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Optimizing the multicycle subrotational internal cooling of diatomic molecules
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Subrotational cooling of the AlH+ ion to the miliKelvin regime, using optimally shaped pulses, is computed.
The coherent electromagnetic fields induce purity-conserved transformations and do not change the sample
temperature. A decrease in a sample temperature, manifested by an increase of purity, is achieved by the
complementary uncontrolled spontaneous emission which changes the entropy of the system. We employ optimal
control theory to find a pulse that stirs the system into a population configuration that will result in cooling, upon
multicycle excitation-emission steps. The obtained optimal transformation was shown capable to cool molecular
ions to the subkelvins regime.
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I. INTRODUCTION

Ultracold molecules are a new form of matter with unique
quantum properties [1]. The additional internal structure, for
example, their dipole moments, will determine their collective
properties [2]. The promise of new physics has initiated a
quest to trap and cool molecules to their quantum degen-
eracy [3,4]. Experiments that aim to approach such a state
of matter in the ground state of the molecule are now at
the focus of several groups. The difficulty stems from the
additional requirement of also cooling the internal degrees
of freedom, vibration, and rotation, and fine and hyperfine
structure.

Two general directions have been followed to obtain ultra-
cold neutral molecules: (i) Direct trapping and cooling of stable
molecules. Typically the first step is stopping and trapping the
molecules, followed by additional cooling of internal degrees
of freedom [5]. These methods include buffer gas cooling
[6], sympathetic cooling [7], and field manipulation (radiative
cooling) [8,9]. (ii) Indirect methods that assemble ultracold
molecules from ultracold atomic species. The most studied
method employs photoassociation from free atoms [10] or
enhancing the process via a Feshbach resonance [11]. The
typical trap depth of molecules, which serve as the starting
point for the internal cooling which is further needed in order
to approach quantum degeneracy, is of the order of hundreds
of miliKelvins [12].

Molecular ions are relatively easy to isolate and trap
spatially due to their strong Coulombic interactions, but are
more difficult to cool internally. The initial temperatures for
the internal cooling for ions are thus much higher and could
even reach room temperature.

The present study is devoted to the study of cooling internal
degrees of freedom of trapped ionic molecules. In analogy with
laser cooling of atoms, a sequential laser cooling of vibration
and rotation based on narrowband lasers was suggested, ad-
dressing all transitions [13]. As an alternative to this compli-
cated comb spectrum, one can imagine a broadband spectrum
where the unwanted transitions are removed. This alternative
cooling scheme was suggested based on a shaped broadband

sequence of pulses followed by spontaneous emission [14].
Optimal control theory was used to find the required pulse
shape [15,16]. Analyzing the cooling mechanism revealed that
the target state became a dark state to the excitation pulse, thus
optically pumping all other states. This idea was realized ex-
perimentally for vibrational cooling of photoassociated cesium
molecules [17]. The experimental success inspired additional
studies of broadband cooling [18,19].

Cooling rotational degrees of freedom is a more difficult
task due to smaller energy spacings and a large number
of available states [19]. Nevertheless, for hydrides with a
relatively large rotational spacing, carefully shaped broadband
excitations can lead to cooling [20].

A recent experimental study [20] demonstrated rotational
cooling to the ground rotational level J = 1/2 of AlH+ by
filtered broadband excitation. For this molecular ion, the
excitation from the X2� ground electronic state to the first
excited A2� state resulted in a minimal modification of the
electronic internuclear potential. Under these conditions, the
Franck-Condon (FC) factors which determine the branch-
ing of a vibrational state during the excitation and emis-
sion eliminate practically all the transitions between states
with different vibrational quantum number v (see Fig. 1).
Despite its experimental robustness, the filtered broadband
method is limited by the resolution of the applied filter,
and hence subrotational cooling is difficult. The cooling is
slow (140 ms) so that ∼106 cycles of excitation relaxation
are needed to reach a steady-state temperature of T ∼ 4 K
(see Fig. 1).

The present theoretical study is aimed at exploring schemes
to enhance the cooling rate of AlH+ and reach a lower
target temperature. We will employ optimal control theory to
find broadband-shaped pulses that can enhance the rotational
cooling.

The paper is arranged as follows: Section II presents the
model for the light-matter interaction framework. Section III
describes the theoretical tools that are used for achieving
control. Section IV presents the results, which are discussed
and summarized in the concluding Sec. V.

