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The problem of automatically protecting a quantum system against noise in a closed circuit is analyzed. A
general scheme is developed built from two steps. First, a distillation step is induced in which undesired
components are removed to another degree of freedom of the system. Later a recovering step is employed in
which the system gains back its initial density. An optimal-control method is used to generate the distilling
operator. The scheme is demonstrated by a simulation of a two-level bit influenced by white noise. Undesired
deviations from the target were shown to be reduced by at least two orders of magnitude on average. The
relations between the quantum version of the classical Watt’s governor and the field of quantum information
are also discussed.
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I. INTRODUCTION

Watt’s governor �WG�, which was built in 1782, might be
the very first machinery to solve automatically a control
problem. As an automatic control tool, Watt’s governor aims
to conserve some physical properties of a system subject to
stochastic noise while maintaining its internal dynamics.
Schematically, the WG can be viewed as a two-step process,
measurement and correction. At the first step a measurement
of the system is performed to check whether the constraint
has been violated. Next, if such a violation was found, a
correction step takes place, and drives the system back to the
allowed boundaries.

A quantum governor is a natural requirement when the
limit of nanomachines is approached. Quantum computing
�1–4� is another candidate for such a device. However, quan-
tum mechanics imposes nontrivial restrictions on the devel-
opment of the quantum governor �QG�. A measurement,
which is a main feature of the classical WG, intervenes in the
dynamics of quantum systems and it therefore should be
avoided or reduced to a minimum.

A control scheme is traditionally categorized as either an
open-loop or a closed-loop control �5,6�. In the closed-loop
control scheme one tries to extract information by feedback
from the quantum system in a way that allows control of the
system �7,8�. Within this scheme, a controlled collapse of
some of the wave function occurs and converts some of the
quantum variables of the system into classical parameters.
One needs therefore to delicately balance the amount of
withdrawn information in order to conserve the quantum
character of the system. Feedback control of quantum sys-
tems has being extensively studied during recent years by
several groups �7–10�.

An open-loop control scheme corrects the system without
any measurement. In order to realize the QG a tool that dis-
tills quantum systems in some automatic fashion has to be
built. Distillation steps usually reduce the density of the sys-
tem, and hence, in order to conserve the density of a con-
trolled system, an extra step to enrich the system and com-
pensate for the losses is also required.

In this paper we suggest and demonstrate a physical real-
ization for an open-loop QG scheme. Our open-loop QG is a
two-step routine �cf. Fig. 1�. The scheme starts from an ini-
tial state, for example a diatomic molecule in its ground elec-
tronic and vibrational state. This state is then disturbed by
noise. At the first stage of action, an external field is applied
to the system with the purpose of distilling the undesired
components. The rejected components are moved to another
degree of freedom of the system, in the present model to an
excited electronic state. At the next stage, the freely evolving
dynamics are set to enrich the initial state and return it back
to the initial density.

We will show that the distillation step can be performed
by a particular unitary transformation. Recently, optimal-
control theory �OCT� has been applied to find the field gen-
erating the unitary operation �11–13�. In the present paper
the methods of Refs. �11,12� are generalized to obtain the
control field for nonunitary operations under nonunitary time
evolution governed by the Liouville equation for open quan-
tum systems. This control field is then employed to derive
the distillation stage of the QG. This step is followed by a
field-free propagation of the system leading to the desired
reconstructed state.

In this paper the QG model is presented along with the
tools required for its construction. In Sec. II a simple QG
model is presented. Section III elaborates on the OCT math-
ematical considerations required to achieve the distilling
transformation. Section IV presents simulations of the QG. A
discussion and conclusion are presented in Sec. V.

