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A reciprocating quantum refrigerator is studied with the purpose of determining the limitations of cooling to
absolute zero. The cycle is based on demagnetization and magnetization of a working medium. We find that if
the energy spectrum of the working medium possesses an uncontrollable gap, and in addition there is noise on
the controls, then there is a minimum achievable temperature above zero. The reason is that even a negligible
amount of noise prevents adiabatic following during the demagnetization stage. This results with a minimum
temperature, Tc�min��0, which scales with the energy gap. The refrigerator is based on an Otto cycle where
the working medium is an interacting spin system with an energy gap. For this system the external control
Hamiltonian does not commute with the internal interaction. As a result during the demagnetization and
magnetization segments of the operating cycle the system cannot follow adiabatically the temporal change in
the energy levels. We connect the nonadiabatic dynamics to quantum friction. An adiabatic measure is defined
characterizing the rate of change of the Hamiltonian. Closed-form solutions are found for a constant adiabatic
measure for all the cycle segments. We have identified a family of quantized frictionless cycles with increasing
cycle times. These cycles minimize the entropy production. Such frictionless cycles are able to cool to Tc=0.
External noise on the controls eliminates these frictionless cycles. The influence of phase and amplitude noise
on the demagnetization and magnetization segments is explicitly derived. An extensive numerical study of
optimal cooling cycles was carried out which showed that at sufficiently low temperature the noise always
dominated restricting the minimum temperature.
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I. INTRODUCTION

Quantum thermodynamics is devoted to the study of ther-
modynamical processes within the context of quantum dy-
namics. The thermodynamic tradition of learning by example
is translated to establishing quantum analogs of heat engines.
These studies unravel the intimate connection between the
laws of thermodynamics and their quantum origins �1–22�.
In this tradition the present study is directed toward the
quantum study of the third law of thermodynamics �23–26�,
in particular the unattainability principle �27,28�: is it pos-
sible to cool a system as close as we desire to the absolute
zero Tc=0 or alternatively cooling stops at some finite tem-
perature Tc�0? The present study addresses this issue based
on a four-stroke reciprocating quantum refrigerator.

Reciprocating refrigerators operate by a working medium
shuttling heat from the cold to the hot reservoir. The task is
carried out by a controlled dynamical system. A change in
the Hamiltonian of the system is accompanied by a change in
the internal energy. Upon contact with the cold side the in-
ternal energy of the working medium is forced to be lower
than the equilibrium energy at Tc—the cold bath tempera-
ture. Only under these conditions heat will flow from the
cold bath to the working medium. A reciprocal relation is
required on the hot side. Explicitly a quantum refrigerator is
studied where the control of temperature is governed by ma-
nipulating the energy levels of the system.

The main issues to be addressed are
�i� What are the restrictions imposed by the working me-

dium?
�ii� What are the conditions for optimizing the cooling

power when Tc→0?
�iii� Is there a minimum temperature above the absolute

zero?

To gain insight on these issues a reverse Otto cycle is
considered where the working medium consists of interact-
ing spin system. The magnetization and demagnetization
stages are carried out by varying an external magnetic field
which alters the energy levels of the working medium. Such
a model is a simplified version of adiabatic demagnetization
refrigerator �ADR� �29–31�. These refrigerators have found
not only use in cooling detectors to very low temperatures in
space missions but also in an attempt to replace the existing
technology in home appliances �32–34�.

The present paper is a comprehensive account of a quan-
tum refrigerator following a brief report �35�. The approach
is based on the analysis of quantum dynamical thermody-
namical observables. It is in the spirit of a series of studies
on first-principles four-stroke quantum engines operating in
finite time �36–44�. These studies established that the model
engines display the irreversible characteristics of common
finite-power engines �45�.

The key to the performance is the working medium. A
quantum working medium possesses a Hamiltonian that can
be controlled externally. Typically external control influences
only part of the Hamiltonian operator,

Ĥ = Ĥint + Ĥext��� , �1�

where Ĥint is the internal part of the Hamiltonian which is
responsible for the irreducible gap in the energy spectrum.

Ĥext��� is the control Hamiltonian where �=��t� is the time-
dependent external control field. Generically, the internal and

external parts do not commute �Ĥint ,Ĥext��0. This has a
profound effect on the adiabatic segments of the refrigerator

since then �Ĥ�t� ,Ĥ�t����0. A state which was initially pre-
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pared to be diagonal in the temporary energy eigenstates can-
not follow adiabatically the changes in energy levels induced
by the control. The result is an additional power required to
execute the adiabatic segment termed quantum friction �40�.
This friction has been found to limit the performance of the
heat engines �41–44�. In quantum refrigerators the frictional
heating in the expansion-demagnetization segment limits the
minimal temperature of the working medium. This in turn
puts a restriction on the minimum temperature of the bath
that heat can be extracted from. This means that a refrigera-
tor that can pump heat up to the absolute zero has to be
frictionless.

A good characterization of the deviation from adiabaticity
is the difference between the von Neumann entropy of the
state Svn=−tr��̂ ln �̂� and the energy entropy defined by the
projections on the energy eigenstate SE=−�pj ln pj, where
pj is the population of energy state j. Equality is obtained
only for perfect adiabatic following, �Ĥ�t� ,Ĥ�t���=0 �41�.

One obvious solution to a frictionless operation is perfect
adiabatic following i.e., at each time the system is diagonal
in the temporary energy eigenstates. The drawback of such
an approach is that it requires ever increasing time to execute
this move when the temperature of the cold bath approaches
Tc=0. Demanding that only at the initial and final times the
system is diagonal in the energy representation leads to ad-
ditional opportunities for frictionless solutions. For a work-
ing medium consisting of harmonic oscillators such solutions
have been found �46,47� which are characterized by a fast
finite expansion time. If negative frequencies are permis-
sible, this time can be reduced further �48�. For these models
where the energy gap can be controlled to follow the cold
bath temperature Tc, the absolute zero seems attainable.