2469-9926/2018/97(5)/053405(10) 053405-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.053405&domain=pdf&date_stamp=2018-05-10
https://doi.org/10.1103/PhysRevA.97.053405


A. AROCH, S. KALLUSH, AND R. KOSLOFF PHYSICAL REVIEW A 97, 053405 (2018)

2 3 4 5 6 7
0

1

2

3

4

5

6

x 104

E
(c
m

-1
)

E=2.64e4

A2

< (v=0)| (v=0)>=0.996

V

X2

FIG. 1. Electronic potential curves for AlH+. The X2�, A2�

potentials are displayed and, in addition, the FC factors between the
ground vibrational state of the two electronic states is presented.

II. THE LIGHT-MATTER INTERACTION MODEL

To model the full dynamics of the molecule on two elec-
tronic surfaces, the state of the systems is described by the
combined density operator,

ρ̂ = ρ̂g ⊗ P̂g + ρ̂e ⊗ P̂e + ρ̂c ⊗ Ŝ+ + ρ̂∗
c ⊗ Ŝ−, (1)

where Pg/e are the projection operators of the ground and
excited electronic state, Ŝ+/− are the electronic raising and
lowering operators, ρg/e are the density operator for the rovi-
brational ensemble within the ground and excited electronic
states, and ρc is the density operator of the nuclear coherence
between the surfaces. The Hamiltonian of such a system is

Ĥ = Ĥ0 + V̂t ,

Ĥ0 = Ĥg ⊗ P̂g + Ĥe ⊗ P̂e, (2)

where Ĥg/e is the ground and excited rotational Hamiltonian.
The interaction of the system with light is described by V̂t ,

V̂t = −
∑

q=X,Y,Z

μ̂q ⊗ (Ŝ+εq + Ŝ−ε∗
q), (3)

where μ̂q is the transition dipole moment along the q spatial
direction and εq(t) represents the time-dependent field along
the same direction.

Ĥg/e are the field-free rovibrational Hamiltonians. For
mildly cold temperatures (Tinitial � 20 K) and high vibrational
frequency, we can assume that the molecules are initially in
their ground v = 0 state. Moreover, vibrational excitations
in the electronic transition are negligible due to the highly
restricting FC factors [20]. As a result, the modeling is thus
restricted to v = 0.

The rotational states of the model are expanded by the
symmetric top basis [21],

|J�M〉 =
[

2J + 1

4π

] 1
2

DJ
M�(φ,θ,0), (4)

where J is the total molecular angular momentum, and M and
� are its projections on the spatial (Z) and molecular (z) axis,
respectively. Here, DJ

M� is the rotational tensor.
For the ground electronic 2� state, the projection of the

spatial electronic angular momentum on the molecular axis


 = 0 and the electronic spin is S = 1
2 (so � = ± 1

2 , the
projection of S on an internuclear axis), and Hund’s case (b) is
applicable. The molecular energy eigenfunctions become

|gJ�M±〉 = 1√
2

[∣∣∣∣S = 1

2
,� = 1

2

〉
|J�M〉

±
∣∣∣∣S = 1

2
,� = −1

2

〉
|J − �M〉

]
, (5)

where ± denotes the sign of the linear combination and is
related to the parity of the wave function. The rotational
energies for each of the parities are given by

E1
g(J ) = Bg

(
J − 1

2

)(
J + 1

2

) + 1/
2γg

(
J − 1

2

)
,

E2
g(J ) = Bg

[(
J + 1

2

)(
J + 3

2

)] − 1/
2γg

(
J + 3

2

)
, (6)

where E1
g(J ) and E2

g(J ) denote the F1 and F2 manifolds
described by [21]. Bg = 6.76 cm−1 is the rotational constant
for the ground vibrational state, γg = 5.66×10−2 cm−1 is the
spin-nuclear rotation constant, and J = 1

2 , 3
2 , 5

2 , . . ..
In the excited 2� state, 
 = ±1 and � = − 3

2 , − 1
2 , 1

2 , 3
2 .

This state is an intermediate between Hund’s case (a) and
case (b), where L is coupled to the internuclear axis and S
is uncoupled from the nuclear axis. Each (J,M) level has four
rotational levels associated with it, two of each parity:

|J |�|M±〉 = 1√
2

[|
 = 1〉
∣∣∣∣1

2

1

2

〉
|J + �M〉

±|
 = −1〉
∣∣∣∣1

2
− 1

2

〉
|J − �M〉]. (7)

The energies are given by

E±
e (J ) = Be

[(
J − 1/

2

)(
J + 3/

2

)
± 1/

2X
]
,

X =
√[

4
(
J − 1/

2

)(
J + 3/

2

)
+ (Y − 2)

]
,

Y = Ae

Be

. (8)

Be = 6.85 cm−1 is the rotational constant for the excited
electronic state, and Ae = 106 cm−1 is the spin-electronic
orbital coupling.

