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This theoretical paper presents numerical calculations for the photoassociation of ultracold cesium atoms
with a chirped laser pulse and a detailed analysis of the results. In contrast with earlier work, the initial state
is represented by a stationary continuum wave function. In the chosen example, it is shown that an important
population transfer is achieved to<15 vibrational levels in the vicinity of thev=98 bound level in the external
well of the 0g

−s6s+6p3/2d potential. Such levels lie in the energy range swept by the instantaneous frequency of
the pulse, thus defining a “photoassociation window.” Levels outside this window may be significantly excited
during the pulse, but no population remains there after the pulse. Finally, the population transfer to the last
vibrational levels of the grounda 3ou

+s6s+6sd state is significant, making stable molecules. The results are
interpreted in the framework of a two-state model as an adiabatic inversion mechanism, efficient only within
the photoassociation window. The large value found for the photoassociation rate suggests promising applica-
tions. The present chirp has been designed in view of creating in the excited state a vibrational wave packet
that is focusing at the barrier of the double-well potential.

DOI: 10.1103/PhysRevA.70.033414 PACS number(s): 33.80.Ps, 32.80.Qk, 34.50.Pi, 33.90.1h

I. INTRODUCTION

After ultracold atoms, ultracold molecules are presently a
subject of constant interest, stimulated further by the recent
observation of molecular condensates[1–3]. This is why the
various routes leading to the formation of ultracold mol-
ecules are actively explored[4]. Starting from molecular
beams, two nonoptical techniques, buffer gas cooling of mol-
ecules[5,6], and Stark deceleration of polar molecules[7,8]
now reach temperatures well below 1 K. Another route relies
on optical techniques: laser fields are used to cool down al-
kali atoms, and to create molecules via the photoassociation
reaction [9]. Short-lived molecules formed in an excited
electronic state must then be stabilized, by spontaneous
emission or other radiative coupling, into bound vibrational
levels of the ground electronic state[10–15]. The transla-
tional temperatures are much lowersTø20mKd, and higher
densities are to be expected than with nonoptical techniques.
An important drawback, however, is that the stable mol-
ecules are produced in a superposition of vibrational levels,
among which some are very excited. Bringing such mol-
ecules to thev=0 level of the ground electronic state, thus
reaching ultralow vibrational temperatures, is therefore an
important issue. More generally, finding new photoassocia-
tion and stabilization schemes is an interesting research sub-
ject.

Up to now, photoassociation experiments have mostly
been using continuous lasers: a more active role of the radia-
tion would be to optimize the reaction by shaping laser
pulses. The aim of the present paper and of the following
ones is to explore the feasibility and advantages of experi-
ments using chirped pulses to form ultracold molecules,
therefore bridging the gap between the subjects of ultracold
matter and coherent control.

The field of coherent control has developed both theoreti-
cally [16–20] and experimentally[21–23] with quite differ-

ent applications, such as the photodissociation of molecules.
It has indeed been demonstrated that shaping laser pulses
could considerably enhance the yield of a photodissociation
reaction, so that a similar effect is expected for the reverse
reaction.

Very few papers consider the photoassociation reaction
with pulsed lasers: in the thermal regime, ultrafast photoas-
sociation has been studied[24–26], showing the validity of
the impulsive approximation. In the ultracold regime, several
theoretical and experimental papers have proposed a time-
dependent study of the photoassociation reaction[27–29],
eventually also considering the formation of long-lived ultra-
cold molecules[30]. Most theoretical calculations are using a
wave packet representation for the initial state of the two
colliding atoms. In this framework, considering a wave
packet localized at the outer classical turning point of the
photoassociated level, our group has discussed the character-
istic times for the photoassociation of cold cesium atoms
[31] and the separation of time scales.

Appreciating the slow nuclear relative motion in ultracold
collisions has led to the idea of enhancing the photoassocia-
tion yield by employing chirped pulses, optimized to achieve
a total transfer of population under adiabatic following con-
ditions, according to a general scheme proposed by Caoet
al. [32,33]. Photoassociation of cold atoms with a chirped-
pulsed-laser field was first theoretically explored by Valaet
al. [34]. In these calculations, the initial state was repre-
sented by a Gaussian wave packet and a total population
transfer was indeed obtained in the region of distances where
this wave packet is localized. The drawback of both this
study and Ref.[31] was that they overlooked the precise
nature of the initial continuum state. Since the collision en-
ergy is so close to threshold, a plane-wave description or a
superposition of Gaussian wave packets does not address the
actual shape of the wave function. A correct representation of
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the initial continuum state of two ultracold colliding atoms
should be a stationary continuum state: indeed, experiments
with continuous photoassociation lasers identify several
nodes of the stationary wave function as minima in the pho-
toassociation signal[10,35].

The aim of the present paper is to go further in that direc-
tion, considering now photoassociation with chirped laser
pulses when the initial state is a delocalized continuum wave
function representing the relative motion of two atoms at
very low collision energieskT. Such a wave function dis-
plays very slow oscillations at large distances, and numerical
calculations must then use large spatial grids. On the other
hand, for ultracold processes, where the initial continuum
state is very close to threshold, even a very weak light field
couples the last bound vibrational levels of the ground elec-
tronic surface, which must also be correctly represented on
the grid. Then, the numerical calculations need a mapping
procedure in order to reduce the number of grid points
[36,37].

It should be appreciated that the vibrational levels of the
photoassociated molecule, being close to the dissociation
limit, are physically very different from lower-lying vibra-
tional levels. Their vibrational periods are orders of magni-
tude longer and most of the amplitude is concentrated in the
outer turning point. As a result, for even weak light fields,
the Rabi period associated with population transfer to the
excited state can be shorter than the typical vibrational peri-
ods. For short enough pulses, the relative motion of the two
atoms during the pulse duration can be neglected, thus allow-
ing simple interpretations in the framework of the impulsive
limit for light-matter interaction[38]. This implies that, dur-
ing the pulse, the wave function at each nuclear separation
can be decoupled from other positions, so that each distance
can be considered as a radiation-coupled two-level system,
where the transfer of population is analyzed. Another limit
now emerging is the limit of adiabatic transfer, where the
intensity of the light is sufficient so that the associated Rabi
period is smaller than all other relevant time scales.

The paper shows how a two-state model can be developed
to provide an analysis of the results within an adiabatic
population inversion mechanism, effective only within a
range of energies defining a photoassociation window. Also
discussed is the possibility of avoiding population transfer
outside this window. An example of an application is the
focusing process, where photoassociation is creating, in the
excited electronic state, a vibrational wave packet optimized
for transfer to a vibrational level of the ground state via a
second pulse.

The paper is organized as follows: in Sec. II we recall the
theoretical model for photoassociation with chirped laser
pulses. In Sec. III we discuss the various time scales of the
problem. In Sec. IV we give an example of numerical calcu-
lations for Cs2 0g

− photoassociation, with a chosen chirped
pulse, where a few neighboring vibrational levels stay popu-
lated after the pulse. For interpretation, Sec. V develops, in
the framework of the impulsive limit, a two-state adiabatic
model for population inversion within a photoassociation
window. In Sec. VI, the validity of this adiabatic approxima-
tion is discussed. Section VII is the discussion of the numeri-
cal results in the frame of the simple model for adiabatic

population transfer. Finally, in Sec. VIII we show how the
chirp parameter can be chosen in view of focusing a vibra-
tional wave packet of the photoassociated molecules, such
that control of the formation of stable ultracold molecules
can be performed. Section IX is the conclusion.

In a forthcoming paper, hereafter referred to as paper II,
we shall give more examples for numerical calculations and
discuss the optimization of the photoassociation yield and of
the cold molecule formation rates.

II. THEORETICAL MODEL

A. The photoassociation reaction

The photoassociation reaction starts from two cold atoms,
at a temperatureT, colliding in the ground-state potential
Vground, and which absorb a photon red detuned compared to
a resonance line to yield a molecule in a vibrational level of
the excited electronic potentialVexc. We shall consider the
example of two cold cesium atoms colliding in the lower
triplet a 3ou

+s6s+6sd potential, and forming a molecule in a
vibrational level of the 0g

−s6s+6p3/2d potential:

Css6s 2S1/2d + Css6s 2S1/2d + "vL

→ Cs2„0g
−s6s 2S1/2 + 6p 2P3/2;v,Jd…. s1d

The reaction(1) is the usual representation of the photoasso-
ciation, using a continuous laser red detuned bydL

at relative
to theD2 resonance line

"vL = "vat − dL
at, s2d

where"vat is the energy of the atomic transition 6s→6p3/2,
which excites a single vibrational level of the 0g

− electronic
state. In the present work, we shall treat excitation with a
chirped laser pulse characterized by time-dependent fre-
quencyvstd or detuningdL

atstd, and which populates several
vibrational levels.

As indicated in Fig. 1, the 0g
−s6s+6p 2P3/2d potential curve

displays a double-well structure with a hump located around
15a0. The levels populated by the photoassociation reaction
correspond to vibrational motion in the outer well:vtot is the
vibrational quantum number in the full potential, whilev is
the numbering of the levels in the external well. In the ex-
perimental photoassociation spectrum, vibrational levels
from v=0 to 132 are identified[39]. For two levels, a tun-
neling effect is present, which has been analyzed from the
photoassociation spectrum[40].

The theoretical model that we are presenting is, of course,
not connected to the particular shape of the excited potential
Vexc.

