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Effects of an exceptional point on the dynamics of a single particle
in a time-dependent harmonic trap
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The time evolution of a single particle in a harmonic trap with time-dependent frequency ω(t) has been well
studied. Nevertheless, here we show that when the harmonic trap is opened (or closed) as a function of time
while keeping the adiabatic parameter μ = [dω(t)/dt]/ω2(t) fixed, a sharp transition from an oscillatory to a
monotonic exponential dynamics occurs at μ = 2. At this transition point, the time evolution has an exceptional
point (EP) at all instants. This situation, where an EP of a time-dependent Hermitian Hamiltonian is obtained at
any given time, is very different from other known cases. In the present case, we show that the order of the EP
depends on the set of observables used to describe the dynamics. Our finding is relevant to the dynamics of a
single ion in a magnetic, optical, or rf trap, and of diluted gases of ultracold atoms in optical traps.
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Introduction. Exceptional points (EPs) are degeneracies
of non-Hermitian Hamiltonians [1,2] associated with the
coalescence of two or more eigenstates. The number of
studies of EPs has substantially grown since the pioneering
works of Carl Bender and his co-workers on PT -symmetric
Hamiltonians [3]. These Hamiltonians have a real spectrum,
which becomes complex at the EP. However, PT symmetry
is not required to obtain an EP point, as in the case of
a coalescence between two resonant states, leading to self-
orthogonal states [4–6].

The physical effects of EPs have already been demonstrated
in different types of experiments; see, for example, the effect
of EPs on cold-atom experiments [7], on the cross sections
of electron scattering from hydrogen molecules [8], and on
the linewidth of unstable lasers [9]. More direct realizations
of EPs in microwave experiments are given in Refs. [10–12]
and in optical experiments in Ref. [13]. For theoretical studies
that are relevant to these experiments, see, for example, Refs.
[8,14–19]. In addition, theoretical studies predict significant
effects of second-order EPs on the photoionization of atoms
[20–22] and the photodissociation of molecules [23–25].

The above-mentioned studies on the effects of EPs are re-
lated to non-Hermitian time-independent Hamiltonians. Note
that non-Hermitian Hamiltonians can be obtained from Hermi-
tian Hamiltonians by imposing outgoing boundary conditions
on the eigenfunctions or including complex absorbing poten-
tials [5]. This approach allows the description of resonance
phenomena in systems with finite-lifetime metastable states.
Other studies considered time-periodic Hamiltonians where
the EPs are associated with the quasienergies of the Floquet
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operator, which can be represented by a time-independent
non-Hermitian matrix (see, for example, one of the first
studies of EPs in atomic physics in Ref. [20]). EPs were also
studied in nonperiodic systems in the context of Landau-Zener-
Majorana transitions, where the EP was obtained only after
analytic continuation of the actual Hamiltonian [26]. Finally,
time-dependent EPs have been used to control the quantum
evolution of non-Hermitian systems [27].

In this paper, we show the appearance of an EP in a system
governed by a Hermitian time-dependent Hamiltonian. In
contrast to the previous proposals, our model does not involve
absorbing boundary conditions (i.e., resonances) and is not
periodic in time. The EP is revealed by an appropriate rescaling
of the time coordinate, which allows us to map the original
time-dependent problem to an effective time-independent
nonunitary evolution. As we will see, the order of the predicted
EP depends on the physical observables used to probe the
system.

The harmonic-oscillator system with changing frequency
in the Heisenberg picture. The model under present study is
the one-dimensional (1D) harmonic-oscillator with changing
frequency, defined as

Ĥ = 1

2m
p̂2 + 1

2
mω2(t)x̂2, (1)

where m is the mass of the particle, and p̂ and x̂ are,
respectively, the momentum and position operators. This
model has been used in the past as an example of and
benchmark for many basic concepts in physics. These include
parametric resonances (see, for example, [28]), when the mass
is periodic in time, dynamical invariants [29–31], and coherent
states [32–34], for a generic time dependence of the mass. We
will show that the dynamics generated by this Hamiltonian can
display an exceptional point.