The ±X assigns the corresponding eigenvectors,

|eJM+〉 = aj

∣∣∣J1/
2M

〉
+ bj

∣∣∣J3/
2M

〉
(9)

and

|eJM−〉 = −bj

∣∣∣J1/
2M

〉
+ aj

∣∣∣J3/
2M

〉
, (10)

where

aj =
[
X + (Y − 2)

2X

] 1
2

,

bj =
[
X − (Y − 2)

2X

] 1
2

. (11)

The additional energy split by the coupling of the molecular
magnetic moment and the nuclear rotation is small enough and
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has been neglected here. That is, hyperfine cooling will not be
considered within this framework.

The transitions between the two electronic states 2� → 2�

are dictated by dipole selection rules (�J = 0,±1), denoted as
R, Q, and P branches, respectively. The coupling elements can
be found by calculating the overlap of any two eigenvectors
with the dipole operator.

At thermal equilibrium, the initial state ρeq is characterized
by thermally distributed populations in the quantum states,

ρ̂eq = 1

Z

∑
j

e
−βE±

g
(j )|gJM±〉〈gJM ± |, (12)

where β = 1/kbT and the sets |J�M±〉 and {Ei} are the
eigenstates and eigenenergies of the system, and Z is the
partition function.

For the AlH+ at the temperature of 5 K, close to the final
temperature in [20], less than 0.01 of the population occupies
J > 1

2 and only four states are thermally populated. In the
present study, we assume an initial temperature of 20 K,
which restricts the population occupation up to J = 3

2 states
(12 states).

The evolution of the system will be governed by the
Liouville–von Neumann equation [22]

dρ̂

dt
= − i

h̄
[Ĥ ,ρ̂] + LD(ρ̂), (13)

where the first term is the coherent dynamical part governed by
the Hamiltonian and the second term is the dissipative part of
the dynamics governed by the Liouvillian superoperator. This
equation represents the dynamics of an open quantum system.

For optical transitions with multiple pulses, there is a
distinct timescale separation between the light-induced step
which occurs in less than a picosecond and is unitary, the
incoherent decay which occurs in tens of nanoseconds, and
the pulse repetition rate which is in the MHz to KHz range.
Within this picture, each cooling cycle could be separated
into two parts: (1) The short-time interaction of the external
field and the molecular system. Since this step is unitary, the
density operator can be decomposed to energy eigenstates
and each component can be computed in a wave-function
framework. Then, (2) a slow and field-free spontaneous decay
takes place. In this step, the coherences developed between
energy eigenstates during the laser-controlled step are erased.
The probability of transformation from a given excited-state
energy eigenstate to the ground-state manifold of states is
dictated by Fermi’s golden rule,

�i→f ≈
∑

q

|〈eJM±|μ̂q |gJM±〉|2. (14)

Note that while the former coherent step yields only unitary
transformations and therefore does not change the purity, the
latter decay step is a unidirectional positive map which does
not maintain the purity and thus change the temperature of the
system.

The final nonequilibrium steady state of the system does not
have to be thermal. To associate an effective temperature to the
state, we employ the von Neumann entropy to scale the purity
and, consequently, define the effective temperature. The idea
came from information theory where the entropy is related to

the probability distribution of an ensemble [22]. The entropy
is defined as

SV N = −tr{ρ̂ ln ρ̂} � −
∑

j

Pj ln Pj , (15)

where ρ is the density matrix of the system and Pj is the
probability to be in the energy eigenstate j , which is the
only contribution to the entropy, under the assumption that
quantum coherences do not survive the spontaneous-emission
incoherent step. Equality will be obtained when the system is
diagonalized in the energy domain. It is important to note that
entropy is invariant under unitary transformation, and therefore
any steady state reached after cooling can be transformed by
unitary transformation to a passive state with the same entropy
[23]. To define a temperature of any nonthermal state, we
associate it with the temperature of a thermal state with the
same von Neumann (vN) entropy.

III. CONTROLLING THE SYSTEM

Quantum optimal control theory (OCT) is a branch of
coherent control, a quantum-mechanical-based method for
controlling dynamical processes. The basic principle is to
control quantum interference phenomena typically by shaping
the phase of laser pulses [24–27]. OCT is formulated as a
maximization problem and seeks a time-dependent field that
maximizes the expectation value of an operator in final time.