B. The two-channel coupled equations

The dynamics in the ground state and the excited state are
described by the time-dependent Schrödinger equation

ĤCsR,td = fĤmol + ŴstdgCsR,td = i"
]

] t
CsR,td, s3d

where CsR,td is a two-component wave function, with
CgroundsR,td andCexcsR,td describing the radial relative mo-
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tion of the nuclei in the ground and excited potential, respec-

tively. The molecular HamiltonianĤmol=T̂ +V̂el is the sum

of the kinetic energy operatorT̂ and electronic potential en-

ergy operatorV̂el. The coupling term is written in the dipole
approximation

Ŵstd = − DŴ sRd ·eWLEstd, s4d

involving the dipole moment operatorDŴ sRd and the electric
field defined by a polarization vectoreWL (assumed to be con-

stant) and by an amplitudeEstd. We defineDW gesRd from the
matrix elements of the dipole moment operator components
between the ground and the excited molecular electronic
states. Since the photoassociation reaction occurs at large
distances, we shall neglect theR dependence, using the

asymptotic valueDW gesRd ·eWL<Dge
eWL deduced from standard

long-range calculations[41]. For this reason, the formulas
below are written for aR-independent coupling.

1. Excitation by a continuous laser

For a continuous laser with constant frequencyvL /2p,
the electric field is

Estd = E0 cossvLtd, s5d

whereE0 is the amplitude of the field.

The explicit temporal dependence of the HamiltonianĤ is
eliminated in the framework of the rotating wave approxima-
tion, defining new radial wave functions in both excited- and
ground-state channels through

Ce
vLsR,td = expSi

vLt

2
DCexcsR,td,

Cg
vLsR,td = expS− i

vLt

2
DCgroundsR,td, s6d

and neglecting the high-frequency component in the cou-
pling term. This allows to write the radial coupled equations
as

FIG. 1. (Color) Scheme of the photoassociation process with a negative chirped pulse considered in the present work, illustrated in the
case of Cs2. The potentials curves correspond to the ground triplet statea 3ou

+s6s,6sd and to 0g
−s6s+6p3/2d excited electronic state. In the

present work, the energy of the initial continuum state is neglected in the definition of the resonance condition. The double-well behavior in
the excited curve is a particular feature of the chosen symmetry.
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i"
]

] t
SCe

vLsR,td

Cg
vLsR,td

D = ST̂ + Ve8sRd WL

WL T̂ + Vg8sRd
DSCe

vLsR,td

Cg
vLsR,td

D .

s7d

In Eqs.(7), the two nondiagonal terms are identical and time
independent,

WL = "VL = −
1

2
E0Dge

eWL = −
1

2
Î 2I

c«0
Dge

eWL , s8d

where I is the constant laser intensity,c the velocity of the
light, ande0 the vacuum permitivity.

The diagonal terms in Eqs.(7) involve the dressed poten-
tials

Ve8sRd = VexcsRd − "vL/2 = V̄sRd + DLsRd,

Vg8sRd = VgroundsRd + "vL/2 = V̄sRd − DLsRd. s9d

In Eq. (9), we have introduced the difference between the
two dressed potentials:

2DLsRd = Ve8sRd − Vg8sRd = VexcsRd − VgroundsRd − "vL,

s10d

where 2DLsRd→dL
at for largeR, and the mean potential

V̄sRd =
VexcsRd + VgroundsRd

2
. s11d

When the dressed potentials are crossing at a large distance
RL fVe8sRLd=Vg8sRLdg

DLsRLd = 0, s12d

the resonance condition for photoassociation into a vibra-
tional level with binding energyEv

L may be estimated
through[4]

Ve8sRLd − Ve8s`d < − Ev
L, s13d

where we have neglected the kinetic energy of the initial
continuum state. Therefore, the outer classical turning point
of the photoassociated level should be located close toRL.

2. Chirped pulse and transform-limited pulse

In order to optimize the formation rate of molecules, we
shall consider Gaussian “chirped” pulses[32], where the la-
ser field Estd has a quadratic time-dependent phasewstd,
hence a time-dependent frequencyvstd together with a time-
dependent amplitudeE0fstd. We have to note that the discus-
sion reported here is general and can be adapted for other
types of temporal envelopes than the Gaussian one employed
here, as for more general chirp rates that could be defined,
beyond the linear approximation[Eq. (18)] used in the
present paper.

(1) The field is

Estd = E0fstdcosfvLt + wstdg, s14d

where the amplitude involves a Gaussian envelopefstd cen-
tered att= tP,

fstd =ÎtL

tC
expF− 2 ln 2S t − tP

tC
D2G , s15d

tL =
tC

Î1 + sxtC
2d2/s4 ln 2d2

ø tC, s16d

with the temporal widthtC defined as the full width at half
maximumsFWHMd of the temporal intensity profileE0

2fstd2.
(2) the phasewstd in Eq. (14) has a second derivative

equal to the linear chirp ratex=d2w /dt2,

wstd =
1

2
xst − tPd2 −

1

2
arccos

tL

tC
− vLtP. s17d

(3) the frequency of the field, related to the derivative of
the phase, varies linearly around the carrier frequencyvL,

vstd = vL +
dw

dt
= vL + xst − tPd. s18d

Each pulse is thus defined in the temporal domain by five
parameters which are the carrier frequencyvL, the chirp rate
x, the temporal centertP, the widthtC, andE0. In the present
study of photoassociation, the carrier frequencyvL is per-
fectly defined from an atomic resonance frequency in terms
of the detuningdL

at [see Eq.(2)].
Concerning the two last parameters, we must note that for

x=0, tL=tC, defining a transform limited pulse with FWHM
of ufstdu2 equal totL, and maximum amplitude of the fieldE0.
Therefore, the maximum amplitude of the chirped pulse,
EM =E0

ÎtL /tC, is always smaller thanE0: the chirp increases
the time width of the pulse, while decreasing its maximum
amplitude. The coupling in Eqs.(7) now becomes time de-
pendent and reads

WLfstd ø Wmax= WLÎtL

tC
=ÎtL

tC

1

2
Î2IL

ce0
uDge

eWLu, s19d

where we have defined a peak intensityIL=sce0/2dE0
2. In the

following, we shall assume that the relative phase of the
ground and excited electronic wave functions is such that
WL.0.

In contrast, the chirp does not modify the width of the
pulse in the frequency domain, which stays proportional to

1/tL. Indeed,Ẽsvd, which is the Fourier transform ofEstd,
displays a Gaussian profile with FWHMÎ2dv
=4Î2 ln 2/tL, and a phaseFsvd, which is a quadratic func-
tion of the frequency, leading to the definition of a linear
chirp rate in the frequency domain

F9 =
d2F

dv2 = x
tC

2tL
2

s4 ln 2d2 . s20d

Consequently, one has

tC
2 = tL

2F1 + s4 ln 2d2sF9d2

tL
4 G . s21d
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Finally, the chirp does not change the energyEpulsecarried
by the field, which is proportional to the square of the am-
plitude E0 and to the temporal widthtL of the transform
limited pulse

Epulse=
ce0

2
E

−`

+`

uEstdu2dt =
ce0

2
E0

2tLÎ p

4 ln 2
=

ILtL

2
Î p

ln 2
.

s22d

This allows us to define atime window, since for a Gauss-
ian pulse, 98% of the energy is carried during the time inter-
val f−tC, +tCg

ce0

2
E

−tC

+tC

uEstdu2dt = 0.98Epulse. s23d

Since from Eq.(15), fstP±tCd= 1
4
ÎtL /tC, we may also define

a lower limit to the coupling term during the temporal win-
dow and write

∀st − tPd P f− tC, + tCg → 1

4
WLÎtL

tC
ø WLfstd ø WLÎtL

tC

= Wmax. s24d

The definition of such a time window will be very useful for
the analysis of the dynamics.

We have represented, in Fig. 2(a), the typical variation of
the amplitude of a transform-limited pulse and of the pulse
obtained through linear chirp, illustrating the stretching of
the temporal width fromtL to tC, the reduction of the peak
intensity, and the conservation of the energy carried by the
field. The energy range swept during the time variation of the
frequency[see Eq.(18)] is illustrated in Fig. 2(b).

3. Coupled radial equations for excitation with a chirped pulse

When considering excitation via a chirped pulse, we may
apply the rotating wave approximation as previously at the
carrier frequency vL. Once the terms oscillating as
expf±2ivLtg are eliminated, the resulting coupling term is
time dependent with a phase variation, and the coupled equa-
tions (7) now involve time-dependent nondiagonal terms
WLfstdexpf±iwstdg. The existence of complex coupling terms
makes the discussion intricate, and it is convenient to modify
further the rotating frame by defining new wave functions for
the excited and the ground states,

Ce
vsR,td = expsiw/2dCe

vLsR,td = expSi
vLt + w

2
DCexcsR,td,

Cg
vsR,td = exps− iw/2dCg

vLsR,td

= expS− i
vLt + w

2
DCgroundsR,td. s25d

In Eqs.(25), the rotating wave approximation is considering
the instantaneous frequency. The coupled equations now read

i"
]

] t
SCe

vsR,td
Cg

vsR,td
D =1T̂ + V̄sRd + DLsRd −

"

2

dw

dt
WLfstd

WLfstd T̂ + V̄sRd − DLsRd +
"

