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A quantum absorption refrigerator driven by noise is studied with the purpose of determining the

limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously

to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and

Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics.

The third law is quantified; the cooling power J c vanishes as J c / T�
c , when Tc ! 0, where � ¼ dþ 1

for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic

field, where d is the dimension of the bath.
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The absorption chiller is a refrigerator which employs
a heat source to replace mechanical work for driving a
heat pump [1]. The first device was developed in 1850
by the Carré brothers which became the first useful
refrigerator. In 1926, Einstein and Szilárd invented an
absorption refrigerator with no moving parts [2]. This
idea has been incorporated recently to an autonomous
quantum absorption refrigerator with no external inter-
vention [3,4]. The present study is devoted to a quantum
absorption refrigerator driven by noise; for an experi-
mental realization, cf. [5]. The objective is to study the
scaling of the optimal cooling power when the absolute
zero temperature is approached.

This study is embedded in the field of quantum thermo-
dynamics, the study of thermodynamical processes within
the context of quantum dynamics. Historically, consistence
with thermodynamics led to Planck’s law, the basics of
quantum theory. Following the ideas of Planck on black
body radiation, Einstein five years later (1905) quantized
the electromagnetic field [6]. Quantum thermodynamics is
devoted to unraveling the intimate connection between
the laws of thermodynamics and their quantum origin
[3,4,7–22]. In this tradition, the present study is aimed
toward the quantum study of the third law of thermody-
namics [23,24], in particular, quantifying the unattainabil-
ity principle [25]: What is the scaling of the cooling power
J c of a refrigerator when the cold bath temperature ap-
proaches the absolute zero J c / T�

c when Tc ! 0?
The quantum trickle.—The minimum requirement for

a quantum thermodynamical device is a system con-
nected simultaneously to three reservoirs [26]. These
baths are termed hot, cold, and work reservoir as de-
scribed in Fig. 1. A quantum description requires a
representation of the dynamics working medium and
the three heat reservoirs. A reduced description is em-
ployed in which the dynamics of the working medium
is described by the Heisenberg equation for the operator

Ô for open systems [27,28]:

d

dt
Ô ¼ i

@
½Ĥs; Ô� þ @Ô

@t
þLhðÔÞ þLcðÔÞ þLwðÔÞ;

(1)

where Ĥs is the system Hamiltonian and Lg are the

dissipative completely positive superoperators for each
bath (g ¼ h; c; w). A minimal Hamiltonian describing
the essence of the quantum refrigerator is composed of
three interacting oscillators:

Ĥs ¼ Ĥ0 þ Ĥint;

Ĥ0 ¼ @!hâ
yâþ @!cb̂

yb̂þ @!wĉ
yĉ;

Ĥint ¼ @!intðâyb̂ ĉþâb̂yĉyÞ:
(2)

Ĥint represents an annihilation of excitations on the
work and cold bath simultaneous with creating an

FIG. 1 (color online). The quantum trickle: A quantum heat
pump designated by the Hamiltonian Ĥs is coupled to a work
reservoir with temperature Tw, a hot reservoir with temperature
Th, and a cold reservoir with temperature Tc. The heat and work
currents are indicated. In the steady state, J h þ J c þ P ¼ 0.
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excitation in the hot bath. In an open quantum system,
the superoperators Lg represent a thermodynamic iso-

thermal partition allowing heat flow from the bath to
the system. Such a partition is equivalent to the weak
coupling limit between the system and bath [11]. The
superoperators Lg are derived from the Hamiltonian:

Ĥ ¼ Ĥs þ Ĥh þ Ĥc þ Ĥw þ Ĥsh þ Ĥsc þ Ĥsw; (3)

where Ĥg are bath Hamiltonians and Ĥsg represent system

bath coupling. Each of the oscillators is linearly coupled to a

heat reservoir, for example, for the hot bath: Ĥsh ¼
�shðâÂy

h þ âyÂhÞ. Each reservoir individually should

equilibrate the working medium to thermal equilibrium
with the reservoir temperature. In general, the derivation
of a thermodynamically consistent master equation is tech-
nically very difficult [29]. Typical problems are approxi-
mations that violate the laws of thermodynamics. We
therefore require that the master equations fulfill the ther-
modynamical laws. Under steady state conditions of opera-
tion, they become:

J h þ J c þ P ¼ 0; �J h

Th

� J c

Tc

� P
Tw

� 0; (4)

where J k ¼ hLkðĤÞi. The first equality represents conser-
vation of energy (first law) [8,9], and the second inequality
represents positive entropy production in the universe
�u � 0 (second law). For refrigeration, Tw � Th � Tc.
From the second law, the scaling exponent � � 1 [12].