Consider a quantum system in an initial state ρ̂0 =
n∑

k=1
pk|ψ0

k 〉〈ψ0
k |, where the set {ψ0

k } is energy eigenstates of

the system. The control will seek a field that maximizes the
expectation value of the operator Ô at final time T,

Jmax(ε) ≡
n∑

k=1

pk〈�k(T )|Ô|�k(T )〉, (16)

where �i(T ) describes the state that results from the interaction
of the system with the field,

�ε(t) =
∑

q

εq(t)q̂, (17)

at the final time T . Here, q̂ are spatial directions. The governing
of the dynamics of the system by the Schrödinger equation
i ∂

∂t
|ψ〉 = Ĥ |ψ〉, with the Hamiltonian

Ĥ (t) = Ĥ0 − �μ · �ε(t), (18)

is enforced by adding an additional cost term to the functional,
according to the Lagrange-multiplier method,

Jcon =
n∑

k=1

−2Re
∫ T

0
〈χk(t)| d

dt
+ iĤ (t)|ψk(t)〉dt, (19)

where {〈χk(t)|} are the set of time-dependent Lagrange multi-
pliers.

To regularize the solution with a limitation over the inten-
sity, another penalty term to the functional is added [28],

Jpenal(ε) = −
∑

q

αq

∫ T

0
ε2
q(t)dt, (20)
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where αq are scalar Lagrange multipliers. The overall object
of maximization is the following functional:

J = Jmax + Jpenal + Jcon. (21)

The maximization of the fitnessJ is the control task. Functional
derivatives with respect to the various field and wave-function
components are then taken, resulting in the following system
of equations (22) and (23).

Each of the set of the |χk(t)〉 Lagrange multipliers will obey
a time-reversed Schrödinger equation,

d〈χk(t)|
dt

= i〈χk(t)|Ĥ (t), (22)

with the boundary conditions |χk(T )〉 = Ô|�k(T )〉 [29].
The Krotov iterative method is applied to obtain a mono-

tonic growth of the fitnessJ at each iteration with the correction
field,

ε
l+1

q (t) = εl
q (t) − 1

αq

n∑
k=1

Im
〈
χl

k(t)
∣∣μ̂q

∣∣ψl+1
k (t)

〉
, (23)

where ε
l+1

q (t) is the correction for the field after the kth iteration,
for the polarization direction q. At each given time step, each
field polarization component is modified separately.

Note that the scheme of Eqs. (22) and (23) is somewhat
similar to the simultaneous optimization scheme that is needed
for unitary transformations and quantum gates. However, for
cooling each of the cycles at the final transformation erases the
relative quantum phase between the various optimized basis-
set initial states. This leaves the resulting fitness measurement
at the level of classical transition probability between the initial
and final state and removes the need to evaluate quantum
phases.

IV. RESULTS

The target of the OCT algorithm is to cool by increasing
the purity of the system at the final steady state after multiple
cycles. Assuming that the target of the process is to reach a
pure, single state, any proposed mechanism for the process
[20,30–32] has to maintain the population of the single target
state while allowing the population of all other states to repop-
ulate selectively. However, as was shown by [32], the specific
choice of the precooling transformation is a subtle issue.

As implied by the ergodic theorem [33], for any initial
state under multiple cycles of a given field-driven unitary
transformation and subsequent decay, the final state will be
the invariant under the whole transformation. After many
excitation-relaxation cycles, the memory of the initial state
will be erased.

Let U be a unitary operator and D be a dissipative operator;
there is a stationary state � that will obey

lim
n→∞ (U †DU )nφ = �, (24)

where φ can be any initial state. That is, under a given U and
D, the system will finally evolve from any state into the single
stationary �.

One can obtain the state � by diagonalization of the
transformation operator S†DS. The stationary state is then
given by the eigenstate with a unit eigenvalue, while the next
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n

Initial State(T=5K)

Population Transformation

FIG. 2. Starting from Tinitial = 5 K, the population of the initial
thermal states is denoted by the blue bars. After applying the
controlled field, the population of the final states at the ground and
the excited (red background) electronic states is given by the red bars.

eigenvalue indicates the rate of convergence of the system to
the steady state. Using the ergodic theory compels the system
to be closed. Since D is fixed, the task is to find the unitary
transformation U that will lead to the designed stationary state.

In order to estimate to which extent the system can be
controlled by a single field polarized to the Z spatial axis, we
start with a restricted problem. Figure 2 displays the initially
populated states at temperature of T ∼ 5 K and the population
after a controlled field operation. For this temperature, only
the nearly degenerate J = 1/2 four-states are populated. The
target was to move the population to the excited state at J = 1

2
and eliminate any transitions to higher-J states that will open
decay channels to even higher states. The control field is able to
manipulate the system towards the target state with a fitness of
99.9%. However, under a single field that is polarized linearly
to the Z direction, no coherent transitions between different
M states are allowed. For this example, the final population
can be restricted to the lower F1 states, but the single linearly
polarized light cannot break the symmetry between the two M

states, limiting the final state that can be reached.
To break the symmetry between different M states, a second

perpendicular field is used to control coherent transitions
between M states. This addition could be understood as a time-
dependent polarization of the field, an experimental control
tool that was used for several applications [34,35].

