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The major task in quantum control theory is to find an external field that transforms the system from one
state to another or executes a predetermined unitary transformation. We investigate the difficulty of computing
the control field as the size of the Hilbert space is increased. In the models studied the controls form a small
closed subalgebra of operators. Complete controllability is obtained by the commutators of the controls with the
stationary Hamiltonian. We investigate the scaling of the computation effort required to converge a solution for
the quantum control task with respect to the size of the Hilbert space. The models studied include the double-well
Bose Hubbard model with the SU(2) control subalgebra and the Morse oscillator with the Heisenberg-Weil
algebra. We find that for initial and target states that are classified as generalized coherent states (GCSs) of
the control subalgebra the control field is easily found independent of the size of the Hilbert space. For such
problems, a control field generated for a small system can serve as a pilot for finding the field for larger systems.
Attempting to employ pilot fields that generate superpositions of GCSs or cat states failed. No relation was
found between control solutions of different Hilbert space sizes. In addition the task of finding such a field scales
unfavorably with Hilbert space sizes. We demonstrate the use of symmetry to obtain quantum transitions between
states without phase information. Implications to quantum computing are discussed.
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I. INTRODUCTION

Quantum control (QC) focuses on guiding quantum systems
from initial states to targets governed by time-dependent exter-
nal fields [1,2]. Two interlinked theoretical problems dominate
quantum control: controllability and inversion. Controllability
addresses the issue of the conditions on the quantum system
which enable control. The target could be either state-to-state
control or a more difficult task of implementing a unitary
transformation in a group of states. In closed Hilbert space the
conditions for complete controllability have been addressed
by Tarn and Clark [3–5]. In short, a system is completely
controllable if the combined Hamiltonians of the control
and system span a compact Lie algebra. Moreover, complete
controllability implies that all possible unitary operators can
be generated.

The task of inversion, finding a control field, for a control
task still has to be addressed. The methods developed to solve
the inversion problem could be classified as global, such as
optimal control theory (OCT) [6–8], or local, e.g., local control
[9–11]. OCT casts the inversion task into an optimization
problem which is subsequently solved by an iterative approach.
Local control inversion is based on guiding the system at each
instant to the target employing local temporal conditions. Re-
cently a generalization has been suggested to bridge the gap be-
tween the two approaches [12]. The task of inversion becomes
more difficult when the size of the system increases. In the
present study we want to classify the difficulty in state-to-state
inversion according to the algebraic structure of the control
Hamiltonian, and the nature of the initial and target states.

Typically the Hamiltonian of the system is divided into
an uncontrolled part Ĥ0 and a control Hamiltonian composed
from a subalgebra

Ĥ = Ĥ0 +
∑

j

αj (t)Âj , (1)

where αj (t) is the control field for the operator Âj and the
set of operators {Â} form a closed small Lie subalgebra.
This model includes molecular systems controlled by a dipole
coupling to the electromagnetic field. Complete controllability
requires that the commutators of Âj and Ĥ0 span the
complete algebra U(N) where N = n2 − 1 and n is the size
of the Hilbert space of the system. If Ĥ0 is part of the
control algebra, the system is not completely controllable,
i.e., there are state-to-state transitions which cannot be ac-
complished [3]. Specifically we study a scenario where the
size of the subalgebra of control is constant but the size
of the Hilbert space increases. It has recently been found
[13] that if the control fields are subject to Markovian
noise, complete state-to-state control is lost when the
size of the Hilbert space increases. Under such a control
Hamiltonian there are states which are relatively immune to
noise, i.e., these are the generalized coherent states (GCSs)
with respect to the control subalgebra [14]. The superposition
states of GCSs are fragile and they become uncontrollable
targets when the size of the system increases. Does this
classification of states prevail when considering the task
of inversion? Are state-to-state targets from a GCS to a
GCS easier to obtain compared to a state composed from a
superposition of GCSs?