2

dw

dt
2SCe

vsR,td
Cg

vsR,td
D . s26d

FIG. 2. Properties of a chirped pulse.(a) Stretching of the tem-
poral width from tL to tC: variation of the amplitude for a
transform-limited pulse of widthtL=15 ps(solid line), and for the
chirped pulse(broken line) obtained with linear chirpux u =4.79
310−3 ps−2. Note the reduction of the intensity at maximum, as
described in Eq.(21) in text, and the broadening totC=34.8 ps. The
time windowftP−tC,tP+tCg is indicated by the horizontal line.(b)
Central frequency sweeping: assuming that the carrier frequencyvL

at t= tP is at resonance with the vibrational levelv=98 in the Cs2 0g
−

external-well potential, we have indicated the variation ofvstd [see
Eq. (18) in text] aroundvL by xst− tPd.
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In the following, we shall callWstd the real time-dependent
quantity

Wstd = WLfstd, s27d

and 2DsR,td the time-dependent energy difference, such that

2DsR,td = 2DLsRd − "
dw

dt
= 2DLsRd − "xst − tPd. s28d

4. Resonance window and spectral width

It is important to note that, in contrast with cw excitation,
the relative position of the two potential curves at a given
distanceR now varies linearly as a function oft. Hence, at
some distances, the upper curve may become the lower or
vice versa, while the position of their crossing pointRCstd,
such that

DfRCstd,tg = 0, RCstPd = RL s29d

varies with time around the distanceRL defined in Eq.(12).
We shall consider situations where during the time win-

dow ftP−tC,tP+tCg, the crossing distanceRCstd is spanning
a range of distances

Rmin ø Rø Rmax,

Rmin = RCStP −
x

uxu
tCD ⇒ 2DLsRmind = − "uxutC,

Rmax= RCStP +
x

uxu
tCD ⇒ 2DLsRmaxd = "uxutC. s30d

The definition of such aresonance windowrequires two con-
ditions on the width of the pulse and its frequency, to ensure
that the curves keep crossing:

"uxutC ø Ueg
min, s31d

"uxutC ø dL
at, s32d

where −Ueg
min is the minimum value of the difference poten-

tial 2DLsRd at RøRL, while dL
at is the asymptotic splitting.

The resonance window is defined independently of the pulse
intensity. However, it depends upon our choice for the tem-
poral window, and this point will be further discussed below.

Writing the resonance condition from Eq.(29), which de-
pends upon the central frequency of the pulse, would be
misleading: due to the spectral width, a range of levels in the
neighborhood of the resonant level can be excited. We shall
discuss these two aspects of the excitation in more detail
with a particular example.

III. TIME SCALES

A. Time scales related to the radiation

The two radiative phenomena in our problem are the
spontaneous emission timeTspont and the Rabi period asso-
ciated with the coupling with the laser. We shall study phe-
nomena at a time scale that is short compared toTspont. For a

cw laser, the periodTRabi
L of the “Rabi oscillations” associ-

ated with the couplingWL between the two states resonantly
coupled is

TRabi
L =

"p

WL
. s33d

Once a pulsed laser is introduced, due to the variation of the
peak intensity, this time constant is modified. We define two
similar time constants, at the maximum intensityst= tPd, and
at the edges of the time windowst= tP±tCd, characterizing
the dynamics in the vicinity of the instantaneous crossing
pointsRL, Rmin, Rmax:

TRabi
C stPd =

"p

Wmax
=ÎtC

tL
TRabi

L ,

TRabi
C stP ± tCd =

4"p

Wmax
= 4TRabi

C stPd. s34d

As a generalization, following Ref.[42], we shall also use a
local time-dependent Rabi period defined by

tRabsR,td =
"p

ÎW2std + D2sR,td
. s35d

Obviously the pulse durationtC is also an important charac-
teristic of the pulse. For the discussion of the adiabaticity
condition, and for the optimization of the pulse, it is inter-
esting to evaluate the time constant associated with the en-
ergy range swept during the time window

Tchirp =
2p

2uxutC
. s36d

This quantity should be compared to the width of the energy

distribution uẼsvdu2, which is dv=4 ln 2/tL, and does not
depend on the chirp rate. A time-scale characteristic of the
spectral width is then introduced as

Tspect=
2p

dv
=

2p

4 ln 2
tL = 2.26tL. s37d

The ratio r between those two time constants is bounded,
since

r =
Tspect

Tchirp
=

2uxutC

dv
=

2x
Î1 + x2

, s38d

x =
uxustCd2

4 ln 2
, s39d

0 ø r ø 2. s40d

Therefore, the frequency band swept by the central fre-
quency due to the chirp is never larger than twice the spectral
width. This is an important parameter in the description of
the chirp process.

B. Time constants associated with the dynamics

When discussing the vibrational motion of a vibrational
level v, with binding energyEv in the excited state, we
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shall consider the classical vibrational period estimated
from

Tvibsvd < 2p"
] v
] E

<
4p"

uEv+1 − Ev−1u
. s41d

For the discussion on the optimization of the chirped pulse, it
is also relevant to consider the revival period, defined[43] as

Trevsvd <
4p"

uEv+1 − 2Ev + Ev−1u
. s42d

For the ground state, we shall consider the motion at a low
collision energyE, described by a scattering lengthL corre-
sponding to a time delay

t = "
] dsEd

] E
,

mL

"k
, s43d

where we have introduced the elastic phase shiftdsEd
=arctans−kLd, the reduced massm and the wave numberk.

IV. AN EXAMPLE OF NUMERICAL CALCULATIONS
FOR PHOTOASSOCIATION WITH A CHIRPED PULSE

Since the pulse depends upon many parameters, the way
of optimizing them is not straightforward. We give results of
numerical calculations, in the example already presented in
Sec. II A, of the photoassociation into several bound levels
in the external well of the Cs2 0g

− potential, populated by a
chirped pulse.

A. The physical problem and its time scales

The photoassociation reaction uses a chirped laser pulse
linearly polarized, already illustrated in Fig. 2, for which the
parameters are reported in Table I. The detuningdL

at of the
carrier frequency corresponds to resonant excitation att= tP
of the levelv=98 of the Cs2 0g

−s6s+6p3/2d potential, and to a

crossing pointRL=93.7a0. Calculations have also been per-
formed by changing the sign of the chirp. For a continuous
laser excitation withp polarization between the electronic
states3ou

+s6s,6sd and 0g
−s6s+6p3/2d, and neglecting theR

variation of the dipole coupling, the intensity is related to the
coupling WL by Eq. (8), giving WLsa.u.d=9.74
310−9ÎILsW/cmd2 [41].

The time scales associated with the radiation are reported
in Table II. They appear to be of the same order of magni-
tude: in particular,Tchirp andTspect are similar, since for the
present pulse, the resonance width 2ux utc is nearly twice the
spectral widthdv, leading to a valuer=1.8 close to the
maximum value which is 2.

The lifetime of the atomic level Css6p 2P3/2d being
30.462 ns, the radiative lifetime of the photoassociated levels
in the external well of the 0g

−s6s+6p3/2d curve is<30 ns. In
the present calculations, where spontaneous emission is not
introduced, we shall study the evolution of the system at
much shorter time scales. Through incertainty relations, it
means that the definition of the energy is larger than the
natural linewidth of the cesium atom resonance lineDE
=1.7310−4 cm−1=5.3 MHz. The hyperfine structure split-
ting of 9193 MHz will not be considered in the present pa-
per, but it has a significant value at the time scale of the
problem.

At resonancesD=0d and for a cw laser, the intensity of
the pulse would correspond to a Rabi period of 22.5 ps.
However, due to the streching factortC/tL reducing the
maximum intensity, it is increased to 34.3 ps att= tP. In the
wings of the pulse, this time constant is further increased,
reaching the value 137 ps at the timestP±tC. Such charac-
teristic times should be compared with the time scales asso-
ciated with the vibrational motion, and to the collision time.

For the excited potentialVexcsRd, the outer well in the
0g

−s6s+6p3/2d curve was fitted to photoassociation spectra by
Amiot et al. [44]. The latter was obtained[45] by matching
to ab initio calculations at short and intermediate range. The

TABLE I. The parameters for the pulse excitation considered in the present paper(see Sec. II B 2 and Fig.
2) are as follows: detuningdL

at, intensity IL, couplingWL, energy associated with the spectral width"dv,
temporal widthstL andtC, and linear chirp parametersx andF9.

dL
at IL WL "dv tL tC "x F9

2.656 cm−1 120 kW cm−2 0.7396 cm−1 0.98 cm−1 15 ps 34.8 ps −0.025 cm−1 ps−1 −170 ps2

1.21310−5 a.u. 3.37310−6 a.u. x=−0.28310−11 a.u.

x=−4.79310−3 ps−2

TABLE II. Time scales associated with the radiative coupling: spontaneous emission timeTspont, Rabi
periodTRabi

L , chirped Rabi periodsTRabi
C stPd andTRabi

C stP±tCd defined in Eqs.(33) and(34). Besides, we have
reported the time-dependent local Rabi periodtRab at the maximumtP of the pulse forR=15a0 andR→`.
Finally, the time-constant characteristic of the spectral width of the pulseTspect is reported together with the
chirped characteristic timeTchirp as defined in Eqs.(36) and(37). r is the ratio between the resonance width
and the spectral width defined in Eq.(38).

Tspont TRabi
L TRabi

C stPd TRabi
C stP±tCd tRabs` ,tPd tRabsR=15a0,tPd Tchirp Tspect r

30 ns 22.5 ps 34.3 ps 137 ps 12 ps 0.18 ps 18.9 ps 33.9 ps 1.8
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lower triplet state potential3ou
+s6s,6sd has been chosen in

order to ensure a correct value of the scattering lengthL,
here taken asL<525a0: the asymptotic behavior being
C6/R6, where C6=6828 a.u.[44], the short-range part ex-
tracted from Ref.[46] had to be slightly modified[45] for
that purpose.