II. THE QG MODEL

The Hamiltonian of the quantum governor model is par-
titioned to

Ĥ = Ĥ0 + Ĥnoise + ĤG �1�

where Ĥ0 is the free Hamiltonian of the system, Ĥnoise is the

stochastic noise, and ĤG is the control part, governed by an
external field. The automatic control scheme could be ap-

PHYSICAL REVIEW A 73, 032324 �2006�

1050-2947/2006/73�3�/032324�8�/$23.00 ©2006 The American Physical Society032324-1

http://dx.doi.org/10.1103/PhysRevA.73.032324


plied to complex quantum systems. The principles of such a
control scheme will be demonstrated by a simplified model
composed of a single two-level qubit with frequency �1:

Ĥ0 = �0 0

0 �1
� , �2�

with the two states denoted by ��1	g , �2	g
. The two levels can
represent, for example, two spin states or two vibrational
levels in a diatomic molecule. The qubit is then influenced
by an external noisy field:

Ĥnoise = �f�t��0 1

1 0
� �3�

where � is the dipole moment and f�t� is a white noise func-
tion which obeys

�f�t�	 = 0, �f�t�f�t��	 = ���t − t�� . �4�

The target of the control is to conserve an initial qubit state
protecting it from the noise. We first will describe the route
to build a QG for a particular target bit. This approach will
then be extended to a general target bit.

A. The conservation of a bit in its ground state

The state of the system is described by a density operator
in the energy representation. The target and initial states are
chosen as

�̂0 = �1	�1� = �1 0

0 0

 . �5�

The propagation in time of �̂0 under the influence of the
noise leads to an undesired population on the excited �2	

state. To restore the state, the qubit is coupled to an auxiliary
qubit with frequency �2, ��1	e , �2	e
. The second qubit can be
realized, for example, as two vibrational levels within the
excited electronic state. The distillation step is achieved by
applying the unitary swap transformation

Ôd =�
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
� . �6�

The outcome of this transformation is that all the undesired
population is transferred to the state �1	e of the auxiliary e
bit. This step cancels also the phase between the two states.
The level scheme for the model and the coupling between
them is presented in Fig. 2�a�.

Note that the transformation is done under Liouville evo-
lution which allows also non-unitary transformations to take
place. A possible one-step solution for the QG might be to
leave the population in the desired state untouched while
moving all the other population to the desired state, e.g., with
the distilling operator

Ô � �1 0

1 0

 . �7�

This solution uses the uncontrolled, nonunitary components
of the Liouvillian operators. In the limit when the unitary
transformations are fast relative to the dumping rate this idea
becomes unpractical. We are therefore forced to use a trans-
formation that is close to unitary, and add another step for the
completion of the task.

FIG. 1. Schematic principles
of the QG. �a� An initial state is
propagated under the influence of
noise. �b� The initial state after the
distortion. �c� The undesired part
of the state is removed to another
degree of freedom by a controlled
transformation, here to another
electronic surface. The initial state
is purified but its density is re-
duced. �d� A properly designed de-
cay transfers population back to
the initial state and reconstructs its
density during a free evolution of
the system.
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The free-evolution step is generated by the following
Liouville-von Neumann equation:

��̂

�t
= −

i

�
�Ĥ0 + Ĥnoise, �̂� + LD��̂� �8�

where LD is a particular dissipative Liouville superoperator.
LD induces a selective decay between the vibrational

states: �1	e→ �1	g and �2	e→ �2	g. The structure of the decay
scheme is chosen to fit intuitively to the goal of avoiding any
further mixing due to the decay.1 Nevertheless, as we will
show in Sec. IV, the correction scheme is able to correct also
for some imperfect selection rules of quenching; for example
a decay induced by the transition-state dipole between vi-
bronic �vibrational+electronic� states, which has the above
selection rules.

After the distillation step, both the lower and upper bits
reside on the target state within the single-bit subspace, i.e.,
with the correct relative population and phase. The decay
step then restores the population from the upper bit, recon-
structing the density of the target bit. A cyclic application of
this scheme on a quantum system purifies it, reducing the
influence of the noise to minimum.

This process can also be considered as a perpetual prepa-
ration of the desired state. Note, however, that this desired
state itself is never achieved directly in any of the steps. The
governor acts by enforcing the conservation of the state by
properly aligning the state on the directions of the target.

B. The conservation of a bit in a general state

We next study the preservation of a superposition state
which has the form

� + 	 = a�1	g + b�2	g �9�

with �a�2+ �b�2=1. The general bit description can be obtained
from the simple case of Eq. �5� by a unitary rotation.