M

P
op

ul
at

io
n

Initial State(T=5K)

Population Transformation

FIG. 3. Breaking the M quantum number degeneracy. Same as
Fig. 2, here for the population control of the dual degenerate state
(blue) at the ground electronic state (green background) into a
nonsymmetric state (red). The target was to maintain the population at
one state and excite the population from the other (red background).
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FIG. 4. The two linearly polarized components of the field ob-
tained by the OCT, for the two-state control in the time domain.

Figure 3 shows, by blue bars, the equal thermal population
of two degenerate ground states and, by red bars, the population
after a controlled field’s operation. The target here was to move
the |J = 1

2 ,M = − 1
2 ,F1〉 population to the excited state at

J = 1
2 , while keeping the population at |J = 1

2 ,M = 1
2 ,F1〉

unchanged. Figure 4 shows the obtained field components in
the Z and X directions as a function of time. The obtained
fitness was 99.9%. With such a field, coherent transitions
between different M states are allowed and breaking the
symmetry between M states was achieved. Nevertheless, such
a transformation does not yet lead to cooling due to the fact that
the decay of the J = 1/2 results in a population in J = 3/2
which was not taken into account. We remark here that a single
field directed to the X direction can indeed couple states with

FIG. 5. A schematic description of the cooling mechanism.
The control field is able to avoid transformation to J > 1/2 in
the excited states, and the whole excitation-relaxation cycle is
closed. The target state is |J = 1

2 ,M = − 1
2 ,F1〉 at the � electronic

states.

M

P
op

ul
at

io
n

Initial Thermal State
Final Cold State
Population Transformation
(Unitary)

FIG. 6. Subrotational cooling from Tinitial = 20 K. Similar to
Fig. 2, with the final steady state in yellow bars. The final steady
state is reached after multiple excitation-dissipation cycles.

different M , but the symmetric dynamics for different M states
cannot be violated for such a field.

To restrict the system to a closed excitation-relaxation cycle,
the control will have to take into account the decay to the
ground J = 3/2 levels and repump this population to the
restricted J = 1/2 manifold in the excited state. Figure 5
indicates the desired and eliminated transitions for the control
target in the manifold problem.

We chose |J = 1
2 ,M = − 1

2 ,F1〉 as the target stationary state
of the transformation. The minimal subspace for the optimiza-
tion has to include the J = 1/2,3/2 manifold; hence, due to the
ergodic theorem, the optimization will be able to handle any
initial population distribution within these states and lead it to
the invariant state. Specifically, a thermal distribution with such
occupancy corresponds to an initial temperature of ∼20 K.
After excitation, all of the population will be scattered on the
� states with (J = 3

2 ) and only the J = 1
2 on the excited �

electronic surface.

0 5 10 15 200 5 10 15 20-2

-1

0

1

2x 10-4

 
u.
)

zx

FIG. 7. The field for the subrotational cooling. Similar to Fig. 4,
here for the multicycle cooling from Tinitial = 20 K. Note the signif-
icant complex structure of both of the components, in comparison
to Fig. 4.
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FIG. 8. Frequency domain. Fourier transform of εz as a function
of the frequency. Three peaks were assigned in the spectrum and
correspond to the following allowed transitions: (1) 〈 1

2 , 1
2 ,1| 1

2 , 1
2 ,1+〉,

(2) 〈 1
2 , 1

2 ,1| 1
2 , 1

2 ,1+〉, and (3) 〈 1
2 , 1

2 ,2| 1
2 , 1

2 ,2+〉. The time domain was
supplemented by zeros to artificially increase the resolution. The inset
displays one of the peaks with the original and refined resolutions in
red and blue curves, respectively.

Figure 6 shows the results for cooling with the initial thermal
state at temperature of T ∼ 20 K. The blue and red bars are
similar to Fig. 2. The yellow bars represent the steady state
after multiple excitation-relaxation cycles. The populations at
the steady state are not thermally distributed, but are highly
concentrated at the single target state, with 95.3% of the
population in this single subrotational fine-structure level.

Analysis

Figure 7 presents the obtained highly structured two com-
ponents of the time-dependent control field.

As expected, the time-domain picture for the field is difficult
to encrypt. Some insight could be gained with the inspection
of fields in the frequency domain, as shown in Fig. 8. Some of
the main peaks in the pulse spectrum can be assigned directly
to the energy difference between states in the manifolds (some
examples are denoted explicitly).

