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Interacting quantum systems evolving from an uncorrelated composite initial state generically develop
quantum correlations—entanglement. As a consequence, a local description of interacting quantum systems is
impossible as a rule. A unitarily evolving �isolated� quantum system generically develops extensive entangle-
ment: the magnitude of the generated entanglement will increase without bounds with the effective Hilbert
space dimension of the system. It is conceivable that coupling of the interacting subsystems to local dephasing
environments will restrict the generation of entanglement to such extent that the evolving composite system
may be considered as approximately disentangled. This conjecture is addressed in the context of some common
models of a bipartite system with linear and nonlinear interactions and local coupling to dephasing environ-
ments. Analytical and numerical results obtained imply that the conjecture is generally false. Open dynamics of
the quantum correlations is compared to the corresponding evolution of the classical correlations and a quali-
tative difference is found.
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I. INTRODUCTION

The exploration of the nature and the extent of correla-
tions generated by the many-body dynamics has both funda-
mental and practical applications. One of the fundamental
issues in the investigation of many-body dynamics is finding
an optimal set of coordinates �1,2�. This problem is solved in
classical mechanics by introducing partition of a complex
system into smaller subsystems, i.e., introducing degrees of
freedom. The description of the composite system is fur-
nished by local descriptions of the subsystems. The adequacy
of a particular partition depends heavily on the nature and
the extent of the correlations between the local degrees of
freedom.

The role played by correlations in classical and quantum
mechanics is substantially different. This is due to the pres-
ence of the quantum correlations, or entanglement, in a com-
posite quantum state, having no analog in the classical world
�3�. In contrast to classical correlations �4�, extensive en-
tanglement makes the partition of a quantum system mean-
ingless, since local measurements do not provide information
on the state of an entangled system �3�.

The problem of the optimal partition is deeply connected
to the foundation of many-body dynamical simulations. The
complete description of the system composed of fully corre-
lated subsystems should grow exponentially with the number
of subsystems involved. The possibility of representing a
state of a complex system as a mixture of independently
evolving uncorrelated states �trajectories� solves in principle
the problem of many-body simulations, permitting one to
sample single trajectories for simulation and averaging the
result subsequently �5,6�. This possibility is inherent in clas-
sical mechanics but is nongeneric in the quantum case, due
to the fact that the typical interaction of a quantum system
generates entanglement. If the growth of the total �i.e., quan-
tum and classical� correlations becomes restricted, the quan-
tum dynamics can be efficiently simulated �7–11�. Nonethe-
less, it is still an open question whether restrictions on
quantum correlations alone are sufficient to provide for
efficient simulations �12�.

Addressing the problem of dynamical generation of cor-
relations it is necessary to distinguish between the unitary
evolution of an isolated system and the open evolution of a
system coupled to an environment. While a given unitary
evolution can generate extensive entanglement, coupling the
system to an environment is generally expected to restrict
entanglement generation. This expectation originates in the
general philosophy, seeing in environmental-induced deco-
herence �13� the universal route of quantum-to-classical tran-
sition. It is consistent with some established results on open-
systems entanglement dynamics.

Evolution of quantum correlations under the influence of
the environment was investigated both in the context of
quantum to classical transition �13� and in the context of
quantum information processing �14�. Most studies have
been concerned with dynamics of entanglement between
noninteracting systems coupled to a bath. It was found that
coupling to a common environment is able to entangle non-
interacting systems �15,16�. On the other hand, coupling to
certain local environments leads to total disentanglement of
the systems in finite time �17–22�. The rates of disentangle-
ment were calculated in bi- and multipartite systems of non-
interacting qubits �19,23–26� and quidits �27,28�, locally
coupled to various environments. A number of studies ad-
dressed dynamical generation of correlations between inter-
acting subsystems in the presence of the environment. Pro-
duction of entanglement between qubits, modeling a system
of ions, coupled to environment through their center of mass
motion in ion traps, was investigated in Ref. �28�. It was
found that the coupling to environment diminishes the maxi-
mally achievable entanglement, with the corresponding en-
tanglement loss increasing with the number of ions. Refer-
ence �29� explored the dynamics of entanglement in the
quantum Heisenberg XY chain, immersed in a global purely
dephasing bath. The robustness of entanglement against the
dephasing was related to the number of spins in the chain.
The coupling of interacting subsystems to local environ-
ments was considered in Refs. �30,18�. Reference �30� inves-
tigated the generation and transfer of entanglement in har-
monic chains. The creation of entanglement by suddenly
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switching on the interaction in the chain was found to be
robust against the decoherence induced by coupling of the
oscillators to local harmonic baths. The model of two har-
monically coupled quantum Brownian particles was treated
in Ref. �18�. It was found that in the physically interesting
range of parameters the interaction between the particles can-
not prevent their eventual disentanglement, induced by
coupling to local baths.

While the observed disentanglement of the noninteracting
systems by coupling to local environments meets the com-
mon intuition about the quantum-to-classical transition, the
picture of dynamics of entanglement in the presence of in-
teraction is not so clear. Searching for an efficient and a
universal environment-induced mechanism of restricting the
extent of the generated entanglement, it seems necessary to
focus on the following aspects of the dynamics of
correlations.

First, the scaling of the generated correlations with the
effective Hilbert space dimension of the interacting sub-
systems must be considered. This is in contrast to the context
of the quantum information processing where the object of
interest is usually the scaling of entanglement with the num-
ber of degrees of freedom �qubits�. The expectation is that
the environment-induced restriction on the generation of en-
tanglement becomes most significant in the range of the large
quantum numbers of the system, which is commonly associ-
ated with the quantum-to-classical transition. In fact, exten-
sive entanglement in the large Hilbert space dimension
seems impossible without creating the “cat-state” superposi-
tions, which are expected to be destroyed by the
decoherence.

Second, the dynamics of correlations must be followed on
the short, interaction time scales. It is possible that the long-
time dynamics of an open composite system, approaching
equilibrium, is disentangled, but the entanglement generated
on the interaction time scales is so large that the partition of
the system has no meaning.

Moreover, since a common environment will generically
entangle noninteracting systems, coupling to local environ-
ments seems necessary to provide for a generic route to a
disentangled dynamics.

The present study focuses on the investigation of
environment-induced constraints on the dynamics of quan-
tum and classical correlations in the open bipartite composite
system. The system consists of two nonlinearly interacting
harmonic oscillators, coupled to local purely dephasing
baths. The distinction between the dephasing and pure
dephasing has first appeared in the context of NMR �31�.
Pure dephasing corresponds to loss of coherence in the en-
ergy representation. The two prototypes of underlying sto-
chastic processes leading to dephasing are the Gaussian and
the Poissonian processes �32�. Kubo based his line-shape
theory �33� on the Gaussian model. Kubo’s model is the
cornerstone of the condensed-matter spectroscopy. Recently,
exceptions to the Gaussian paradigm have been found ex-
perimentally �34–36� in ultrafast vibrational spectroscopy.
The Poissonian model was shown to describe the dynamics
adequately. Quantum Poissonian stochastic models have first
appeared in the gas collision theory. They are also employed
in the condense phase physics. For example, the Poissonian

noise has been considered as a source of decoherence in
quantum dots �37–39�. Due to the fundamental and the ex-
perimental relevance of the Gaussian and the Poissonian sto-
chastic processes they were chosen as the source of the
dephasing in the present study.