The governor utilizes the unitary transformation

Û =�
a b* 0 0

b − a* 0 0

0 0 a b*

0 0 b − a*
� . �10�

This unitary operator transforms the basis set from the origi-
nal basis ��1	g , �2	g , �1	e , �2	e
 to a new basis set ��+ 	g ,
�−	g , �+ 	e , �−	e
. Now, after the noise influences the initial bit,
the original bit can be distilled by the transformed form of

the swap operator Ôd �cf. Eq. �6��

Ôd
g = ÛÔdÛ† =�

�a�2 ab a*b b2

a*b* �b�2 − a*2 − a*b

ab* − a2 �b�2 − ab

b*2 − ab* − a*b* �a�2
� , �11�

so that under the operator Ôd
g

Ôd
g� + 	g = � + 	g, Ôd

g�− 	g = � + 	e,

Ôd
g� + 	e = �− 	g, Ôd

g�− 	e = �− 	e. �12�

It has been noticed �14,15� that nondegenerate qubits are
very difficult to handle due to the relative coherent phase that
develops under the free evolution. To avoid this problem we
take the two bits for the conservation of a general bit as two
couples of degenerate states. Initially all of the population is
on the target bit. After the distilling transformation both the
target and the auxiliary bits are, within the single-bit sub-
space, on the desired state, i.e., �+ 	g/e, with the right phase
between the two states of each of the bits.

The transformation of Eq. �11� corrects the error in both
population and phase. The principle of the correction is to
move a relative error between two states within a single bit to
a relative error between two bits. A decay step must then

1Simple physical examples for such a scheme might be found in
two vertically shifted oscillators coupled by radiation, which can
also modify the potential. During the interaction period all the states
within the two potentials are coupled by the light. Spontaneous
emission, however, will take place at the dark period, and hence
only identical levels could be connected due to Frank-Condon over-
lap terms.

FIG. 2. �Color online� Level scheme for a QG. �a� A QG that
conserves a bit on its ground state. A two-level system with fre-
quency �1 is influenced by noise. An external field can be applied
on the bit to couple it with another bit with frequency �2. Sponta-
neous decay is allowed only as depicted on the figure. �b� A QG that
conserves a general bit. The lower �target� bit is composed of two
degenerate levels, and so is the upper �control� bit. The external
field is coupled between the two bits, while spontaneous decay is
allowed only as depicted.
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return back the population from the control bit to the target
bit and annihilate the relative errors between the bits. This
task is achieved using the same assumption used previously
with the allowed transitions �1	e→ �1	g and �2	e→ �2	g, while
other possibilities are forbidden. The scheme for the general
bit conservation is illustrated in the lower panel of Fig. 2.

III. OPTIMAL-CONTROL THEORY FOR
NONUNITARY TRANSFORMATION UNDER

NON-HAMILTONIAN DYNAMICS

The quantum governor is achieved by the unitary trans-
formations responsible for the distillation. The next step is to
find the external field that induces such a transformation.
This task is achieved by an inversion process which starts
from the unitary operator responsible for the distilling and
determines the field. The present description is a modifica-
tion of the treatment of Ref. �16�. A target transformation for
an N-level space is described by the N�N matrix represent-

ing the operator Ô. Ô is neither necessarily unitary nor or-
thogonal. Nevertheless, practically it cannot deviate too
much from unitarity. Our target is to find the field that gen-

erates the transformation Ô at time t=Ttrans, independent of
the initial state.

The density operator is now decomposed into a sum of a
complete basis set of operators in the Hilbert-Schmidt space.
The complete set of an N-level system density operators con-
tains 2N Hermitian matrices of dimension N�N. A scalar

product between two operators Â and B̂ in Hilbert-Schmidt
space is defined as �4�

�Â · B̂� = Tr�Â†B̂
 . �13�

The norm of an operator is therefore �Â�=Tr�Â†Â
. For den-
sity operators ��̂�=Tr��̂2
 is defined as the purity, 1

N 	 ��̂�
	1, so that ��̂�=1 for a pure state and ��̂�=1/N for the maxi-
mally mixed state. Note that under unitary dynamics the pu-
rity and the entropy of a density operator are conserved.
This, however, is not true under dissipative conditions.