We study the model (1) in the framework of
Refs. [35,36], where it is shown that due to the closed
commutation relations between the operators p̂2,x̂2,p̂x̂ + x̂p̂,
the model forms a su(1,1) algebra. As a basis set for this
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algebra, we choose

Ô ≡ (Ô1,Ô2,Ô3) ≡ (Ĥ ,L̂,D̂), (2)

where the Hamiltonian Ĥ is defined in (1), L̂ = Ĥ − mω2(t)x̂2

is the Lagrangian, and D̂ = ω(t)(x̂p̂ + p̂x̂)/2. Any commu-
tator between operators in the algebra can be expressed as a
linear combination of these operators:

[Ôi,Ôj ] =
3∑

k=1

Ck
ij Ôk, (3)

where Cl
jk is the structure factor of the su(1,1) algebra [37].

The Heisenberg picture for the dynamics that is associated
with the operators Ôj is described as

dÔj

dt
= i[Ĥ ,Ôj ] + ∂Ôj

∂t
, (4)

where j = 1,2,3 and we work in units in which h̄ = 1. These
equations are explicitly given by

d

dt
Ĥ = ∂Ĥ

∂t
= m

(dω

dt

)
ωx̂2 = ωμ(Ĥ − L̂),

d

dt
L̂ = i[Ĥ ,L̂] + ∂L̂

∂t
= −2ωD̂ − ωμ(Ĥ − L̂), (5)

d

dt
D̂ = i[Ĥ ,D̂] + ∂D̂

∂t
= 2ωL̂ + ωμD̂.

Here we defined the dimensionless “adiabatic parameter”

μ =
[

1

ω2(t)

]
dω

dt
. (6)

The equations of motion (5) conserve the “Casimir” opera-
tor [38] Ĉ(t) = [Ĥ 2(t) − L̂2(t) − D̂2(t)]/ω2(t) by satisfying
dĈ/dt = 0.

In what follows, we will focus on the specific case of μ =
const, corresponding to the frequency profile

ω(t) = ω(0)

1 − μω(0)t
. (7)

In experiments, the harmonic trap is varied between two
extreme values, ωopen and ωclosed. The compression factor
is given by ωclosed/ωopen > 1. For positive values of the
adiabatic parameter, ω(0) = ωopen and ω(tf ) = ωclosed. For
negative values, ω(0) = ωclosed and ω(tf ) = ωopen. In both
cases, tf = |μ|(ω−1

open − ω−1
closed).

The parameter μ sets the degree of adiabaticity of the
process. For μ → 0, the dynamics is perfectly adiabatic
and the system follows the eigenstates of the instantaneous
Hamiltonian. In contrast, for μ → ±∞, the change of the
Hamiltonian is so fast that the system does not have time to
change at all. As we will show, these two limits are separated
by an exceptional point. A similar effect is known to occur
in the vicinity of quantum critical points (see, for example,
Ref. [39]) and is here shown in time-dependent nonperiodic
harmonic traps.

To reveal the appearance of an EP, we introduce the di-
mensionless time variable τ = (1/μ) ln[ω(t)/ω(0)], satisfying
dτ = ω(t)dt , and rewrite (5) as

i
d Ô(τ )

dτ
= (iμI + HHeis) Ô(τ ), (8)

where I is the 3 × 3 unit matrix and

HHeis ≡ i

⎛
⎜⎝

0 −μ 0

−μ 0 −2

0 2 0

⎞
⎟⎠ . (9)

We can further simplify Eq. (8) by defining the rescaled
quantities ô according to

ô(τ (t)) = 1

ω(t)
Ô(τ (t)) ⇒ d ô(τ )

dτ
= d Ô(τ )

dτ
− μI. (10)

The resulting equation of motion id ô/dτ = HHeis ô is equiv-
alent to a time-dependent Schrödinger equation with a non-
Hermitian time-independent Hamiltonian. The matrix HHeis is
PT symmetric [40] and its three eigenvalues

E0 = 0; E± = ±
√

4 − μ2 (11)

are real for |μ| � 2. The corresponding eigenvectors are given
by v0 = (1,0, − μ/2) , v± = (μ, ± i

√
4 − μ2, − 2)/μ.