The models aim to explore dynamics of correlations in a
composite system of coupled multilevel subsystems at large
effective Hilbert space dimension. Examples of such systems
include multimode molecular vibrations �40�, linear and non-
linear quantum optics �41�, and cold trapped atomic ions
�42�. The primary goal is to locate a generic mechanism by
which the decoherence keeps an interacting composite sys-
tem “approximately disentangled” all along the evolution.
Dynamics of quantum and classical correlations and their
scaling with the effective Hilbert space dimension of the sys-
tem are compared.

The measures of quantum and total, i.e., quantum and
classical, correlations are defined in Sec. II. Section III ex-
amines the issue of the generation of quantum correlations
�entanglement� in the model problems. Section IV presents
numerical results on the dynamics of both quantum and clas-
sical correlations and Sec. V summarizes the conclusions.

II. MEASURES OF CORRELATION

The state of a bipartite system is uncorrelated if it can be
described by the form

�̂ab = �̂a � �̂b. �1�

A general correlated state can be Schmidt-decomposed
�43� �cf. Appendix A� in the Hilbert-Schmidt space leading
to

�̂ab = �
i

N

ciÂa
i

� B̂b
i , �2�

where the sets �Â� and �B̂� of operators are orthonormal in
the Hilbert-Schmidt spaces of systems a and b.

The number of nonvanishing coefficients ci in the
Schmidt decomposition of a vector in an abstract tensor-
product Hilbert space is called the Schmidt rank of the vec-
tor. To avoid confusion in the following presentation the term
HS-Schmidt rank �or just HS rank for brevity� is adopted for
the Schmidt decomposition in the Hilbert-Schmidt �HS�
space of operators, while retaining the term Schmidt rank for
the Schmidt decomposition in the corresponding Hilbert
�pure� state space. A HS rank is a natural measure of total
correlations present in a mixed state �̂ �cf. Appendix A�.

A special subset of mixed states is the set of separable or
classically correlated states �4�. The state is separable if it
can be cast into the following form

�̂ab = �
i

N

pi�̂a
i

� �̂b
i , �3�

where 0� pi�1, �i
Npi=1, and �̂a and �̂b are density opera-

tors defined on the Hilbert spaces of the subsystems a and b,
respectively. Separable states are mixtures of uncorrelated
states, which can be completely characterized by local mea-
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surements. Therefore, partition of a composite system into
parts has a strong physical meaning. Such a partition is
always possible for classical probability density distribution
of a bipartite system �4,44�.

States that do not comply with the form of Eq. �3� are
called quantum-correlated or entangled. Pure correlated
states are always entangled. The measure of a pure state
entanglement can be defined by its Schmidt rank �45�. Esti-
mating the measure of a mixed-state entanglement is a diffi-
cult conceptual and computational problem �45�. One can
look for the decomposition of �̂ab into a mixture of pure
states that are least entangled on average. The average en-
tanglement corresponding to such decomposition is a pos-
sible measure of the mixed state entanglement. Unfortu-
nately, such measures are notoriously difficult to compute.

An alternative computable measure of the bipartite mixed
state entanglement is the negativity �46� defined as follows:

N��̂� �
	�̂Ta	 − 1

2
, �4�

where 	X̂	=Tr
X̂†X̂ is the trace norm of an operator X̂ and
Ta stands for the partial transposition with respect to the first
subsystem. The partial transposition Ta, with respect to sub-
system a of a bipartite state �̂ab expanded in a local ortho-
normal basis as �̂ab=��ij,kl�i�j� � �k�l�, is defined as

�ab
Ta � � �ij,kl�j�i� � �k�l� . �5�

The spectrum of the partially transposed density matrix is
independent of the choice of local basis or on the choice of
the subsystem with respect to which the partial transposition
is performed. The negativity of the state equals the absolute
value of the sum of the negative eigenvalues of the partially
transposed state. By the Peres-Horodecki criterion �47,48�
the negativity vanishes in a separable state. On the other
hand, vanishing of the negativity does not imply separability
of the state in general �48�.

Finite negativity is a necessary and sufficient condition
for the presence of entanglement in a particular type of
mixed states, the so-called Schmidt-correlated states
�49–51�. In this case the negativity can be related to the
structure of the density operator, which facilitates the evalu-
ation of the entanglement.

The Schmidt-correlated states have the following form:

�̂ = �
mn

�mn��m��n� � ��m��n� , �6�

where �1= ���m��m=1
k and �2= ���m��m=1

k are local orthonor-
mal bases. Equation �6� implies that �̂=�ipi��i��i�, where
��i�=�mcm

i ��m� � ��m�2 for every i, i.e., all pure states in the
mixture share the same Schmidt bases �cf. Appendix A� �1
and �2. It has been proved �52� that for Schmidt-correlated
states

N��̂� = �
m�n

��mn� , �7�

i.e., the negativity equals half the sum of absolute values of
the off-diagonal elements of the density operator, written in a

�1 � �2 local tensor product basis. It follows that the nega-
tivity of entangled Schmidt-correlated states is finite �52�.

The negativity can be related to the structure of the den-
sity operator. Consider the density operator �6� having the
following quasidiagonal structure:

�̂ = �
�m−n���

�mn��m��n� � ��m��n� , �8�

with �	k. The sum of the absolute values of the
off-diagonal elements can be estimated as follows:

�
m�n

��mn� = �
mn

��mn� − 1 = �
m

�
n=m−�

n=m+�

��mn� − 1

� �
m

�
n=m−�

n=m+�


�mm�nn � �
m

�
n=m−�

n=m+�
�mm + �nn

2

=
1

2�
m

�
n=m−�

n=m+�

�mm +
1

2�
m

�
n=m−�

n=m+�

�nn � 2� , �9�

where the first inequality follows from the positivity of the
density operator and the second is the inequality of geomet-
ric and arithmetic means. Therefore,

N��̂� � � �10�

in the state �8�. Since the negativity of the maximally en-
tangled state �corresponding to ��mn�=1/k in Eq. �6�� equals
�k−1� /2, as follows from Eq. �7�, the negativity of the qua-
sidiagonal density matrices is negligible compared to the
maximally entangled state. It should be noted that the form
�8� with �	k of the density matrix does not constrain the
magnitude of the classical correlations present in the state.
For example, a strictly diagonal matrix �mn=
mn corresponds
to a maximally �classically� correlated separable state.

Schmidt correlated states appear naturally in a composite
bipartite dynamics admitting particular conservations laws
�52�. The models of open-system dynamics considered in the
following sections belong to that class. As a consequence,
the presence and extent of entanglement in evolving compos-
ite systems can be related to the structure of the density
matrix, which can be inferred on the basis of relatively
general scaling considerations.

III. DENSITY OPERATOR OF A BIPARTITE SYSTEM
UNDER LOCAL PURE DEPHASING

A. General considerations

The model of open system dynamics considered is
described by

�

�t
�̂ = �L1 + L2��̂ + I�̂ , �11�

where the generators of local nonunitary evolution are

L j =−i�Ĥ j , • �−� jD j, j=1,2, and I=−i��Ĥ12, • � stands for

the interaction superoperator. The operators Ĥ j are local sys-

tem Hamiltonians, the operator Ĥ12 is the nonlocal �interac-
tion� term in the composite system Hamiltonian, and D j de-
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notes the local bath-dependent superoperators. Coupling
constants �1,2 and � measure, respectively, the strength of
the coupling to the local environments and the strength of the
interaction between the subsystems.