The present study explores a different working medium
which possesses an uncontrollable finite gap in the energy-
level spectrum between the ground and first excited states.
We find that the absolute zero temperature is unattainable
due to noise in the control. The essentials of the refrigerator
cycle are described in Sec. II. In Sec. III a family of friction-
less solutions for this cycle is developed. These solutions
also serve as a basis to study the influence of noise on the
controls described in Sec. IV. Our basic finding is that the
energy gap combined with unavoidable quantum noise will
lead to a finite minimal temperature �Sec. V�. In addition we
have carried out numerous simulations of refrigeration cycles
with linear as well as optimized scheduling of the control
��t�, leading to a broader understanding of the limitations on
cooling �Sec. VI�. The summary and conclusions are in Sec.
VII. The details of the derivations of optimal adiabatic fol-
lowing and the noise propagator are in the appendixes.

II. THE QUANTUM HEAT PUMP CYCLE OF OPERATION

The working medium in the present study is composed of
an interacting spin system. Equation �1� is modeled by the
SU�2� algebra of operators. The model is realized by a sys-
tem of two coupled spins where the internal interaction is
described by

Ĥint = 1
2�J��̂x

1
� �̂x

2 − �̂y
1

� �̂y
2� � �JB̂2, �2�

where �̂ represents the spin-Pauli operators and J scales the
strength of the interparticle interaction. For J→0, the system

approaches a working medium with noninteracting atoms
�39�. The external Hamiltonian represents interaction of
spins with an external magnetic field,

Ĥext = 1
2���t���̂z

1
� Î2 + Î1

� �z
2� � ��t�B̂1. �3�

The SU�2� is closed with B̂3= 1
2 ��̂y

1
� �̂x

2+ �̂x
1

� �̂y
2� and

�B̂1 , B̂2��2iB̂3.
The total Hamiltonian modeling �Eq. �1�� then becomes

Ĥ = �„��t�B̂1 + JB̂2… . �4�

The adiabatic energy levels, the eigenvalues of Ĥ�t�, are �1
=−�� , �2/3=0 , �4=��, where �=	�2+J2. For J�0 there
is a zero-field splitting, an irreducible gap between the
ground- and excited-state levels. Equation �4� contains the
essential features of the Hamiltonian of magnetic materials
�29�.

The dynamics of the quantum thermodynamical observ-
ables are described by completely positive maps within the
formulation of quantum open systems �49–51�. The dynam-
ics is generated by the Liouville superoperator L studied in
the Heisenberg picture,

dÂ

dt
=

i

�
�Ĥ,Â� + LD�Â� +

�Â

�t
, �5�

where LD is a generator of a completely positive Liouville
superoperator. This formalism allows a reduced description
of the working medium, with the environment appearing
only implicitly.

The cycle studied is composed of two isomagnetic seg-
ments, termed isochores where the working medium is in
contact with the cold and hot baths and the external control
field � is constant. In addition, there are two segments
termed adiabats where the external field ��t� varies and with
it the energy-level structure of the working medium. This
cycle is a quantum analog of the Otto cycle �40�. Each seg-
ment is characterized by a quantum propagator Us. The
propagator maps the initial state of the working medium to
the final state on the relevant segment. The four strokes of
the cycle in analogy with the Otto cycle �see Fig. 1� are

�i� hot isomagnetic (isochore) A→B : the field is main-
tained constant �=�h; the working medium is in contact
with the hot bath of temperature Th. LD leads to equilibrium
with heat conductance �h, for a period of �h. The segment
dynamics is described by the propagator Uh.

�ii� demagnetization (expansion) adiabat B→C : the field
changes from �h to �c in a time period of �hc. LD=LN rep-
resents external noise in the controls. The propagator be-
comes Uhc which is the main subject of study.

�iii� cold isomagnetic (isochore) C→D : the field is main-
tained constant �=�c; the working medium is in contact
with the cold bath of temperature Tc. LD leads to equilibrium
with heat conductance �c, for a period of �c. The segment
dynamics is described by the propagator Uc.

�iv� magnetization (compression) adiabat D→A : the
field changes from �c to �h in a time period of �ch; LD
=LN represents external noise in the controls. The propagator
becomes Uch.
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The product of the four propagators Us is the cycle propa-
gator chosen at point A,

Ucyc = UchUcUhcUh. �6�

Eventually, independent of the initial condition, after a few
cycles, the working medium will reach a limit cycle charac-
terized as an invariant eigenvector of Ucyc with eigenvalue 1

�one� �42�. The characteristics of the refrigerator are there-
fore extracted from the limit cycle.

III. QUANTUM THERMODYNAMICAL OBSERVABLES
AND THEIR DYNAMICS

To facilitate the study of the dynamics of the cooling
cycle, a representation of the state �̂ and the thermodynami-
cal observables is required. The orthogonal set of time-
independent operators B̂i is closed to the dynamics. As a
result they can supply a complete vector space to expand the
propagators U and �̂. A thermodynamically oriented time-
dependent vector space which directly addresses the issue of

adiabaticity is superior. This set includes the energy Ĥ and
two additional orthogonal operators:

Ĥ = ���t�B̂1 + �JB̂2, L̂ = − �JB̂1 + ���t�B̂2,

Ĉ = ���t�B̂3. �7�

To uniquely define the state of the system �̂ the original set is

supplemented with two operators: V̂=��B̂4= �
2 ��Î1 � �̂z

2

− Î2 � �̂z
1� and D̂=��B̂5=���̂z

1
� �̂z

2. With this operator
base the state �̂ can be expanded as

�̂ =
1

4
Î +

1

2����2
�Ĥ�Ĥ + �L̂�L̂ + �Ĉ�Ĉ +
1

2
�V̂�V̂ +

1

2
�D̂�D̂ ,

�8�

where V̂ and D̂ commute with Ĥ. The equilibrium value of

�V̂� is zero, and once it reaches equilibrium it does not
change during the cycle dynamics. As a result the state �̂ can
be described in the energy representation by four expectation
values:

�̂e =
1

4�
1 +

1

��
�D − 2E� 0 0

2

��
�L + iC�

0 1 −
1

��
D 0 0

0 0 1 −
1

��
D 0

2

��
�L − iC� 0 0 1 +

1

��
�D + 2E�

� , �9�

where E= �Ĥ�, L= �L̂�, C= �Ĉ�, and D= �D̂�. From Eq. �9� it
is clear that when L=C=0, �̂e is diagonal in the energy rep-
resentation, then ��̂�t� ,Ĥ�t��=0.

A. Dynamics on the hot and cold isomagnetic segments
(isochores)

The dynamics on the isomagnetic isochores is dominated
by the approach to equilibrium with the hot and cold baths.