Under the conditions illustrated by the Table I, the time-
dependent energy differenceDsR,td between the two dressed
potentials, defined in Eq.(28), is drawn in Fig. 3. The long-
range splitting between the two potential curves is 2DLs`d
=dL

at=2.6 cm−1, resulting att= tP into a local Rabi period of
12 ps in the asymptotic region, as reported in Table II. The
energy difference reaches large values at short distances,
yielding a very small local Rabi period of 0.18 ps atR
=15a0. The instantaneous crossing point[defined in Eq.(29)]
varies with time, and we have indicated in the figure, the
valuesRmin=85,RL=93.7, andRmax=107.4a0, defined above
in Eqs. (12) and (30), and discussed in Sec. II B 4. Such
distances are close to the outer turning points of the vibra-
tional levels v=92, 98, and 106, respectively, for which
Table III displays parameters such as binding energies and
vibrational periods. The pulse with negative chirp value de-
scribed in Table I has an instantaneous frequency resonant
with the v=106 level att= tP−tC, with v=98 at t= tP, and
v=92 at t= tP+tC. Alternatively, when the chirp becomes
positive, the resonant condition is verified first byv=92 and
finally by the upper levelv=106.

Due to the linear chirp parameter, an energy range of
about 2" ux utC=1.74 cm−1 is swept by the laser frequency,
corresponding to 15 vibrational levels in the vicinity ofv
=98, for which we have reported data. However, due to the
spectral width of the pulse, levels in an energy range of
0.98 cm−1 on both sides can also be excited, and this will be
analyzed with the numerical results.

Since the coupling with the ground state may be involving
the last least bound levels in the ground-state potential curve,
we also report in Table IV the binding energies and vibra-
tional periods for those levels, together with the time delay
for the continuum level atT=54.3mK, as defined in Eq.
(43).

The classical vibrational period has no meaning for the
last level, since the wave function mainly extends in the
classically forbidden region. We should note that the very
high value of the time delay in the present problem, due to
the large value of the scattering length, demonstrates the
strongly resonant character of the collision, and makes the
collision time by far the largest characteristic time in the
problem. Looking at Tables IV and II, we see that the spac-
ing between the levelv9=53 of the ground state and the
continuum level with collision energyE=kBT=54.3mK
<3.77310−5 cm−1 can be considered as negligible at the
scale of the energy uncertainty imposed by the<30 ns ra-
diative lifetime of the excited state.

B. Description of the initial state

The initial continuum state is represented by a stationary
wave function in the ground-state potential curve and de-
scribes the collision of two cold Cs atoms at the energykBT
corresponding toT=54.3mK. It is chosen with a node at the
external boundaryLR of the spatial grid(see below). This
wave function is drawn in Fig. 4, together with a typical
Gaussian wave packet, showing how unlocalized the initial
state is in the present work. This is an important modification
compared to previous calculations[31,34] using a Gaussian

FIG. 3. Variation of the local time-dependent half-energy split-
ting DsR,td, defined in Eq.(28) as a function ofR, for the time
valuest= tP ( solid line), at the maximum of the pulse;t= tP−tC

(dashed-dotted line), at the beginning of the time window;t= tP
+tC (broken line), at the end of the time window. The distances
whereDsR,td=0 define the crossing pointsRL, RCstP+tCd<Rmin,
and RCstP−tCd<Rmax. Photoassociation window: in the reflection
model, the levelsv=92 tov=106 can be populated when the cross-
ing pointRCstd is sweeping the rangefRmin,Rmaxg. The two vertical
lines at shortR correspond to a local maximum, related to the
particular double-well structure in the excited curve, and providing
a potential barrier.

TABLE III. Characteristic constants for three levels in the outer
well of the 0g

−s6s+6p3/2d potential curve.vtot is the vibrational num-
ber, while the numberingv is restricted to the levels in the outer
well. Ev is the binding energy,Rout is the outer turning point,Tvib

and Trev are, respectively, the classical vibrational period and the
revival period as defined in Eqs.(41) and (42) in text. The level
v=98 is identical to thesv0+2d level considered in Ref.[47] on
tunneling.

vtot v Rout sa0d −Ev (a.u.) −Ev scm−1d Tvib Trev

122 92 85,5<Rmin −1.62310−5 −3.57 196 ps 10 ns

129 98 93.7<RL −1.21310−5 −2.65 250 ps 15.3 ns

137 106 107.48<Rmax −0.79310−5 −1.74 350 ps 15.7 ns

TABLE IV. Constants for the last levels in the3ou
+s6s,6sd po-

tentials. The present calculations do not include the hyperfine struc-
ture. For the continuum level,t is the time delay[Eq. (43)].

v E (a.u.) E scm−1d Tvib

v9=50 −3.87310−7 −0.084 cm−1 581 ps

v9=51 −1.23310−7 −0.027 cm−1 1460 ps

v9=52 −1.94310−8 −0.042 cm−1 7.8 ns

v9=53 −2.43310−11 −5310−6 cm−1

Continuum 1.71310−10 3.77310−5 cm−1 t,476 ns
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wave packet: the population transfer can occur in a very wide
range of internuclear distances, well outside the resonance
window, and in particular at large internuclear distances
where a large density probability is localized. No velocity
distribution is considered in the present work, this effect will
be treated in paper II.

C. Numerical methods

Details on the numerical calculations will also be given in
paper II: they involve mapped grid methods[36] to represent
the radial wave functions, using a sine expansion[37] rather
than the usual Fourier expansion, in order to avoid the oc-
currence of ghost states. The introduction of adaptive coor-
dinates is necessary to implement a spatial grid with few
points (1023), but with a large extensionLR=19 250a0 al-

lowing the representation of initial continuum states at ul-
tralow collision energy. Due to the large size of the grid, and
the very small kinetic energy of the problem, it is not neces-
sary to put an absorbing boundary condition at the edge of
the grid. Since the initial-state wave function is normalized
in a box, the results given below will be dependent on the
value chosen forLR.

The time-dependent Schrödinger equation is solved by

expanding the evolution operator expf−iĤt /"g in Cheby-
schev polynomia[48]. The time propagation is realized by
discrete steps with a time increase much shorter than the
characteristic times of the problem, already discussed in Sec.
III A and reported in Tables II–IV. In the present problem,
the smallest time scale is the local Rabi period at small dis-
tances,<0.18 ps, which controls the time stepDt. In typical

calculations, we have chosenDt<0.05 ps, the quantityĤC
being evaluated 112 times at each time step.

The dynamics of propagation of the wave packets in the
ground and excited potentials is analyzed by studying the
evolution of the population in both surfaces:

Pestd = kCesR,tduCesR,tdl,Pgstd = kCgsR,tduCgsR,tdl.

s44d

More detailed information is provided by the decomposition
of the wave packets on the unperturbed vibrationals statesv
of both potential surfacesS=a 3ou

+ or 0g
−

PSvstd = ukCSvsRduCe,gsR,tdlu2. s45d

D. Results

All the numerical results presented below are obtained
from an initial-state wave function normalized to unit in a
large box of sizeLR=19 250a0. They correspond to branch-
ing ratios of the photoassociation process towards different
final vibrational levels, eigenstates of the Hamiltonian for the
unperturbed molecule. Due to the linear character of the
Schrödinger equation, the population transferred to a given
level is proportional to the normalization factor for the initial
state. Therefore, in order to deduce the populations corre-
sponding to an energy-normalized initial continuum state, for
E=1.71310−10 a.u.sT=54 mKd, the computed populations
should be multiplied by the density of statesdn/dE
=1/s8.87310−12d. Besides, since the calculations concern
only one pair of atoms, and are not velocity averaged, the
values forPestd should be scaled to get an estimation of the
population transfer due to a single pulse in a trap containing
N atoms: this will be done in Sec. VIII B. In typical experi-
mental conditions, this scaling factor is,4000.

The results of the calculations for the time dependence of
the populations are presented in Fig. 5, both for a negative
and a positive linear chirp parameter. The main conclusions
are the following:

(1) There is a population transfer from the ground3Su
+

state to the excited 0g
− state, which decreases by two orders of

magnitude fromPestPd<0.032 near the maximum of the
pulse, toPestù tP+tCd=3.2310−4 at the end of the pulse
[see Figs. 5(a) and 5(b)].

FIG. 4. Wave function of the system before the pulse; the range
of distancesfRmin=85a0,Rmax=110a0g, later on referred to as the
“photoassociation window,” is indicated on the upper horizontal
scale, the crossing pointRL=93.7a0,Rg on the lower one.(a)
Variation of 103 uCg

vLsR,0du (broken line), the continuum wave
function describing the relative motion of two Cs atoms in the po-
tential a 3ou

+ at energyE=kBT=1.72310−10 a.u., T=54 mK. For
visibility, this wave function, normalized to a unit in a box of size
19 250a0, is multiplied by 10. An energy-normalized function can
be deduced by dividing the unit normalized function byÎdE/dn
=Î8.87310−12. Also represented is a Gaussian wave packet of
width s=15 a.u. centered atRg=95a0<RL. (b) and (c) Integrated
density of probabilitye0

RuCu2dR for the localized Gaussian wave
packet(b) and the delocalized continuum wave function(c): note
that in the region 85a0øRø110a0, the probability density is only
0.000 44 in the last case, while it is 0.86 for the localized wave
packet.
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(2) Calculations considering the same laser pulse with an
initial state represented by a Gaussian wave packet normal-
ized to unity yield a much larger values<0.59d for the final
population in the excited state. However, the ratios between
this final population and the probability density in the range
85øRø110 a0 are similar (0.69 for the Gaussian wave-
packet, 0.73 for the continuum eigenstate). This result is a
signature for the predominant contribution of the resonance
window.