A systematic study of the control landscape has been
carried out by Rabitz et al. [15,16]. Based on the structure
of unitaries, they found a generic landscape flat at the bottom
and top and trap free for unrestricted state-to-state control
problems. Trap-like saddle points seem to emerge for the more
complicated control task of finding the field representation for
unitary or nonunitary transformations [17]. The difficulty to
converge to a solution was found to increase exponentially
with the size of the system N , for the task of finding a
field generating a unitary transformation [18,19]. A weaker
dependence on N was found for a state-to-state task [20]. In a
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recent study [21] such convergence properties were attributed
to a large depth of the Lie algebra of the control Hamiltonian
meaning that controllability is obtained after a long sequence
of commutators of Ĥ0 and Â. It was found that for control
Hamiltonians that couple distant states in the Hilbret space,
the difficulty to achieve a solution depends weakly on the size
of the system. These control problems were classified to have
a small depth [21].

Typical algorithms of optimal control theory are iterative
[6–8,19]. For large systems the convergence of OCT is fast
in the first iterations but later saturates or becomes stagnant.
Therefore, accurate solutions for large systems of the control
problem are difficult to reach. A good initial guess for the
control field can speed convergence considerably. Ideally, a
control field of an easy-to-solve small quantum system could
serve as a pilot initial guess for large quantum systems.
In this paper we study the hypothesis of using such pilot
fields and relate the results to the difficulty of inversion.
This study explores two generic systems: the many-body
Bose-Hubbard (BH) model, where the control Hamiltonian
possesses the SU(2) subalgebra and the Morse oscillator, with
the Heisenberg-Weil control algebra. The structure of this
paper is as follows: Section II will present the models and the
control schemes that will be employed. Section III will present
the results for the BH and Morse oscillators, and Sec. VI will
discuss the results in the context of applicability of quantum
control to large systems.

II. FORMALISM AND MODELS

A. Bose-Hubbard model

First, we explore a many-body quantum system character-
ized by binary interactions between particles. The scaling of
the Hilbert space is equivalent to the increase in the number
of particles in the system. The two-mode Bose-Hubbard
model [22] will be used for the demonstration. It is a model
for an interacting Bose-Einstein condensate in a double-well
potential [23]. The control task is to move particles from one
well to the other. In addition, this model is one of the archetype
systems to demonstrate quantum chaos.

The stationary Hamiltonian of BH one-dimensional double-
well potential is given by

Ĥ0 = −�(â†1â2 + â†2â1) + U
2 [(â†1â1)2 + (â†2â2)2], (2)

which is the uncontrolled drift Hamiltonian. The âi are
the annihilation operators for a particle in the ith well, �

is the nearest-neighbor hopping rate, and U is the strength of
the on-site interactions between particles. Using the fact that
the total number of particles is conserved, this Hamiltonian
can be reformulated employing angular-momentum operators
of the SU(2) algebra. The control is obtained by shifting the
energy bias between the two wells [23]. This leads to the
control operator

Ĵz = (â†1â1 − â†2â2). (3)

The control field µ(t) governs the energy balance between
the two modes. The operators in the Hamiltonian (2) are
transformed [24] to the SU(2) Lie-algebraic form leading to

Ĥ = −2�Ĵx + U Ĵ2
z + 2µ(t)Ĵz. (4)

The Ĵi are the operators for the projections of the angular
momentum of the i axis, and the Hilbert space of the system of
N bosons in this model corresponds to the j = N/2 irreducible
representation of the SU(2) algebra. The addition of the nonlin-
ear term U Ĵ2

z generates the complete controllability condition,
since the commutators with the linear terms generate the
full U(N) algebra. We choose the parameters � = 15 and
U = 2�/j . The critical point of this one-dimensional system
is obtained for U = 2�/j and µ = 0. For these parameters
the dynamics are chaotic. The quantum implication is that an
initially localized state diverges rapidly and occupies the whole
Hilbert space. According to the criteria of Moore et al. [21]
this Hamiltonian has a large depth, since the Hamiltonian is
banded along the diagonal.