As a reference, the open evolution of noninteracting sub-
systems ��=0� is considered first. In this case a local dephas-
ing evolution of each separate system takes place,

�

�t
�̂ = �L1 + L2��̂ . �12�

In many models of open evolution �13,53–55� it is found
that the evolving state undergoes decoherence, characterized
by the decay of the off-diagonal elements of the density op-
erator represented in a particular basis of the robust states.
Ideal robust states retain their purity notwithstanding the in-
teraction with environment. Examples of such models in-
clude interaction with a purely dephasing environment, sin-
gling out energy states as the robust basis, quantum
Brownian motion, and damped harmonic oscillator at zero
temperature T=0, which select the robust basis of coherent
states. While the robust state’s basis is determined by the
type of the bath and the system Hamiltonian, the time scales
of the decoherence generally depend on the initial state as
well.

Let us assume that the local superoperators L1 and L2 in
Eq. �12� single out local robust state’s bases �1 and �2. A
composite noninteracting system evolving according to Eq.
�12� from an arbitrary initial state is expected to decohere in
the tensor product basis: �1 � �2. That means that an arbi-
trary initial state density matrix will eventually diagonalize
in this basis. Switching on the interaction between sub-
systems causes a competition between entanglement genera-
tion and decoherence induced by the local baths. For suffi-
ciently weak interaction viewing the evolving density
operator in the unperturbed tensor product basis �1 � �2 of
local robust states is a good starting point. If the interaction
perturbs only slightly the evolution of an off-diagonal matrix
element, it will decay on an almost unperturbed decoherence
time scale.

To proceed with a more quantitative argument the concept
of the effective Hilbert space Hef f is helpful. Since the en-
ergy of the evolving system is finite, the evolution can be
effectively restricted to a Hilbert space with finite dimension.
This Hilbert space is termed the effective Hilbert space of the
system. Let  be a spectral norm �56� of the interaction su-
peroperator I restricted to the effective Hilbert-Schmidt
space �i.e., the space of linear operators on Hef f� and � be a
spectral norm of the dissipator D=D1+D2 restricted to this
space.  and � correspond to the shortest time scales of the
evolution generated by the I and D, respectively. When 
	�, the interaction time scale is slow compared to the short-
est decoherence time scale. As a consequence, the evolution
of certain matrix elements is only slightly perturbed by the
interaction. In that case the perturbed dynamics of the matrix
element will follow essentially the course of the decoher-
ence. Therefore, a rough distinction can be made between the
region of the density matrix dominated by the decoherence
and the region dominated by the interaction. The border be-

tween the two regions is defined by the condition

�ij = O�−1� , �13�

where �ij is the unperturbed decoherence time scale of a
matrix element �ij, i , j��1 � �2.

In the case where the decoherence-dominated regions of
the density matrix are not populated initially, they will stay
unpopulated in the course of the perturbed evolution. This
property will shape the structure of the evolving density ma-
trix. If the states are Schmidt-correlated states with local
Schmidt-bases �1 and �2, being the local robust states
bases, the relation can be established between the structure of
the matrix and the entanglement of the state as indicated in
the previous section. Qualitatively, the larger the
decoherence-dominated region, the smaller the negativity of
the state.

The relative extent of the decoherence- and the
interaction-dominated regions in a given dynamics generally
depends on the initial state and, in particular, on the effective
Hilbert-space dimension k of the system. As a consequence,
different scenarios may be expected at asymptotically large
k. The growing contribution of the interaction-dominated re-
gions will generally imply extensive entanglement genera-
tion. On the other hand, if the relative size of the interaction-
dominated regions becomes negligible at large k the
entanglement generated by the open system dynamics may
be negligible or even asymptotically independent on k. This
possibility appeals to one who believes in the environmental-
induced decoherence as a universal instrument of quantum to
classical transition. An interesting question is the fate of the
classical correlations in this scenario. While decoherence-
dominated dynamics can turn extensively entangled initial
state into extensively classically correlated state, it is not
clear that decoherence-dominated dynamics can generate ex-
tensive classical correlations when quantum entanglement is
negligible all along the evolution. Negligible total correla-
tions seem nongeneric and do not correspond to the intuitive
picture of a “really interacting” system. Therefore, a scenario
of negligible quantum and extensive classical correlations
matches best to a generic mechanism of quantum to classical
transition.

B. Model calculations

The model calculations are used to illustrate and verify
the general considerations presented above. The evolution of
a bipartite system is studied according to Eq. �11�,
�
�t �̂= �L1+L2��̂+I�̂, where �L j =−i�Ĥ j , • �−� jD j, j=1,2, and

I=−i��Ĥ12, • �� with two types of dissipators, corresponding
to the Gaussian �57,58� and the Poissonian �35� purely
dephasing models

D j�̂ =� †Ĥ j,�Ĥ j, �̂�‡ �Gaussian� ,

e−i�Ĥj�̂ei�Ĥj − �̂ �Poissonian� .
� �14�

These dissipators have the Lindblad form �59� of a genera-
tors of quantum dynamical semigroups. The Gaussian and
the Poissonian generators are the two examples explicitly
mentioned in the seminal paper by Lindblad �59�.
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The model Hamiltonian is a simplified version of a non-
linearly interacting multimode system. The local Hamilto-

nians Ĥ j, j=1,2 are chosen to be Hamiltonians of harmonic

oscillators Ĥ j =� jâ j
†â j, where â j

† and â j
† are the creation and

annihilation operators, respectively. Two general types of in-
teraction are considered. The first �IA�, termed band-limited
interaction, is motivated by the stimulated Raman interaction
between the translational modes of ions in cold traps �60–62�
�for example, in Ref. �61� the effective interaction between
the modes is reduced to the band-limited operator

exp�±i��âx
†ây + âxây

†���. The second type of interaction �IB�
is motivated by weakly nonlinear interacting modes emerg-
ing in molecular vibrations �40� and in nonlinear optics. The
typical example in the nonlinear optics is the second har-
monic generation modeled by the interaction Hamiltonian of

the form Ĥ=�g�â2b̂†+ â†2b̂� �41,60�. In addition, the dynam-
ics of the cold ion traps can be operated in the regime, where
the effective interaction is well approximated by a weakly
nonlinear coupling �60–62�.

The two types of interaction are generated by

I =� − i��Â1
†Â2 + Â2

†Â1, • � ��IA� ,

− i���â1
†�s�â2�r + �â2

†�s�â1�r, • � , s = 1,2, . . . ; r = 1,2, . . . ��IB� ,
� �15�

where Â j is defined by its matrix elements in local energy

basis �Â j�mn=
m,n−1. The structure of Â j assures that IA is
band limited with the spectral norm =O���.

The important property of the dynamics, Eq. �11�, with
local dephasing, Eq. �14�, and interaction, Eq. �15�, is con-
servation of a particular additive operator in each case. The
first type of interaction, IA, preserves the number operator

N̂= â1
†â1+ â2

†â2: IA
†�N̂�=0, which is also preserved by the

local generators �L1
†+L2

†��N̂�=0. The second type of interac-

tion, IB, preserves the generalized number operator N̂rs

�râ1
†â1+sâ2

†â2: IB
†�N̂rs�=0, preserved by the local genera-

tors as well, �L1
†+L2

†��N̂rs�=0.
Assume a pure uncorrelated initial state ���0��= �k0�

�written in the local energies basis�. The state ���0�� is an

eigenstate of N̂ with the eigenvalue k. As a consequence, the
first type of the interaction, IA, will drive the initial state into

a mixture of eigenstates of N̂ corresponding to the eigen-
value k, �̂�t�=�mncmn�mlm�nln� with lm=k−m. Thus, k deter-
mines the effective Hilbert space dimension of the system in
this case: dim�Hef f�=k. Since ���0�� is also an eigenstate of

N̂rs with the eigenvalue rk, the second type of interaction, IB,

will take it into a mixture of eigenstates of N̂rs corresponding
to the same eigenvalue rk, �̂�t�=�mncmn�mlm�nln� with lm

= r
s �k−m�. The number of initial excitations k of the first

oscillator determines the effective Hilbert space dimension
of the system in this case: dim�Hef f�=k /s. To summarize,

�̂�t� = �
mn

cmn�mlm�nln� where � lm = k − m �IA�

lm =
r

s
�k − m� �IB� �

�16�

In both cases, the resulting mixed state is a Schmidt-
correlated state with a time-independent Schmidt bases. This
property permits evaluation of the negativity of �̂ in each

case from its structure, as indicated in Sec. II.

