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Inertial Theorem: Overcoming the quantum adiabatic limit
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We present a theorem describing stable solutions for a driven quantum system. The theorem, coined inertial
theorem, is applicable for fast driving, provided the acceleration rate is small. The theorem states that in
the inertial limit eigenoperators of the propagator remain invariant throughout the dynamics, accumulating
dynamical and geometric phases. The proof of the theorem utilizes the structure of Liouville space and a closed
Lie algebra of operators. We demonstrate applications of the theorem by studying three explicit solutions of
a harmonic oscillator, two-level and three-level system models. These examples demonstrate that the inertial
solution is superior to that obtained with the adiabatic approximation. Inertial protocols can be combined to
generate a family of solutions. The inertial theorem is then employed to extend the validity of the Markovian
master equation to strongly driven open quantum systems. In addition, we explore the consequence of geometric
phases associated with the driving parameters.
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I. INTRODUCTION

Closed-form solutions for the propagator are of utmost
importance for quantum control [1–6]. Generally, any Hamil-
tonian that allows control does not commute with itself at
different times, leading to a time-ordering procedure in the
evolution operator [7,8]. Hence, the development of closed
solutions, for control Hamiltonians, faces the formidable task
of time ordering [9,10]. Moreover, one desires that such so-
lutions are stable under variations in the driving protocol and
external noise.

The present paper is devoted to the construction of closed-
form, stable solutions of driven quantum systems. Currently,
the popular theoretical as well as experimental approach
utilizes the adiabatic theorem, constrained to slow driv-
ing [11–15]. Here, we propose approximate solutions for rapid
processes based on the inertial theorem. In the appropriate
limit, these solutions incorporate the adiabatic approximation.

The inertial theorem utilizes a timescale separation be-
tween variables to generate the system’s evolution for slow
acceleration of the external driving. The derivation subsides
in the Liouville space and requires the existence of a time-
dependent operator basis. Formally, the theorem is similar
to the adiabatic theorem, where adiabatic states are replaced
by the time-dependent eigenoperators of the generator of the
propagator [16]. The inertial solutions remain precise for rapid
driving of the system under the condition of slow acceleration
relative to the system’s dynamics.
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Inertial protocols can generate a diverse family of solu-
tions, as the fast degrees of freedom are arbitrary smooth
functions while only the rate of change of the slow variables is
restricted. These solutions identify invariant operators, which
are time-dependent constants of motion [17,18]. Moreover,
inertial solutions can be combined to generate an inertial
Hamiltonian, extending the family of possible solutions.

Quantum control is an integral part of contemporary
quantum science [19–30]. Control is commonly achieved
by engineering the Hamiltonian by means of external driv-
ing [6,31]. The inertial theorem can be a crucial element of
the control tool box, generating rapid control protocols which
go beyond the adiabatic driving regime. In addition, protocols
based on time-dependent constants of motion can replace
adiabatic protocols, such as the stimulated Raman adiabatic
passage (STIRAP) protocol for a three-level system [32–34].

We demonstrate applications of the inertial theorem by
studying three physical models: a time-dependent harmonic
oscillator, a driven two-level system, and a three-level
system. These models are the building blocks of both ex-
perimental and theoretical studies performed in the quantum
regime [19,29].

We utilize the inertial solution to derive the equations of a
motion for a driven open quantum system. We then analyze
the geometric phase associated with the inertial solution. This
phase differs in its physical role from the Berry phase of the
adiabatic solution. In contrast to the Berry phase, the former
phase directly influences observables and can be witnessed for
nonclosed circuits in the driving parameter space. For systems
interacting weakly with the environment, the geometric phase
induces a shift in the decay rates.

II. THE INERTIAL THEOREM

Obtaining a closed-form solution for dynamics gener-
ated by a time-dependent Hamiltonian is a difficult task.
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The inertial theorem constructs a solution by incorporating
the time dependence within a time-dependent operator basis
and scaled time.

The derivation of the inertial theorem is conducted in Li-
ouville space, a state space of system operators {X̂ }, endowed
with an inner product (X̂i, X̂ j ) ≡ tr(X̂i

†
X̂ j ) [35–37]. In Liou-

ville space, the system’s dynamics are represented in terms of
a basis of orthogonal operators {V̂ }, spanning the space. For
example, for a two-level-system, the operator basis can be the
Pauli operators. An arbitrary operator Â, spanned by operator
the basis {V̂ }, Â(t ) =∑N2

i=1 ai(t )V̂i, is represented by the vec-
tor �A(t ) = {a1(t ), a2(t ), ..., aN2 (t )}T in Liouville space, where
ai(t ) are time-dependent coefficients and N is the size of the
Hilbert space.

Employing the Heisenberg equation of motion, the dynam-
ics of systems in Liouville space are determined by

d

dt
�vH (t ) = Û †(t, 0)

[(
i[Ĥ (t ), •] + ∂

∂t

)
�v(t )

]
Û (t, 0) , (1)

where �v the expansion elements in the basis {V̂ }. The conven-
tion h̄ = 1 is used throughout this paper and the superscript H
designates that the operators V̂i are in the Heisenberg picture,
i.e., V̂ H

i (t ) = Û †(t, 0)V̂iÛ (t, 0), where Û (t, 0) satisfies the
Schrödinger equation with respect to the Hamiltonian Ĥ (t ) [at
time t = 0, the Schrödinger and Heisenberg pictures coincide,
�vH (0) = �v(0)].

We consider a finite time-dependent basis, forming a
closed Lie algebra; this guarantees that Eq. (1) can be solved
within the basis [38]. This property applies trivially for any
finite Hilbert space or else when a closed subalgebra can be
found, for example, the Heisenberg-Weyl group that defines
the Gaussian states of the quantum harmonic oscillator [39].

It is useful to limit the description to the minimal subal-
gebra required to solve the system’s dynamics. In the case of
compact algebras, this greatly simplifies the analysis, while
for noncompact algebras, finding a subalgebra is a prerequisite
for constructing the inertial solution.