In contrast to the Schrödinger equation, the population
of the eigenvectors in a physical state is not arbitrary, but
must satisfy several constraints. For example, for |μ| < 2, the
eigenvectors v+ and v− are complex and any physical state
must populate them with an equal weight in order to keep
the expectation values 〈Ĥ 〉, 〈D̂〉, and 〈L̂〉 real. In addition,
v+ and v− have a zero Casimir constant 〈Ĉ〉 = 0. Due to
the uncertainty relation 〈Ĉ〉 � h̄2/4, any physical state must
necessarily populate the eigenstate v0 with nonzero weight as
well. Thus, for a generic initial state, we expect more than one
eigenvector to be occupied, leading to an oscillatory behavior
that we describe below.

The matrix HHeis has a third-order EP at |μ| = 2. At this
point, all three eigenvalues and the corresponding eigenvectors
(in the HLD space) coalesce. As a consequence, [HHeis(μ =
±2)]3 = 0, while [HHeis(μ = ±2)]2 �= 0, demonstrating that
the present EP is of third order. Third-order EPs have been
discussed in the literature for time-independentPT -symmetric
Hamiltonians (see, for example, Refs. [41–44]). The main
effect of EPs (of any order) on the dynamics of PT -symmetric
systems is the sudden transition from a real spectrum to
a complex energy spectrum associated with gain and loss
processes [15].

Physical consequences. We now discuss the consequences
of the EP on physical observables. Figure 1(a) shows the
time dependence of the rescaled quantity 〈ô1 − ô2〉 = 〈Ĥ −
L̂〉/ω(t) = mω(t)

〈
x2

〉
. For μ < 2, this quantity shows periodic

oscillations, which become exponentially growing at μ > 2,
highlighting the existence of an exceptional point. Similar
results can be obtained for any other linear combination of
the rescaled operators ô, defined in Eq. (10). In Fig. 1(a),
we used as time coordinate the time-dependent compression
factor ω(t)/ω(0), whose logarithm corresponds to the new
time variable τ (multiplied by μ). In this scale, the rescaled
observables show periodic oscillations, with period

Tτ = 2π
1
2 (E+ − E−)

= 2π√
4 − μ2

. (12)

This time scale diverges at the EP, as can be noticed, for
example, in Fig. 1(a).
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FIG. 1. (Color online) (a) Variance of the position operator 〈x2〉,
normalized by the width of the instantaneous potential

√
1/2mω(t),

as a function of the time-dependent compression factor ω(t)/ω(0)
for different values of the adiabatic parameter μ � 0. The initial
state is the ground state of the Hamiltonian (1) at t = 0, where
〈x2〉 = 1/[2mω(0)]. For μ < 0, the same plot is obtained where now
the compression factor is taken as ω(0)/ω(t). At the exceptional point
(EP) μ = 2, the dynamics changes from oscillatory to monotonous.
(b) Same plot for the ratio between the wide and narrow axes
ρ = σW/σN . The curve is independent on the initial state. (The time
evolution is represented by the black solid curves and the colors are
a guide for the eye.)

Dealing with a time-dependent problem, the dynamics
depends on the specific choice of the initial state as well.
In Fig. 1(a), we chose as initial state the ground state of the
Hamiltonian at t = 0, where mω(0)〈x̂2〉 = 1/2. For a generic
initial state, the rescaled observables 〈o〉 display additional
trivial oscillations that persist even for ω = const and are not
related to the EP.