1. Gaussian vs Poisson pure dephasing bath

The difference between the two types �14� of environ-
ments can be understood by comparing the local evolutions
of a single oscillator coupled to the bath of each type,

�

�t
�̂ = − i�Ĥ, �̂� − �D�̂ . �17�

In the Gaussian case, Eq. �17� in the energy representation
becomes

�̇nm = − i�mn�nm − ��mn
2 �nm, �18�

with �mn��m−�n, leading to the solution �nm�t�
=�nm�0�e−i�mnt−��mn

2 t. Thus the effect of the purely dephasing
Gaussian bath is the “diagonalization” of the density matrix
in the energy basis �the robust states basis for this model� on
the time scale that varies for different matrix elements �nm
and increases with the distance �m−n� of the element from
the diagonal. The shortest decoherence time scale corre-
sponds to the largest distance from the diagonal and de-
creases with the growing effective Hilbert space dimension
of the system.

In the Poissonian case, Eq. �17� in the energy representa-
tion becomes

�̇nm = − i�mn�nm + ��e−i�mn� − 1��nm, �19�

leading to the solution �nm�t�=�nm�0�e−i�mnt+��e−i�mn�−1�t. Ap-
parently, the robust states basis is once again the energy ba-
sis, but the decoherence rates of the matrix elements are
limited by ���e−i�mn�−1��=2�, independently of the initial
state.

This difference in properties of the Gaussian and the Pois-
sonian environments will result in different dynamics of the
correlations in the composite bipartite system dynamics, Eq.
�11�.
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2. Local dephasing driven dynamics

To gain insight on the effect of dephasing on the correla-
tions the simplest bath-driven dynamics is studied first, in
which the composite system Hamiltonian vanishes alto-
gether, meaning that no entanglement is generated during the
evolution. The corresponding equation �11� transforms into

�

�t
�̂ = − �

j=1,2
� j†Ĥ j,�Ĥ j, �̂�‡ �Gaussian dephasing� ,

�20�

�

�t
�̂ = − �

j=1,2
� j�e−i�Ĥj�̂ei�Ĥj − �̂� �Poissonian dephasing� .

�21�

Since the dynamics preserve local energies the effective
Hilbert space dimension of the evolving system is deter-
mined by the energy range of the initial state. The initial state
of the form ���= 1


k+1
�n=0

k �n��k−n� ��n� is a local energy
eigenstate� is a maximally entangled state. It corresponds to
the effective Hilbert space spanned by the states
��n��k−n��n=0

k .
The solution to Eq. �20�, the Gaussian case, is found:

�̂�t� =
1

k + 1�
mn

e−��1�1,mn
2 +�2�2,mn

2 �t�n��k − n�m�k − m� ,

�22�

when the solution to Eq. �21�, the Poissonian case, becomes

�̂�t� =
1

k + 1�
mn

e−��1�1−e−i�1,mn��+�2�1−e−i�1,mn���t�n��k − n�

�m�k − m� . �23�

Decoherence rates in the Gaussian case �22� are �mn
−1

=�1�1,mn
2 +�2�2,mn

2 ��g�maxm,n�k��1�1,mn
2 +�2�2,mn

2 � and
generally increase without bounds with the effective Hilbert

space dimension k. For example, taking Ĥ j =� jâ j
†â j, �mn

−1

= ��1�1
2+�2�2

2��m−n�2 is obtained, with maximal rate �g

=�0k
−1= ��1�1

2+�2�2
2�k2. In the Poissonian case �23� the

decoherence rates are bounded: �mn
−1 =Re��1�1−e−i�1,mn��

+�2�1−e−i�1,mn�����p�2��1+�2�.
Note, that both solutions �22� and �23� are Schmidt-

correlated states. Therefore, the corresponding negativities
can be calculated from Eq. �7�,

N„�̂�t�… =
1

k + 1 �
m�n

e−��1�1,mn
2 +�2�2,mn

2 �t

�Gaussian dephasing� , �24�

N„�̂�t�… =
1

k + 1 �
m�n

e−��1�1−e−i�1,mn��+�2�1−e−i�1,mn���t

�Poissonian dephasing� . �25�

From Eqs. �24� and �25� it follows that both types of the
purely dephasing dynamics �Eqs. �20� and �21�� lead eventu-

ally to a complete decay of the quantum correlations �note
that since the evolving state is Schmidt correlated, its nega-
tivity vanishes if and only if the state is disentangled �52��.
But the dependence of the time scales of the decay on the
effective Hilbert space dimension k is different in the two
cases. In the Poissonian case the rate of the negativity �25�
decay is bounded by �p=2��1+�2�, independent of k, while
in the Gaussian case �24�, the bound is �g
=maxm,n�k��1�1,mn

2 +�2�2,mn
2 �, which generally grows with

k.
The total correlations �and, as a consequence, the classical

correlations� follow a different course of evolution. The HS
rank �and HS-participation number� of initial state is k2 �see
Appendix A for the calculation of HS rank of a pure state�.
The stationary solution corresponding to both Eqs. �22� and
�23� is �̂st=

1
k+1�m�m��k−m�m�k−m� with HS rank �and HS

participation number� equal to k. Therefore, although the to-
tal correlations decay in both models, the stationary solution
contains extensive classical correlations, i.e., the correlations
that grow without bounds with the effective Hilbert space
dimension k.

Figure 1 displays the negativity, HS-participation number,
and purity of the composite state evolving under Gaussian
�20� and Poissonian �21� dephasing dynamics, corresponding

to Ĥi=�âi
†âi, �1=�2, and the initial state of the form ���

= 1

k+1

�n=0
k �n��k−n�. The effective Hilbert space dimension is

varied, k=4, . . . ,12. As anticipated from the difference of the
two types of environments, the decay rates in the Gaussian
case depend on the initial state and increases with the effec-
tive Hilbert space dimension, while in the Poissonian case
the rates are effectively independent of the initial state.