For a closed Lie algebra, Eq. (1) has the simple form

d

dt
�vH (t ) = −iM(t )�vH (t ) , (2)

where M is a N2 by N2 matrix with time-dependent elements
and �vH is a vector [40]. For compact algebra, M has real
eigenvalues, for noncompact algebras complex eigenvalues
are possible (see Sec. IV A) [41].

A formal solution for Eq. (2) requires a time-ordering pro-
cedure �vH (t ) = T exp (−i

∫ t
0 M(τ )dτ )�v(0), where T is the

chronological time-ordering operator. This formal expression
is impractical, as it includes an infinite sum of integrals [9].

The current derivation bypasses the time-ordering pro-
cedure by the following strategy: We search for a driving
protocol that allows solving Eq. (2) explicitly and then extend
the solution to a broad range of protocols employing the in-
ertial approximation. By choosing a suitable time-dependent
operator basis, the generator of the dynamics in Liouville
space can be expressed as

M(t ) = P ( �χ )D( �χ, ��(t ))P−1( �χ ) . (3)

Here, P ( �χ ) is an invertible matrix (unitary for an Her-
mitian M), dependent on constant parameters {χ}. D is
diagonal real matrix with time-dependent eigenvalues, which
are a function of both {χ} and time-dependent parameters
{�(t )}. The parameters are expressed in short notation as �χ =
{χ1, χ2, ..., χm}T and ��(t ) = {�1(t ),�2(t ), ..., �N2 (t )}T . In
the first two examples presented, there is a single param-
eter �χ = χ , which is equal to the adiabatic parameter μ.
More general examples include multiple inertial variables, cf.
Sec. IV C.

We will prove in Sec. V that decomposition Eq. (3) can
always be achieved for any time-dependent analytical Hamil-
tonian Ĥ (t ). Nevertheless, the existence of a solution is not
constructive, therefore the suitable time-dependent basis as-
sociated with a general protocol Ĥ (t ) is not straightforward.
Once a suitable protocol and time-dependent operator basis is
found, for which M obtains the required form, Eq. (3), the
solution becomes

d

dt
�vH (t ) = −iP ( �χ )D( �χ, ��(t ))P−1( �χ )�vH (t ) . (4)

Next, we write the eigenvalues of D as a product of a
�χ -dependent function and a time-dependent function, leading
to D = diag(λ1( �χ )�1(t ), ..., λN ( �χ )�N (t )). Since λ j , � j , and
�χ are not specified, such decomposition is general and does
not enforce further restrictions on our result. The solution of
Eq. (4) is straightforward, yielding

�vH (t ) =
N2∑

k=1

ck �Fk ( �χ )e−iλkθk (t ) , (5)

where the scaled-time parameters are θk (t ) = ∫ t
0 dt ′�k (t ′) and

ck =∑i Pik are constant coefficients. The Liouville vector �Fk

corresponds to the eigenoperator F̂k =∑i P−1
ki V̂i, where P−1

ik
are elements of P−1. For a Hermitian M, the eignvalues λk

are either zero or are pairs with equal magnitude and opposite
signs.

The structure of Eq. (4) allows an explicit solution for the
dynamics, including cases where the operator basis is time
dependent. As a result, the solution circumvents the time-
ordering operation. However, the approach is limited by the
condition that P is a constant unitary operator, i.e., �χ = const.
For a set basis of operators {V̂ }, this condition restricts the
relevant driving protocols.

For general protocols, when �χ (t ) varies with time, the
solution can be extended to processes of slowly varying �χ (t )
(inertial). The entire proof is reported in Sec. III, and follows
a mathematical construction similar to that of the adiabatic
theorem [11,14,42].

For a state �v, driven by a inertial protocol, the system’s
evolution is given by

�vH (t ) =
N2∑

k=1

ck ( �χ (t ))e−i
∫ t

0 dt ′λk�k eiφk (t ) �Fk ( �χ (t ))

= P ( �χ (t ))e−i
∫ θk (t )
θk (0) λk (θ ′

k )dθ ′
kP−1( �χ (t ))�v(0) , (6)
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where the first exponent is determined by the dynamical phase
and the second includes a new geometric phase:

φk (t ) = i
∫ �χ (t )

�χ (0)
d �χ ( �Gk,∇ �χ �Fk ) . (7)

Here, �Gk are the biorthogonal partners of �Fk .
The system’s state follows the instantaneous solution deter-

mined by the instantaneous �χ (t ) and phases associated with
the eigenvalues λk�k and eigenoperators F̂k . We restrict the
analysis to the case where λk�k do not cross, hence, the spec-
trum of D remains nondegenerate throughout the evolution.
Substituting the inertial solution, Eq. (6), into Eq. (4) enables
assessing the validity of the approximation. The quality of
approximation is expressed in terms of the magnitude of the
inertial parameter (Sec. III)

ϒ =
∑
n,k

∣∣∣∣ ( �Gk,∇ �χM �Fn)

(λn�n − λk�k )2

(
d �χ
dt

)2∣∣∣∣ , (8)

which implies that the inertial solution, Eq. (6), remains valid
when �χ follows a path in the parameter space of {χ}, where
the eigenvalues λk and λn are distinct [15].

The factorization of the eigenvalues of D recognizes
two timescales. A short timescale related to the (rapidly
changing) frequencies {�(t )} and a long timescale associ-
ated with the change in {λ( �χ )} variables. This separation of
timescales allows containing the rapid change in the protocol
within the inertial solution. The rapid time dependence of
the solution is effectively absorbed into the frequencies and
time-dependent operator basis. In addition, we identify the
dynamical invariant operators [43–45], which are associated
to the eigenvectors �Fk with vanishing eigenvalues, λk = 0.

The inertial theorem incorporates the adiabatic theorem,
since for slow driving {�} are constant and {χ} are slowly
varying, therefore the matrix M(t ) can be diagonalized at
each instant. We then obtain the eigenoperators associated
with M(t ) and the decomposition in Eq. (3).