For the transformation to be independent of the initial
density operator it should change the complete set of base

operators �Ĝ j
0
 to a transformed set. Therefore the desired

operation Ô, maps each of the basis set operators to a new
target operator

Ĝ j
target = ÔĜ j

0Ô†. �14�

Under unitary transformation the complete orthonormal set is
transformed to another complete orthonormal set. For non-
unitary transformations this statement is not true. The chosen
functional for the inversion procedure should reflect devia-
tions between the propagated operators and the target set of

operators. Since the target set of operators �Ĝ j
target
 does not

conserve the initial norm, the optimal-control functional is
defined at the initial time as

F̃ = �
j

�Ĝ j
0 · Ĝ j

result� �15�

where the set �Ĝ j
result
 is obtained by propagating the set of

target operators �Ĝ j
target
 backward in time. Once the target is

achieved F=2N.
Two additional constraints are imposed: �1� The reverse

time evolution of the system is also governed by the
Liouville–von Neumann equation; and �2� the total field en-
ergy has to be minimized. To meet these demands a modified
functional is employed:

F = F̃ − �
j
�

Ttrans

0 �� �Ĝ j

�t
− L*�Ĝ j�
 · B̂ j�dt

− �
Ttrans

0


�t����2dt . �16�

B̂ j are 2N operator Lagrange multipliers, and 
�t� is a time-
dependent scalar Lagrange multiplier. An extremum for F is

obtained by a variation of F with respect to �Ĝ j and the field.
Following Ref. �16�, the equations of motion for the reverse
propagation of the Gj’s become

�Ĝ j

�t
= +

i

�
�Ĥ,Ĝ j� + LD�Ĝ j� �17�

with the initial conditions Ĝ j�Ttrans�=Ĝ j
target, and for the for-

ward time propagation of the B̂ j operators

�B̂ j

�t
= −

i

�
�Ĥ,B̂ j� + LD�B̂ j� �18�

and Bj�0�=Gj
0. It should be noticed that in both forward and

backward propagation the dissipative part generated by LD
causes relaxation.

Applying Krotov’s iterative method to obtain monotonic
increase toward the objective at each iteration leads to the
field at each new iteration at the time t:

�new�t� = �pre�t� + 
C�t��
j

���̂,Ĝ j�t�� · B̂ j�t�
 �19�

where C�t� is a time-dependent envelope function. 
 is a
strategy parameter. Large values of 
 will cause rapid
changes of the field at each iteration.

The size of the computation effort to find the field is be-
lieved to grow exponentially with the number of bits for
systems that evolve under unitary dynamics �12�. For the
present case of nonunitary dynamics it is expected to be even
worse. This expected result originates from the fact that un-
der nonunitary dynamics decoherence destroys interfering
pathways with long periods.

IV. SIMULATION AND RESULTS

A. Protecting a bit in its ground state

The application of the QG in protecting a target bit of the
form of Eq. �5� is now demonstrated. The first step of the
procedure is to calculate the field required for the generation

of the distilling transformation Ôd �cf. Eq. �6��. Two main
time scales dominate the QG model: �1� 
trans, the time du-
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ration for the field-derived transformation, and �2� 
 free, the
period of free propagation, where 
trans�
 free. The character-
izing parameters of the four levels of the model are taken as
the two couples of the two lowest vibrational states within
the first two electronic states of the Na2 molecule. Table I
summarizes the parameters used in the simulations.

The operations are carried out in a four-level space. Due
to the decay of the upper bit, it can be assumed that when the
controlled transformation is applied, all the population is at
the lower bit. Hence, only a basis set for a single bit, i.e., the
lower bit, operation subspace within a four-level system is
needed. The time evolution generated by the Liouville–Von
Neumann equation was calculated by the Newton polyno-
mial expansion method �17�.

Figure 3 displays the infidelity of the transformation,
log10�1−F /2n�, vs the number of iterations. n is the number
of basis states involve in the operation, here 2. The two inset
panels of Fig. 3 show the resulting fields and their Fourier
transforms which generate an infidelity close to −12. The
two peaks in the frequency domain are the result of the initial
guess which initiated the optimization process, ��t�
�cos��t�, where � is the vertical energy gap between the
two electronic states.