0 50 100 150 200 2500

0.5

1

1.5

2

2.5

No. cycles)

S
vN

S=0.2998

(U D)n

FIG. 9. The von Neumann entropy as defined in Eq. (15) as a
function of the number of cycles.

FIG. 10. vN entropy as a function of temperature. The steep slope
for T → 0 is magnified at the inset. The abrupt change in the slope
reflects the transition in the states occupation from rotational structure
into the subrotational structure. The corresponding initial and final
states of this work are denoted.

To estimate the temperature of the obtained steady state,
we first compute its entropy, as described in Eq. (15). Figure 9
plots the entropy of the state after each excitation-relaxation
cycle. A monotonic decrease of the entropy is a clear indication
for the cooling of the system. Lindblad has shown that
under a completely positive map, the conditional entropy is
monotonically decreasing [36].

Figure 10 shows the dependence of the computed vN
entropy of the thermal state as a function of the temperature of
the system. The curve is then used to calibrate the temperature
of any given state. As denoted on the curve, at the initial state
the entropy corresponds to a temperature of ∼20 K, while at
the final steady state the entropy corresponds to ∼230 mK.

Figure 11 shows the the energy difference between the
thermal state and the obtained state after every excitation-
relaxation cycle. It is interesting to note that �〈E〉 does not
decrease monotonically.

At the first cycles, the absorbed energy is greater than the
emitted and the excess energy goes to excite the population,
while the entropy keeps descending. After ∼10 cycles, �〈E〉

20 40 60 80 100 120 140-6

-4

-2

0

2

4x 10-5

Cycles

.u
. )

First cycle
state

Initial thermal
state

1 Cycle=

Final state

Initial state

Excited state

FIG. 11. Energy of the system vs the number of cycles. Note that
contrary to Fig. 9, the energy change is nonmonotonic as a function
of the number of cycles. E = 0 is defined as the energy of the initial
thermal state at T = 20 K.
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starts to converge monotonically, more population resides at
lower energy, and �〈E〉 decreases.

V. CONCLUSIONS

Cooling molecules using coherent control is an efficient
universal method. The light-matter interaction allows energy
and entropy transfer between molecules and photons. The
mechanism depends on the symmetry of the electronic struc-
ture, with insignificant vibrational transitions high FC factors.
Our modeling for AlH+ demonstrates that cooling to the sub-
kelvin regime can be achieved by optimal control (∼230 mK),
and can be extended to cool other molecules with a similar
electronic structure with almost unity FC factors.

Using two perpendicular linearly polarized light or polariza-
tion shaping overcomes symmetry constraints, allowing colder
target temperatures.

The mechanisms (energy transfer from the particle to the
light medium), used in the ergodic theorem, can be further
utilized to find a unitary transformation that will obtain the
desired results with higher efficiency [33].
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APPENDIX A: THE VIBRATIONAL HAMILTONIAN

For each electronic state, 2� and 2�, we have solved the
Schrödinger equation and obtained the eigenvectors and the
eigenvalues.

The vibrational Hamiltonian

Hvib = T + V (r) = p2

2m
+ V (r), (A1)

where T is the kinetic energy, p is the momentum operator, and
V (which depends on r) is the potential-energy operator. We use
the Morse potential as the potential-energy operator. It is a con-
venient interatomic interaction model for the potential energy
of a diatomic molecule and accounts for the anharmonicity of
real bonds (especially if we are in a low vibrational mode). The
Morse potential-energy function is of the form

V (r) = De(1 − e−a(r−re))2,

a =
√

ke
/

2De
. (A2)

Here, r is the distance between the atoms, re is the equilibrium
bond distance, De is the well depth (defined relative to the
dissociated atoms), and a controls the “width” of the potential.
The eigenvalues of the Hamiltonian that was found by solving
the Schrödinger equation (which serves as the main diagonal)
matches the analytical values,

Evib = hν0

(
v + 1/

2

)
−

[
hν0

(
v + 1/

2

)]2

4De

. (A3)

The Franck-Condon factors are a multiplicative component of
the intensity of electronic transitions between initial and final

states of the same or different vibrational number. The FC
factors are defined as

(FC)n,m =
∣∣∣∣
∫

�n
��m

�dR

∣∣∣∣
2

, (A4)

where �� and �� are the vibrational eigenfunctions at each
electronic structure.