Gaussian-noise-driven refrigerator.—In the absorption
refrigerator, the noise source replaces the work bath and its
contact @!wĉ

yĉ, leading to

Ĥ int ¼ fðtÞðâyb̂þ âb̂yÞ ¼ fðtÞX̂; (5)

where fðtÞ is the noise field. X̂ ¼ ðâyb̂þ âb̂yÞ is the
generator of a swap operation between the two oscillators

and is part of a set of SUð2Þ operators, Ŷ ¼ iðâyb̂� âb̂yÞ,
Ẑ ¼ ðâyâ� b̂yb̂Þ and the Casimir operator N̂ ¼ ðâyâþ
b̂yb̂Þ.

We first study a Gaussian source of white noise charac-
terized by zero mean hfðtÞi ¼ 0 and delta time correlation
hfðtÞfðt0Þi ¼ 2��ðt� t0Þ. The Heisenberg equation for a

time-independent operator Ô reduced to

d

dt
Ô ¼ i½Ĥs; Ô� þLnðÔÞ þLhðÔÞ þLcðÔÞ; (6)

where Ĥs ¼ @!hâ
yâþ @!cb̂

yb̂. The noise dissipator for
Gaussian noise isLnðÔÞ ¼ ��½X̂; ½X̂; Ô�� [30]. The same
master equation is obtained for a system subject to a weak

quantum measurement of the operator X̂ [28]. The next
step is to derive the quantum master equation of each
reservoir. We assume that the reservoirs are uncorrelated
and also uncorrelated with the driving noise. These con-
ditions simplify the derivation of Lh, which become the
standard energy relaxation terms driving oscillator !hâ

yâ

to thermal equilibrium with temperature Th, and Lc drives

oscillator @!bb̂
yb̂ to equilibrium Tc [28]:

LhðÔÞ ¼ �hðNh þ 1ÞðâyÔ â�1
2fâyâ; ÔgÞ

þ �hNhðâ Ô ây � 1
2fâây; ÔgÞ;

LcðÔÞ ¼ �cðNc þ 1Þðb̂yÔ b̂�1
2fb̂yb̂; ÔgÞ

þ �cNcðb̂ Ô b̂y � 1
2fb̂b̂y; ÔgÞ:

(7)

In the absence of the stochastic driving field, these
equations drive oscillators a and b separately to thermal

equilibrium provided that Nh ¼ ½expð@!h

kTh
Þ � 1��1 and

Nc ¼ ½expð@!c

kTc
Þ � 1��1. The kinetic coefficients �h=c are

determined from the bath density functions [11].
The equations of motion are closed to the SUð2Þ set

of operators. To derive the cooling current J c ¼
hLcð@!cb̂

yb̂Þi, we solve for stationary solutions of N̂

and Ẑ, obtaining

J c ¼ @!c

ðNc � NhÞ
ð2�Þ�1 þ ��1

h þ ��1
c

: (8)

Cooling occurs for Nc > Nh ) !h

Th
> !c

Tc
. The coefficient of

performance (COP) for the absorption chiller is defined by

the relation COP ¼ J c

J n
; with the help of Eq. (8), we obtain

the Otto cycle COP [31]:

COP ¼ !c

!h �!c

� Tc

Th � Tc

: (9)

A different viewpoint starts from the high temperature
limit of the work bath Tw based on the weak coupling limit
in Eqs. (2) and (3); then

LwðÔÞ ¼ �wðNw þ 1Þðâyb̂ Ô b̂yâ� 1
2fâyâ b̂ b̂y; ÔgÞ

þ �wNwðâb̂yÔâyb̂� 1
2fââyb̂yb̂; ÔgÞ; (10)

where Nw ¼ ½expð@!w

kTh
Þ � 1��1. At a finite temperature,

LwðÔÞ does not lead to a closed set of equations. But in
the limit of Tw ! 1 it becomes equivalent to the Gaussian

noise generator: LwðÔÞ¼��=2ð½X̂;½X̂;Ô��þ½Ŷ;½Ŷ;Ô��Þ,
where � ¼ �wNw. This noise generator leads to the same
current J c and COP as Eqs. (8) and (9). We conclude that
Gaussian noise represents the singular bath limit equivalent
to Tw ! 1. As a result, the entropy generated by the noise
is zero.
The solutions are consistent with the first and second