(3) The maximum of the transferred population occurs

<5 ps before the maximum of the pulse for a negative chirp,
and<5 ps after this maximum for a positive chirp[see Figs.
5(a) and 5(b)].

(4) After the pulse, most of the population in the ground
state is going back to the initial continuum state, but a small
fraction s<3310−4d is transferred to the last vibrational lev-
els in the3Su

+ potential,v9=51–53[Fig. 5(d)]. This remain-
ing population is independent of the sign of the chirp. The
population transfers towards bound levels of the excited 0g

−

and of the ground3Su
+ state are comparable.

FIG. 5. (Color) Time variation of the computed relative populations for the ground3Su
+ and excited 0g

− electronic states during the pulse
duration. The pulse is centered attP=150 ps. The black lines in(a), (b), (d), and(e) correspond to negative chirp, and blue lines to positive
chirp. (a) Full lines: variation of the total population in the ground3Su

+ state. Note that the minimum occurs<5 ps earlier thantP
=150 ps with negative chirp, and<5 ps later with positive chirp. Broken lines: variation of the population in the initial continuum level, at
E=1.72310−10 a.u.(b) Variation of the total population in the excited 0g

− state for negative(black) and positive chirp(blue). (c) Details on
the variation of the individual populations of the 0g

− levels resonantly excited during the temporal window, for negative chirp: in particular,
red curve,v=98, resonant att= tP; blue, v=95; dark blue,v=102; green,v=107. (d) Population of the three last bound levels of the3Su

+

state: full line,v9=51; long-dashed line,v9=52; dashed-dotted line,v9=53. (e) Variation of the partial sums of populations on the bound
vibrational levels in the 0g

− potential: full line, for low excited levels,v=95–107, resonantly excited during the temporal window; dashed
line, highly excited levels,v=122 to 135, off resonance. Black and blue correspond to negative and positive chirp.(f) Same as(c) for a
positive chirp. Populations per pump pulse can be deduced by multiplying the vertical scale by 4000, as described in the text.
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(5) While many bound levels in the excited 0g
− potential

are excited during the pulse, essentially the levels fromv
=92 till v=106 remain populated after the pulse[see Fig.
5(e)]. They correspond to the range of energy aroundv=98
swept by the laser during the time window and presented
above as a “resonance window.”

(6) In contrast, highly excited levels fromv=122 to 137
are significantly populated during the pulse[see Fig. 5(e)],
but the population vanishes at the end of the pulse.

(7) Whereas the oscillatory pattern during the time win-
dow markedly depends upon the sign of the chirp, the final
population in the excited state, as well as the vibrational
distribution, is nearly independent of this sign.

Such results demonstrate the existence of a “photoasso-
ciation window” including all the levels in the energy range
betweenv=92 and 106, where population transfer is taking
place. We shall provide an interpretation for this result in the
following section.

V. A TWO-STATE MODEL FOR ADIABATIC
POPULATION INVERSION

A. Impulsive approximation

For all the following developments, we shall use the im-
pulsive approximation[38], assuming that the relative mo-
tion of the two nuclei is frozen during the pulse duration. The
kinetic energy operator being neglected in Eq.(26), the two-
level Hamiltonian becomes

Ĥ , Ĥ − T̂ = Ĥi = SV̄ 0

0 V̄
D + SDsR,td Wstd

Wstd − DsR,td
D ,

s46d

where the first term introduces anR-dependent phase while
the dynamics is contained in the second term.

B. The adiabatic basis

When the impulsive approximation is valid, the diagonal-

ization of the HamiltonianĤisR,td at each distanceR will
define a new representation, in the framework of a standard
radiation-driven two-level system[42,49]. In Eq. (46), the
notationsW and D are similar to the ones used in the text-
book by Cohen-Tannoudjiet al. [50] to describe a two-state
model. Defining a time-dependent local Rabi frequency

"VsR,td = ÎD2sR,td + W2std, s47d

the diagonalization ofĤi yields two eigenenergiesV̄sR,td
+E+sR,td and V̄sR,td+E−sR,td, where

E±sR,td = ± "VsR,td, s48d

with two eigenfunctions, hereafter referred to asadiabatic,
F+

v, F−
v.

The set of twoadiabatic functions is deduced from the
diabatic functionsCe

v ,Cg
v by a rotationR [50]:

SF+
v

F−
vD = RSCe

v

Cg
v D,R =1 cos

u

2
sin

u

2

− sin
u

2
cos

u

2
2 ,

the angleu being defined by the relations

sinfusR,tdg =
uWstdu

"VsR,td
, cosfusR,tdg =

DsR,td
"VsR,td

, s49d

tanfusR,tdg =
uWstdu
DsR,td

.

The two-channel wave function representing the
evolution of the system can then be written in the adiabatic
representation, after eliminating the phase factor

expfs−i /"de V̄sR,t8ddt8g, as

uC̄sR,tdl = a+sR,tduF+
vl + a−sR,tduF−

vl, s50d

wherea+sR,td anda−sR,td verify

i"
]

] t
Sa+sR,td

a−sR,td
D = SE+sR,td 0

0 E−sR,td
DSa+sR,td

a−sR,td
D

+
i"

2

] usR,td
] t

S 0 1

− 1 0
DSa+sR,td

a−sR,td
D .

s51d

We shall now discuss adiabatic evolution when the second
term in the right-hand side(r.h.s.) of Eq. (51) is negligible.
The validity of such an hypothesis will be discussed below in
Sec. VI A.

C. Condition for population inversion during the
pulse duration

We assume that the effect of the pulse is negligible out-
side the time intervaltP−tFø tø tP+tF, without assumption
on the value oftF. Considering only the first term in the r.h.s.
of Eq. (51), the solution of Eq.(51) becomes straighforward:
assuming that before the beginning of the pulse, att= tP
−tF, there is no population in the excited state, the evolution
of the diabatic wave functions is described by
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SCe
vsR,td

Cg
vsR,td

D =1cos
usR,td

2
− sin

usR,td
2

sin
usR,td

2
cos

usR,td
2

2Se−i/"etP−tF

t E+sR,t8ddt8 0

0 e−i/"etP−tF

t E−sR,t8ddt8
D

31 cos
usR,tP − tFd

2
sin

usR,tP − tFd
2

− sin
usR,tP − tFd

2
cos

usR,tP − tFd
2

2S 0

Cg
vsR,tP − tFd

D . s52d

Introducing the accumulated angle

asR,td =
1

"
E

tP−tF

t

E+sR,t8ddt8, s53d

the two diabatic wave functions at timet are

Ce
vsR,td = − Fi sin

ut + ui

2
sin asR,td

+ sin
ut − ui

2
cosasR,tdGCg

vsR,tP − tFd,

Cg
vsR,td = Fi cos

ut + ui

2
sin asR,td

+ cos
ut − ui

2
cosasR,tdGCg

vsR,tP − tFd, s54d

where we have introduced the time-dependent angles

ui = usR,tP − tFd, s55d

ut = usR,td. s56d

1. Pulse of finite duration 2tF

We are interested in the conditions leading to population
transfer, at internuclear distanceR, from the ground to the
excited state, for a pulse starting att= tP−tF and stopping at
t= tP+tF

WstP − tFd = WstP + tFd < 0. s57d

From Eqs.(49), we see that the rotation angles are such
that

sin usR,tP − tFd = sin usR,tP + tFd = 0, s58d

cosusR,tP − tFd =
DsR,tP − tFd
uDsR,tP − tFdu

,

cosusR,tP + tFd =
DsR,tP + tFd
uDsR,tP + tFdu

. s59d

According to the sign of the time-dependent energy-
splitting, the anglesustP−tFd andustP+tFd can take the val-

ues 0 orp. When the two angles have the same value, the
correspondence between diabatic and adiabatic states is the
same before and after the pulse, i.e.,uCg,e

v sR,tP+tFd u
= uCg,e

v sR,tP−tFdu. In contrast, when the sign ofDsR,td de-
fined in Eq.(28) changes during the pulse, the two states are
reversed. This population inversion takes place at a distance
R provided that the level splitting between the dressed po-
tentials verifies

2uDLsRdu , "uxutF. s60d

Then,

uusR,tP + tFd − usR,tP − tFdu = p ⇒ uCe
vsR,tP + tFd

= uCg
vsR,tP − tFdu. s61d

For a given pulse(fixed values fordL
at, x, andtF), the con-

dition (60) for population inversion shows that the transfer
will take place in a region of internuclear distances around
RL [Eq. (12)], the extension of which depends upon the dif-
ference 2uDLsRdu between the two potentials and upon the
energy range" ux utF swept during the pulse.

In most photoassociation experiments, the lasers are tuned
so thatRL is located at large distances, where the difference
2uDLsRdu between the ground and excited potential curves
varies slowly, so that we may predict a large photoassocia-
tion window.

2. Extension to a Gaussian pulse

As it was shown in Sec. II B 2, when the chirped pulse is
Gaussian, most of the intensity is carried during the time
window st− tPdP f−tC, +tCg, which suggests that the popu-
lation inversion is mainly realized during this temporal win-
dow. Therefore, the condition for population inversion is
written introducingtC instead oftF in the relation(60).

