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A quantum model of a heat engine resembling the Otto cycle is employed to explore strategies to suppress
frictional losses. These losses are caused by the inability of the engine’s working medium to follow adiabati-
cally the change in the Hamiltonian during the expansion and compression stages. By adding external noise to
the engine frictional losses can be suppressed.
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I. INTRODUCTION

Working conditions of real heat engines are far from the
ideal reversible limit. Their performance is restricted by ir-
reversible losses due to heat transport, heat leaks, and also
friction. Actual working devices tend to optimize the perfor-
mance by balancing the losses with maximizing work �1�.
For engines producing finite power, irreversible losses are
unavoidable. High-performance engines are therefore con-
structed from materials that reduce heat resistivity while
minimizing heat leaks. In addition, lubricants are employed
to reduce frictional losses. The present study explores quan-
tum lubricants, schemes to reduce the frictional irreversible
losses and thus enhance the performance of the quantum heat
engine.

Quantum models of heat engines based on first principles
are remarkably similar to their macroscopic counterparts
�2,3�. These engines extract heat from a hot bath of tempera-
ture Th and eject heat to a cold bath of temperature Tc. The
irreversible losses due to the finite rate of heat transport have
been linked to their quantum origin �4–7�. Optimal perfor-
mance strategies lead to solutions where the working fluid
never reaches thermodynamical equilibrium with the heat
baths. Performance curves can be directly compared to those
obtained in finite-time thermodynamics that employ phe-
nomenological heat-transport laws �8,9�.

Friction is the punishment for compressing or expanding
the working medium too fast. In a quantum engine, compres-
sion and/or expansion is a change in an external field de-
scribed by a parametrically time-dependent Hamiltonian of
the working medium. Whenever the control Hamiltonian
does not commute with the internal Hamiltonian of the work-
ing medium, the rapid change in the external field does not
allow the state of the working medium to follow adiabati-
cally the instantaneous energy levels �10–12�. As a result
both coherences and additional energy becomes stored in the
working medium. The dissipation of this additional energy in
the cold bath together with the inevitable decoherence is the
quantum analog of friction. The key to quantum lubrication
is to suppress the creation of off-diagonal terms in the energy
representation.

The quantum four-stroke Otto cycle is chosen to demon-
strate the lubrication effect. The working medium is com-
posed from interacting two-level systems. Accordingly, the
uncontrolled internal Hamiltonian becomes ��=1�

Ĥint = 2−3/2J��̂x
1

� �̂x
2 − �̂y

1
� �̂y

2� � JB̂2, �1�

where �̂ represents the spin-Pauli operators and J scales the
strength of the interparticle interaction �10,11�. The external
control Hamiltonian is chosen as

Ĥext = 2−3/2��t���̂z
1

� Î2 + Î1
� �̂z

2� � ��t�B̂1, �2�

where ��t� represents the external field. The total Hamil-
tonian becomes

Ĥ = ��t�B̂1 + JB̂2, �3�

where ��t�=��2+J2 defines the temporary energy scale. At

various times Ĥ�t� does not commute with itself since

�B̂1 , B̂2���2iB̂3�0, �B̂3=2−3/2��̂y
1

� �̂x
2+ �̂x

1
� �̂y

2��. The set

of operators �B̂� forms a closed orthogonal Lie algebra. In

addition, �B̂k · B̂ j�=tr �B̂k
†B̂ j�=�kj and tr �B̂k�=0. The irrevers-

ible equations of motion for this set are dB̂ /dt= i�Ĥ , B̂�
+LD

* �B̂� where LD
* is the dissipative Liouville superoperator

defined in Eq. �9�. A thermodynamical description requires

that the set of variables �b�t��= �	B̂
� should be closed to the
dynamics generated on all branches of the engine’s cycle.

The energy balance of the engine is composed of the heat
flow and power

dE

dt
= P + Q̇ , �4�

where P= 	�Ĥ /�t
= �̇	B̂1
, and Q̇= 	LD
* �Ĥ�
.

