thermal
system.

To check the quality of the transition we used the field
from the controlled scheme and computed explicitly the exact
dynamics of the entire system to compute the full system infi-
delity Fmap defined at the same as F , now for the full thermal
ensemble as the initial state. Figure 3 shows the infidelity of
the entire system as a function of the number of random phase
states L, and a monotonic growth of fidelity corresponding to
the number L of random states can be seen.
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FIG. 3. The infidelity as a function of the number of random
phase base functions L. The full map infidelity is calculated from
the fixed point of the full transformation (13) employing the control
field from the random phase sampling.

The transformation fidelity of the full system is, as ex-
pected, smaller than the one obtained from the control
calculated from a finite set of random phase states. This is,
in fact, the actual measure for the quality of the random
phase approximation. To find the number of random states
which lead to convergence, we extrapolate our results, taking
infidelity as a measure.

In Fig. 4 we have fitted our calculated points to an exponen-
tial curve. Defining an acceptable threshold we get the number
of sampling states L required to converge the full system of
dimension K .

The marked point is a good guess as to the complexity
of the transformation corresponding to an effective transfor-
mation size of L = 44, which corresponds to the fidelity of
the control sequence (0.99). If a different target fidelity was
chosen, the effective size will change. Nevertheless the fidelity
cannot exceed the fidelity set by the control. The computation
effort for this sampling space is very high. The effective trans-
formation size is still much smaller than the dimension of the
full transformation.

A concrete measure for cooling in our context is the change
in the normalized entropy. Employing Eq. (14) we define the
normalized entropy decrease:

�eff
S = SRP

FS − SJ=11
initial

SJ=10
Th − SJ=11

initial

, (25)
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FIG. 4. Fitting the infidelity of the full transformation as a func-
tion of the number of random phase states (red dots). Extrapolating
(black curve) to high fidelity allows for estimating the effective size
of the cooling transformation (44,0.01).

FIG. 5. The monotonic decrease of normalized entropy, Eq. (25)
with L, for the complete transformation obtained by each random
phase model (blue stars). The entropy value of the thermal state at
J = 10 is marked by a red line and for J = 9 by a blue line. The
objective of the full transformation was to deplete J = 11, but it is
clear that for the 19-RP model we accomplished an even colder state
(T = ∼ 30 K).

where SRP
FS is the entropy of the steady state of the full sys-

tem obtained from the control sequence and diagonalization
of (UD) [see Eq. (13)], SJ=11

initial is the thermal entropy of the
initial state (J = 11), and SJ=10

T h is the entropy of a thermal
state at J = 10, the original target of the cooling transfor-
mation. Thus, �eff

S measures the relative distance between
the expected and actual cooling achieved in the process. The
normalization is with respect to the thermal entropy difference
between J = 11 and J = 10.

Figure 5 shows the effective change in entropy vs L, the
number of RPWF. A monotonic decrease of the effective
entropy is a clear indication for cooling.

An ensemble of typical states should have a small stan-
dard deviation with respect to a local observable. This is
confirmed by Fig. 6, displaying the standard deviation of the
target infidelity when the size of the sample increases. Each
sample is composed of independent random realizations with
different L random wave functions. We expect convergence
as 1√

n
, where n is the sample size. The fidelity obtained for

the full system for each realization was used to calculate of

the standard deviation, defined by STD =
√∑n

j (〈Ô〉 j−<Ôav>2

|<Ô>av | ,
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FIG. 6. The standard deviation (STD) of the infidelity of the full
Hilbert space as a function of the number of samples (n). The blue
curve is data obtained by optimizing a single random phase model.
The orange curve was obtained for simultaneous transformation for
3-RP sampling. The red curve was obtained for simultaneous trans-
formation for 6-RP sampling.
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where < Ô >av = ∑n
j〈Ô〉 j . In Fig. 6 we show how the STD

behaves in different schemes. The samples describe different
realizations, where the initial states were created randomly.
We have used the control fields of these realizations for trans-
formation on the full system.

The standard deviation is quite small for the random phase
wave function sampling. As expected, when random trans-
formation L is larger (3-RP and 6-RP) the STD decreases
demonstrating self-averaging.

V. CONCLUSIONS

Laser cooling of the internal degrees of freedom of a
molecule is a difficult task due to the large occupied Hilbert
space. In cooling molecules one cannot ignore rotation
[28,58–61]. A shaped pulse generates a population transfor-
mation accompanied by spontaneous emission. We optimize
the population transition U such as after many cooling cycles
the target state is colder than the initial one. This quantum
control task is a multistate transformation that scales unfa-
vorable with the size of the transformation. We have utilized
quantum typicality to assist in optimizing the cooling map.
The transformation is calculated with a reduced set of random
phase wave functions. We show convergence (of infidelity)

to the desired cooling transformation. The method provides
a control solution for multistate tasks that were never been
achieved previously, to the best of our knowledge. The opti-
mal control field is not unique. It has already been stated that
the top of the optimization mountain is flat [62]. It is important
to note that the number of random phase states needed to
converge in OC method are proportional to size of the total
transformation and the target chosen.

Moreover, we have found that the quality of the transfor-
mation is sensitive to high-frequency components. We are
currently exploring the effect of noise and other inaccuracies
on control problems in general.

Finally, we have shown that this method can be utilized to
model cooling of internal degrees of freedom of molecules. It
is anticipated that a series of such transformations, which are
independent, can cool the rotation toward its ground rotational
state.
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