The equation of motion is derived from Eq. �5� and the
Hamiltonian �4�, where ��t� is constant either �h on the hot
side or �c on the cold side. The dissipative part LD has
Lindblad’s form �49� with parameters chosen to lead to ther-
mal equilibrium. The details of the derivation can be found

in Ref. �41� with respect to the set B̂i. The equation of mo-
tion for the thermodynamic set becomes
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FIG. 1. �Color online� Refrigerator cycle in the frequency en-
tropy plane. The von Neumann entropy Svn=−tr��̂ ln �̂� �ABCD
rectangle� as well as the energy entropy SE=−�pi ln pi is shown �pi

is the population of energy level i�. The hot and cold isotherms
Seq�T� are indicated. On the adiabats the energy-level spacings
change from ��h to ��c. The demagnetization adiabat and the
magnetization adiabats revolve by exactly seven periods. The adia-
bats are frictionless since Svn=SE at the beginning and end of the
segment. On the isochores the energy-level spacing remains con-
stant and the entropy changes due to change in population. The
cycle parameters are �J=2, Tc=0.18, Th=0.24, ��c=0.1, ��h

=3.325, �c=10.54, �h=9.741, �hc=�ch=12.81, Qc /�=2.16	10−5,
and 
Su /�=5.4	10−5.
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d

dt�
Ĥ

L̂

Ĉ

D̂

Î

� =�
− � 0 0 0 �Eeq

0 − � − � 0 0

0 � − � 0 0

2

��
�Eeq 0 0 − 2� 0

0 0 0 0 0

��
Ĥ

L̂

Ĉ

D̂

Î

� ,

�10�

where �=�++�− and detailed balance requires
�+ /�−=e−��/kBT. The equilibrium energy becomes
Eeq=����+−�−� /�=���e−2��/kBT−1� /Z, where Z=1
+2e−��/kBT+e−2��/kBT. The temperature T is either Tc or Th.

Equation �10� factorizes; Ĥ decouples from L̂ and Ĉ.
Equation �10� can be integrated leading to

Ĥ�t� = e−�t�Ĥ�0� − EeqÎ� + EeqÎ ,

L̂�t� = e−�t�L̂�0�cos �t − Ĉ�0�sin �t� ,

Ĉ�t� = e−�t�Ĉ�0�cos �t + L̂�0�sin �t� ,

D̂�t� = D̂�0�e−2�t +
1

��
�Ĥ�0�Eeq�e−�t − e−2�t�

− Eeq
2 �e−�t − 1�Î� . �11�

From Eqs. �11� the propagators Uc and Uh can be con-
structed.

B. Dynamics on the magnetization and demagnetization
adiabats

In general the dynamics on the demagnetization adiabat is

generated by L=LH+LN, where LH= i
� �Ĥ , ·� and Ĥ�t� is the

time-dependent Hamiltonian �Eq. �4��. The external noise
generator LN is defined and analyzed in Sec. IV. To follow
the dynamics the equations of motions for the dynamical

observables have to be solved. For the static set B̂1 , B̂2 , B̂3
they become

d

dt�B̂1

B̂2

B̂3

��t� = � 0 0 J

0 0 − �

− J � 0 ��B̂1

B̂2

B̂3

� , �12�

and �=��t� is the time-dependent scheduling control func-
tion. More insight is obtained by shifting to the equation of

motion for the time-dependent set Ĥ, L̂, and Ĉ. The solution
is represented by the propagators Uhc and Uch. The integra-
tion to obtain Uhc and Uch will be carried out with respect to
a new time variable d�=�dt,

d

�dt�Ĥ

L̂

Ĉ
��t� =�

�̇

�2
−

J�̇

�3 0

J�̇

�3
�̇

�2
− 1

0 1
�̇

�2

��Ĥ

L̂

Ĉ
� . �13�

The ability of the working medium to follow the energy
spectrum is defined by the adiabatic measure

 =
J�̇

�3 . �14�

We find that  is a major parameter that characterizes the
dynamics on the adiabats. When =0 the propagator factor-

izes; the dynamics of Ĥ is independent of the coupled pair L̂
and Ĉ. A large  will cause large nonadiabatic changes cou-

pling Ĥ with L̂ and Ĉ �Eqs. �13� and �18��. In Appendix A,
it is shown that constant  minimizes the accumulated nona-
diabatic transitions �defined in Eq. �19��.

Constant  has the peculiarity that Eq. �13� can be inte-
grated leading to a closed-form solution for the demagneti-
zation and magnetization propagators Uhc and Uch. The con-
sequence of stationary  is a particular scheduling function
of the external field ��t� with time,

��t� =
Jf

	1 − f2
, ��t� =

J
	1 − f2

, �15�

where f�t� is a linear function of time: fhc�t�=��t� /��t�
= �t /�hc���c /�c−�h /�h�+�h /�h. Swapping h for c in f�t�
leads to the equivalent expression for the magnetization
adiabat.

The adiabatic parameter and the time allocated to the
adiabat obey the reciprocal relation

hc =
Khc

�hc
, �16�

where Khc= 1
J ��c /�c−�h /�h�. Swapping c with h leads to

ch and then Kch=−Khc.
The solution is facilitated with the time variable �, d�

=�dt. The final value of �hc becomes �hc=�hc�1 /Khc��hc,
where �hc= (arcsin��c /�c�−arcsin��h /�h�) and 0���

− �
2 . Equation �13� is solved by noticing that the diagonal part

is a unit matrix multiplied by a time-dependent scalar. There-
fore, we seek a solution of the type Uhc=U1U2, where
�U1 ,U2�=0. The integral of the diagonal part of Eq. �13�
becomes

U1 = exp
�
0

�hc �̇

�
dt1̂ =

�c

�h
1̂ , �17�

which can be interpreted as the scaling of the energy levels
with the variation in �.