(1) For internuclear distancesR such that DsR,tP

−tcd.0, the angleuisR,tP−tCd<0, and the diabatic func-
tions are

Ce
vsR,td = − sin

ut

2
e+iasR,tdCg

vsR,tP − tCd,

Cg
vsR,td = cos

ut

2
e+iasR,tdCg

vsR,tP − tCd. s62d
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(2) In contrast, whenDsR,tP−tcd,0, uisR,tP−tCd<p,
and

Ce
vsR,td = cos

ut

2
e−iasR,tdCg

vsR,tP − tCd,

Cg
vsR,td = sin

ut

2
e−iasR,tdCg

vsR,tP − tCd. s63d

Let us emphasize that in the adiabatic following of an
instantaneous eigenstate of the system, since the angleui
stays strictly equal either to 0 orp, the population in the
ground or in the excited state does not depend upon the
accumulated phaseasR,td. This is not valid when sinui

Þ0,cosui Þ ±1, since the population at a givenR value in
the excited channel exhibits Rabi oscillations with a time
period corresponding to ap variation of the accumulated
angleasR,td. The latter situation requires that the laser field
is turned on suddenly.

The population inversion condition defines a range of dis-
tances where photoassociation is taking place, equivalent to
the resonance window defined above in Eqs.(30). However,
the validity of such an interpretation relies upon the validity
of the adiabatic approximation both inside and outside the
window, and of the choice for the temporal window.

The conclusions are independent of the sign of the chirp,
which is no longer true when nonadiabatic effects are in-
volved.

VI. ADIABATICITY REGIME IN THE
PHOTOASSOCIATION WINDOW AND CONDITION

TO AVOID RABI CYCLING AT LONG RANGE

A. The adiabaticity condition

From Eq. (51), we see that the system will present an
adiabatic evolution, provided the nondiagonal term is negli-
gible compared to the energy differencesE+−E−d

U ] u

] t
U ! 4VsR,td. s64d

From Eq. (49), we may derive ]u /]t=fDsdW/dtd
−Ws]D /]tdg / fs"Vd2gd. From Eqs.(27) and (28), the time
derivatives of the coupling termWstd and of the level split-
ting DsR,td are easily derived, leading to the explicit form of
the condition(64),

"U−
4 ln 2

tc
2 st − tPdDsR,td +

"x

2
U !

4ffDsR,tdg2 + fWstdg2g3/2

Wstd

= 4
f"VsR,tdg3

Wstd
, s65d

which we wrote as an inequality between two quantities with
the dimension of an energy square. The quantity in the left-
hand side becomes large in the wings of the pulse[when
s1/WddW/dt is large], far from resonance[when DsR,td is
large] and for a large value of the chirp ratex. The quantity
in the right-hand side is the smallest at the instantaneous

crossing point RCstd, such that DsRC,td=0, where
"VsRC,td=Wstd.

The condition(65) takes simple forms if one chooses par-
ticular values ofRsR=RLd or tst= tPd.

(1) In particular, when botht= tP andDLsRLd=0, the con-
dition at the “crossing point”RL for the two dressed poten-
tials, when the coupling reaches its maximum value, reads

"uxutC ! 8WL
2tL

"
. s66d

(2) It is also worthwhile to consider the very strict adia-
baticity condition at the instantaneous crossing pointRCstd,
where the nonadiabatic effects are the largest:

"2uxu ! 8fWstdg2. s67d

The conditions67d will not be verified in the wings of a
Gaussian pulse. Nevertheless, if we consider the time win-
dow ut− tPu ,tC already defined above, the coupling param-
eter has the lower bound14 Wmax, so that during the time
window, the condition is simply.

"uxutC ! WL
2 tL

2"
. s68d

The validity of such a hypothesis will be discussed below.

B. Validity range of the adiabaticity condition

We shall first ensure that, during the temporal window, the
adiabaticity condition is indeed valid all across the photoas-
sociation window, defined both by Eq.(30) and by the rela-
tion (60) in which tF=tC. Then we shall check that no popu-
lation transfer is occurring outside the window, therefore
justifying the definition of a window.

1. Adiabaticity condition within the photoassociation window

From Eq.(65), we define an adiabaticity parameter, which
should be!1, as

XsR,td =
Xn

Xd
=

s"/tCdu− 4 ln 2st − tPd/stCdDsR,td + "xtC/2u
4f"VsR,tdg3/Wstd

.

s69d

In the following, XsR,td will be computed numerically for
various distances and times. However, some analytical for-
mulas can help to understand the dependence on the param-
eters of the pulse. During the time window, and within the
photoassociation window, the local instantaneous level split-
ting verifiesuDsR,td u ø u"xtCu, so that the numeratorXn has
an upper limitXnø"2ux u s4 ln 2+1/2d, reached at the edges
of both the time window and the distance window. Under the
same conditions, a lower limit of the denominator can be
found by considering both the upper and the lower limits on
the coupling during the time window, defined above in Eq.
(24). Therefore, a sufficient condition for adiabaticity within
the photoassociation window is
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16s"uxutCds4 ln 2 + 1/2d ! WL
2tL

"
⇒ XsR,td ! 1. s70d

The condition(70) is a rough estimation which markedly
overestimates the adiabaticity of the transfer(see paper II). It
defines an upper limit for the energy range 2" ux utC swept by
the chirped pulse: this limit is proportional toWL

2tL, i.e., to
the energy carried by the field. It shows that the laser inten-
sity should be sufficient to yield a coupling much larger than
the geometric average between the energy ranges2"uxutCd
and the energy width of the power spectrumuẼsvdu2, which is
f"s4 ln 2d /tLg. The same condition can thus be rewritten in
terms of the time scalesTRabi

L andTchirp, introduced above in
Eqs. (33) and (36), as well astL or the time scaleTspect
associated with the spectral width of the pulse through Eq.
(37):

TRabi
L ! 0.24ÎTchirptL = 0.16ÎTchirpTspect. s71d

Optimizing the adiabaticity condition requires the increase of
the intensity of the pulse or the reduction either of the pho-
toassociation window(large value ofTchirp) or of the spectral
width of the pulse(large value oftL or Tspect). Since the
population transfer will depend upon the width of the photo-
association window, a compromise has to be chosen.

2. Adiabaticity in the asymptotic region

It is often convenient to ensure that no population is trans-
ferred outside the photoassociation window, in the region of
distances where the two dressed curves never cross during
the time intervalst− tPdP f−tC, +tCg. In particular, we have
considered the long-distance region, where 2DLsR→`d=dL

at,
dL

at being the detuning relative to the atomic transition, as
defined in Eq.(1). We shall assumedL

at. uxutC. In this region,
considering upper and lower limits of the coupling and of the
level splitting, as in the previous section, the validity of the
adiabatic approximation is ensured under the condition

"Wmax

4tC
FSdL

at

2
−

"uxutC

2
D2

+ SWmax

4
D2G−3/2U2 ln 2dL

at

+
"uxutCs4 ln 2 + 1d

2
U ! 1. s72d

This condition can be simplified under some circum-
stances, which depend upon the relative values ofWmax, dL

at,
and"uxutC.

VII. DISCUSSION

From the simple model developed above, we shall further
analyze the numerical results of Sec. IV.

A. Analysis of the numerical results in the framework
of the two-state model

First, we have represented in Fig. 6 the variation of the
local frequencyVsR,td, defined in Eq.(47), as a function of
R for three choices of the timet= tP,tP±tC. The long-range
minimum in VsR,td moves fromRmax=110a0 to Rmin=85a0

during the temporal windowf−35, +35g ps. Such minima oc-
cur at the distances where the local time-dependent energy
splitting DsR,td goes through 0, as illustrated in Fig. 4, and
therefore define the photoassociation window. Further
minima in the local frequency occur at a shorter range, cor-
responding to the inner crossings of the two dressed curves
which do not play a role in the photoassociation process,
since the amplitude of the initial wave functionuCinitsRdu is
negligible at such distances. Also indicated in Fig. 6(a) are
the values of the local Rabi period at timet= tP, further il-
lustrating the wide range of variation withR, from 12 ps at
infinity to 34 ps atRL, with very small valuess0.18 psd and
larger oness28 psd at short range where the two curves part
and cross again. This behavior is linked to the particular
shape of the potential curves, with a double-well behavior
for the excited one. Looking at Fig. 6(b), it is clear that due
to the reduction of the pulse intensity in the wings, reducing
Wstd by a factor of 4 attP±tC, the minima inVsR,tP±tCd
are deeper at the borders of the time window, multiplying the
Rabi frequency by a factor of 4. This is why it will be diffi-
cult to verify the adiabaticity condition at the borders of the
time window and the photoassociation window.

When the adiabatic approximation is valid, the impulsive
two-state model described in Sec. V predicts population in-

FIG. 6. Variation of the local Rabi frequencyVsR,td, defined in
Eq. (47) and corresponding to the pulse defined in Table I, as a
function of the distanceR, for three values of time.(a) Solid line: at
t= tP, at the maximum of the pulse. Also indicated are the values of
the corresponding local Rabi periodtRab, see Eq.(35) in text. (b)
Dashed-dotted line:t= tP−tC, at the beginning of the time window.
Broken line: t= tP+tC, at the end of the time window. Also indi-
cated are the values of the characteristic timesTvib and
TRabi

C stP,tP±tCd significant for the vibrational levels resonantly ex-
cited at the momentstP+tC,tP,tP−tC, which have the outer turning
points inRmin,RL ,Rmax.
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version within a photoassociation window characterized by a
change ofp between the angleusR,tP−tCd and the angle
usR,tP+tCd, whereusR,td is defined in Eq.(49). The varia-
tion of the angleusR,td as a function ofR is represented in
Fig. 7 for the same three choices of the time. We see that in
a range of distances extending from 85a0 to 110a0, u varies
approximately byp from tP−tC to tP+tC: a population in-
version can indeed be predicted.