The state of the working medium �̂ can be reconstructed

from five thermodynamical variables bk= 	B̂k
 composed of
the expectation of the three operators in the Lie algebra and

two additional ones, B̂4=2−3/2��̂z
1

� Î2�− Î1 � �̂z
2� and B̂5

= 1
2�̂z

1
� �̂z

2 �11�, leading to

�̂ =
1

N
I + �

k
bkB̂k. �5�

The occupation probability pn of the energy level n de-
fines the energy entropy
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SE = − �
n

pn ln pn. �6�

If ��̂ ,Ĥ��0 then this entropy is different from the von Neu-
mann entropy,

S = − tr ��̂ ln �̂� , �7�

and SE�S. The difference between SE and S is a signature
of friction �12�. The external entropy production is a measure
of the irreversible dissipation to the hot and cold baths,

�Su = − �Qh

Th
+

Qc

Tc

 � 0, �8�

where Qh and Qc are the heat dissipated to the hot or cold
baths, respectively.

II. THE CYCLE OF OPERATION

A four-stroke cycle of operation is studied. As shown in
Fig. 1 this cycle includes �i� an adiabatic expansion branch
where an external field is chosen to decrease linearly from �b
to �a in a time �ba; �ii� a cold isochoric branch where heat is
transferred from the working medium to the cold bath �Tc� in
a time �c; �iii� an adiabatic compression branch where an
external field is increased linearly from �a to �b in a time
�ab; and �iv� a hot isochoric branch where heat is transferred
from the hot bath at temperature Th to the working medium
in a time �h.

This cycle is a quantum model of the macroscopic Otto
cycle. The control parameters are the time allocations on the
different branches, the total cycle time, and the extreme val-
ues of the external field.

The cycle of the engine becomes a sequence of four com-
pletely positive maps that define the different branches.
Eventually this sequence closes upon itself. Repetition of the
sequence of controls leads to steady-state operational condi-
tions or a limit cycle �12�. The map Uk relates the initial set
of these operators to their final values for each of the engine
branches. These maps are obtained by solving the equations

of motion for the set of operators �B̂�. The overall cycle map
is the product of the individual maps of each branch U
=UabUcUbaUh �11,12�.

On the isochores the maps Uh/c are generated by the com-
pletely positive generator L* �13� with the dissipative term
LD

* , which leads to thermal equilibrium;

LD
* �B̂� = k↓�L̂+B̂L̂− −

1

2
�L̂+L̂−,B̂�


+ k↑�L̂−B̂L̂+ −
1

2
�L̂−L̂+,B̂�
 . �9�

The operators L̂±= �1/�2����B̂2−JB̂1± i�B̂3� are the rais-

ing and/or lowering operators of Ĥ, �Ĥ , L̂±�= ±�2�L̂±.
Thermal equilibrium is obtained by forcing detailed balance
k↑ /k↓=e−�/�2T �kB=1�. The rate of equilibration becomes �
=k↑+k↓. LD

* also degrades the off-diagonal elements of �̂e,
interpreted either as decoherence or as dephasing. The
dephasing time T2 becomes identical to the energy equilibra-
tion time T2=T1=1/�. The dissipation also has to eliminate
the additional energy accumulated on the adiabat. Degrading
the coherences causes the frictional process to become irre-
versible �11,12�. The interaction of the working medium with
the bath can also be elastic. These encounters will scramble
the phases conjugate to the energy, and the associated decay
time is termed pure dephasing �T2

*�. In Lindblad’s formula-

tion it becomes LDe
* �B̂�=−	[Ĥ , �Ĥ , B̂�] and T2

*=1/2	�2.
Note that elastic medium cannot transfer or absorb heat.

On the adiabats, the varying field ��t� causes an explicit

time dependence of Ĥ �dB̂ /dt�= i�Ĥ�t� , B̂�. Since the energy

eigenvalues change, even if initially ��̂ ,Ĥ�=0 the state �̂
will develop off-diagonal terms in the energy frame �cf. Eq.
�B6� in Ref. �12��. The effect on the external power P
= �̇b1 is made explicit by decomposing P to diagonal and
off-diagonal terms in the energy representation,

P =
�̇

�
	Ĥ
 −

�̇J

�
�2	L̂+ + L̂−
 . �10�

The first diagonal term represents the power required to com-

press or decompress the working fluid P field= ��̇ /��	Ĥ
, the
second term in Eq. �10� is the additional power required to
drive the working fluid in a finite rate P friction

− ��̇J /���2	L̂++ L̂−
, interpreted as the power invested
against friction; therefore it vanishes when J=0 or �̇=0 �14�.