To integrate U2 the nondiagonal parts of Eq. �13� are di-
agonalized, leading to the eigenvalues 0 ,−i	q , i	q, where
q=	1+2. Finally, the propagator becomes
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U2 =�
1 + 2c

q2 −
s

q

�1 − c�
q2

s

q
c −

s

q

�1 − c�
q2

s

q

2 + c

q2

� , �18�

where s=sin�q�� and c=cos�q��. The propagator U2 in-

duces periodic mixing of Ĥ with L̂ and Ĉ. As a result a
diagonal �̂e �cf. Eq. �9�� will develop nondiagonal terms. To

characterize the deviation from perfect factorization of Ĥ
from L̂ and Ĉ, we define an adiabaticity measure � as

� = 1 − �U1
−1�Uhc�1,1� , �19�

where U1
−1= ��h /�c�1̂ is introduced to correct for the energy

scaling. In the present context of noiseless dynamics and
constant , �=1−U2�1,1�. When �=0 there is complete fac-
torization. As will be described in Sec. V, ��0 determines
the minimum temperature.

The adiabatic limit is described by →0. Then Eq. �18�
converges to the identity operator. These are the perfect adia-
batic following conditions where �=0. In general Eq. �18�
describes a periodic motion of Ĥ, L̂, and Ĉ. Each period is
defined by

q� = 2�l, l = 0,1,2, . . . , �20�

where l is the winding number. At the end of each period U2
restores to the identity matrix. These are the periodic fric-

tionless conditions where �=0. For intermediate times �Ĥ� is
always larger than the frictionless value ��0. The amplitude
of this periodic dynamics decreases when  becomes smaller
�cf. U2�1,1� in Eq. �18��. Constant  leads to the minimum
of � in Eq. �19� �cf. Appendix A�.

The frictionless conditions define a quantization condition
for the adiabatic parameter ,

 = �
2�l

�hc
2

− 1�−1/2

. �21�

Examining Eq. �21� we find that there is no solution for l
=0. The first frictionless solution is defined by l�	�hc /2�.
This leads to a minimum demagnetization time �cf. Eq. �16��,

�hc�min� � Khc	
 2�

�hc
2

− 1. �22�

From Eq. �22� we can interpret that the minimal frictionless
demagnetization time scales as �hc�min��

1
J since it has a

weak dependence on �c and �h. The special closed-form
solution can be employed in a piecewise fashion to analyze
other scheduling functions ��t�. In general we expect similar
quantization of the solutions.

The main observation of this section is the existence of
families of periodic frictionless solutions where the energy
restores to its adiabatic value every period. Figure 1 shows
frictionless magnetization and demagnetization adiabats. For
→0 these solutions coalesce with the adiabatic following

solutions. Table I summarizes some of the notations used.

IV. INFLUENCE OF NOISE

Any realistic refrigerator is subject to noise on the exter-
nal controls. The main point of this paper is that even an
infinitesimal amount of noise will eliminate the frictionless
solutions. The sensitivity to noise results from the require-
ment of precise control of the scheduling of the external field
��t�. To observe this effect requires an explicit quantitative
model of the noise induced by the external controls.

First we consider a piecewise process controlling the
scheduling of � in time. At every time interval, � is updated
to its new value. For such a procedure random errors are
expected in the duration of these time intervals described by
the Liouville operator LN. We model these errors as a Gauss-
ian delta correlated noise. This process is mathematically
equivalent to a dephasing process on the demagnetization
adiabat �43�. This stochastic dynamics can be modeled by a
Gaussian semigroup with the generator �51,52�,

LNp
�Â� = −

�p

�2 †Ĥ,�Ĥ,Â�‡ , �23�

which is termed phase noise. An equivalent dynamics to Eq.
�23� is also obtained in the limit of weak quantum measure-
ment of the instantaneous energy �53�. We seek a solution for
the propagator of a product type Ua=U1U2U3 where the equa-
tions of motion of U3 can be obtained from the interaction

representation. The noiseless solution has U3= 1̂. A closed-
form expression has been derived in the limit of small . The
details can be found in Appendix B. The approximate propa-
gator U3��hc� for l revolutions becomes

U3��hc� � �C − S 0

S C 0

0 0 1
� , �24�

where S=sin �l and C=cos �l. The rotation angle �l be-
comes

TABLE I. Notation and definitions.

Name Notation Comments

Compression ratio C C=
�h

�c

Reversibility R R=
Tc�h

Th�c

Adiabatic measure  = J�̇

�3

Reciprocal relation K=� Khc= 1
J �

�c

�c
−

�h

�h
�

Compression angle � �hc= �arcsin�
�c

�c
�−arcsin�

�h

�h
��

Rotation angle � �= �



Heat conductivity �=�++�−
�+

�−
=e−��/kBT

Adiabaticity � �=1−U1
−1Uhc

Phase noise �p −
�p

�2 [Ĥ , �Ĥ , Â�]

Amplitude noise �a −�a�2[B̂1 , �B̂1 , Â�]
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�l = − ��pJ ln
 ��h + �h���c − �c�
��h − �h���c + �c�

 . �25�

It is important to notice that the asymptotic value of �l is
finite when →0 �cf. Eq. �B8��. For the quantization condi-

tions when U2= 1̂ the deviation of U3 from the identity op-
erator defines �. Asymptotically as →0 and �c�J,

�min = 1 − cos��l� � 1
2�2�p

2J2 ln2�4�h/J� . �26�

A more obvious source of external noise is induced by
fluctuations in the control frequency ��t�. Such a term rep-
resents Markovian random fluctuations in the externally con-
trolled magnetic field. There will always be fluctuations
which are fast compared to 2� /�. Such noise can be de-
scribed by the Lindblad term

LNa
X̂ = − �a�2

†B̂1,�B̂1,X̂�‡ . �27�

The propagator U3 to lowest order in  factorizes. The de-
tails can be found in Appendix B. Then the U3�1,1� element
decouples from the remaining part of the propagator and be-
comes

U3�1,1� = exp�− �aJ2�
0

2�l

d�
�2���
�3���

� . �28�

Equation �28� can be integrated and since U2= 1̂ for an inte-
ger number of revolutions, then

� = 1 − U3�1,1� � 1 − e−�a�J2�h
2/3�h

2��hc. �29�

The smallest � is achieved for a one period cycle �Eq. �22��,
then �min��aJ��h

2 /�h
2�.