APPENDIX B: THE ROTATIONAL HAMILTONIAN

In a diatomic molecule, the addition of a second atom breaks
the symmetry. In atoms, the motion of the electrons takes place
in a spherically symmetric field of force, but this is no longer the
case in molecules. The new axis of symmetry is the internuclear
axis z. The total angular momentum is

J = R + L + S, (B1)

where R is the nuclear rotational angular momentum R =
N − L, L is the electronic orbital angular momentum, S is
the electronic spin angular momentum, and N is the total
angular momentum excluding electronic spin N = J − S. It is
important to note that L and S are coupled with the internuclear
axis, and the projection on that signed as 
 and �, respectively.
The projection of the total angular momentum (J) on the
molecule axis is

� = 
 + �,

and the projection on the space fixed axis (Z) is M. Also,
the electronic Hamiltonian is invariant under reflections in
any plane containing the internuclear axis. If an operator
performs a reflection in the molecule-fixed (x,z) plane, then
the commutation with the Hamiltonian will be zero. Thus we
can conclude that there exist two degenerate eigenfunctions.
Since both functions have the same energy, but have some
interaction between the rotational motion and the electronic
states, it leads to a small splitting in the energy of the two
states, which is known as 
 doubling [21].

Hund’s cases

We will use Hund’s coupling cases to represent the rota-
tional state (at different electronic states). Hund’s cases are
idealized cases where specific terms appearing in the molecular
Hamiltonian and involving couplings between angular mo-
menta are assumed to dominate over all other terms. There
are five cases, but most diatomic molecules can be found
somewhere between the cases (a) and (b).

Case (a). L is electrostatically coupled to the internuclear
axis, and S is coupled to L by spin-orbit coupling. Then
both L and S have well-defined axial components 
 and �,
respectively. � defines a vector of magnitude,

� = 
 + �,

pointing along the internuclear axis. Combined with the rota-
tional angular momentum of the nuclei R, we have

J = � + R.

In this case, the precession of L and S around the nuclear axis
is assumed to be much faster than the rotation of � and R
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FIG. 12. Hund’s case (a).

around J. The good quantum numbers in case (a) are 
, S,
�, J, and �. The Hund’s case (a) coupling scheme is shown
schematically in Fig. 12.

Case (b). The spin-orbit coupling is weak or nonexistent (in
the case 
 = 0). In this case, we take

J = S + N

and assume L precesses quickly around the internuclear axis.
Good quantum numbers in this case are 
, S, N, and J. The
Hund’s case (b) coupling scheme is shown schematically in
Fig. 13. Using these quantum numbers, we can represent any
quantum state and any rotational wave function by superpo-
sition. For Hund’s case (a), the rotational wave function is
a symmetric top wave function |J�M〉. The rotational wave
function for a linear molecule (such as the one we use) has
only two rotational degrees of freedom and therefore we can
write any rotational wave function as [21]

|J�M〉 =
[

2J + 1

4π

] 1
2

DJ
M�(φ,θ,0). (B2)

In the 2�, 
 = 0 (the projection of L on the internuclear axis)
and S = 1

2 (so � = ± 1
2 , the projection of S on the internuclear

axis), it accounts for Hund’s case (a) where L is coupled to
the internuclear axis (S is coupled to L). The molecular wave
function here is a linear combination of Hund’s case (a) wave

FIG. 13. Hund’s case (b).

function and is written as

|n
vJ�MP ±〉
= 1√

2
[|n
〉|S�〉|J�M〉

±|n − 
〉|S − �〉|J − �M〉]|v〉, (B3)

where P ± denotes the sign of the linear combination and
is related to the parity of the wave function. The rotational
Hamiltonian for this electronic energy is

Hrot(
2�) = B(v)(J − S)2 + γv(J − S)S,

Bv = B − α
(
v + 1/2

)
. (B4)

B is the rotational constant, α is a vibration-rotation interaction
constant, and γv is the spin-rotation constant.

Solving the Schrödinger equation for this Hamiltonian will
give two sets of energy levels corresponding to each parity
fragment (P+ and P−),

E(2�; vJp+) = Bv

(
J − 1/

2

)(
J + 1/

2

)

+ 1/
2γv

(
J − 1/

2

)

= BvN (N + 1) + 1/
2γvN,

J = 1

2
,
3

2
,
5

2
· · · , N = 0,1,2, . . . . (B5)

Those energy levels are for the P+ parity block and called F1

(J = N + 1
2 ), and correspond to the P+ eigenvector,

|n
vJ�MP +〉
= 1√

2
[|n
〉|S�〉|J�M〉

+ |n − 
〉|S − �〉|J − �M〉]|v〉, (B6)

E(2�; vJp−) = Bv

(
J + 1/

2

)(
J + 3/

2

)