III. QUANTUM LUBRICATION

A good lubricant should be able to increase the overall
optimal power of the engine. The insight that energy coher-

FIG. 1. �Color online� Three cycles of the heat engine in the
�� ,SE� plane �dimensional units �=1,kb=1�. The common values
are: J=2.0, Th=7.5, Tc=1.5, �a=5.083 64, �b=12.6355, heat-
transfer rates �h=�c=1.167 48, and dephasing rates 	h=−0.05, 	c

=−0.06. 
ba=
ab=0 �Eq. �11�� for the unlubricated cycle �black�,

ba=1.28, 
ab=0.64 for the intermediate cycle �red�, and 
ba

=122.88, 
ab=61.44 for the strongly lubricated cycle �green�. The
time allocations on the different branches correspond to the optimal
engine’s power, when 
ba=
ab=0. The optimal time allocations
are �h=1.0795,�ba=0.01478, �c=1.0088, and �ab=0.0069. The
points E and F represent the equilibrium points of the hot and cold
isochores.

TOVA FELDMANN AND RONNIE KOSLOFF PHYSICAL REVIEW E 73, 025107�R� �2006�

RAPID COMMUNICATIONS

025107-2



ences leads to frictional losses suggests that forcing the cycle
trajectory to follow adiabatically the instantaneous energy
levels will be beneficial.

The quantum “lubricant” has to suppress the creation of
the energy coherences on the adiabats. Formally this can be
described by a generator of dephasing in the equations of

motion for the set �B̂� on the adiabat,

dB̂

dt
= i�Ĥ,B̂� − 
†Ĥ,�Ĥ,B̂�‡ �11�

and 
 is the dephasing lubricating coefficient.
The success of this approach is shown in Fig. 2. As a

reference the optimal power of the engine as a function of
cycle time is shown in the vicinity of the global power maxi-
mum. Each point on the graph is optimized with respect to
the time allocations on the four branches of the cycle using a
random search procedure. Employing these time allocations,
the power of the engine is recalculated with the addition of
the lubricating term on the adiabats 
�0. It is clear in Fig.
2 that in the interval of cycle times near the maximum power
the lubricated engine outperforms the optimal solutions of
the reference engine. The lubricated maximum power point
also moves to shorter cycle times.

For longer time allocations on the adiabats where less
external power is consumed to overcome the friction, the
performance enhancement due to dephasing decreased, even-
tually leading to a crossover where dephasing on the adiabats
decreased the power. For larger J values we also found that
dephasing was not able to improve the performance.

Figure 3 shows the accumulated work against friction

W friction=�P frictiondt=��2��̇J /��	L̂++ L̂−
dt �cf. Eq. �10��
as a function of time on the adiabat for a increasing dephas-
ing parameter. The main point is that increasing dephasing
eliminates the work against friction. This improvement satu-
rates once W friction is eliminated.

Another consequence of the quantum lubrication is that
the energy entropy SE does not increase on the adiabats as
can be seen in Fig. 1. As a result the energy entropy SE
approaches the von Neumann entropy S, Eq. �7�. These re-

sults establish the principle of quantum lubrication, main-
taining the working fluid in a diagonal state in the energy
representation.

Suppression of friction requires a method to synthesize
dephasing on the adiabats. The dynamics of the working me-
dium has to be changed from unitary to dissipative. The ob-
vious approach of adding a dissipative bath on the adiabatic
branches is difficult to achieve. Such a bath should have only
elastic encounters with a system with a time-dependent
Hamiltonian.