At the second step, the target bit �0= �1	g�1�g is propagated
freely for a duration 
 free with the additional distilling trans-

formation. The white noise function for the propagation �cf.
Eq. �3�� is modeled as

f�t� = Ns�t� �20�

where N is the noise intensity and −0.5�s�t��0.5 is gener-
ated from a uniform random distribution. The decay rates are
taken to be �11

−1=�22
−1. For comparison, three calculations

were performed with the same noise parameters.
�1� A reference propagation: the system is propagated

with noise without any correction. The red line in Fig. 4
represents the value of R=1− ��̂0 · �̂�t�� versus time. A signifi-
cant deviations from the initial bit develops, up to R
=0.02%, due to the noise. The time-averaged deviation is
about one-third of the maximal deviation.

�2� A partially controlled propagation: the distilling trans-
formation is applied on the bit at each 
 free, but no decay
between the bits was allowed. The black line in Fig. 4 dis-
plays the deviations of the density matrix from the target �̂0

vs time, for this case. According to the transformation Ôd
any remains of population on the upper bit will be trans-
ferred back to the lower bit and ruin the efficiency of the
noise reduction. As expected, the growth of deviations from
the target bit develops here almost at the same rate as in the
previous case. The maximal deviation is 0.01% and the av-
erage is again one-third of the maximal value.

�3� Fully controlled propagation: the system is propagated
with both the distilling transformation and the decay period
between the bits. The blue line in Fig. 4 represents deviations
of the density matrix from the target for the fully controlled
propagation. It can clearly be seen that the full scheme works
well. The maximal deviation under the fully controlled
propagation is reduced to �7�10−4�% and the average to
approximately �6�10−5�%. Figure 5 is a blowup of this line.
The influence of the very frequent corrections is clearly vis-
ible. The system is more stable by two orders of magnitude
on average under the QG scheme.

TABLE I. Parameters used in the simulation: � is the electronic
energy gap, � j is the vibrational frequency for the jth electronic
state, 
trans is the duration of the distillation transformation, � is the
decay rate, and 
 free is the period of a correction cycle.

Parameter Value

� 0.06601 hartree

��1 7.2449716268�10−4 hartree

��2 5.3746313155�10−4 hartree


trans 1.08 ps

�−1 10.0 ps


 free 241 ps

FIG. 3. �Color online� �a� Infidelity of the transformation gate

Ôd versus the number of iterations, and �b� and �c� the time and
frequency dependency of the field.

FIG. 4. �Color online� The deviation of the bit vs time for the
uncontrolled �red�, partially controlled �black�, and fully controlled
�blue� cases. The deviation is defined as 1− ��̂0 · �̂�t��. See the text
for the parameters used for the simulation.
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Changes of some of the parameters of the system, e.g.,
taking 
 free to be smaller, can stabilize the system even
further.2

B. Conservation of a general bit and an investigation of the
necessary features for a QG

For a general bit case the normalized state was chosen as
the target bit,

� + 	g = � + 	 =
1

�1 + bn
2
��0	 − ibn�1	� , �21�

and bn randomly chosen to be equal to
0.231 138 513 574 29. The two bits were chosen as two pairs
of degenerate two-level systems. The optimal field for this
transformation gate was converged to the same accuracy as
in the previous section with approximately the same speed of
convergence

The noise model influenced directly both the population
and the phase between the states:

Ĥnoise = �f�t��− 1 1

1 1
� . �22�

To gain more insight into the necessary features needed
for a QG to work properly several simulations for mutated
QGs are presented. Two conventions for the characterizing
parameters are employed. The first one is identical to the
previous one:

R = 1 − ��̂0 · �̂�t�� . �23�

A scheme which conserves low values of R can be defined as
a fully conserved scheme. The distilling transformation
aligns the bit in the right direction, i.e., with the correct
relative phase and population between the two states. A bit
can deviate from the target bit in its norm but still conserves

a high resemblance to it with respect to the correct phase and
population. A normalized deviation is defined as

Rn = 1 −
��̂0 · �̂�t��

��̂�t��
= 1 −

��̂0 · �̂�t��
���̂�t� · �̂�t��

. �24�

The upper and lower panels of Fig. 6 represent the measures
R and Rn for five simulations with the same noise param-
eters. The results are concentrated in Table II.