To isolate the effects of the EP that do not depend on the
choice of the initial state, we introduce the rescaled covariance
matrix(

o1 − o2 o3

o3 o1 + o2

)
= m

(
ω(t)〈x2〉 〈x̂p̂ + p̂x̂〉

〈x̂p̂ + p̂x̂〉 〈p2(t)〉/ω(t)

)
.

(13)

The small and large eigenvalues of this matrix, denoted by σ 2
N

and σ 2
W , respectively correspond to the variances of the narrow

and wide axes of the Wigner distribution. For a harmonic
oscillator, one can show that

σ 2
W,N = 〈Ĥ ±

√
L̂2 + D̂2〉
ω

. (14)

Note that by virtue of the Casimir constant, any quantum state
satisfies σNσW � 1/2. For ω = const (μ = 0), the evolution

simply mixes L̂ and D̂, leaving 〈L̂2 + D̂2〉 constant. Hence,
even though for ω = const the distribution rotates in phase
space and changes the variance of position and momentum,
the width of the narrow and wide axes of the distribution
remains fixed.

For 0 < |μ| < 2, the expectation values of σ 2
N and σ 2

W

oscillate in time. A convenient measure to capture this
oscillatory dynamics is given by the ratio

ρ = σW

σN

, (15)

where, by definition, ρ � 1. For any initial state satisfying

μ〈D̂〉 + 〈L̂〉2
/(4〈Ĥ 〉) > 0 [45], it is possible to show that

the visibility of the fringes pattern is given by the simple
expression

V = ρmax − ρmin

ρmax + ρmin
= |μ|

2
. (16)

At |μ| = 2, the visibility becomes one, and for |μ| � 2, the
oscillations disappear.

Semiclassical analysis. We now present a different ap-
proach which clarifies the relation between the present
problem and energy-dissipative systems. Our approach is
based on the formal equivalence between quantum and
classical evolution of quadratic Hamiltonians. To reproduce
the quantum-mechanical results, one needs to complement the
classical equations of motion by stochastic initial distributions,
given by the Wigner transform of the initial state. Note that
generic quantum initial conditions lead to Wigner distribution
functions with negative values corresponding to “nonclassical”
states.

In our case, the relevant equation of motion is Newton’s
law, [

d2

dt2
+ ω2(t)

]
x(t) = 0. (17)

For a study of PT symmetry in parametric oscillators see
Ref. [46]. By applying the transformation dτ = ω(t)dt , or
d
dt

= ω(t) d
dτ

, we obtain

d2

dt2
x = d

dt

[
ω(t)

d

dτ
x

]
= ω′(t)

d

dτ
x + ω2(t)

d

dτ
x. (18)

In the specific case μ = const, the equation of motion becomes[
d2

dτ 2
+ μ

d

dτ
+ 1

]
x(τ ) = 0. (19)

Here we obtain the well-known equation of motion of a
damped harmonic oscillator. Note that the original model,
given by Eq. (17), does not involve dissipation and a priori one
would not expect the appearance of an EP. The rescaling of
the time coordinate allows us to identify an EP at |μ| = 2,
corresponding to the transition between an underdamped
and overdamped oscillator. Equation (19) is a second-order
differential equation and, as such, leads to a second-order EP.

To understand the relation between this semiclassical
finding and the previous quantum analysis, it is useful to
define the velocity v = dx/dt as an independent variable
and compute the classical equations of motion of x2(t), v2(t),
and x(t)v(t). The resulting equations of motion coincide with
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Eq. (9) and have three eigenvectors that coalesce at |μ| = 2,
indicating a third-order EP. This observation leads to the
interesting conclusion that in our system, the order of the EP
depends on the specific set of observables. Average quantities
(〈x〉 and 〈p〉) and variances (〈x2〉, 〈p2〉, and 〈xp + px〉) are
characterized, respectively, by second- and third-order EPs.
At present, it is not clear whether this feature is unique
to the harmonic case or generic to EPs of time-dependent
Hamiltonians.