laws of thermodynamics. The COP is restricted by the
Carnot COP. For low temperatures, the optimal cooling
current can be approximated by J c ’ !c�cNc. Coupling
to a thermal bosonic field such as an electromagnetic or
acoustic phonon field implies �c / !d

c , where d is the heat
bath dimension. Optimizing the cooling current with re-
spect to !c, one obtains that the exponent � quantifying
the third law J c / T�

c is given by � ¼ dþ 1.
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Poisson-noise-driven refrigerator.—Poisson white noise
can be referred to as a sequence of independent random
pulses with exponential interarrival times. These impulses
drive the coupling between the oscillators in contact with
the hot and cold bath leading to [32]

dÔ

dt
¼ ði=@Þ½ ~H; Ô� � ði=@Þ�h�i½X̂; Ô�

þ �

�Z 1

�1
d�Pð�Þeði=@Þ�X̂Ôeð�i=@Þ�X̂ � Ô

�
; (11)

where ~H is the total Hamiltonian including the baths. � is
the rate of events, and � is the impulse strength averaged
over a distribution Pð�Þ. Using the Hadamard lemma and
the fact that the operators form a closed SUð2Þ algebra, we
can separate the noise contribution to its unitary and dis-
sipation parts, leading to the master equation

dÔ

dt
¼ ði=@Þ½ ~H; Ô� þ ði=@Þ½Ĥ0; Ô� þLnðÔÞ: (12)

The unitary part is generated with the addition of the

Hamiltonian Ĥ0 ¼ @�X̂ with the interaction

� ¼ ��

2

Z
d�Pð�Þ½2�=@� sinð2�=@Þ�:

This term can cause a direct heat leak from the hot to cold
bath. The noise generator Lnð�̂Þ can be reduced to the

form LnðÔÞ ¼ ��½X̂; ½X̂; Ô��, with a modified noise
parameter:

� ¼ �

4

�
1�

Z
d�Pð�Þ cosð2�=@Þ

�
:

The Poisson noise generates an effective Hamiltonian

which is composed of ~H and Ĥ0, modifying the energy
levels of the working medium. This new Hamiltonian
structure has to be incorporated in the derivation of the
master equation; otherwise, the second law will be vio-
lated. The first step is to rewrite the system Hamiltonian in
its dressed form. A new set of bosonic operators is defined:

Â1 ¼ â cosð�Þ þ b̂ sinð�Þ;
Â2 ¼ b̂ cosð�Þ � â sinð�Þ:

(13)

The dressed Hamiltonian is given by

Ĥ s ¼ @�þÂ
y
1 Â1 þ @��Â

y
2 Â2; (14)

where ��¼!hþ!c

2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð!h�!cÞ=2�2þ�2
p

and cos2ð�Þ ¼
!h���
�þ���

Eq. (14) impose the restriction �� > 0, which can

be translated to !h!c > �2. The master equation in the
Heisenberg representation becomes

dÔ

dt
¼ ði=@Þ½Ĥs; Ô� þLhðÔÞ þLcðÔÞ þLnðÔÞ; (15)

where

LhðÔÞ ¼ �h
1c

2ðÂ1ÔÂy
1 � 1

2fÂ1Â
y
1 ; ÔgÞ þ �h

2c
2ðÂy

1 ÔÂ1

� 1
2fÂy

1 Â1; ÔgÞ þ �h
3s

2ðÂ2ÔÂy
2 � 1

2fÂ2Â
y
2 ; ÔgÞ

þ �h
4s

2ðÂy
2 ÔÂ2 � 1

2fÂy
2 Â2; ÔgÞ;

LcðÔÞ ¼ �c
1s

2ðÂ1ÔÂy
1 � 1

2fÂ1Â
y
1 ; ÔgÞ þ �c

2s
2ðÂy

1 ÔÂ1

� 1
2fÂy

1 Â1; ÔgÞ þ �c
3c

2ðÂ2ÔÂy
2 � 1

2fÂ2Â
y
2 ; ÔgÞ

þ �c
4c

2ðÂy
2 ÔÂ2 � 1

2fÂy
2 Â2; ÔgÞ; (16)

where s ¼ sinð�Þ and c ¼ cosð�Þ, and the noise generator

L nðÔÞ ¼ ��½Ŵ; ½Ŵ; Ô��; (17)

where Ŵ ¼ sinð2�ÞẐþ cosð2�ÞX̂ and a new set of
operators which form an SUð2Þ algebra is defined:

X̂ ¼ ðÂy
1 Â2 þ Ây

2 Â1Þ, Ŷ ¼ iðÂy
1 Â2 � Ây

2 Â1Þ, and Ẑ ¼
ðÂy

1 Â1 � Ây
2 Â2Þ. The total number of excitations is ac-

counted for by the operator N̂ ¼ ðÂy
1 Â1 þ Ây

2 Â2Þ. The
generalized heat transport coefficients become 	kþ ¼ �k

2 �
�k
1 and 	k� ¼ �k

4 � �k
3 for k ¼ h; c. Applying the Kubo

relation [33,34] �k
1 ¼ e�@�þ
k�k

2 and �k
3 ¼ e�@��
k�k

4

leads to the detailed balance relation

�k
1

	kþ
¼ 1

e@�þ
k � 1
� Nkþ;

�k
3

	k�
¼ 1

e@��
k � 1
� Nk�:

In general, 	k� is temperature-independent and can be
calculated specifically for different choices of spectral
density of the baths. For an electromagnetic or acoustic
phonon field, 	k� / �d�. The heat currents J h, J c, and J n

are calculated by solving the equation of motion for the
operators at steady state and at the regime of low tempera-
ture, where cos2ð�Þ � 1 and sin2ð�Þ � 0:

dN̂

dt
¼ � 1

2
ð	hþ þ 	c�ÞN̂� 1

2
ð	hþ � 	c�ÞẐ

þ ð	hþNhþ þ 	c�Nc�Þ;
dẐ

dt
¼ � 1

2
ð	hþ þ 	c�ÞẐ� 1

2
ð	hþ � 	c�ÞN̂

þ ð	hþNhþ � 	c�Nc�Þ � 4�Ẑ:

(18)

Once the set of linear equations is solved, the exact

expression for the heat currents is extracted: J h ¼
hLhðĤsÞi, J c ¼ hLcðĤsÞi, and J n ¼ hLnðĤsÞi. For sim-
plicity, the distribution of impulses in Eq. (11) is chosen
as Pð�Þ ¼ �ð�� �0Þ. Then the effective noise parameter
becomes

� ¼ �

4
½1� cosð2�0=@Þ�: (19)

The energy shift is controlled by

� ¼ ��

2
½2�0=@� sinð2�0=@Þ�: (20)

PRL 108, 070604 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 FEBRUARY 2012

070604-3



Figure 2 shows a periodic structure of the heat current
J c and the entropy production �c ¼ �J c=Tc with the
impulse �0. The second law of thermodynamics is obtained
by the balance of the large entropy generation on the hot
bath compensating for the negative entropy generation of
cooling the cold bath. The COP for the Poisson-driven
refrigerator is restricted by the Otto and Carnot COP:

COP ¼ ��
�þ ���

� !c

!h �!c

� Tc

Th � Tc

: (21)

The heat current J c is given by

J c � @��
Nc� � Nhþ

ð2�Þ�1 þ ð	hþÞ�1 þ ð	c�Þ�1
: (22)

The scaling of the optimal cooling rate is now accounted
for. The heat flow is maximized with respect to the impulse
�0 by maximizing � [Eq. (19)], which occurs for �0 ¼ n �

2

(n ¼ 1; 2; . . . ). On the other hand, the energy shift �2

[Eq. (20)] should be minimized. The optimum is obtained
when �0 ¼ �

2 . The cooling power of the Poisson noise case

[Eq. (22)] is similar to the Gaussian one [Eq. (8)]. In the
Poisson case, also the noise driving parameter � is re-
stricted by !c. This is because � is restricted by �� �
0, and therefore � is restricted to scale with !c. In total,
when Tc ! 0, J c / Tdþ1

c .
The optimal scaling relation J c / T�

c of the autono-
mous absorption refrigerators should be compared to the
scaling of the discrete four-stroke Otto refrigerators [35].
In the driven discrete case, the scaling depends on the
external control scheduling function on the expansion
stroke. For a scheduling function determined by a constant
frictionless nonadiabatic parameter, the optimal cooling
rate scaled with � ¼ 2. Faster frictionless scheduling pro-
cedures were found based on a bang-bang type of optimal
control solutions. These solutions led to a scaling of

� ¼ 3=2 when positive frequencies were employed and
J c / �Tc= logTc when negative imaginary frequencies
were allowed [36,37]. J c / Tc was obtained in the limit
of large energy levels for a swap-based Otto cycle [38].
The drawback of the externally driven refrigerators is that
their analysis is complex. The optimal scaling assumes that
the heat conductivity � � !c and that noise in the controls
does not influence the scaling. For this reason, an analysis
based on the autonomous refrigerators is superior.
We thank Robert Alicki for his remarks and suggestions.
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