The phase noise and the amplitude noise have a reciprocal
relation with respect to l �cf. Fig. 11�. Phase noise is mini-
mized for large l and amplitude noise for small l. Another
possible source of noise is caused by fluctuation in the inter-

action energy Ĥint. Analysis shows that such noise will lead
to a similar expression to Eq. �29� where J2 is replaced with
�c

2. All these types of noise will lead to a minimum bath
temperature the refrigerator can pump from �cf. Eq. �36��.

V. THERMODYNAMICAL RELATIONS

The maximal efficiency �max of a heat engine is limited
by the second law to the Carnot efficiency. For the quantum
Otto-type cycle, the efficiency is limited by the ratio of the
energy-level differences in the hot and cold sides for any
spectrum that scales globally with � �41,44,54�. As a result
we obtain the series of inequalities

�max = 1 −
�c

�h
� 1 −

�c

�h
� 1 −

Tc

Th
. �30�

In the operation as a refrigerator the inequality in Eq. �30� is
reversed. This imposes a restriction on the minimum cold
bath temperature Tc,

Tc �
�c

�h
Th, �31�

where �c is limited by J, and for the limit �h�J we obtain

Tc �
J

�h
Th. �32�

On the cold side the necessary condition for refrigeration is
that the internal energy of the working medium at the end of
the demagnetization is smaller than the equilibrium energy
with the cold bath �cf. Fig. 2�,

�Ĥ�C � �Ĥ�eq�Tc� = − ��c�1 − 2e−��c/kbTc� , �33�

where �Ĥ�eq�Tc� is approximated by the low-temperature
limit ��c�kBTc. On the hot isochore the lowest-energy
point B that can be obtained is in equilibrium with Th:

�Ĥ�B� �Ĥ�eq�Th�=−��h�1−2e−��h/kbTh�. Under these condi-

tions L=C=0. The change in �Ĥ� in the demagnetization
adiabat leads to

�Ĥ�C

�c
� �1 − ��

�Ĥ�B

�h
, �34�

where �, the deviation from frictionless solutions, is defined
in Eq. �19�. Then the maximum heat that can be extracted per
cycle becomes

Qc�max� = �Ĥ�eq�Tc� − �Ĥ�C

� 2��c�e−��c/kbTc − e−��h/kbTh − 1
2�� . �35�

The condition for refrigeration is Qc�max��0. When �
�e−��h/kbTh the minimum temperature becomes the Carnot
limit �Eq. �32��. For sufficiently large �h, positive Qc�max�
�0 leads to ��2e−��c/kbTc, imposing a stronger restriction
on the minimal temperature,

Tc �
�J

− kB ln��/2�
. �36�

Due to the logarithmic dependence on the noise � the mini-
mum temperature scales linearly with the uncontrolled part
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FIG. 2. �Color online� Typical optimal cycle of refrigerator with

linear scheduling, in the �� , �Ĥ� /�� plane, eliminating the trivial

propagation U1. The isotherms �Ĥ�eq�T� corresponding to the cold
and hot bath temperatures, Tc and Th, are indicated. The cycle has

the property �Ĥ�C� �Ĥ�eq�Tc� �cf. insert�. The cycle parameters are
J=2, Tc=0.18, Th=0.24, �c=0.1, �h=3.325, �c=12.292, �h

=11.615, �hc=18.016, and �ch=5.077.
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of the energy gap �J. Equation �36� relates the minimum
temperature to �, the adiabaticity parameter.

Power optimization

The cooling power Pc is the amount of heat extracted Qc
divided by the cycle time �. For the frictionless solutions, the
energy factorizes from the other variables; therefore, the heat
extracted is obtained by considering the balance of heat and
work required to close the cycle �38,44�,

Qc = ��c
Eeq
h

�h
−

Eeq
c

�c
 �exc − 1��exh − 1�

1 − exc+xh

� 2��c�e−��h/kbTh − e−��c/kbTc�F�xc,xh� , �37�

where xc=�c�c and xh=�h�h. Optimizing the cooling power
with respect to time allocation becomes equivalent to opti-
mizing F�xc ,xh� /�cyc, where �cyc=�h+�hc+�c+�ch is the total
cycle time. For frictionless solutions the minimum time on
the adiabats �hc and �ch is described in Eq. �22�. The optimal
partitioning of the time allocation between the hot and cold
isochores is obtained when

�h�cosh��c�c� − 1� = �c�cosh��h�h� − 1� . �38�

When �h=�c the optimal time allocations on the isochores
becomes �h=�c. The total time allocation �=�iso+�adi is par-
titioned to the time on the adiabats �adi, which is limited by
the adiabatic condition, and the time �iso allocated to the
isochores.

Optimizing the time allocation on the isochores subject to
Eq. �38� leads to the optimal condition �44�

�c�cyc�cosh��h�h� − 1� = sinh��h�h + �c�c� − sinh��c�c�

− sinh��h�h� . �39�

When �h=�c�� this expression simplifies to

2x + ��adi = 2 sinh�x� �40�

�where x=�c�c=�h�h�. For small x Eq. �40� can be solved
leading to the optimal time allocation on the isochores: �c
=�h����adi /3�1/3 /�. Taking into consideration the restric-
tion on the adiabatic condition this time can be estimated to
be �c=�h�

1
� � �

J �1/3.
We can now expect two limits for the optimal cooling

power; the first is when � is sufficiently large the cycle time
�cyc will be dominated by the time on the adiabats, then for
large �c �cf. Fig. 6�,

Pc�max� � �J2e−�J/kbTc. �41�

When the heat transfer time dominates, �c��hc then

Pc�max� � �
J4/3

�2/3e−�J/kbTc. �42�

Noise on the adiabats modifies the optimal time alloca-
tion. Phase noise has its minimum for large values of l �cf.
Eq. �26��. It approaches this minimum after a few revolutions
independent of Khc. The optimum power is a compromise
between large time allocation on the adiabat to reach mini-

mize noise and small cycle time to maximize power. As a
result the scaling �adi�1 /J is still maintained; therefore, Eq.
�41� or Eq. �42� will hold. For amplitude noise the minimum
� is obtained for the minimum time frictionless solution
which also leads to the scaling of power as in Eq. �41�.

VI. SIMULATING THE CYCLE

After the segment propagators have been solved the cycle
propagator can be assembled. For constant  the cycle
propagator Ucyc has a closed-form solution. Other scheduling
functions ��t� require numerical integration of the equation
of motion �Eq. �13��. We have verified that our numerical
integration coincides with the analytical expressions when
available.