The rather good agreement between numerical calcula-
tions and the predictions of a simple two-state model seems
to indicate that the adiabatic approximation is indeed valid in
our problem. In order to get more insight, we have studied
the variations of the adiabaticity parameterXsR,td defined
above in Eq.(69), which are represented in Fig. 8.

The adiabaticity parameter takes maximum values at the
border of the time windowst= tP±tCd and of the photoasso-
ciation windowR=Rmin,Rmax, as illustrated in Fig. 8(a). For
the pulse with negative chirp described here, we find two
adiabatic regions and one nonadiabatic:

(1) The adiabaticity condition is verified within the pho-
toassociation window, as illustrated in Fig. 8(b).

(2) It is only approximately verified atR<Rmin for t
,stP+tCd and at R<Rmax for t,stP−tCd, where uXsR
=100a0,tP−tCdu reaches the value 0.5, as illustrated in Fig.
8(b).

(3) It is not verified out of the photoassociation window,
in the vicinity of RmaxandRmin, at distancesR=110 and 85a0
as illustrated in Fig. 8(c).

(4) In contrast, the adiabaticity condition is well verified
in the asymptotic region, as illustrated in Fig. 8(d). We
should note, however, that the present pulse has been opti-
mized for that purpose. Other choices yield an important
population transfer at large distances and will be presented in
paper II.

The present discussion of the adiabaticity criteria can be
attenuated when using a narrower time window, our choice
of ftP−tC,tP+tCg, corresponding to a transfer of as much as
98% of the energy in the pulse, being probably too severe. A
sufficient choice considers the time windowut− tPu ø0.6tC,

limited by the two inflexion points in the coupling termWstd,
during which 84% of the intensity is transferred. Better
boundaries for the adiabaticity parameter are then obtained:

ut − tPu ø tC → 1.993 10−3 , uXu , 29.99,

ut − tPu ø 0.6tC → 13.33 10−3 , uXu , 1.3849 s73d

B. Discussion

It is instructive at this stage to refine our interpretation of
the numerical results presented above in Fig. 5. Due to the
coupling by the laser, vibrational levels in the 0g

−sp3/2d poten-
tial curve are excited. We shall call “resonant levels” thev
=92–106 levels, corresponding to the range of energy swept
by the instantaneous frequencyvstd during the time window,
and “off-resonance levels” in the 0g

−sp3/2d potential curve the
other ones, corresponding to energies swept by the wings of
the spectral distribution during the time window, or by the
whole spectral distribution outside of the time window.
Among them, excited levels are numerous, such as thev

FIG. 7. Population inversion and photoassociation window.(a)
Variation of the angleusR,td, defined in Eq.(49) for the same three
time values as in Fig. 6. The domain whereusR,t−tCd and usR,t
+tCd differ by p is indicated by an horizontal arrow: it corresponds
to population inversion, as discussed in Sec. V C.

FIG. 8. Interpretation of the calculations: validity of the adia-
batic approximation within the photoassociation window. The adia-
baticity parameterXsR,td, defined in Eq.(69) in text, is represented
for various values of time and distance.(a) Variation ofXsR,td as a
function of R for t= tP (solid line), t= tP−tC (dashed-dotted curve),
andt= tP+tC (broken curve). (b) Adiabatic behavior within the pho-
toassociation window: variation ofXsR,td as a function of time for
R=RL (solid curve), R=90a0 (broken curve), R=100a0 (dashed-
dotted curve). Note that maximum values ofuxu are reached forut
− tPu =tC. (c) Nonadiabatic behavior at the border of the window:
variation ofXsR,td as a function of time forR=85a0 (broken curve)
andR=110a0 (dashed-dotted curve). (d) Adiabatic behavior in the
asymptotic region: variation ofXsR,td as a function of time forR
=150a0 (dotted curve) andR=1023a0 (broken curve).
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=122–137 range, due to the high density of levels close to
the dissociation limit, and to the good Franck-Condon over-
lap with the initial state.

When the chirp is negative, the instantaneous crossing
point is moving fromRmax to Rmin, so that the most excited
levels are populated first. This is illustrated for the “resonant
levels” in Fig. 5(c). In contrast, for a positive chirp, since the
resonance window is swept fromRmin to Rmax, the lower
levels are populated first, as illustrated for the resonant levels
in Fig. 5(f).

For the “off-resonance” levels in the excited state, a maxi-
mum in the populationPvstd [see Eq.(45)] appears, indepen-
dently of the level, 4.45 ps beforetP for x,0, and 4.45 ps
after tP for x.0 [Fig. 5(e)]. A quantitative evaluation of this
advance(resp. delay) can be obtained from an analysis of the
adiabatic population transfer at large distanceRù150a0,
where 2DLsRd<dL

at, the adiabatic parameter being such that
uXsR,tdu,0.03 (Fig. 8). The diabatic wave function in the
excited potential 0g

− is given by Eq.(62) where both the angle
usR,td and the accumulated angleasR,td are independent of
R. Furthermore, the vibrational wave function in the excited
potential curve is strongly localized in the asymptotic region.
Therefore, the time dependence of the populationPestd as
defined in Eq.(44) scales as sin2 us` ,td /2, reaching a maxi-
mum for a timetm satisfying usd/dtdus` ,tdut=tm

=0, and cor-
responding to a zero value of the adiabaticity parameter.
Trivial calculations yield the condition

tm − tP ,
"xtC

2

4 ln 2dL
at , s74d

which gives −4.37 ps for the present pulse with negative
chirp, and explains the symmetry when changing to a posi-
tive chirp. The excellent agreement between this estimation
and the ±4.45 ps value found in numerical calculations is a
signature of the validity both of the adiabatic approximation
and of the impulsive approximation in the asymptotic region.
Indeed, the vibrational period for levelsv.122 is Tvibsvd
ù780 ps. The maximum is also visible in the variation of
total population in Fig. 5(b), and is therefore dominated by
asymptotic excitation.

For the “resonant” levels, oscillations inPvstd appear only
for the levels which come to resonance with the instanta-
neous frequencyvstd before the maximum of the pulse, at a
time tCsvd such thattCsvd, tP. For x,0, oscillations are
therefore observed for the highest levels, likev=107 and 102
in Fig. 5(c). For x.0, the population of the lowest levels,
like v=95 in Fig. 5(f) is oscillating. For thev=98 level,
resonant at the maximum of the pulse, the time dependence
of the population does not depend upon the sign of the chirp
[red curve in Figs. 5(c) and 5(f)], and oscillates weakly. Such
oscillations are a signature of significant nonadiabatic effects
in the population transfer at the instantaneous crossing point
aroundt= tP−tC. We have shown in Sec. VI how the adia-
baticity criterion is most difficult to verify at the instanta-
neous crossing point and in the wings of the pulse. Away
from the adiabatic regime, the passage through resonance
does not lead to a total population transfer: coherent excita-
tion of a two-level system with linearly chirped pulses results

in “coherent transients” previously studied in the perturba-
tive limit [49,51,52]. Such transients are governed by inter-
ferences between the population amplitude transferred at
resonancet= tCsvd, and population amplitude transferred af-
ter, for t. tCsvd. The latter amplitude is significant provided
the maximum of the pulse occurs after the resonance, so that
tP. tCsvd, resulting into the observed oscillations. The values
of the observed periods can correspond to a Rabi period at
the instantaneous crossing point: forv=98, resonant att
= tP, the period of 36 ps is close totRabsRL ,tPd=34 ps; for
the levelv=102 with a negative chirp, orv=95 with a posi-
tive chirp, the 25 ps period is associated with ap variation
of the accumulated angleasR,td calculated atR distances
corresponding to the outer turning points of these vibrational
levels.

Looking back to the derivation of the equations describing
adiabatic transfer in Sec. V, we see that in the case when
sin ui Þ0 ( or p), i.e., when the adiabatic evolution starts
only once the laser has been turned on for a while, the evo-
lution of the population in the excited state is no longer
described by Eq.(62) [or Eq. (63)], but verifies

uCe
vsR,tdu2 = Fsin2ut

2
cos2

ui

2
+ cos2

ut

2
sin2ui

2

−
1

2
sin utsin ui cosf2asR,tdgGuCg

vsR,tP − taddu2

s75d

for x,0, where we have calledtP−tad. tP−tC the time
where the adiabatic evolution starts(a similar equation can
be written forx.0, with the change of sin into cos).

The total population at a givenR value in the excited
channel therefore exhibits Rabi oscillations, with a time pe-
riod corresponding to ap variation of the accumulated angle
asR,td. The modulation rates appearing in Fig. 5(c) for the
high-resonant vibrational levels with large vibrational peri-
odsTvib,350 ps, which are the first populated with a nega-
tive chirp, are much larger than those observed in Fig. 5(f)
for the low resonant vibrational levels, withTvib,200 ps,
the first populated with a positive chirp. Rabi oscillations
being manifested in cases where the vibrational period is
much larger than the Rabi period, a frailty in the impulsive
approximation can be supposed for levels for which these
two characteristic times become comparable. Besides, as dis-
cussed by Baninet al. [38], as the wave packet created in the
excited state is being accelerated towards short internuclear
distances, the breakdown of the impulsive approximation is
more severe forx,0 than forx.0. Indeed, forx,0, the
instantaneous frequency of the laser remains resonant during
the motion of the wave packet, and then recycles the popu-
lation back to the ground state[33].