3. Full dynamics

At this point the interaction between the oscillators are
introduced, and the full dynamics according to Eq. �11� with
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FIG. 1. �Color online� Purity, HS-participation number, and
negativity of the density operator of two harmonic oscillators evolv-
ing under local purely dephasing Gaussian �solid lines� and Poisso-
nian �dashed lines� environments �Eq. �14��. The initial state is a
pure maximally correlated state ���= 1


k+1
�n=0

k �n��k−n� for k
=2,4 , . . . ,12. The coupling parameter to the bath �=1 in both
cases. The frequencies of the oscillators �1=�2=1. While the decay
rates in the Gaussian case depend on the initial state and increase
with the effective Hilbert space dimension k, in the Poissonian case
the rates are practically independent of k.
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��0 is followed. We shall consider a pure uncorrelated ini-
tial state of the composite system, ���0��= �k0�, i.e., the state
corresponding to the excitation of the kth level of the first
oscillator and the ground state of the second. In that case, as
shown above, each type of the interaction �15� and the
dephasing �14� considered admits a particular additive con-
served quantity �a generalized number operator�, which de-
fines the effective Hilbert space of the composite system for
each k and is responsible for the remarkable property of the
evolving state: the density operator is a Schmidt-correlated
state in a time-independent Schmidt bases: �̂�t�
=�mn�mn�t��m�n� � �lm�ln� �Eq. �16��. The Schmidt bases
�1= ��m�� and �2= ��lm�� are the robust �local energies� bases
of the corresponding local open systems �17�, with the cor-
respondence m↔ lm, determined by the particular conserva-
tion law, depending on the type of interaction. This property
allows us to relate the structure of the evolving density op-
erator to its negativity, as indicated in Sec. II. The relevant
structure of the evolving density operator is determined by
the relative size of the decoherence- and the interaction-
dominated regions of the corresponding density matrix. This
structure is investigated for each type of interaction and
dephasing and for different effective Hilbert space dimen-
sions of the system.

The overview in the preceding section of the dynamics
driven solely by the local dephasing reveals important differ-
ences between the two types of local environment with re-
spect to the anticipated structure of the evolving density ma-
trix. In the Poissonian case the decoherence rates are of the
order of the system-bath coupling �mn

−1 �2��1+�2�, as shown
above. Therefore, evolution of the matrix elements is domi-
nated either by the decoherence or by the interaction depend-
ing on the relative strength of the coupling constants and
independently of the effective Hilbert space dimension. In
models with weak system-bath coupling, �1,2	, the struc-
ture of the evolving density operator will only slightly be
affected by the coupling to the Poissonian bath on the inter-
action time scale �−1	�mn. As a consequence, the quantum
correlations will develop almost unperturbed on the interac-
tion time scale.

A different dynamical pattern is anticipated in the case of
the Gaussian purely dephasing bath. The decoherence rates
in this case are

�mn
−1 = �1�1

2�m − n�2 + �2�2
2�lm − ln�2

where � lm = k − m �IA� ,

lm =
r

s
�k − m� �IB� , � �26�

where IA and IB indicate the type of interaction:

IA�−i��Â1
†Â2+ Â2

†Â1 , • �, with �Â j�mn=
m,n−1, and
IB�−i���â1

†�s�â2�r+ �â2
†�s�â1�r , • �, with �â j�mn=
m
m,n−1

�see Eq. �15��. In each case, the decoherence rate increases
with the “distance” �m−n� from the diagonal. As a conse-
quence, the evolving density operator obtains a quasidiago-
nal structure in the local energies basis, with the width � of
the interaction-dominated region about the diagonal depend-
ing on the type of interaction.

Let us assume for simplicity that �1�1
2=�2�2

2=�. In that
case a matrix element �mn decoheres on the time scale �mn
= �2��m−n�2�−1. The spectral norm of IA is =O���. There-
fore, the width about the diagonal of the evolving density
matrix can be estimated from Eq. �13� as

� = O�
�/�� , �27�

where �	� is assumed. The spectral norm of IB is 
=O�k�r+s�/2�, where k /s is the effective Hilbert space dimen-
sion of the system �see Eq. �16��. As a consequence, from
Eq. �13� � becomes

� = O�
�/�k�r+s�/4� . �28�

In the band limited interaction case �IA� the quasidiagonal
structure of the density operator emerges �Eq. �27��, while in
the case of the nonlinear interaction �IB� a quasidiagonal
structure is expected only if the nonlinearity is weak: s+r
�4 �Eq. �28��.

Perturbation theory supports the scaling considerations.

For a normalized eigenoperator Ôl of the local evolution

generator L1
†+L2

†: �L1
†+L2

†�Ôl=lÔl. The interaction I per-
turbs the evolution. The action of the perturbed generator on

Ôl gives �L1
†+L2

†+I†�Ôl=l�Ôl+ 
̂l�. If the trace norm of 
̂l

is small compared to unity: 	
̂l	1	 	Ôl	1=1, the evolution of

Ôl is only slightly perturbed on the time scale of �l�−1.

Therefore, if Re�l��0, the perturbed Ôl will decay on a

time scale of �Re�l�� to the leading order in 	
̂l	1. To each
density matrix element �mn in the nonperturbed tensor-
product basis of the local energy states �the robust states

bases� there corresponds the normalized operator Ômn

= �mlm�nln� such that Ômn�=Tr��̂Ômn�=�mn. Defining 
̂mn

by �L1
†+L2

†+I†�Ômn=mn�Ômn+ 
̂mn� with mn= i��1�m−n�
+�2�lm− ln��−���m−n�2+ �lm− ln�2�, we obtain for the trace

norm of 
̂mn corresponding to the first type of interaction IA,

	
̂mn	1 = O� �

�
 1

��1

�
�m − n��2

+ ��2

�
�lm − ln��2

+ ��m − n�2 + �lm − ln�2�2� � O��

�

1

�m − n�2 + �lm − ln�2� , �29�

and for the trace norm of 
̂mn corresponding to the second type of interaction IB,
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̂mn	1 = O� �

�
 nrms + lm
s ln

r

��1

�
�m − n��2

+ ��2

�
�lm − ln��2

+ ��m − n�2 + �lm − ln�2�2� � O��

�


lm
r ms + nsln

r

�m − n�2 + �lm − ln�2� . �30�

The width � of the interaction-dominated region is esti-
mated by solving

�

�

1

�m − n�2 + �lm − ln�2 = 1 �31�

for the interaction generated by IA and

�

�


lm
r ms + nsln

r

�m − n�2 + �lm − ln�2 = 1 �32�

for the interaction generated by IB. Using Eq. �26�, Eq. �31�
is simplified to

�

2�

1

�m − n�2 = 1, �33�

from which �=2�m−n�=
2� /� is found, in compliance with
the estimate �27�, and Eq. �32� is simplified to

�

2�
� r

s
�r/2
��k − m�rms + ns�k − n�r�

2�m − n�2 = 1. �34�

In this case, the width about the diagonal �=2�m−n� will
depend on m. The upper bound on � was calculated from Eq.
�34� in two cases. First, for the linear coupling r=s=1 gives
��23/4
�k

� . Second, for the nonlinear coupling r=1, s=2
gives ��
 �

�k3/4. Both results comply with the estimation
Eq. �28�.

Figure 2 displays regions of the density matrix, dominated
by the interaction, vs regions dominated by the decoherence,
with the boundary between the regions determined by Eqs.
�33� and �34� for k=10, 20, 40, 50, and � /�=3. The figure
represents the composite system density matrices �̂
=�mncmn�mk−m�nk−n� and �̂=�mncmn�m r

s �k−m��n r
s �k

−n��, corresponding to Eqs. �33� and �34�, with m indexing
the columns and n indexing the rows. The contours of Eqs.
�34� are plotted for the linear coupling �r=s=1� and the non-
linear coupling �r=1, s=2�. The quasidiagonal structure of
the density operator is apparent. Both in the case of linear
and nonlinear coupling between the oscillators, the width
grows with the effective Hilbert space dimension. This is in
contrast to the case of the band-limited interaction �IA�,
where the width about the diagonal does not depend on the
effective Hilbert space dimension k.