The purpose of the simulation is to determine the optimal
performance of the refrigerator. The cooling power was ex-
tracted from the limit cycle obtained by propagating the
cycle iteratively from an initial state until convergence. The
optimal cooling power was studied as a function of total
cycle time �. For a fixed cycle time the heat extracted Pc was
optimized with respect to the time allocation on each seg-
ment. A random search procedure was used for this task.

In general two types of cycles emerge and are classified
according to the cycle time. The first are sudden cycles with
very short periods �cyc�

2�
� which are characterized by a

global topology. These sudden cycles will be addressed sepa-
rately �55�. The focus of the present study are cycles with a
period comparable or longer than the internal time scale
�cyc�2� /�. The cycles of optimal cooling rate and mini-
mum temperature are of this type.

Figures 3 and 4 present a typical cycle constructed with
��t� linear in t with optimal time allocation. Figure 3 dis-
plays the entropy frequency plane. Figure 4 shows the tra-

jectory in the Ĥ, L̂, and Ĉ coordinates. The positioning of
the cycle with respect to the hot and cold isotherms shows
that it operates as a refrigerator with positive Qc. The end
point D of the cold isochore is below the equilibrium point
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FIG. 3. �Color online� Typical optimal cycle of refrigerator with
linear scheduling, with Tc�Tc

min, in the �1� �� ,SE� and �2� �� ,SVN�
planes �lower rectangle�. The isotherms Seq�T� corresponding to the
cold and hot bath temperatures, Tc and Th, are indicated. The dif-
ference between the energy entropy and the von Neumann entropy
is the result of quantum friction: point A is higher than point D and
point C is higher than point B. The cycle parameters are the same as
in Fig. 2. Tc�min��0.1176 from Fig. 6.
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with the cold bath. On the scale of Fig. 3 this is hard to
observe. One should also notice that SVN, which is constant
on the adiabats and always a lower bound to SE, almost
touches the minimal SE of the adiabats. The vertical distance
from point D to point A and from point B to point C is the
result of quantum friction.

The asymmetry between the demagnetization and magne-
tization adiabats can be noticed in both Figs. 3 and 4. The
reason for this asymmetry is that the heat caused by friction
in the magnetization adiabat can be dissipated to the hot
bath. This is not true on the demagnetization adiabat where
friction limits the possibility of heat extraction. This leads to
very different time allocation �hc��ch. The linear scheduling
cycle should be compared to the cycles in Figs. 1 and 5
where the friction is limited due to the quantization. The
obvious difference is the symmetry between the demagneti-
zation and magnetization adiabats. At the beginning and the
end of the frictionless segments the von Neumann and the
energy entropies coincide. Periodic dynamics on the adiabats

is also observed for optimal linear scheduling �cf. Fig. 4�;
nevertheless, frictionless solutions are not obtained.

Numerical experiments

We studied the optimal cooling cycles for a very large set
of parameters for different scheduling functions. Figure 6
shows the optimal cooling power as a function of J /Tc,
where the ratio R=Tc�h /Th�c was maintained constant. The
parameter R addresses the “distance” of the operation con-
ditions from the reversible limit where R=1. The simula-
tions were performed for a predefined R�1, so that the
second law is never violated �cf. Eq. �32��. Figure 6 was
obtained for a linear scheduling function of ��t� without the
addition of noise. The feature is that all graphs for different J
values terminate at the same minimum J /Tc. This graph has
initiated our search for a possible explanation. In retrospect it
represents the influence of uncontrolled numerical noise.
Comparing to Eq. �36� we can estimate the value of � as
�10−7. In addition all lines corresponding to different J val-
ues can be collapsed by shifting vertically by ln J2. This
finding shows consistency with the scaling of Pc with J2 �cf.
Eq. �41��.

Simulations with constant  confirm the quantization be-
havior of the optimal conditions. Figure 7 displays Qc for
optimal cycles as a function of total cycle time �. The quan-
tization of the cycle time is apparent corresponding to almost
frictionless complete revolutions on the adiabats. The comb-
like function Qc

opt��� has a maximum at � corresponding ap-
proximately to l=8 at the high temperature and l=6 at the
lowest temperature, which is very close to the minimum tem-
perature possible in these simulations. The maximum of
Qc

opt��� is an indication of uncontrolled numerical noise in
the simulation. Noiseless operation conditions would result
in a flat comb distribution of Qc

opt���.
Figure 8 shows the entropy production as a function of

cycle time. Only the cycles with very small entropy produc-
tion corresponding to almost frictionless cycles, operate as
refrigerators. All non quantized cycles have a very large en-
tropy production which decreases when the cycle time be-
comes longer. The quantized cycle �insert� have a very small
entropy production which increases with the cycle time �.
Figure 8 demonstrates that quantum friction is accompanied
by large entropy production.
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FIG. 4. �Color online� Typical optimal cycle trajectory with lin-

ear scheduling shown in the Ĥ, L̂, and Ĉ coordinates, for the same
parameters as in Fig. 3. Point A represents the beginning of the hot
isochore. Point B represents the beginning of the demagnetization
adiabat. Point C represents the beginning of the cold isochore.
Point D represents the beginning of the magnetization adiabat. No-
tice the big difference between the demagnetization and magnetiza-
tion adiabats.
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FIG. 5. �Color online� Typical optimal cycle trajectory shown in
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We attempted to identify the character of the numerical
noise in the simulation. The procedure was to estimate the
minimum temperature for a set of parameters J, R, and C
=�c /�h, the magnetization ratio. Then we used Eq. �35� to
estimate �. From the functional dependence of � on the pa-
rameters we tried to empirically asses the numerical noise in
the simulation. In general we found both phase and ampli-
tude noise. This can be observed in the trimming of both the
high and low l ends of the comb in Fig. 7. In general we
found that � is increased with C, the compression ratio, and
with R, the deviation from reversibility. These dependencies
were found for both constant  and linear scheduling where
the constant  resulted consistently with a lower minimum
temperature. The findings indicate that there is an additional
source of numerical noise beyond the amplitude and phase
noise.