Therefore, the simple model for two-state adiabatic popu-
lation inversion, developed in the impulsive limit, allows a
qualitative interpretation of the numerical results. In particu-
lar, the vibrational levels in the excited state where popula-
tion remains transferred after the pulse are well predicted by
this model. The weak dependence of the final population as a
function of the sign of the chirp is also a signature of the
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adiabaticity of the population transfer. However, the phase of
the probability amplitude on each level is not independent of
the sign of the chirp, so that after the pulse, the vibrational
wave packet evolves in a very different way for positive and
for negative chirp. Furthermore, a detailed analysis of the
numerical results indicates the limits of both the impulsive
model and the adiabatic population transfer.

VIII. APPLICATION: CONTROLLING THE FORMATION
OF ULTRACOLD MOLECULES VIA FOCUSING

AND IMPROVING PRESENT EXPERIMENTAL SCHEMES

A. Focused vibrational wave packet

The pulse described in Table I, with negative linear chirp
parameterx, has been designed in order to achieve focusing
of the vibrational wave packet at a timetP+Tvib /2, where
Tvib /2=125 ps is half the vibrational period of the levelv
=98. The levels in the range from approximatelyv=106 to
92 are populated, in turn, the chirp parameter is necessary to
compensate the dispersion in the vibrational period of the
wave packet being chosen asx=−2pTrev / sTvibd3, i.e., ad-
justed to match the revival periodTrev [see Eq.(42)] of the
resonant level v=98. Indeed, for x satisfying xv0
=−2pTrevsv0d / fTvibsv0dg3, the amplitude resonantly trans-
ferred att= tCsvd creates a wave packet at the outer turning
point of each vibrational levelv<v0, which reaches the in-
ner turning point at timet= tP+Tvibsv0d /2, independently of
v. The evolution of the wave packet after the pulse has been
computed, and we have represented in Fig. 9 a snapshot of
the wave packet in the excited state at timetP+Tvibsv0d /2.

(1) An important focusing effect is visible for a negative
chirp, the wave packet presenting a peak in the vicinity of
the inner turning point of thev=98 level.

(2) This effect is reduced when a positive chirp is used,
with a large part of the population in the long-distance re-
gion, due to the late excitation of the upper levelsv
=98–107, with a much larger vibrational period.

(3) When there is no chirp, the population transfer is
much smaller, the factor<3 on the maximum amplitude re-
sulting into one order of magnitude in the transfer probability
(4310−5 instead of 3.5310−4). Besides, the wave packet is
no longer focused, since the levels that have been populated
are no longer in the vicinity ofv=98, but belong to the
domainv.103 of very excited levels; from the behavior of
this wavepacket it is clear, as illustrated in Fig. 9(b), that the
levels have a large vibrational period. The distribution of
vibrational levels is governed by the spectral width"dv and
by the overlap integral between the initial and final wave
functions, which is dominant forv<130.

(4) Focusing of the wavepacket on the inner classical
turning point of the vibrational levels will allow us to con-
sider a population transfer towards the bound levels of the
ground triplet state potential curve via a second laser, in a
two color pump-probe experiment. It should then be possible
to populate efficiently lowv9 levels in the ground state.

(5) For such purposes, the optimization of the pulse can
be achieved through analytical formula, considering the re-
vival period, and the scaling laws governing the dynamics of
long-range molecules[4,53].

B. Towards new experiments

A proper estimation of the photoassociation rate requires
an incoherent average over a thermal distribution of energy-
normalized initial states. These energy-normalized con-
tinuum wave functions are deduced from wave functions
normalized to unit in the box of sizeLR, accounting for the
density of states in this box. Furthermore, following Ref.
[27], for low temperature, it is possible to estimate the pho-
toassociation yield by assuming a weak variation of the
population as a function of the initial energy. For an assem-
bly of atoms in a volumeV=5310−4 cm3, with density
Nat=1011 cm−3, the vertical scales in Figs. 5(a)–5(e) should
be multiplied by 4000. The number of molecules formed in
one pulse under the conditions discussed in the present paper
is 0.69. With a repetition rate of 108 Hz, the yield is 6.9
3107 molecules per second, which is significantly larger
than rates obtained with continuous lasers[4].

IX. CONCLUSION

The present theoretical paper has investigated the possi-
bility offered by replacing continuous lasers by chirped laser
pulses in ultracold photoassociation experiments. We have
performed and analyzed numerical calculations of the popu-
lation transfer due to a chirped pulse, from a continuum state
sT<54 mKd of the ground triplet state Cs2 a 3ou

+s6s,6sd, to
high excited vibrational levels in the external well of the

FIG. 9. Optimization of the chirp in view of focusing. Variation
of the amplitude of the wave function in the excited state
uCexcsR,t= tP+125du, at a delayTvib /2=125 ps after the maximum
of the pulse(i.e., well out of the time window), whereTvib is the
classical vibrational period for the resonant levelv=98. (a) Nega-
tive chirp, for the pulse defined in Table I;(b) same withx=0; (c)
same with positive chirp parameter.
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0g
−s6s+6p3/2d potential. The central frequency of the pulse

was chosen resonant with the levelv=98 of the 0g
− external

well, bound by 2.65 cm−1. We have used a pulse with Gauss-
ian envelope, having a peak intensityIL<120 kW cm−2, a
linear chirp parameter of −4.79310−3 ps−2, and temporal
width tC=34.8 ps. Due to the linear chirp parameter, a range
of energy of 230.87 cm−1 is swept by the laser frequency,
corresponding to resonance with 15 vibrational levels in the
vicinity of v=98, and referred to as “resonance window.”
The spectral width of the pulse, which remains independent
of the chirp, covers a typical range of energies of
,0.98 cm−1 on both sides.

The initial state of two colliding ultracold cesium atoms is
represented by a continuum stationary wave function, with a
realistic scattering length and nodal structure. This is pos-
sible owing to the use of a mapped sine grid method recently
developed by Willner et al. [37]. The time-dependent
Schrödinger equation is solved through expansion in Cheby-
schev polynomia[48].

Due to the large value of the scattering length, the initial
wave function has a large density probability at large dis-
tances, resulting in a large Franck-Condon overlap with vi-
brational levels in the excited state close to the dissociation
limit. Numerical calculations show that, during the pulse, a
large amount of population is indeed transferred to levels
close to the Cs2s6s+6p3/2d dissociation limit: however, with
the particular choice of the chirp, we have shown that this
population is going back to the ground state after the pulse.
In contrast, the 15 levels within the photoassociation window
are coherently populated, and part of the population remains
after the pulse. The same conclusion is obtained by changing
the sign of the chirp. Besides, an interesting result is that,
due to the coupling at large distances between the two elec-
tronic states, a strong population transfer to the last vibra-
tional levels of the grounda 3ou

+s6s+6sd is realized, making
stable molecules with a rate as important as for the photoas-
sociation into the excited state. This result should be further
explored.

The interpretation of the strong population transfer to-
wards the 15 levels in the resonance window, independent of
the sign of the chirp, is given within the impulsive limit, in
the framework of a two-state adiabatic population inversion
model. The numerical results can be qualitatively and even
quantitatively interpreted by this model, defining the condi-
tions for full population transfer within a “photoassociation
window” covering a range of distances 85a0øRø110 a0,
and no transfer outside. Therefore, the chosen chirped pulse
is capable of controlling the population transfer towards the
excited state, ensuring that no transfer occurs outside a cho-
sen energy range. We have discussed the general conditions
for adiabatic population inversion during a “time window”
ftP−tC,tP+tCg centered at the timetP of the maximum of
the Gaussian pulse, and corresponding to 98% of the energy
transferred by the pulse. The adiabaticity condition within
the “photoassociation window” and “during the time win-

dow” requires that the coupling should be larger than a quan-
tity proportional to the geometric average between the en-
ergy range swept by the instantaneous frequency of the
chirped pulse and its spectral energy width. To keep adiaba-
ticity, a compromise between increasing the laser intensity
and decreasing the width of the photoassociation window
must therefore be found, and it can be discussed within the
model we propose. Even though in the present calculations
the adiabaticity condition is verified within the photoassocia-
tion window, a few nonadiabatic effects were identified and
interpreted. Further work will estimate more thoroughly the
lower limits for intensity and pulse duration.

As an example of control, the present pulse has been cho-
sen in order to achieve focusing of the excited vibrational
wave packet at the inner turning point of thev=98 level, at a
time delay after the pulse maximum equal to half the classi-
cal vibrational periodTvibsv=98d. The relevant chirp param-
eter was optimized from the revival time. Such calculations
suggest a scheme for a two-color experiment where a second
pulse, delayed byTvib /2, would transfer the photoassociation
population to lowv9 levels of the ground triplet state, now
forming stable molecules in low vibrational levels.

In a forthcoming paper, already referred to as paper II
[54], we shall give more quantitative results for comparison
with experiment by averaging on the initial-state velocity
distribution to compute the photoassociation rate for a series
of pulses with a variable spectral width, considering different
choices of the final vibrational levels by varying the detun-
ing, and different laser intensities. We shall propose various
schemes to optimize the efficiency of the population transfer,
taking advantage of the conclusion of the present paperwhere
we have shown that it is possible to design chirped laser
pulses so that the photoassociation reaction is restricted to a
well-defined window.

From the present calculations, it is already possible to
conclude that photoassociation with a chirped laser pulse is a
very promising scheme. In the present example where the
peak intensity of the laser was chosenIL<120 kW cm−2, the
estimated rate of,73107 molecules per second in typical
experimental conditions is definitely larger than what has
been computed and measured for cw lasers. Since the present
calculations were performed in a frequency domain close to
a photoassociation minimum, much higher rates are to be
expected by varying the detuning, and this will be the subject
of a forthcoming paper.
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