We define the quality of state-to-state control at time T by
the fitness F = 〈P̂〉ψT

, where P̂ = |ψT 〉〈ψT | is the target-state
projection operator. The first step is to find the pilot field
for which we seek a solution to the control problem for a
small number of particles j = N/2 ∼ 10. We will then explore
the universality of the control field for increasing number of
particles. Two methods are employed to generate the control
field. The first method, optimal control theory, is based on
Krotov’s algorithm which guarantees monotonic convergence
[6]. An iterative forward and backward propagation leads
to convergence. The incremental correction to the field is
proportional to

�µ(t) ∝ −Im〈χ (t)|Ĵz|ψ(t)〉. (5)

Here |ψ(t)〉 is the forward wave function with the initial state
as its boundary and |χ (t)〉 backward propagation starting from
the target state. Alternatively, a local control (LC) strategy is
applied to guarantee an instantaneously monotonic increase of
the fitness with [9,10]

µ(t) ∝ Im〈P̂Ĵz〉ψ(t). (6)

The control problem is characterized by the free propa-
gation of the drift Hamiltonian Ĥ0. The analysis is based
on the generalized coherent states with respect to the SU(2)
subalgebra. The GCSs minimized uncertainty with respect
to the generators of the SU(2), which is equivalent to max-
imizing the generalized purity pgen = 〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2.
In addition the GCSs are invariant to unitary transformations
generated by the SU(2) subalgebra. The generalized purity
pgen characterizes the locality of the state in phase space.
For the parameters chosen, an initially localized state (GCS)
will spread rapidly over the whole phase space. Under these
chaotic conditions the generalized purity decreases rapidly.
For other ratios between U and �/j , classical-like solutions
emerge for the GCS where the purity is almost constant
during the evolution. The quantum dynamics can be solved
by direct propagation up to j = 10 000 and approximately up
to j = 106 [14].

B. Morse oscillator control

The drift Hamiltonian for this system Ĥ0 in Eq. (1) is the
well-known nonlinear Morse oscillator:

Ĥ0 = p̂2

2m
+ De[(1 − e−αx̂)2 − 1], (7)
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where m is the particle mass, De is the dissociation energy,
and α determines the spatial extent of the potential. The
number of bound energy states or the size of Hilbert space
is altered by changing the value of h̄, leaving all the other
parameters unchanged. The control Hamiltonian consists of
the Heisenberg-Weil operators x̂ and p̂ where coherent states
constitute the GCSs which have minimum uncertainty with
respect to the generators of the algebra.

Ĥ = Ĥ0 + αx(t)x̂. (8)

Note that both of the models that are considered here could
be classified as weakly connected Hamiltonians according
to [21]. Exponential scalability is expected to emerge with
the increase of the Hilbert space. It is important to mention
that the typical large systems in quantum control, such as
spin chains and molecular vibrational manifolds, fall into
this category. The time-dependent Schrödinger equation was
integrated using the Chebyshev propagator [25], and the states
were represented employing a Fourier grid.

III. RESULTS

A. BH model: General size dependency

The initial state of the first control task is a GCS |j 〉
corresponding to all particles in the left well. The control
objective is to generate the ground state of the system in which
〈Ĵz〉 = 0, and both of the wells are equally occupied. Note
that the generalized purity of the ground state of the system
depends on the parameters. Its purity goes to unity as j and
U increase, and the ground state becomes local in the Hilbert
space.

The OCT procedure is initiated from a structureless initial
control field. Figure 1 displays the increase of the fitness with
the number of OCT iterations for various values of j , on a
logarithmic scale. Observing Fig. 1, it is clear that difficulty
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FIG. 1. (Color online) Fitness vs the Hilbert space size obtained
by OCT: deviation from unity fitness vs the number of iterations, for
different j values. Initial GCS state: 〈Ĵz〉 = j , all the particles in one
of the wells. The target is the ground state of the system. Initial guess
for all the optimization is taken as µ(t) = 10 sin(25tπ/T ).
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FIG. 2. (Color online) Fitness at the 200th iteration vs j . The
control task is identical to that in Fig. 1.

to converge to a fitness of unity increases exponentially with
the size of the Hilbert space. Figure 2 displays the fitness after
200 iterations versus j demonstrating monotonic decrease.