III. INERTIAL THEOREM PROOF

The following derivation is in the spirit of the adiabatic
theorem, as presented by Schiff [11], and the generaliza-
tion for a non-Hermitian Hamiltonian has been presented by
Ibanez [42]. We formulate the derivation in Liouville space,
a Hilbert space of operators. These operators are defined
in terms of the underlying Hilbert space of wave functions
X̂ |ψ〉 = |φ〉 with a scalar product 〈ψ |φ〉.

For a system described by a finite algebra of operators,
the Liouville generator M( �χ, ��) is a diagonalizable rank N2,
parameter-dependent matrix, where the elements of �χ and
�� are real parameters which can be viewed as coordinates
of a parameter space. We assume the N2 instantaneous right
eigenvectors of the Liouville generator M are nondegenerate
(at all times, i.e., there is no level crossing). These are denoted
by �Fk ( �χ ), k = 1, 2, ..., N2, and are associated with the eigen-
operators of M which satisfy an eigenvalue equation [16],

F̂ H
k (t ) = Û †(t, 0)F̂k (t )Û (t, 0) = βk (t )F̂k (0) , (9)

where βk are time-dependent complex functions [46]. For
example, when decomposition Eq. (3) holds, the eigenvalues

are βk (t ) = exp (−iλk
∫ t

0 dt ′�k (t )′). In addition, for compact
algebras, the matrix M is Hermitian and the left and right
eigenvectors are conjugates.

We introduce a second set of biorthogonal partners { �G( �χ )},
satisfying

M �Fk = λk�k �Fk and M† �Gk = λk�k �Gk . (10)

The two sets are biorthogonal, meaning that ( �Gk, �Fn) = δkn,
where (,) is the scalar product of the two vectors in Liouville
space.

The set of instantaneous eigenvectors constitutes a com-
plete basis of the Liouville space, allowing us to expand the
quantum state in terms of the basis elements. We therefore
propose a solution for Eq. (2), which is a superposition of
the eigenvectors �Fk with additional dynamical and geometric
phases, Eq. (6).

The orthonormal property of the eigenvectors, ( �Gk, �Fn) =
δkn implies that

(∇ �χ �Gk, �Fn) = −( �Gk,∇ �χ �Fn) (11)

for all n and k, therefore ( �Gk,∇ �χ �Fk ) is pure imaginary and, as
a result, φk are real. Similarly, by differentiating the identity
( �Gn,M �Fk ) = 0, for n �= k, we obtain

( �Gk,∇ �χ �Fn) = ( �Gk,∇ �χM �Fn)

λn�n − λk�k
. (12)

We proceed by inserting Eq. (6) into Eq. (2). We then
project �Gk from the left and utilize the orthogonality property
and the derived identities Eqs. (11) and (12) to obtain a set of
differential equations,

dck

dt
= ∇ �χck · d �χ

dt
= −

∑
n �=k

cn(t )
( �Gk,∇�χ �Fn) d �χ

dt

λn�n − λk�k
e−iξnk ,

(13)

with ξnk ≡ ∫ t
0 dt ′[λn�n − λk�k] − (φn − φk ).

Typically, the dynamical phase is the dominant contri-
bution to ξnk , allowing us to neglect the geometric phases.
Integrating Eq. (13) and solving iteratively leads to

ck (t ) ≈ ck (0) −
∑
n �=k

∫ t

0
dt ′ cn

( �Gk,∇�χ ′M �Fn)

λn�n − λk�k

d �χ
dt ′

× exp

(
−i
∫ �χ (t ′ )

�χ (0)
d �χ ′

(
d �χ ′

dt ′′

)−1

(λn�n − λk�k )

)
.

(14)

The term ( d �χ ′
dt ′′ )

−1
diverges in the inertial limit, inducing rapid

oscillations in the last term. Assuming the integrand of the
last exponent is integrable in the interval [ �χ (0), �χ (t )], the
Riemann-Lebesgue lemma implies that when the phase of the
last exponent, or ξnk , change rapidly relative to the integrand,
the sum in Eq. (14) vanishes [47]. This implies that the inertial
solution is valid when

maxt

∣∣∣∣ ( �Gk,∇ �χM �Fn)

(λn�n − λk�k )2

(
d �χ
dt

)2∣∣∣∣
 1 (15)

for all n �= k.
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IV. INERTIAL EXAMPLES

The first two examples, a driven harmonic oscillator and
two-level system, demonstrate the theory in the simple frame-
work of Liouville space, with a single inertial variable. These
examples allow a closed-form analysis. The third example,
a driven three-level system, is more involved, leading to a
generalization of the STIRAP process.

A. Parametric driven harmonic oscillator

To demonstrate the inertial theorem, we begin by analyzing
the dynamics of a driven harmonic oscillator. Physically, the
system can be realized by a particle in a varying harmonic
potential [29] and is represented by the Hamiltonian

Ĥ (t ) = p̂2

2m
+ 1

2
mω2(t )q̂2 , (16)

where q̂ and p̂ are the position and momentum operators, m is
the particle mass, and ω(t ) is the oscillator frequency.

We consider an initial Gaussian state, which is fully de-
fined by the set of time-dependent operators: L̂(t ) = p̂2

2m −
1
2ω2(t )q̂2, Ĉ(t ) = ω(t )

2 (q̂ p̂ + p̂q̂), K̂ (t ) = √
ω(t )q̂, Ĵ (t ) =

p̂
m

√
ω(t )

and the Hamiltonian, Eq. (16) [48]. This set of op-
erators constitutes a basis of the Liouville space and fulfills
the requirements for the decomposition of the generator,
Eq. (4). The dynamics of a vector of ones, in the basis
{Ĥ , L̂, Ĉ, K̂, Ĵ, Î}T , are given by

d

dt
�vH (t ) = −iω(t )B�vH (t ) , (17)

with

B = i

⎡
⎢⎢⎢⎢⎢⎣

χ −χ 0 0 0 0
−χ χ −2 0 0 0
0 2 χ 0 0 0
0 0 0 χ

2 1 0
0 0 0 −1 −χ

2 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , (18)

where χ = μ = ω̇
ω2 . When μ → 0, the adiabatic solution is

exact.
For a constant μ, B is a constant matrix, and the form of

Eq. (17) is just a special case of the decomposition Eq. (3),
where D = diagω(t )(b1, ..., b8), where bi are the eigenvalues
of B, and P (χ ) is the diagonalizing matrix of B. The fre-
quencies are identified as �k (t ) = ω(t ) for all k, with a single
scaled-time parameter θ (t ) = ∫ t