The solution is to employ the external controls of the
engine to synthesize the dissipation. The idea comes from the
singular bath limit, a bath generated from a system operator

coupled to a delta correlated noise Ĥsr= Âsg�t� where
	g�t�g�t��
r=	g��t− t�� where the average is taken over
the bath fluctuations. The Liouville generator associated

with this system bath coupling becomes L*�X̂�
=−�	g

2 /2�[Âs , �Âs , X̂�] �15,16�.
To implement such a scheme random noise is added to the

external controls of the engine. The implementation divides
the adiabat branch into N segments. In each of these seg-
ments, the external field � is constant and is chosen to be
�for the a→b adiabat�: �k=�a+k��b−�a� /N for the kth seg-
ment. The short time propagator on the k segment for the set

B̂ becomes

UkB̂ = eiĤ��k��tkB̂e−iĤ��k��tk, �12�

where �tk is the time interval of the kth segment. At this
point random noise is added to the time interval

�tk =
�ab

N
�1 + r� , �13�

where r is a random number with zero mean and variance �.
Expanding the propagator Eq. �12� to second order and
averaging over the random noise will lead to the average

generator for the k time segment: Lk
*�B̂�= i�Ĥ��k� , B̂�

− �N�2 /2�ad��Ĥ��k� , �Ĥ��k� , B̂��. In the limit when N→�

FIG. 2. �Color online� The optimal power P as function of cycle
time � with and without the quantum lubricant. The optimization is
with respect to the time allocations for 
ba=
ab=0 �lower line�.
The power with the lubrication 
ba=1.28
ab=0.64 �top line�. All
the other parameters are as in Fig. 1.

FIG. 3. �Color online� The work performed by the engine on the
adiabat b→a branch, separated into Wfriction �left scale� and Wfield

�right scale� for different dephasing values as a function of �ba�t�.
Wfield has only a weak dependence on the dephasing lubricating
value 
. The cycle parameter values are as in Fig. 1.
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this average propagator becomes identical to Eq. �11� pro-
vided �=�2�ad
 /N.

The addition of random noise means that the individual
cycle has to be replaced by the average performance on
many cycles. As a result, only an average cycle time can be
defined. This noisy lubrication procedure was simulated with
N=200 on both adiabats. The power and other thermody-
namic variables were calculated as an average of 2000
cycles. Convergence was checked by continuing this averag-
ing 1000 additional times.

Figure 4 compares the power P and entropy production
per cycle, �Su /� calculated by the two methods for the time
allocations of the maximum power point. It is clear that the

results obtained by imposing dephasing on the adiabats Eq.
�11� are identical to the dephasing synthesis Eq. �12�. The
signature of lubrication is the reduction of entropy produc-
tion which accompanies the increase in power. This is con-
trary to optimizing the power with respect to heat transport.
In that case the increase in output power is accompanied by
an increase in entropy production �14�. The choice of the
procedure to generate dephasing is unique. For example,
adding the random noise to the frequency �k at each time
segment has been tested. The performance of the engine only
became worse. The reason is that such a term leads to the

dissipative generator LD�Â�=−�	g /2�[B̂1 , �B̂1 , Â�], which
does not eliminate the off-diagonal elements in the energy
representation.

The present study should be related to other recent work.
For example, adding mechanical noise to a quantum refrig-
erator has been shown experimentally to cool atoms in a
magnetic trap �17�. It seems that the mechanism involves
inducing nonunitary dynamics. Contrary to the present study,
in other scenarios coherence can be beneficial. Without vio-
lating the second law, Scully et al. �18� showed that addi-
tional work can be extracted from the coherences in a quan-
tum heat engine.

To summarize, frictional losses are caused whenever

�Ĥext ,Ĥint��0. Then the fast dynamics induces coherences
in the energy frame. The essence of quantum lubrication is
suppressing the generation of these off-diagonal elements in
the energy representation. The present model demonstrates
how externally induced noise can achieve this task.
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FIG. 4. �Color online� Power �right scale, red online� and en-
tropy production �left scale, blue online� as a function of the
dephasing parameter 
ab

1/2 and the variance, �ab of the random fluc-
tuations of the time segment on the adiabats �upper scale�. The
dephasing synthesis results are represented by stars and filled tri-
angles. The empty circles and squares represent the dephasing dy-
namics. The calculations were performed with 
ab /
ba=�ab /�ba.
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