To conclude, in contrast to the Poissonian type dephasing,
in the Gaussian case the interaction-dominated regions are
located about the diagonal of the density operator repre-
sented in the local energies basis. Since the initial state
���0��= �k0� corresponds to the density operator with an un-
populated decoherence-dominated region, this region will re-
main unpopulated all along the evolution. As a consequence,
the evolving density operator will stay in the quasidiagonal

form. According to Eq. �10� the value of negativity is
bounded by � in each case: N��̂���. Asymptotically, i.e.,
as k�1 for the band-limited interaction, 
k�1 for the linear
interaction and 
4k�1 for the nonlinear case, the width about
the diagonal becomes negligible compared to k. In this case,
the generated entanglement is negligible compared to the
maximal entanglement compatible with the effective Hilbert
space dimension.

In the following section the results of the numerical cal-
culations of the evolution of negativity, illustrating the fore-
going discussion, are presented. The evolution of negativity
is compared in each case with the dynamics of the total �i.e.,
quantum and classical� correlations, as measured by the ef-
fective HS rank and HS-participation number of the evolving
density operator.

IV. NUMERICAL RESULTS

In the present section the results of numerical calculations
of negativity N��̂�, HS-participation number �̃��̂�, and the
effective HS-rank �̃0.01��̂� �cf. Appendix A� are displayed
and analyzed. The model is a bipartite composite state of two
oscillators, evolving according to Eq. �11�. The dynamics
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FIG. 2. �Color online� The density operator of the state, evolv-
ing according to Eqs. �11� for various interactions �15� and Gauss-
ian type local baths �14� is represented in the product of local en-
ergies bases �Schmidt bases�. Boundaries are indicated, in each
case, separating the outer �off-diagonal� regions, dominated by the
decoherence, from the inner �near diagonal� interaction-dominated
regions. The interactions correspond to the band-limited case �case
A, Eq. �15�, dotted lines�, linear coupling r=s=1 �case B, Eq. �15�,
solid lines�, and the nonlinear coupling r=1, s=2 �case B, Eq. �15�,
dashed lines�. The density matrices in the band-limited case are of
the form �̂=�mncmn�mk−m�nk−n� and in the linear and nonlinear
cases �̂=�mncmn�m�r /s��k−m��n�r /s��k−n��. The effective Hilbert
space dimension corresponds to k=10,20,30,40,50 in each case.
See explanations in the text.
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simulated is classified according to the type of local bath, Eq.
�14�, and the type of interaction, Eq. �15�:

�AG� The band-limited interaction IA. Gaussian pure
dephasing �Figs. 3 and 4�.

�AP� The band-limited interaction IA. Poissonian pure
dephasing �Fig. 4�.

�A� The band-limited interaction IA. Isolated reference
case �Fig. 3�.

�BG1� The linear �r=s=1� interaction IB. Gaussian pure
dephasing �Figs. 5–7�.

�BP1� The linear �r=s=1� interaction IB. Poissonian pure
dephasing �Fig. 6�.

�B1� The linear �r=s=1� interaction IB. Isolated reference
case �Figs. 5 and 7�.

�BG2� The nonlinear �r=1, s=2� interaction IB. Gaussian
pure dephasing �Figs. 8–10�.

�BP2� The nonlinear �r=1, s=2� interaction IB. Poisso-
nian pure dephasing �Fig. 9�.

�B2� The nonlinear �r=1, s=2� interaction IB. Isolated
reference case �Figs. 8 and 10�.

In each case the evolution of the composite system starts
from a pure uncorrelated state ���= �k0�, where k is the initial

number of excitations of the first oscillator, which determines
the effective Hilbert space dimension of the system.

Case AG (Figs. 3 and 4). In Fig. 3 the negativity, HS-
participation number and effective HS rank of the evolving
state in the presence of the bath is compared to the corre-
sponding unitary evolution �case A�. The amplitude of the
negativity in the isolated case grows without bounds as the
effective Hilbert space dimension k increases. Once the bath
is introduced the amplitude of the negativity saturates to a
value independent of k. On the other hand, both the HS-
participation number and the effective HS rank of the evolv-
ing state show that the total correlations grow without
bounds when the effective Hilbert space dimension of the
system increases. It is interesting to note the qualitative dif-
ference, most obvious in the unitary evolution �dashed lines�,
between the dynamics of the HS-participation number and
the effective HS rank on the shorter time scale, correspond-
ing to the inverse frequency of the oscillators �−1. While the
HS-participation number is smooth on that scale, the effec-
tive HS rank displays oscillations which follow closely after
the corresponding dynamics of the negativity.
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FIG. 3. �Color online� The negativity, the effective HS rank, and
the HS-participation number of the evolving density operator: cases
AG �solid lines� and A �dashed lines�. In both cases �1=�2=�,
�1=�2=�, with ��2= �1/3��= �1/15�� in case AG and �=0 in
case A. Initial state ���= �k0�, with k=4,6 , . . . ,14.
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FIG. 4. �Color online� The negativity, the local energies and the
HS-participation number of the density operator: cases AG and AP.
Parameters: �1=�2=�, �1=�2=� in both cases, ��2=0.125�
=0.025� in AG �solid lines�, and �= �1/15��= �1/75��, �=2� /7
in AP �dashed lines�. Initial state ���= �k0�, with k=4,6 , . . . ,14.
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FIG. 5. �Color online� The negativity, the effective HS rank, and
the HS-participation number of the evolving density operator: cases
BG1 �solid lines� and B1 �dashed lines�. In both cases �1=�2=�;
in the BG1 case �1=�2=�, ��2= �1/3��= �1/15��; in the B1 case
�1=�2=0. Initial state ���= �k0� for k=4,6 , . . . ,24.
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FIG. 6. �Color online� The negativity, the local energies, and the
HS-participation number of the density operator: cases BG1 and
BP1. Parameters: �1=�2=�, �1=�2=� in both cases; ��2

= �1/16��= �1/80�� in BG1 �solid lines�; and �= �1/10��
= �1/50��, �=2� /7 in BP1 �dashed lines�. Initial state ���= �k0�,
with k=4,6 , . . . ,18.
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Case AP. Figure 4 compares the dynamics of correlations
in case AP to case AG. The relative strength of couplings to
different types of environments is chosen to match the time
scales of the local energies dephasing in both cases. It can be
seen that in contrast to case AG both the negativity and the
HS-participation number in case AP increase without bounds
as the effective Hilbert space dimension grows similarly to
the corresponding unitary evolution displayed in Fig. 3.

Case BG1 (Figs. 5–7). In Fig. 5 the negativity, HS-
participation number, and effective HS rank of the evolving
state in the presence of the bath is compared to the corre-
sponding unitary evolution �case B1�. The amplitude of the
negativity in the isolated case grows without bounds as the
effective Hilbert space dimension k increases. In the bath-on
case the amplitude of the negativity is obviously restricted
but the quantitive conclusions are better drawn from Figure 7
�see below�. Both HS-participation number and effective HS-
rank display the growth of the total correlations without

bounds with the effective Hilbert space dimension of the
system. Note the qualitative difference in dynamics of the
two measures.

Figure 7 displays the maximal values of the negativity
and the HS-participation number obtained in cases BG1, B1,
and BP1 as functions of the effective Hilbert space dimen-
sion k. It is seen that in the B1 case the squared negativity
and the HS-participation number scale linearly with k in
compliance with the calculation in Appendix B. The same
scaling is found in case BP1. On the other hand, the nega-
tivity in the BG1 case scales as a fourth root of the effective
Hilbert space dimension. The corresponding HS-
participation number measuring the total correlations scales
as k2/3.