0 dt ′ω(t ′).
The eigenoperators and eigenvalues, F̂k and λk , are ob-

tained by diagonalization (see Appendix D). The matrix B has
real eigenvalues that possess a non-Hermitian degeneracy for
χ = μ = 2 [41]. This limits the solution to avoid proximity
to the degeneracy point. The inertial parameter, Eq. (8), takes

the form ϒ ∼ ( μ̇

2κω
)
2
, where κ =

√
4 − χ2, which explicitly

becomes

ϒ =
[

1

2κω3
(ω̈ − ω3μ2)

]2

. (19)

When ϒ 
 1, the inertial solution, Eq. (6), is a good approx-
imation of the true dynamics.

(a)

0 1 2 3
0.94

0.96

0.98

1

1 2 3
0

5

(b)

0 1 2 3
0.98

0.99

1

1 2 3
0

5

10

FIG. 1. The fidelity of the final state as a function of the protocol
time, t f , for (a) the harmonic oscillator (HO) and (b) two-level system
(TLS). As the accuracy improves, the fidelity reaches unity. Inset:
The quality measure A ≡ − log10 (1 − F ), of the inertial solution as
a function of time. As the fidelity converges to unity, A increases.
The increase in the fidelity at small times can be explained by
Eq. (20). As t f decreases χ (t ) becomes constant, (χ (t f ) → χ (0)).
Calculation parameters for the HO are ω(0) = 20, ω(t f ) = 10, and
a = −5 × 10−3. The parameters for the TLS are �̄(0) = 20, �̄(t f ) =
10, ε = 8, and ā = −5 × 10−3, with initial state 〈�v(0)〉 = {4, 1, 1}T .

For the demonstration, we consider a particle of mass m =
1 in a varying harmonic potential. The particle is initialized
in the ground state ρ(0) = |0〉〈0|, associated with the initial
frequency ω(0) = 20.

The inertial approximation is evaluated by comparison to
a converged numerical solution, denoted by ρ̂N . The fideli-
ties F of the inertial and adiabatic solutions are calculated
in terms of the Bures distance with respect to ρ̂N , F =
[tr(
√√

ρ̂N ρ̂
√

ρ̂N )]
2

[49]. The fidelities are compared in Fig. 1.
For the analysis, we use the protocol ω(t ) =

ω(0)
1−ω(0)(χ (0)t+ a

2 t2 ) , which satisfies

χ (t ) = μ(t ) = χ (0) + a · t . (20)

The protocol is designed by imposing ω(0), ω(t f ) and param-
eter a, while t f and χ (0) are adjusted accordingly. Modifying
the protocol duration t f interpolates between the sudden and
adiabatic limits [50].

013064-4



INERTIAL THEOREM: OVERCOMING THE QUANTUM … PHYSICAL REVIEW RESEARCH 3, 013064 (2021)

FIG. 2. The expectation values of Ĥ , L̂, and Ĉ (harmonic oscil-
lator operators) for the inertial (red), adiabatic (blue), and converged
numerical solution (green) for the protocol with constant acceleration
Eq. (20). (a) demonstrates the validity of the inertial solution for
a protocol with small acceleration μ(0) = −0.1 and a = −0.02.
(b) shows the breakdown of the inertial approximation for a protocol
with high acceleration μ(0) = −0.1 α = −0.3.

Figure 1(a) shows the fidelity, F , of the final state as
a function of t f . The comparison indicates that the inertial
approximation outperforms the adiabatic approximation. This
is in accordance with Fig. 3, demonstrating that the inertial pa-
rameter is always smaller than the adiabatic parameter ϒ < μ.
The evolution of the state is presented in Fig. 2 in terms of the
expectation values 〈Ĥ〉, 〈L̂〉, and 〈Ĉ〉. For small a, the inertial
solution remains accurate relative to the converged numerical
result, see Fig. 2(a). Increasing a leads to the breakdown of
the inertial solution, as shown in Fig. 2(b). The stability of
the inertial approximation can be checked by adding random
noise at each time step to χ (0) and a in Eq. (20). As expected,
the solutions were stable to Gaussian noise with a standard
deviation in the scale of ∼0.1 · a. A general protocol ω(t )
with a duration τ can be expressed in terms of a dimension-
less parameter s = t/τ . The adiabatic parameter then becomes
μ(s) = (ω(s) − ω(0))/(ω(s)ω(0)sτ ). For a sufficiently large
protocol duration the inertial condition is satisfied and the
inertial solution constitutes an accurate solution for the system
dynamics.

The relative accuracy of the associated inertial and adia-
batic solutions can be compared using ϒ , Eq. (19) and μ.
When the oscillator frequency is accelerated slowly (ω̈ <

ω3μ2, cf. Eq. (19)) the inertial parameter behaves as ϒ ∝ μ2.

0 0.02 0.04 0.06
0

0.04

0.08

0.12

FIG. 3. Inertial (red) and adiabatic (blue) parameters for the har-
monic oscillator as a function of 1/t f . We choose a protocol, Eq. (20),
for which the inertial parameter is constant. maxt |μ| is defined as the
maximum adiabatic parameter for the same protocol.

Hence, for slow acceleration, even in the adiabatic regime the
inertial solution possesses superior accuracy.

B. Two-level-system model

The driven two-level system, characterized by SU(2) alge-
bra, is utilized as an additional demonstration of the inertial
theorem. The system Hamiltonian reads

H̄ (t ) = ω(t )Ŝz + ε(t )Ŝx , (21)

where Ŝi is the i = x, y, z spin operator and the time-dependent
Rabi frequency reads �̄(t ) =

√
ω2(t ) + ε2(t ).