The existence of uncontrolled numerical noise hinders the
study of the additional effects of the imposed phase and am-
plitude noise. The cycle simulation was repeated with the
addition of phase noise �cf. Eq. �B1��. As can be seen in Fig.
9 an increasing amount of phase noise depresses Qc and
moves the maximum to larger �cyc or larger l �cf. Eq. �B7�

and text after�. Numerical noise trims the high values of l.
The quantization of the optimal cycles is independent of

the specific scheduling. When the cold bath temperature Tc is
increased the quantization of Qc and Pc is less pronounced.
This can be seen in Fig. 10 where the optimal power is
plotted as a function of cycle time � for linear scheduling.
The sharp comb structures in Fig. 7 are replaced with peri-
odic modulation on top of a continuous background. At
higher temperatures cycle with more friction can still operate
as a refrigerator. Then the quantization features are washed
out.

VII. SUMMARY

A reciprocating quantum refrigerator is more than the
product of its four segments. To operate, the refrigerator has
to complete the cycle. This limit cycle is then invariant to the
global four-stroke propagator Ucyc. Optimizing the perfor-
mance becomes an interplay between optimizing the seg-
ments and their global synergism. In the analysis the unify-
ing element was the vector space of thermodynamical
observables. This vector space is sufficient to uniquely define
the state of the system �̂. A central part of the study was
devoted to generate the segment propagators which operate
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FIG. 7. �Color online� The optimal heat QC extracted as a func-
tion of cycle time for three sets of temperatures: Tc=0.105, Th

=0.14 �top: red circles�; Tc=0.0975, Th=0.13 �middle: cyan
squares�; and Tc=0.09, Th=0.12 �bottom: blue triangles�. Results
obtained by random search for stationary  with the restriction of
�hc=�ch. Other parameters are J=2, ��c=0.1, ��h=3.325 76, and
no added noise.
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FIG. 9. �Color online� The optimal heat QC extracted as a func-
tion of cycle time for three values of external phase noise �p: top
�red circles�: �p=0, middle �orange triangles pointing up�: �p

=10−6, middle �magenta triangles pointing down�: �p=10−5, and
bottom �blue squares�: �p=2	10−5. �p=5	10−5 did not result in
positive Qc. Other parameters are as in Fig. 7.
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FIG. 10. �Color online� The optimal cooling power PC as a
function of cycle time for linear scheduling. Upper plot �red�:
��c=0.5 and ��h=3.9. Lower plot �blue�: ��c=0.1, ��h=3.4.
�J=1.25, Tc=0.725, and Th=0.966.
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on the closed set of these observables. We have found ana-
lytical expressions for all segments. This has allowed a thor-
ough investigation of the refrigerator’s properties.

The dynamics on the isomagnetic isochores represent a
monotonic approach to thermal equilibrium �cf. Eq. �10��.
The equations simplify due to factorization of the vector
space �cf. Eq. �11��. This in turn reflects on the demagneti-
zation adiabats which have to supply initial states with en-
ergy below the cold equilibrium point. Optimization with
respect to cooling power requires one to stop the equilibra-
tion process before actually reaching thermal equilibrium.
The time allocated depends again on the time allocated to the
adiabatic segments, which is required to reduce friction �cf.
Eq. �39��.

Quantum friction is the result of the inability of the sys-
tem to follow adiabatically the time-dependent changes in

the Hamiltonian �Ĥ�t� ,Ĥ�t����0. As a result the state of the
system will develop nondiagonal terms in the energy repre-
sentation �̂e. The signature of this phenomena is an increase
in the energy entropy SE. The key to cold temperature refrig-
eration is frictionless dynamics: no increase in energy in the
demagnetization segment beyond the adiabatic limit. Perfect
adiabatic following which requires infinite time will lead to
frictionless demagnetization. Under conditions that fulfill the
second law R�1, the cooling can continue to Tc=0; the
absolute zero is attainable. We then introduced an adiabatic
measure  to characterize the instantaneous nonadiabatic
coupling. The limit →0 corresponds to perfect adiabatic
following. Our first surprise was that constant  led to
closed-form solutions for the dynamics. Moreover, these so-
lutions unraveled a quantized family of frictionless solutions
�=0. These solutions are characterized by a state �̂ commut-
ing with the Hamiltonian at the beginning and end of the

segment �Ĥ�0� , �̂B�= �Ĥ��hc� , �̂C�=0. The frictionless propa-
gator is unitary. Any attempt to observe the energy before the
end of the segment will destroy this unitary property and
lead to friction. This is similar to quantum gates which have
the property that observing them during execution will de-
stroy the gate. A weak continuous measurement is equivalent
to phase noise and also destroys the unitary property. Similar
frictionless solutions were found for a working medium con-
structed from harmonic oscillators �46,47�. This frictionless
solution can be carried out in a finite cycle time, i.e., the
cooling power does not vanish, Pc�0. If these frictionless
cycles could be realized they could operate to Tc=0.

When attempting to simulate numerically the frictionless
cycles we got into conflict. Any attempt resulted in a mini-
mum temperature Tc�min� which scaled linearly with the
minimal energy gap �J. This observation eventually led us to
the realization that any cycle is subject to noise. To follow
this idea we constructed a model for the external noise on the
controls. Amplitude noise is the result of fluctuations in the
magnitude of the external magnetic field. Since this noise
term does not commute with the Hamiltonian, it is not sur-
prising that it will destroy the adiabaticity, leading to ��0.
The surprise was the devastating effect of phase noise which
commutes with the instantaneous Hamiltonian. Such a term
can be the result of weak continuous measurement of energy
on the adiabats. This type of measurement leads to partial

collapse of the state to the energy representation. Naively
one would expect this to lead to frictionless solutions �22�.
We have employed such an idea successfully to reduce fric-
tion in a quantum engine �43�. Nevertheless, for a refrigera-
tion cycle close to its minimum temperature phase noise ac-
cumulates leading to ��0. Both types of noise are sufficient
to eliminate frictionless solutions including the perfect infi-
nite time adiabatic following frictionless cycle.

Once the devastating effect of noise is appreciated it can
be directly linked to a restriction on the minimum tempera-
ture. The minimum temperature Tc

min depends on −1 / ln � �cf.
Eq. �36�� and will be on the order of the uncontrolled energy
gap �J. This finding is consistent with experiments on de-
magnetization cooling of a gas �56� which obtained a mini-
mum temperature an order of magnitude larger than the the-
oretical prediction �57�, attributing the discrepancy to noise
in the controls. Figure 11 shows the dependence of the mini-
mum temperature of a refrigerator subject to phase and am-
plitude noise. The minimum temperature is related to the
quantum number l of the frictionless solutions. The two
types of noise show an opposite dependence on l. Amplitude
noise favors small cycle times l=1 while phase noise favors
small , meaning large l or �. When both types of noise are
simultaneously present the minimum temperature will be in-
fluenced by both in an intermediate l �cf. Fig. 11�. Other
sources of noise will also limit Tc�min�; for example, our
study was hindered by numerical noise.