− 1/
2γv

(
J + 3/

2

)

= BvN (N + 1) − 1/
2γv(N + 1). (B7)

Those energy levels are for the P− parity block and are called
F2 (J = N − 1

2 ), and correspond to the P− eigenvector,

|n
vJ�MP −〉
= 1√

2
[|n
〉|S�〉|J�M〉

− |n − 
〉|S − �〉|J − �M〉]|v〉. (B8)

2� energy levels are split by an amount,

E(2�; vJp+) − E(2�; vJ − 1p−) = γvJ, (B9)

in the 2� 
 = ±1 (the projection of L on the internuclear axis)
and S = 1

2 so � = ± 1
2 (the projection of S on the internuclear

axis); hence, � takes on values − 3
2 ,− 1

2 , 1
2 , 3

2 , which accounts
to the Hund’s cases (a) and (b) where L is coupled to the
internuclear axis and S is uncoupled from the nuclear axis.
Each J(M) level has four rotational levels associated with it,
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two of each parity:

∣∣n2π 1
2
vJ�MP ±〉 = 1√

2

[
|n1〉

∣∣∣∣1

2
− 1

2

〉∣∣∣∣J 1

2
M

〉

±|n − 1〉
∣∣∣∣1

2

1

2

〉∣∣∣∣J − 1

2
M

〉]
|v〉,

∣∣n2π 3
2
vJ�MP ±〉 = 1√

2

[
|n1〉

∣∣∣∣1

2

1

2

〉∣∣∣∣J 3

2
M

〉

±|n − 1〉
∣∣∣∣1

2
− 1

2

〉∣∣∣∣J − 3

2
M

〉]
v〉.

(B10)

The rotational Hamiltonian for this electronic energy is

Hrot(
2�) = B(r)[(J − S) − L]2. (B11)

Solving the Schrödinger equation for this Hamiltonian will
give two sets of energy levels, where each energy level of a
state is the same for each parity block, that is,

E(2�; vJp+) = E(2�; vJp−).

Hence they occur in doubly degenerate pairs,

E(2�; vJ ) = Bv

[(
J − 1/

2

)(
J + 3/

2

)
± 1/

2X
]
,

X =
√[

4
(
J − 1/

2

)(
J + 3/

2

)
+ (Y − 2)

]
,

Y = Av

Bv

, (B12)

where Av is the spin-orbit interaction constant. The ±X assigns
to the F1 and F2 blocks. The energy level associated with the
minus sign is called F1 and corresponds to the eigenvector

|�(F1)〉 = −bj

∣∣2π 1
2
vJ

〉 + aj

∣∣2π 3
2
vJ

〉
. (B13)

The energy level associated with the plus sign is called F2

and corresponds to the eigenvector

|�(F2)〉 = aj

∣∣2π 1
2
vJ

〉 + bj

∣∣2π 3
2
vJ

〉
, (B14)

where

aj =
[
X + (Y − 2)

2X

] 1
2

, bj =
[
X − (Y − 2)

2X

] 1
2

, (B15)

and F1 and F2 represent the magnetic splitting induced by
the magnetic interaction between the angular momentum of
molecular rotation and the orbital angular momentum, respec-
tively. These 
-doubled levels are, in turn, split by the coupling
of the molecular magnetic moment M, but the difference in
the energy of this fine structure is small enough and has been
neglected here. We calculated at which J (for the degenerate
states) the amount of occupied population is small enough
(<0.01) at room temperature. We have found that at 5 K, the
population occupies only J = 1

2 and therefore only four states
will be populated. Moreover, we could see that up to 20 K, the
population occupies J = 3

2 states (12 states) and our system
size will be dictated by the thermal state that we begin with.

The rotational transition between the two electronic states
2� → 2� is dictated by dipole selection rules (�J = 0,±1).
Transitions with �J = 0, ± 1 denote R, Q, and P (R, Q,
P: branches), respectively, and help to assign in which
two states the transition occurred. For transitions from F1

to F1 and F2 to F2, only one subscript is needed [e.g.,
R1 transition 2�J (f1)→2�J+1(f1)]; all other transitions
need two subscripts to define which transition has occurred
[2�J (f1)→2�J+1(f2) is defined by R21]. We have calculated
the transitions and assigned them to the right state-to-state
transitions.

The nondiagonal elements can be found by calculating the
overlap of any two eigenvectors with the dipole operator,

μkl = 〈
��J

M

(
F1,2

)∣∣μ∣∣π�J ′
M (F1,2)

〉
. (B16)

The only transitions that are allowed are between states with
the same M (because the field is linearly polarized and the only
transitions are 2� → 2� and back).
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