Five test cases are simulated.

2Several numerical tests were performed for the present case as
well as for the case of unitary transformation under unitary time
evolution of Ref. �12�. Typically the difficulty in achieving the op-
timal field depended very weakly on the nature of the desired gate.

FIG. 5. A blowup of the deviation of the bit vs time for the fully
controlled system: A distilling transformation is apply every 
 free

=241 ps.

FIG. 6. �Color online� The deviation of a general bit vs time for
the cases of uncontrolled propagation ��black� circles�, and equal
��red� closed triangles�, different ��green� open triangles�, and ex-
changed ��blue� squares� decay rates, and for the case where the
decay channel is not directed back to the subspace of the controlled
bit ��yellow� diamonds�. The two panels display �a� R, the unnor-
malized, and �b� Rn the normalized deviations, respectively. See the
text for a more detailed description of the various cases.

TABLE II. Deviations from a general target bit for five different
test cases �see the text for details�. The columns display the maxi-
mal and the average of the deviations R and Rn for the five cases.

Rmax Rn
max �R	 �Rn	

1 5.9�10−5 5.9�10−5 2.9�10−5 5.9�10−5

2 3.1�10−6 3.1�10−6 2.0�10−7 1.3�10−7

3 3.1�10−6 3.1�10−6 2.0�10−7 1.3�10−7

4 4.8�10−6 3.1�10−6 2.2�10−6 1.3�10−7

5 2.4�10−5 3.1�10−6 1.2�10−5 1.3�10−7
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�1� A reference propagation without any correction de-
picted by the black line with closed circles, R=Rn.

�2� A fully controlled scheme with equal decay rates �11
−1

=�22
−1=10 ps, depicted by the �red� line with the closed tri-

angles. The efficiency of the QG is the same as for previous
case of the ground-state bit. Both R and Rn are conserved to
values well below the uncorrected propagation. The system
is more stable by a factor of 20 at the worst case and by more
than a factor of 200 on average.

�3� This scheme is identical to �2�, but with different de-
cay rates �11

−1= 1
10��22

−1=10 ps. Only selective decay is al-
lowed. The results are depicted by the �green� line with open
triangles. The scheme seems to work at the same efficiency
as the previous case. The relative phase that develops be-
tween the two bits during the propagation due to their differ-
ent energies is destroyed by the decay so that only the inner
phase between the states is conserved.

�4� In this case the decay channels were switched so that
the decay channels are �1	e→ �2	g and �2	e→ �1	g. The results
��blue� line with closed squares� show that under this scheme
the noise is accumulated and the unnormalized deviation
from the target is constantly growing. However, the accumu-
lated error is still bearable, so that the mutated QG manages
to transform the undesired part to the other bit and Rn is still
conserved.

�5� In this test case ��yellow� line with closed diamonds�,
it was assumed that the population of the upper bit decays by
some drain channel to a bath outside of the system. Under
this scheme the remaining bit is well conserved but the norm
of the state is reduced significantly.

Another four test-case simulations are presented in Fig. 7.
The numerical results are summarized in Table III. The lines
with �black� circles and �red� triangles present, as on the
previous demonstration, the uncontrolled and fully controlled
QGs. The case presented by the line with the �blue� squares
has a nondegenerate upper bit. The nondegenerate states of
the bit develop a phase that destroys completely the correc-
tion scheme. It is interesting to note that just as in the previ-
ous example, a difference between the two decay rates does
not cause a significant change in the efficiency of the QG.

The last case that was checked �the line with �yellow�
diamonds� is a scrambling of the upper bit transformation,
which makes a Hadamard transformation to the upper bit
consecutive to the regular distilling transformation. The re-
sult of this mutation is a bearable accumulated error, which is
moved constantly to the upper bit and leaves the lower bit
close to the target state, but with lower norm.