Figure 3 presents the temporal generalized purity for
small and large Hilbert spaces. The decrease in generalized
purity means that the temporal wave function spreads to a
superposition of many GCS states before it reassembles to
reach the final target. The decrease of the generalized purity
is recoverable for j = 5, but not for j = 320. This result is
expected for the BH model, which can be classified as a weakly
connected Hamiltonian.

B. Can the search for the optimal field be guided
by the scalability of the SU(2) algebra?

To test this hypothesis the optimal field of the j = 5 solution
(with fitness of 0.99) is used for an initial pilot guess for
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FIG. 3. (Color online) Generalized purity vs time for j = 5 (solid
blue) and j = 320 (dashed red), for the control task of Fig. 1, after 200
iterations. The generalized purity is defined with respect to projection
on the SU(2) subalgebra. The period of the motion is 2π/� = 0.42.
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FIG. 4. (Color online) Temporal fitness values for different j

values; the pilot field was the optimal solution of j = 5. Different
curves correspond to different j values.

larger j . Figures 4 and 5 present the temporal fitness and purity
for the optimized solution for various j values, starting with the
optimal control field of j = 5. A close-to-unity of fitness was
achieved in all cases. An explanation is suggested by inspecting
the dynamics of the expectation values of the SU(2) subalgebra
which are almost identical for different j (see Fig. 6). Another
indication is the high value of purity in all cases during the
evolution. The mechanism of the control process under the
OCT formalism is to preserve the localized GCS state during
the dynamics. Then, at the very last steps of the dynamics,
it pushes the state toward the target, in a period that will
avoid the spread of the wave function due to the nonlinear
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FIG. 5. (Color online) Generalized purity vs time for different j

values, for a converged field starting from the pilot field generated
from the optimal solution of j = 5.
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FIG. 6. (Color online) Expectation values 〈Ĵx〉, 〈Ĵy〉, and 〈Ĵz〉 vs
time for j = 5 and j = 160, in solid and dashed lines, respectively.
The close resemblance indicates that both states are GCSs.

term in Eq. (4). The early period of the dynamics is therefore
redundant, and the goal could be reached in shorter period T ,
where the lower limit is determined by the uncontrolled drift
terms in the Hamiltonian, T ∼ 2π/�.

C. Can other control solutions serve as a pilot guess
for larger systems?

For this task we examine the direct optimization formalism
of local control, which is a noniterative and unidirectional
approach. Figure 7 presents the temporal fitness for j = 5
in the blue line, obtained from a local control strategy. The
fitness increases monotonically in time, a direct consequence
of the LC formalism. Note that OCT reaches almost unity
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FIG. 7. (Color online) Fitness vs time for local control. Opti-
mization for j = 5, solid curved line. The fitness for j = 40 and 160,
using the pilot j = 5 field, are plotted in grey (red) and black lines,
respectively.
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FIG. 8. Control field from local control, in logarithm scale. The
OCT corrected field is very similar (not plotted).

of fitness in a shorter period. The control field plotted in
Fig. 8 can be decomposed to a dominant single frequency
with exponentially decaying amplitude. Through the process
the purity is very close to unity and thus the dynamics could
be described in terms of a single GCS at all times.