The dynamics of the system is analyzed employing a time-
dependent operator basis {H̄ , L̄, C̄, Î}, with H̄ (t ) = ω(t )Ŝz +
ε(t )Ŝx, L̄(t ) = ε(t )Ŝz − ω(t )Ŝx, C̄(t ) = �̄(t )Ŝy. The equation
of motion for the Liouville vector for ones in the basis
{H̄ , L̄, C̄}T is of the form

1

�̄

d

dt
�rH =

˙̄�

�̄2
Ī�rH − iB̄�rH , (22)

where

B̄ = i

⎡
⎣ 0 χ̄ 0

−χ̄ 0 1
0 −1 0

⎤
⎦ . (23)

Here, �χ = χ̄ = μ̄ = ω̇ε−ωε̇

�̄3 , where μ̄ is the adiabatic param-
eter of the two-level system. To transform Eq. (22) to the
factorized form, Eq. (3), we introduce a scaled vector

�uH (t ) ≡ �rH (t )e− ∫ t
0 dt ′( ˙̄�/�̄) (24)

for which the dynamics obtains the desired form, d
dt �uH =

−i�̄B̄�uH . This procedure is not limited to the two-level sys-
tem and relies on the fact that the identity I commutes with
any operator. The inertial solution is obtained by diagonaliz-
ing B̄, Eq. (23), leading to the form of Eq. (6) (Appendix D).

We consider a protocol with a constant ε and a lin-
ear change in χ̄ , χ̄ (t ) = μ̄(t ) = χ̄ (0) + ā · t . This leads
to the following protocol: ω(t ) = ε z(t )√

1−z2(t )
, where z(t ) =

ε[χ (0)t + ā
2 · t2 + ω(0)

ε�̄(0) ]. Using this protocol, the exact adi-
abatic and inertial solutions were calculated. The results are
shown in Fig. 1(b), illustrating the superiority of the inertial
solution over the adiabatic result.

An experimental verification of the inertial solution of a
two-level system has been demonstrated experimentally, em-
ploying a ytterbium ion 171Yb+ in a Paul trap [51]. The inertial
protocol was realized in the experiment, demonstrating high
accuracy of the inertial solution with respect to the measure-
ments. In addition, deviations from the inertial solution were
explored. Showing that when the studied protocol slightly
deviates from the inertial condition, the phase still follows
the inertial solution. This phenomena is witnessed as well in
Fig. 2 for the harmonic oscillator. The experiment confirms
the stability of the inertial solution under external noise.

C. Three-level system model

The three-level atom is one of the most extensively stud-
ied driven systems [52–54]. This is an elementary example
of SU(3) algebra, which is abundant in many branches of
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FIG. 4. Energy-level diagram for a � system, (a), ladder linkage,
(b) and V system, (c), corresponding to the Hamiltonian in Eq. (25).
(d) describes a fully connected Lambda system, associated with the
Hamiltonian in Eq. (32).

physics [55–59]. In addition, the model serves as a template
for a basic experimental technique in atomic and molecu-
lar physics: STIRAP. Based on an adiabatic approach and
a dynamical symmetry, the STIRAP is a technique to effi-
ciently transfer population between two quantum states via
an intermediate state [32–34]. Amendments to the adiabatic
scheme have been suggested, forcing the system to follow
the adiabatic evolution by adding counteradiabatic terms to
the Hamiltonian [60,61]. Insight on this well-established sys-
tem can be gained from the inertial approach based on new
invariants.

The basic model considers an atom with allowed tran-
sitions between the first and second levels, as well as the
second to third levels. The atom interacts with an incident
electromagnetic field, coupling the levels (|1〉 ↔ |2〉, |2〉 ↔
|3〉): �E (z, t ) = �E12ei(ν12t−k12z) + �E23ei(ν23t−k23z) + c.c. Under the
two-photon resonance condition (Gell-Mann symmetry for
N = 3) [52,53,55,56], the Hamiltonian within the rotating
frame approximation has the form

Ĥ (t ) = −
⎡
⎣ 0 α(t ) 0

α(t ) �(t ) β(t )
0 β(t ) 0

⎤
⎦ , (25)

with � = �21 = �32, where �i j = νi j − ωi j is the detun-
ing between the laser frequency νi j and the Bohr frequency
ωi j . In the adiabatic STIRAP, � remains constant throughout
the procedure. The Rabi frequencies are defined as α(t ) =
�d12 · E12(t ) and β(t ) = �d23 · E23(t ), where �di j is dipole mo-
ment between levels i and j. The two-photon resonance model
describes either a � or ladder linkage pattern, where the
photon energies correspond to the energy gap between state
|3〉 and |1〉, that is, ω31 = ν21 − ν23 for the � system and
ω31 = ν21 + ν23 for the ladder linkage, Figs. 4(a)–4(c).

With the aim of constructing an inertial solution for Hamil-
tonian Eq. (25), we begin by analyzing this model in Liouville
space. The SU(3) algebra is characterized by eight orthogo-
nal operators along with the identity. As a consequence, the
solution requires a methodical approach to obtain a suitable
protocol and the eight time-dependent operators of the Liou-
ville basis which satisfy the decomposition Eq. (3). For this
end, we introduce a static operator basis for the SU(3) algebra,
composed of traceless Gell-Mann operators {λ̂1, ..., λ̂8} and
the identity [62]. As required, the time-dependent Hamilto-
nian is within the algebra and can be expressed in terms of

the operator basis: Ĥ (t ) = α(t )λ̂1 + β(t )λ̂6 − (�(t )/2)λ̂3 +
(�(t )/2

√
3)λ̂8 + (�(t )/3)Î .

In the next step, we search for a suitable uni-
tary time-dependent transformation that defines the time-
dependent operator basis: T̂i(t ) = Ŝ†(t )λ̂iŜ(t ). Choosing the
transformation

Ŝ = 1

�

⎡
⎣α 0 β

0 � 0
β 0 −α

⎤
⎦ , (26)

where � =
√

α2 + β2, leads to the desired decomposition
of the equation of motion, Eq. (3) [52]. This transforma-
tion conserves the simple commutation relations between the
Gell-Mann matrices while rotating the basis operators with
the Hamiltonian. A similar choice was chosen by Eberly and
Hioe [52], with the restriction α(t ) ∝ β(t ).