To conclude, it seems that any refrigerator constructed
with a working medium possessing an uncontrolled energy
gap will reach a minimum operating temperature on the or-
der of the minimum energy gap, i.e., the absolute zero is
unattainable for a refrigerator subject to noise. This conjec-
ture should be verified for refrigerators with gapless working
media.
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APPENDIX A: OPTIMALITY OF CONSTANT �

We show that for dynamics under the Hamiltonian �4�
constant  is the minimum of the nonadiabatic deviations,
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FIG. 11. �Color online� The minimum temperature as a function
of the quantization number l. The diamonds represent phase noise
and the circles represent amplitude noise; �J=2.
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i.e., minimum of �. We can transform Eq. �14� to the differ-
ential equality, dt=d� /�3, leading to

�
0

�hc

�t�dt = �
�h

�c d�

�3 . �A1�

We decompose  to a constant and a time-dependent part
=0+1g�t�. Without loss of generality we impose 0�hc

=��h

�cd� /�3, then �0
�hcg�t�dt=0.

The first-order correction to the propagator U2 due to time
dependence in  is the time average �1 /�hc��0

�hcdtU2�t�. This
will translate to a time average of �. The dependence of �
�Eqs. �19� and �18�� on  is

� = 2 �1 − c�
1 + 2 , �A2�

which is a monotonic increasing function of 2 with mini-
mum at 2=0. The first-order correction to U2 will lead to
�=�0+�1, where �0 is the stationary result. Then expanding
in 1 will lead to �1= ��1−c� / �1+0

2���1
2 /�hc��0

�hcg2�t�dt
which is positive definite; therefore, a stationary  is a mini-
mum of �.

APPENDIX B: DERIVATION OF THE NOISY
PROPAGATOR U3

For the phase noise the dissipative generator is LNp
�Â�=

−��p /�2�[Ĥ , �Ĥ , Â�] �Eq. �23��. The modified equations of
motion on the adiabats become

d

�dt�Ĥ

L̂

Ĉ
��t� =�

�̇

�2
−

J�̇

�3 0

J�̇

�3
�̇

�2 − �p� − 1

0 1
�̇

�2 − �p�
��Ĥ

L̂

Ĉ
� .

�B1�

We seek a solution of the product form Ua=U1U2U3. The
equations of motion of U3 are obtained from the interaction
representation,

d

�dt
U3�t� = U2�− t��0 0 0

0 − �p� 0

0 0 − �p�
�U2�t�U3�t�

= W�t�U3�t� , �B2�

where

W�t� = �p��t��
2

q4 �s22 + 2�1 − c��
s

q3 �2c + 1� −


q4 �1 − c��2c + 1�

s

q3 �2c + 1�
2c2 + 1

q2

2s

q3 �1 − c�

−


q4 �1 − c��2c + 1�
2s

q3 �1 − c� 1 −
2

q4 �1 − c�2 � . �B3�

U3 describes the dynamics with respect to the reference pro-
vided by the unitary trajectory U2. We seek an approximate

solution for U3 in the limit when →0, then U2= 1̂ since this
is the frictionless limit. Expanding Eq. �B3� to first order in
 leads to

W�t� � �p��t�� 0 s �1 − c�
s 1 0

�1 − c� 0 1
� . �B4�

U3��hc� is solved in two steps. First is evaluating the propa-
gator for one period of �, for which ��t� is almost constant,
and then the global propagator becomes the product of the
one period propagators for l periods: U3��hc��U3��=2��l.
The Magnus expansion �58� to second order is employed to
obtain the one period propagator U3�2��,

U3�� = 2�� � eM1+M2+¯, �B5�

where M1=�0
2�d�W��� and M2= 1

2�0
2��0

�d�d��
	�W��� ,W�����+¯. The first-order Magnus term leads to

U3�� = 2��M1

� � 1 0 �1 − e−2��p��
0 e−2��p� 0

�1 − e−2��p�� 0 e−2��p� � ,

�B6�

which to first order in , � remains zero. U3 does not couple

�Ĥ� with �L̂� and �Ĉ�.
The second-order Magnus approximation leads to a struc-

ture of a rotation matrix,
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U3�� = 2��M2
� �C − S 0

S C 0

0 0 1
� , �B7�

where S=sin � and C=cos �. �=�p��	92+4 and as
2�

4
9 , �=2�p��. The term can be approximated as �

��hc�p�
1
l �cf. Eq. �21��. The condition 2�

4
9 can be trans-

formed to l�
9�
8� . An adiabat with a small number of revo-

lutions l�10 already fulfills this condition. We now combine
the second-order propagator U3��hc�, for l revolutions. It has
also the structure of a rotation matrix identical to Eq. �B7�,
with a new rotation angle �=�l, where

�l = 2��p�
0

2�l

����d� =

− ��pJ ln� ��h + �h���c − �c�
��h − �h���c + �c�

� . �B8�

For the amplitude noise the dissipative generator is

LNa
�Â�=−�a�2[B̂1 , �B̂1 , Â�] �Eq. �27��. In analogy to Eqs.

�23� and �B2� the equation for U3 becomes

d

�dt
U3�t� = − �a

�2

�
U2�− t��

J2

�2

J�

�2 0

J�

�2

�2

�2 0

0 0 1
�U2�t�U3�t�

= W�t�U3�t� . �B9�

We seek an approximate solution for the quasistatic limit
when →0. Expanding W in Eq. �B9� to zero order in 
leads to

W��� � − �a
�2

�3� J2 J�c − J�s

J�c �2 + s2J2 scJ2

− J�s scJ2 J2c2 + �2� .

�B10�

Since in this limit c→0 as →0, then Eq. �B10� factorizes.
We calculate the propagator for an integer number of peri-
ods; the lowest-order Magnus expansion becomes
U3��=2�l�=exp��0

2�ld�W����, then the U3�1,1� element
decouples from the remaining part of the propagator and be-
comes Eq. �28�.
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