For large j , local control fails. A possible reason is an
increasing demand for accurate timing countering the tendency
of the system to become uncontrollable. This can be associated
with the reduction in purity for larger systems with high j .
Nevertheless, the pilot field can be used to overcome this
difficulty. The grey (red) and black curves in Fig. 7 display the
fitnesses for j = 40 and 160, with the pilot field optimized for
j = 5. The monotonic convergence was not followed, although
the general trend of increasing fitness is still valid. Figure 9
presents the temporal fitness after an additional single OCT
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FIG. 9. (Color online) Fitness vs time for local control with a
field corrected by a single OCT iteration.
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FIG. 10. (Color online) Fitness vs j for a ground-state target
state. Left: Initial GCS: all the particles in one of the wells |ψ(0)〉 =
|j〉. Right: Initial cat state: |ψ(0)〉 = 1√

2
(|j〉 + |−j〉). The dashed

line in the right panel corresponds to the inverse GCS to cat state
transition. In all cases the field was optimized for j = 10.

iteration used to find the minor adjustments that are required
to reach a converged solution. This field was tested also for
j = 20 000 using the STNLSE algorithm [26]. The solution
obtained by the combined LC and OCT method was found
to be adequate for this large system. To generalize, if the
initial and final target states are localized GCSs, a scalable
pilot guess field obtained either by OCT or by LC for small j

leads to a final state which is very close to the target for larger
j . The purity conserving fields that were found are robust
solutions of the control problem, irrespective of the size of the
system.

D. Can the pilot field be generalized to arbitrary initial
and final states?

An obvious generalization would define the target or initial
state as superposition of GCSs, a Schrödinger cat state.
Figure 10 compares the fitness of two kinds of tasks as a
function of j generated from the pilot field optimized for
j = 10. The target state for both cases was the ground state
of the system. In the left panel, the initial state is a GCS
|ψ(0)〉 = |j 〉 for which the fitness is a smooth function of j ,
and remains close to unity even when the size of the system is
enlarged by a factor of 60. In the right panel, the initial state is
a cat state |ψcat〉 = 1√

2
(|j 〉 + |−j 〉), with zero purity. For such

tasks, we find no correspondence between the optimal field
and fitness of different j values. Moreover, no correlation was
found between the solutions for two adjacent j values.

E. Can symmetry be employed to generate a cat state?

It seems that scalable control for weakly connected
Hamiltonians is only possible for target and initial states which
are GCSs. Moreover, real experiments which involve control of
the linear {Ĵi} set of operators are accompanied by unavoidable
noise that will erase all the long-term coherences and evolve
the system into a classical mixture of GCSs [13]. Nevertheless,
the symmetry of the system could be exploited in some cases
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FIG. 11. (Color online) Conditional optimization. Fitness vs time
for the conditional optimization of the half cat states 1√

2
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2
|−j〉, in blue dashed-dotted and red dashed lines, respectively.

(solid) Fitness/2 vs. time for the cat state. In all of the cases here
J = 5.

to achieve the right relative phase between components of
the target wave function. Such an example is demonstrated
in Fig. 11.

A conditional OCT optimization was performed to find the
common field that stirs each of the components of the cat state
|ψcat〉 toward the ground state of the system. The optimization
was preformed in parallel, and no phase information was
interchanged between the two optimizations. The dashed and
dotted-dashed lines of Fig. 11 represent the temporal fitness for
each of the components for the converged field. The control
field is able to drive the maximal overall target amplitude
from each of the individual components. However, due to
time reversal symmetry, the final states contain components
orthogonal to the target state. That is, if a similar field can take
two states into identical state then the inverted dynamics are
indeterministic.

Applying the optimal field on the cat-state superposition
achieves the goal of unity purity and fitness with the target
GCS. The orthogonal components with the target interfere
destructively. The correct phase relation between the two
components of the state is a consequence of the symmetry
of the Hilbert space. Violation of the phase relation for cat
states appears only when a break of the symmetry takes place,
i.e., |ψNB

cat 〉 ∝ cleft|j 〉 + cright|−j 〉, with cleft �= cright. Figure 12
presents the phase relation between the two components as a
function of the ratio cright/cleft. The dependency is smooth and
quadratic. In the general case, erasure of the phase information
due to noise will avoid the construction of superpositions of
GCSs, especially for large systems. Nevertheless, transitions
between targets and initial states that fit the phase relation that
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FIG. 12. (Color online) Relative phase of the cat state’s compo-

nents vs the ratio of the amplitude between the components. In all of
the cases here, J = 5.

emerges from the symmetry of the Hilbert space are feasible
experimentally.