The dynamics of the vector �vH (t ) in the {{T̂ }, Î} basis in
Liouville space is generated by d

dt �vH = −iM(t )�vH , where
M(χ1(t ), χ2(t )) is given in Appendix D with χ1 = �/� and
χ2 = (αβ̇ − α̇β )/�3 is the adiabatic parameter.

When χ1 and χ2 are constant, an exact solution is obtained
by diagonalization. For slowly varying χ1 and χ2, the evolu-
tion is approximated by the inertial solution Eq. (6), where λk

and �Fk are eigenvalues and eigenvectors of M, and �k = �

for all k.

D. Adiabatic and inertial STIRAP in Liouville space

In the three-level basis, the STIRAP procedure is a tech-
nique to completely transfer population between the states |1〉
and |3〉. This procedure is immune to losses from spontaneous
emission originating from the intermediate state, |2〉, and is
robust under small variations of the experimental parame-
ters [34]. It relies on the two-photon resonance condition,
� = �21 = �32, and adiabatic dynamics. This is achieved
when the adiabatic parameter is sufficiently small, χ2 
 1.

A dynamical symmetry viewpoint serves as an elegant
approach to understand the STIRAP procedure. Within this
framework, the STIRAP is a consequence of the dynamical
invariance of T̂8(t ) when the dynamics are sufficiently slow. In
the adiabatic limit, (χ2 → 0), implying that d

dt T̂ H
8 → 0, which

means that its expectation value is constant [63]:

〈T̂8〉 = −
√

3

�2
(β2ρ11 + α2ρ33)

+
√

3αβ

�2
(ρ31 + ρ13) + 1√

3
= const. (27)

Here, ρi j = 〈i|ρ̂| j〉, ρii is the population of the ith level and
ρi j are the coherences (i �= j). Any initial state ρ̂(0), which
is a linear combination of Î and T̂8(0), is therefore also a
dynamical invariant. This form incorporates the system state
during the STIRAP procedure,

ρ̂(t ) = 1

3
Î − 1√

3
T̂8(t )

= 1

�2(t )

⎡
⎣ β2(t ) 0 −α(t )β(t )

0 0 0
−α(t )β(t ) 0 α2(t )

⎤
⎦ , (28)
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which maintains this form throughout the dynamics. In such
a process, the Rabi frequencies α(t ) and β(t ) determine the
boundary conditions.

The population transfer, in the adiabatic regime, is obtained
by the following protocol: At initial time, α = 0 and β > 0,
implying that only the first state is populated, ρ̂(0) = |1〉〈1|,
Eq. (28). This is manifested by 〈T̂ (α = 0, β > 0)〉 ∝ ρ11 as
shown in Eq. (27). During intermediate times α, β > 0, lead-
ing to generation of coherences between states |1〉 and |3〉 and
rise in population of the third level. This can be witnessed by
the nonvanishing terms, proportionate to ρ13 and ρ31 and ρ33,
in 〈T̂8〉, and nonvanishing off-diagonal terms in ρ̂(t ). At the
final time t = T , α > 0 and β = 0, completing a transition
of the system toward ρ̂(T ) = |3〉〈3|. The form of adiabatic
invariant, Eq. (28), rationalizes the counterintuitive order of
pulses of the STIRAP driving protocol [34].

The STIRAP technique, described above, is based on the
conservation of T̂8(t ), which applies only in the adiabatic limit
(χ2 → 0). In the following, we show that the STIRAP can
be generalized to the inertial regime (only requiring χ̇1, χ̇2

→ 0). This technique is based on general dynamical invari-
ants, which incorporate the adiabatic invariants as a special
case.

Diagonlizing M leads to two independent dynamical in-
variants along with the identity operator [64]

Ĉ =
√

3χ2
2

χ1
T̂1 +

√
3χ2
(
χ2

1 − χ2
2

)
χ1

T̂5 −
√

3χ2T̂7 + T̂8 ,

(29)
and D̂, given in Appendix D. For slowly varying χ1 and χ2

the inertial solution applies, implying that 〈Ĉ(t )〉 and 〈D̂(t )〉
are constant.

The operator Ĉ serves as a generalization of T̂8 and con-
verges to it in the adiabatic limit (χ2 → 0) Ĉ. We can employ
this property to construct an inertial STIRAP by setting the
same boundary condition as the adiabatic process while up-
lifting the restriction of slow driving at intermediate times. In
this procedure, the adiabatic parameter χ2 can be large as long
as the change in χ2 is sufficiently slow.

The inertial STIRAP is achieved by the following protocol:
At initial time, the Rabi frequencies are set as α(0) = 0,
β(0) > 0, χ2(0) = 0, and χ1 �= 0, and the system is initialized
in the |1〉 state. Under inertial driving, these initial conditions
imply that the system remains in the form

ρ̂(t ) = 1

3
Î − 1√

3
Ĉ(t ) (30)

throughout the dynamics. From an initial stationary state
(χ2 = 0), the driving is accelerated, leading to α, β > 0 and
χ2 ∼ 1 at transient times and decelerated at the final stage,
achieving α > 0, β = 0 and χ2 = 0 at the final time. Such a
protocol transfers population between states |1〉 and |3〉.