Experimental realization. Although the Hamiltonian (1)
can be realized in any controllable harmonic trap (optics,
plasma, etc.), we will consider here the case of either a
single ion [47] or a dilute atomic cloud [48–52] in time-
dependent confining traps. The realization with atomic clouds
allows the measurement of expectation values in a single-shot
experiment. Complications of the dynamics due to the atom-
atom interactions can be avoided (minimized) by setting the
atomic scattering length to zero in the vicinity of a Feshbach
resonance [53].

The effects of the EP can be directly detected by preparing
the atom in the ground state of the trap and measuring the
spatial fluctuations 〈x2(t)〉 (for example, using the techniques
described in Refs. [50,54–58]), while the trap frequency is
varied according to Eq. (7). At the EP, the graph of the
rescaled quantity ω(t)〈x2(t)〉 as a function of the compression
factor ω(t)/ω(0) displays a sharp transition from oscillatory
to exponentially growing, as shown in Fig. 1(a). Alternatively,
for a generic initial state, one should instead plot the ratio
between the narrow and wide axis of the Wigner distribution,
computed in Fig. 1(b). This quantity can be measured by fixing
the frequency of the trap ω(t > t ′) = ω(t ′) and measuring the
variance of the position as a function of time. The minimum
and the maximum of 〈x2(t)〉 are, respectively, σ 2

N/2mω(t ′) and
σ 2

W/2mω(t ′). This method is perhaps more time consuming,
but guarantees the independence of the result on the initial
preparation.

The two methods described above require one to observe
the dynamics of the system for long times. The relevant time
scale is determined by Tτ , defined in Eq. (12), and diverges at
the EP. These long-time measurements are strongly affected by
unavoidable interatomic interaction and time-dependent noise,
preventing the observation of a sharp transition at |μ| = 2.

To avoid this problem, we recall that the EP occurs at
any instant in time and affects the short-time dynamics as
well. In particular, the EP can be probed by plotting the

0 1 2
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ω
〈x
2 〉)
/d

τ3

τ
0 1 2
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)/d
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FIG. 2. (Color online) Proposed experimental method to detect
the EP from the short-time dynamics. Third-order derivatives of the
renormalized observables defined in Eq. (10), as a function of the
renormalized time τ = (1/μ)ln[ω(t)/ω(0)]. At the EP |μ| = 2, the
third-order derivatives of the rescaled quantities ω〈x2〉 and 〈p2〉/ω
are identically equal to zero.

derivatives of the rescaled quantity [such as ω(t)〈x2(t)〉 and
〈p2(t)〉/ω(t)] as a function of the rescaled time τ . Because
at the EP (HHeis)

3 = 0, the rescaled observables 〈ô (τ )〉 =
exp (−iHHeisτ ) 〈ô (τ = 0)〉 are second-order polynomial of τ

and their third-order derivatives are identically equal to zero.
Thus, plotting d3〈o(τ )〉/dτ 3 allows one to directly probe both
the position and the order of the EP from the short-time
dynamics [59], as shown in Fig. 2.

Concluding remarks. The dramatic effect of EPs of non-
Hermitian time-independent Hamiltonian systems on the
dynamics is the focus of recent theoretical and experimental
studies in various fields of physics (for example, in optical or
microwave experiments where the material has a complex in-
dex of refraction). Here we show that the dynamics of a system
described by a time-dependent Hermitian Hamiltonian can be
strongly affected by the EP of an effective time-independent
Hamiltonian. The fact that the dynamics of the Hermitian
time-dependent harmonic oscillator can be explained by the
existence of an EP at all instants shows the richness of the
dynamics of one of the most basic model Hamiltonians, which
constitutes a cornerstone in a large variety of fields in physics.
Our finding is both interesting for fundamental theoretical
reasons and relevant to experiments with single ions and
diluted BECs in time-dependent traps.
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