Case BP1. Figure 6 compares the dynamics of correla-
tions in case BP1 to case BG1. The relative strength of cou-
plings to different types of environments is chosen to match
the local energies dephasing rates. From this figure and Fig.
7 it can be seen that in contrast to case BG1 both the nega-
tivity and the HS-participation number in case BP1 follow a
dynamical pattern identical to the corresponding unitary
evolution.
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FIG. 7. �Color online� Negativity and HS-participation number
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first �in time� maximum in Fig. 5 for BG1 �solid line� and B1
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FIG. 8. �Color online� The negativity, the effective HS rank, and
the HS-participation number of the evolving density operator: case
BG2 �solid lines� and B2 �dashed lines�. In both cases 2�1=�2

=�; in case BG2, �1�1
2=�2�2
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=�2=0. Initial state ���= �k0� for k=4,6 , . . . ,28.
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FIG. 9. �Color online� The negativity, the local energies, and the
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Case BG2 (Figs. 8–10). In Fig. 8 the negativity, HS-
participation number and effective HS rank of the evolving
state in the presence of the bath is compared to the corre-
sponding unitary evolution �case B2�. For a nonlinear inter-
action both the amplitudes and time scales of the dynamics
depend on the initial state. As a consequence, the pattern of
behavior changes with the effective Hilbert space dimension.
This makes it difficult to compare the evolutions correspond-
ing to different k. Comparing the open to the closed unitary
evolutions for a fixed k, it is seen that the global dynamics of
the negativity is much stronger affected by the bath than the
dynamics of the total correlations. For example, the total
correlations may grow in the open dynamics similarly to the
unitary case, while the negativity at this time is decaying in
sharp contrast to the corresponding unitary behavior.

A possible way to compare values of the negativity and
the total correlations at different k is to measure the values
observed at the first maximum in the evolutions of these
quantities. These measurement are displayed in Fig. 10. To
understand the scaling, the negativity �squared to fit the lin-
ear dependence� and the HS-participation number obtained
in cases BG2, B2, and BP2 are plotted as functions of the
effective Hilbert space dimension k. It is found that the nega-
tivity scales with 
k while the HS-participation number scale
linearly with k.

Case BP2. Figure 9 compares the dynamics of correla-
tions in case BP2 to case BG2. The relative strength of cou-
plings to different types of environments is chosen to match
the local energies dephasing rates. The negativity and the
HS-participation number in case BP2 follow a dynamical
pattern identical to the corresponding unitary evolution dis-
played in Fig. 8. See also Fig. 10.

V. SUMMARY AND CONCLUSIONS

A variety of open interacting bipartite systems were inves-
tigated in order to characterize restrictions, imposed by cou-
pling to local environments, on the generation of classical
and quantum correlations.

The extent of the generated quantum correlations is deter-
mined by the interplay of two competing forces: the interac-
tion, leading to development of entanglement, and the local
decoherence, inducing a decay of entanglement. The relative
magnitudes of the local decoherence rates and the cutoff fre-
quency of the interaction in the effective Hilbert space of the
composite system determines the relative size of
decoherence- and interaction-dominated regions of the den-
sity operator in local robust states basis. The presence of the
decoherence-dominated regions constrains the structure of
the evolving composite density operator, restricting the ex-
tent of entanglement, generated by the interaction.

The character of restriction depends on the type of bath
and the type of the interaction. The two different paradigms
of the dephasing, the Poissonian and the Gaussian, lead to
very different correlation dynamics. In models with band-
limited decoherence such as the Poissonian pure dephasing
model, either the decoherence or the interaction dominates
the dynamics, depending on the relative strength of the cou-
pling constants and irrespective of initial state. Numerical

calculations performed on a bipartite system of two interact-
ing harmonic oscillators, coupled to local Poissonian baths,
support this conclusion.

Open systems with Gaussian pure dephasing belong to a
different class of models. This class is characterized by un-
bounded growth of the decoherence time scales with the ef-
fective Hilbert space dimension of the system. As a conse-
quence, constrains on the structure of evolving state and
restriction on the extent of entanglement are generally ex-
pected. Still the precise character of the restriction depends
on the type of interaction between the subsystems. Coupling
local Gaussian environments to subsystems with band-
limited interaction between them, imposes an upper bound
on the extent of generated entanglement, which is indepen-
dent of the effective Hilbert space dimension of the system.
As a consequence, asymptotically, i.e., at sufficiently large
effective dimension, the generated entanglement is negli-
gible, compared to entanglement generated in the corre-
sponding unitary dynamics. Interactions which are not band-
limited generally produce extensive entanglement,
notwithstanding the type of local environment. Nonetheless,
in models with local Gaussian environments the scaling of
entanglement with the effective dimension is limited by the
local decoherence. The precise limit depends on the nonlin-
earity of the interaction. In the model of two nonlinearly
interacting harmonic oscillators stronger nonlinearity implies
weaker bounds on the generated entanglement. When the
nonlinearity exceeds some maximal value no restriction on
the extent of entanglement is expected. Numerical calcula-
tions support these predictions.

Estimation of bounds on negativity in the evolving state
was based on analysis of the structure of the density matrix,
in particular local robust states bases. Relating the negativity
to the structure of the density operator was facilitated by the
observation that the evolving states are Schmidt-correlated
due to particular conservation laws observed by the interac-
tions. The corresponding Schmidt bases are built of local
robust states selected by local purely dephasing
environments—the local energy bases. Since the presence of
exact conservation laws is nongeneric in physical models, it
should be noted that numerical evidence shows that the
qualitative picture presented above is robust.

Dynamics of the total correlations was investigated nu-
merically to compare with the corresponding dynamics of
the entanglement. It was found that evolution of the total
�and, as a consequence, classical� correlations display a dif-
ferent dynamical pattern. In the band-limited interaction
model, the amplitude of the total correlations grows without
bounds with the effective Hilbert space dimension, while the
negativity tends to an asymptotic behavior independent of
the effective dimension. In the linear interaction model,
though the amplitudes of both the quantum and the total
correlations grow without bounds with the effective Hilbert
space dimension, the total correlations scale with a higher
power of the dimension. In the nonlinear interaction, a com-
parison is impeded by the fact that the evolution of both the
entanglement and the total correlations display a variety of
time scales. Nonetheless, inspection of the numerical evi-
dence shows that the total correlations always scale with a
higher power of the effective Hilbert space dimension. These
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findings can be informally interpreted as a trade off between
the classical and quantum correlations: since the total corre-
lations are �relatively� unaffected by the environment, re-
striction on the entanglement generation must be “compen-
sated” by the growth of the classical correlations.

Considering the restriction on the generation of entangle-
ment, a natural question arises: is the observed restriction
substantial, i.e., is the given partition of the composite sys-
tem meaningful? When can a composite systems be regarded
as approximately disentangled? The answer depends on the
definition of the relevant scale of a measure of entanglement
in the evolving system. Is the scale unity or some power of
the effective Hilbert space dimension or neither?

One possibility is to compare the entanglement, generated
in the open evolution to the entanglement, generated in the
corresponding unitary evolution. Numerical evidence ob-
tained in the present study shows that entanglement is always
relatively restricted in the open system dynamics. In some
cases, such as the Gaussian pure dephasing, it can even be
negligible in asymptotically large Hilbert space dimensions.
This comparison elucidates the role of the decoherence in
constraining the generation of the quantum correlations.
Nevertheless, the magnitude of the entanglement generated
in a particular open evolution may still be large in some
absolute sense.