V. DISCUSSION AND CONCLUSIONS

An integral and crucial part of quantum computing and
information research is devoted to quantum error correction
�QEC� �18–20�. The main question in QEC is the following.
Suppose A is sending quantum information to a receiver B.
An unavoidable influence of a noise may distort the quantum
information with probability p�1/2. How would B be able
to reconstruct the data that were sent to A? The solution to
this problem is usually given by redundancy. Before sending
his quantum information, A must duplicate his data in several

copies from which B would be able to withdraw the original
data to a very high accuracy.

The task of building a quantum governor is close to QEC,
but is different in both motivation and strategy. A QG main
goal is to reduce the influence of noise on the channel be-
tween A and B, that is, to reduce p. Moreover, the strategy to
achieve the control uses mainly the system itself and does
not create extra information. Considering the fact that the
scaling of the difficulty of building quantum computers is
believed to be exponential in the size of the system, it seems
that the task of protecting a single bit from decoherence
might be more important for quantum computing than the
ability to use QEC.

FIG. 7. �Color online� Logarithm of the deviation of a general
bit vs time for the cases of uncontrolled propagation ��black�
circles�, equal decay rates ��red� triangles�, nondegenerate bit
��green� squares�, and scrambled transformation ��yellow� dia-
monds�. The two panels display �a� R, the unnormalized, and �b� Rn,
the normalized deviation. See the text for a more detailed descrip-
tion of the various cases.

TABLE III. Deviations from a general target bit for four differ-
ent test cases �see the text for details�. The columns display the
maximal and the average of the deviations R and Rn for the four
cases.

Rmax Rn
max �R	 �Rn	

1 5.8�10−5 5.8�10−5 2.5�10−5 2.5�10−5

2 3.1�10−6 3.1�10−6 1.9�10−7 1.3�10−7

3 2.1�10−1 1.9�10−1 1.0�10−1 9.4�10−2

4 3.1�10−6 3.1�10−6 4.1�10−7 1.3�10−7
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The target entitled here as the quantum governor can be
stated in two versions.

�1� The frail QG—one or more of the system expectation
values is constrained, e.g., energy, angular momentum, etc.
This constraint is quite similar to the original constraint im-
posed by Watt on his classical governor. The similarities be-
tween such a QG and error corrections are seemingly minor.

�2� The robust QG—the task of interest is the full conser-
vation of the state of the system, and not only one of its
observables. This demand is more difficult than the one im-
posed by the Watt governor but it brings the robust QG
closer to the error correction field.

Due to the fact that uncommutative operators cannot be
measured simultaneously, it is well understood that feedback
control might be applicable to several kinds of frail QG, but
surely not for any robust QG.

In this paper the QG problem was solved for the robust
case for a model two-level system. In this case the difference
between the two versions is not large. The robust QG prob-
lem is also related to the problems of refocusing and �dy-
namical� decoupling �21–24�. Both approaches aim to reduce
influences of noise coupled to a quantum system. However,
the strategies of the two schemes are totally different. The
QG problem is a state-oriented problem. It demands the con-
servation of known states from the influence of noise of an
unknown form. A treatment of the noise in terms of stochas-
tic quantum equations �see, for example, �25–27�� is there-

fore unnecessary. The problems of refocusing and decou-
pling are noise-oriented problems. They try to immunize
unknown states against a noise with a known form. Accord-
ingly, the solutions to the last couple of problems, e.g., the
bang-bang method and its derivatives, use the known struc-
ture of the noise in order to build the appropriate immune
decoupling.

To summarize, in this paper the fundamental demands for
the task of building a quantum governor were developed.
The basis was set for a scheme to achieve automatic control
on simple quantum systems. The scheme was demonstrated
through simulations on a two-level system. A reduction of
the noise by more then two orders of magnitude was
achieved. The necessary features of a working QG under the
present scheme were examined.

The extension of the present scheme to more complicated
systems requires additional study. Several other schemes and
methods to achieve QG, for example the use of the quantum
Zeno paradox, could be purposed. The exploration of these
possibilities is still under way.
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