The inertial STIRAP is expected to share the same robust-
ness as the adiabatic STIRAP. As a simple demonstration, we
consider a delta-correlated noise in timing of the driving. Such
a process is equivalent to adding random noise to the gener-
alized Rabi frequency �(t ), Eq. (26) [65,66]. The effective
equation of motion becomes

d

dt
�vH (t ) = −[iM(t ) + �2

nM2(t )
]
�vH (t ) , (31)

ξχ

λ
λ8

λ7
λ6

λ4,5
λ3
λ2

λ1

FIG. 5. Landscape of the eigenvalues {λ} of M of the Hamil-
tonian in Eq. (32) as a function of χ and ξ for γ = 1/2. The
yellow and green streaks correspond to the studied inertial proto-
col. The protocol parameters are � = 1.5, γ = � = 0.5, χ (t ) =
sin (at + π/4), ξ = cos (at + π/4) with a = 0.01. The driving am-
plitudes are α(t ) = � sin (z(t )), β(t ) = � cos (z(t )), where z(t ) =
−�(sin at + cos (at ))/

√
2a.

where �n is proportional to the noise amplitude. In this case,
the noise has no effect on the eigenoperators with vanishing
eigenvalues (the time-dependent constants of motion [67]).
The dynamics of the transient eigenoperators F̂k are accom-
panied by an additional decay at rate �2

nλ
2
k , while the phase

remains unaffected.
The SU(3) framework can be employed to generalize this

scheme, by constructing inertial STIRAP protocols for an N-
level Hamiltonian. This can be achieved by utilizing the same
techniques used to generalize the adiabatic STIRAP [34,68].

E. A fully connected three-level system

A similar framework of the SU(3) algebra is employed
to describe the dynamics of a fully connected three-level
system, Fig. 2. We study a system with the time-dependent
Hamiltonian,

Ĥ (t ) = 1

�2

⎡
⎣ β2δ −α�2 −αβδ

−α�2 −��2 −β�2

−αβδ −β�2 α2δ

⎤
⎦ , (32)

where all the Hamiltonian parameters are time dependent. We
use the transformation generated by Eq. (26) to define the
dynamical operator basis. The dynamics in Liouville space
are generated by the matrix M, similar to the propagator in
Sec. IV C, including additional inertial variables. These are
χ = (αβ̇ − α̇β )/�3, γ = �/�, and ξ = δ/�. The landscape
of the eigenvalues {λ} of the M matrix is presented in Fig. 5.
For a compact algebra, M is Hermitian, in this case, the eigen-
values can be classified to a set of N = 3 invariants (λi = 0)
and N (N − 1)/2 = 3 pairs of eigenvalues of the same mag-
nitude and opposite signs. We find a multitude of conical

013064-7



ROIE DANN AND RONNIE KOSLOFF PHYSICAL REVIEW RESEARCH 3, 013064 (2021)

5 10 15 20

−1

0

1

FIG. 6. Expectation valued of the first Gell-Mann operator λ̂1 (σx

of 1 and 2 states) as a function of time, for a system represented by
the Hamiltonian in Eq. (32). The presented result is a typical behavior
of any system expectation values under the inertial protocol. The
deviation between the numerical and inertial solutions is less than
0.015. The model parameters are given in the caption of Fig. 5.

intersections; for example, in Fig. 5 there is a series of conical
intersections when γ = 0.5, χ = 0, and ξ = 0.78, −1.23.

We consider an inertial protocol varying χ and ξ slowly,
with an initial state including a superposition of two eigen-
vectors in Liouville space: ρ̂(0) = 1

3 Î + v̂3(0) + v̂6(0) (v̂i is
the eigenoperator of λi). The trajectory is shown in Fig. 5,
superimposed on the eigenvlaue surfaces.

Figure 6 compares the inertial solution to a numerical inte-
gration of the equations of motion. For Hamiltonian Eq. (32),
the geometrical phase in Liouville space is identically zero
since the Berry connection vanishes, cf. Appendix D.

The demonstrated inertial protocol can be utilized in quan-
tum control, extending the adiabatic protocols studied in
Ref. [69], for a landscape of conical intersections.

V. EIGENOPERATORS EXISTENCE PROOF

The form of Eq. (3) seems to restrict the inertial theorem
to specific Hamiltonian dynamics. This is not the case, as
we will show in the following proof. We claim that for any
Hamiltonian Ĥ (t ) with time-dependent analytical parameters,
one can find an orthonormal basis in Liouville space (a set of
time-dependent orthonormal operators) such that the genera-
tor of the dynamics in Liouville space can be decomposed as
M(t ) = PD(t )P−1, where P is a constant unitary matrix and
D(t ) is a time-dependent diagonal matrix.

Proof. Let {|ϕ〉} be an orthogonal basis of the system’s
N-dimensional Hilbert space. Then the set of matrices X̂nm =
|ϕn〉〈ϕm| form a basis for the associated N2-dimensional Li-
ouville space. The dynamics of the Liouville vector �X =
{X̂1,1, X̂2,1, ..., X̂N−1,N , X̂N,N } is generated by the Heisenberg
equation: d

dt X̂ H
j,k (t ) = i[Ĥ (t ), X̂ H

j,k (t )]. When the Hamiltonian

is contained in the closed algebra, formed by {X̂ }, the dynam-
ics of �X can be expressed as

d

dt
�X H (t ) = −iG(t ) �X H (t ) . (33)

Next, we define a basis of Liouville space given by
�F H (t ) = V (t ) �X H (t ), where V is a time-dependent unitary

transformation. Inserting the definition into Eq. (33) leads to

d

dt
�F H (t ) = −iM(t ) �F H (t ) , (34)

where M(t ) = −iV (dV†/dt ) + iVGV†. The desired decom-
position is now obtained by choosing a suitable basis
transformation of the form V = PWOP−1, where P is an ar-
bitrary constant unitary matrix and W (t ) is determined by the
differential equation dW/dt = −iM(t )W , with initial con-
dition W (0) = I, the identity in Liouville space. The matrix
O is chosen to be a diagonal (in the {X̂ } basis) time-dependent
real matrix. Substituting V into Eq. (34) leads to the desired
decomposition M(t ) = PD(t )P−1.

To conclude, this result shows that for an analytic Hamil-
tonian, contained within the operator algebra, by choosing
a suitable time-dependent operator basis, all the time-
dependence of the generator can be absorbed into D and the
time-dependent basis. Once such a basis is found, the inertial
theorem can be used to generalize this specific solution to a
broad family of inertial solutions.