An alternative scale of entanglement is set by the maxi-
mal entanglement compatible with the effective Hilbert
space dimension. The results of the present study show that
in some models, such as the Gaussian pure dephasing and
weakly nonlinear or band-limited interactions, coupling to
local environments does the job, i.e., it restricts the generated
entanglement to bounds, negligible compared to the maximal
compatible entanglement. Still, in all cases apart from a
band-limited type of the interaction, entanglement, generated
on the interaction time scale in the open system evolution,
grows without bounds with the effective Hilbert space di-
mension. As a consequence, this scale may become irrel-
evant in large effective Hilbert dimensions, due to a limited
experimental resolution.

To conclude, common models of local decoherence do not
provide a universal pathway to an approximately disen-
tangled evolution of a bipartite composite system in the pres-
ence of interaction. It follows that, contrary to expectations,
coupling to local environments does not generally validate
partition of composite quantum systems.
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APPENDIX A: THE SCHMIDT RANK AND
THE HS-SCHMIDT RANK

The definition of the Schmidt rank of the bipartite com-
posite state �3,43� is reviewed. Let ��� be a state in the com-

posite Hilbert space H12=H1 � H2. There exist a following
representation �a Schmidt decomposition� of the state: ���
=�ici�i�1 � �i�2, where �i�1,2 is an orthonormal basis in the
Hilbert space H1,2. While a Schmidt decomposition is not
unique, the set of nonvanishing coefficients ci is invariant
�modulo irrelevant phases� under the local unitary transfor-
mations and is characteristic of the state ���. This set is
shown to be the square root of the spectrum of the reduced
density operator of either subsystem. The number of nonva-
nishing coefficients ci is called the Schmidt rank ���� of the
state and equals the rank of the reduced density operator of
either subsystem: ����=rank{Tr1��̂12�}. To calculate
the Schmidt rank of a state expressed in an arbitrary
tensor product basis ���=�ijcij�i�1�j�2, one calculates the rank
of the matrix �2=C†C, where Cij =cij: Tr1��̂12�
=��n,i,j,k,l�cijckl

* 
in
kn�j�l�=��i,j,l�cijcil
* �j�l�=��j,l���2�lj�j�l�.

The Schmidt rank characterizes the extent of correlations
present in the state. The uncorrelated �product� state has �
=1 but generally �����min�dim�H1� ,dim�H2��. The maxi-
mally correlated state has ����=min�dim�H1� ,dim�H2�� and
ci=cj, ∀i , j. Generally, some of the coefficients ci are much
smaller than others and as a consequence dropping the cor-
responding contributions to the Schmidt decomposition does
not lead to an observable effect. This suggests a definition of
the physically reasonable effective Schmidt rank �9� ��:
�����������, with ����=�i�I�

ci�i�1 � �i�2, where I� is the
smallest set of indices such that 	���− ����	��. An alterna-
tive measure is a participation number �63� �����1/Tr��̂2

2�
with �̂2=Tr1��̂12�. The participation number of a state, char-
acterized by M equal substantial contributions to its Schmidt
decomposition is seen to be M, which motivates the
definition.

A mixed state displays both quantum �entanglement� and
classical correlations. The extent of the total correlations can
be characterized by the Schmidt rank of a density operator.
With a slight abuse of terminology the term HS-Schmidt
rank �HS indicating the Hilbert-Schmidt space� or just HS
rank is adopted. The definition of the HS rank views the
density operator of a composite system as a �unnormalized�
pure state �“superket” �10�� in the Hilbert-Schmidt space of
system operators. The Schmidt rank of the corresponding
“superket” defines the HS rank �denoted �̃��̂�� of the density
operator. The notions of the effective Schmidt rank ����� and
the participation number ���� can be transferred to the HS
rank of the density operator. For brevity, the corresponding
measures of the total correlations are termed effective HS
rank and HS-participation number and denoted by �̃���̂� and
�̃��̂�, respectively.

The calculation of the HS rank proceeds as follows.
Let �̂12=��i,j,k,l��ijkl�ij�kl� be a density operator of the
composite system. In the superket notation it has the form
��̂�12=��i,j,k,l��ijkl	ij�kl � �. The corresponding density super-
operator is R12��̂�=��i,j,k,l,i�,j�,k�,l���ijkl�i�j�k�

* 	ij�kl � ��i�j��
�k�l�	 and the reduced density superoperator is

R2��̂� = Tr1�R12��̂��

= ��i,j,k,l,i�,j�,k�,l�,m,n� �ijkl�i�j�k�l�
*

�
mi
nk
mi�
nk�	j�l���j��l�	
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= ��j,l,j�,l�� Rjlj�l�	j�l���j��l�	

where Rjlj�l�=�ik�ijkl�i�j�k�l�
* . The HS rank �̃��̂� of the density

operator �̂ is �̃��̂�=rank�R2��̂��. The effective HS rank and
the HS-participation number are calculated similarly.

Finally, note that �̃������=����2. In fact,

��
2 = �rank��̂2��2 = rank��̂2 � �̂2

T�

= rank���i,j,l,k,j�,l�� aijail
*akj�akl�

* �j�l� � �l��j���

= rank���i,j,l,k,j�,l�� �ijkl��ilkj�
* �j�l� � �l��j���

= rank���j,l,j�,l�� Rjl�lj��j�l� � �l��j���

= rank���j,l,j�,l�� Rjlj�l��j�j�� � �l�l���

= rank���j,l,j�,l�� Rjlj�l��jl�j�l��� = �̃�������

.

APPENDIX B: CALCULATION OF THE EFFECTIVE
SCHMIDT RANK OF THE COMPOSITE STATE OF TWO

LINEARLY INTERACTING HARMONIC
OSCILLATORS

A system of two linearly interacting harmonic oscillators

is considered with the Hamiltonian Ĥ=��â1
†â1+ â2

†â2�

+��â1
†â2+ â2

†â1� The initial state is ���0��= �0k� in the local
energies basis. The state at t�0 becomes ���t��=�n=0

k cn�k

−nn�, where cn�t�=
 k!cos��t�2n sin��t�2�k−n�

n!�k−n�! e−i�kt. The width �k of

the distribution of expansion coefficients �cn�2 is estimated at
t=� /4� for k�1. This width is a reasonable estimate for the
amplitude of the effective Schmidt rank of the state, ����
��k.

The distribution of the coefficients �cn�� /4���2= k!
2kn!�k−n�!

is peaked around n=k /2. To estimate �k it is assumed that
�k	k. �k is defined by � �2

�n2 �cn�� /4���2�n=n* =0, where n*

=k /2−�k /2. Performing the derivation under the Stirling ap-
proximation for the factorials �valid at k�1� leads to

k
n*�k−n*� =ln2� k−n*

n* �. For highly peaked distribution k−n*

n* −1	1,

therefore ln2� k−n*

n* ��� k−2n*

n* �2
. Also k

n*�k−n*� � 4
k to the leading

order in k−2n*

n* . Finally 4
k �� k−2n*

n* �2�� k−2n*

k/2
�2

= � �k

k/2
�2

from
which �k=
k and ������k=
k. As follows from the rela-
tion �̃�������=����2, proved in Appendix A, the amplitude
of the effective HS rank scales as k.

The obtained result can be used to estimate the amplitude
of the negativity in the pure state evolution. In fact
N����t����t���= 1

2 ���ncn�2−1� by Ref. �46�. Taking cn= 1

�k

= 1

4k for the purpose of scaling we obtain N����� /4���

���� /4����= 1
2

k for the amplitude of the negativity.
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