F. Morse oscillator

The same concepts are now applied to the example of the
controlled Morse oscillator. The initial state was chosen as a
shifted coherent state or a cat state, i.e., superposition of well-
separated coherent states. The target was the ground state of the
oscillator. The solutions for the two kinds of control tasks was
tested with a varied size of Hilbert space, while maintaining
the coupling scheme. This is achieved by changing the value
of the effective h̄ in the dynamics. Note that in the current
context the states with lowest uncertainty with respect to the
Heisenberg-Weil algebra defining the generalized coherent
states are the (classical) coherent states. A decrease of h̄

corresponds to a shift to classical dynamics and a higher
density of states. The applied pilot field was obtained from
the solution of the control problems with h̄ = 1, m = 10 a.u.,
De = 40 hartree, and α = 1.5 bohrs−1. For these parameters,
there are 20 bound states. A Fourier grid size of 128 was used
for the simulation, and the same grid was used throughout
the study. The classical period of motion corresponding to the
bottom of the well is given by τ = 2π/α

√
m/2De ≈ 1.5.

Four examples are demonstrated in Fig. 13. The fitness
vs h̄ for the task of taking a coherent state located at δx =
0.15 bohrs into the ground state of the system (δx = 0.03), is
depicted by a solid black line. The target time for the transition
T = 1.66 ≈ τ ensures a minimal decrease in the purity of the
state. The solution conserves high fitness for a wide range
of system sizes. In the dashed blue line, the same task is
examined but now for a longer target time T ≈ 20τ . The larger
propagation time allows the wave function to spread during
the dynamics, and the solution’s robustness is diminished but
still significant. The dotted-dashed red and dotted green lines
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FIG. 13. (Color online) Fitness for a control using a pilot field
generated for h̄ = 1 for the Morse oscillator. Solid black line: fitness
vs h̄ for a coherent-state to ground-state transition. Target time
T ≈ τ . At dashed blue line: the fitness for T ≈ 20τ . The dashed-
dotted red and dotted green lines represent the fitness for transforming
a superposition of two coherent states to the ground state, in the case
of low and high initial energy of the superposition, respectively.

represent the fitness for a difficult control task, generating
the ground state from a superposition of two coherent states
with inverse phase |ψcat〉 = |α〉 − |−α〉, for α = 0.02 and α =
0.32 bohrs. The enhancement of convergence due to the pilot
field is extremely limited, and the difference between the initial
superposition is not significant. Note that for this nonlinear
system a cat state can be generated from the ground state by
first generating a shifted coherent state. At a second step the
drift nonlinear Hamiltonian Ĥ0 will generate a cat state after
a period which is half the revival time. This time, however, is
long compare to T , the current control target time.

IV. OUTLOOK

The difficulty in converging a control field to generate state-
to-state transitions can be related to the algebraic structure of
the control Hamiltonian. When the initial and final states are
generalized coherent states of the control algebra, then a pilot
field of a small Hilbert size leads to fast convergence when
the size of the Hilbert space increases. This is not so when
the initial or target states are superpositions of generalized
coherent states. It seems that no relation exists between the
control fields of such targets for different Hilbert space sizes.

The generalized coherent states or GCSs maximize the
generalized purity with respect to the control algebra; therefore
they are considered the most “classical-like” localized states.
The control of such states is achieved by maintaining high
generalized purity for all times. These control fields supply
good control even when the system size increases.

The second category showed no scalable features of the
field. This means that in this U(N) system the task of generating
a quantum compiler [18], translating an arbitrary unitary
transformation to a control field, will scale unfavorably with
system size. The present observations are consistent with the
finding that noise on the control fields will completely degrade
the control of superpositions of GCS. This noise will transform
any superposition of GCSs into a mixture [14] thus destroying
complete controllability. It seems that control fields that are
required to generate superpositions of GCSs are intricate. As
a result they are hard to find and are also extremely sensitive
to noise.
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