VI. COMBINING INERTIAL SOLUTIONS AND
CONSTRUCTION OF INERTIAL HAMILTONIANS

Constructing inertial solutions relies on the intuition re-
lated to the system’s operator algebra. As a result, the solution
may appear restrictive. This disadvantage can be overcome
by combining inertial solutions to generate a family of inertial
protocols for a larger algebra. This construction then generates
a new inertial Hamiltonian. The method is based on the insight
that deriving the Hamiltonian from a known propagator is
relatively simple (in contrast, the reverse procedure, for a
time-dependent Hamiltonian, is extremely involved).

We assume a set of known inertial solutions in Liouville
space for the set of Hamiltonians {Ĥ (i)(t )}. The solutions
are defined by the Liouville propagators {U (i)(t, 0)}; these
determine the dynamics of the operators basis set: �vH (t ) =
U (i)(t, 0)�vH (0). Each Liouville propagator has a matching
propagator in the standard Hilbert space of wave functions
Û (i)(t, 0). In turn, each propagator depends on rapid eigen-
values {λ(i)�(i)} and slowly varying inertial parameters {χ (i)}.
By taking a product of inertial propagators, we obtain a new
inertial propagator,

Û (t, 0) = Û (1)(t, 0)Û (2)(t, 0) · · · Û (n)(t, 0) , (35)

which describes the dynamics accurately when all the inertial
parameters change slowly. The new inertial Hamiltonian is
determined by the Shrödinger equation

Ĥ (t ) = i
∂Û

∂t
Û † = Ĥ (1) + Û (1)Ĥ (2)U †(1)

+ · · · + Û (1) · · · Û (n−1)Ĥ (n)Û †(n−1) · · · Û †(1) , (36)

where the time dependence in the Hamiltonians and propa-
gators is emitted to simplify the presentation. The form of
Eq. (36) defines a broad family of inertial Hamiltonians; in
each one, the rapid degrees of freedom {�} can be set as arbi-
trary time-dependent continuous functions, while the inertial
parameters satisfy inertial condition.
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This procedure allows deriving inertial Hamiltonians for
arbitrary dimensional systems. Moreover, since, Eq. (35)
defines an inertial solution, the procedure can be repeated
iteratively increasing the controlable degrees of freedom in
the final Hamiltonian.

Explicit demonstration

To demonstrate the method, we combine two inertial so-
lutions of the two-level system, Sec. IV B, and derive a
three-level inertial Hamiltonian. The first step requires map-
ping the Liouville propagator to the associated Hilbert space
propagator. The transformation is performed by utilizing the
vec-ing procedure, which maps the Hilbert space dynamics
to Liouville space [35,37]. The density operator maps to a
vector in Liouville space �r by ordering the columns of ρ̂,
i.e., for an N by N density operator the (i, j) matrix entry
of ρ̂ maps to the ( j − 1)N + i entry of �r. Operation of op-
erators from both left and right on ρ̂, as Âρ̂B̂, maps to the
operation (B̂T ⊗ Â)�r in Liouville space. Therefore, the time
evolution Û (t, 0)ρ̂(0)Û †(t, 0) leads to the Liouville prop-
agator U (t, 0) = Û ∗(t, 0) ⊗ Û (t, 0), where ∗ designates the
complex conjugation operation.

In the eigenstates representation {|φk (t )〉}, the wave-
function propagator can be expressed as

Û (t, 0) =
N∑
k

eiαk (t )|φk (t )〉〈φk (0)| , (37)

where {αk} are the associated phases. Transforming the
dynamics according to the vec-ing procedure in the
eigenbasis representation of Û (t, 0) leads to U (t, 0) =
diag(

∑N
k,l ei(αk (t )−αl (t )) ), while �r corresponds to the Liou-

ville state vector in the time-dependent operator basis
{|φk (t )〉〈φl (t )|}. The entries of �r(t ) are given by the matrix
element of ρ̂(t ) in the {|φk (t )〉} basis.

In Liouville space, the propagator is diagonal in the eigen-
operator basis, which implies that the set of eigenoperators
correspond to the set {|φk (t )〉〈φl (t )|}. This identification al-
lows deriving the eigenstates of Û (t, 0) and the matching
phases {αk (t )}, which determine the propagator, Eq. (37).

We demonstrate the reversed mapping by deriving the
Hilbert space propagator for the inertial solution of the two-
level system, Sec. IV B. By following a similar methodology,
any Liouville propagator can be mapped to the correspond-
ing Hilbert space propagator. First, the eigenoperators of
the propagator {F̂1, F̂2, F̂3} are obtained, diagonalizing the
generator B̄, Eq. (23). Formally, the eigenoperators are the
operators associated with the rows of the diagonalizing matrix
P−1, satisfying PB̄P−1 = diag(0, κ̄,−κ̄ ). We next normalize
these Liouville vectors to obtain an orthonormal set of cor-
responding operators {Ĝ1, Ĝ2, Ĝ3}. These are characterized
by simple dynamics (Heisenberg picture): ĜH

1 (t ) = Ĝ1(0),

ĜH
2 (t ) = e−i

∫ t
0 κ̄�̄dt ′

Ĝ2(0) and ĜH
3 (t ) = (ĜH

2 (t ))
†
. The opera-

tors Ĝ2(t )Ĝ3(t ) and Ĝ3(t )Ĝ2(t ) are projection operators with
common instantaneous eigenstates (in Hilbert space) {|φk (t )〉}
(the eigenstates of Û (t, 0)) with eigenvalues {1, 0}. Finally,
the mapping to the Hilbert space propagator is achieved by
calculating the expectation values of {Ĝi(t )}, expressing the
operators in terms of the eigenstates at time t and the initial

state ρ̂(0) in terms of {|φk (0)〉}. The expectation value of
Ĝ2(t ) then becomes (see Appendix E for further details)

〈φ1(0)|Û †(t, 0)|φ1(t )〉〈φ2(t )|Û (t, 0)|φ2(0)〉 = e−i�(t ) ,

(38)
where �(t ) = ∫ t

0 κ̄�̄dt ′ + �̄/2, with �̄ = λ(t ) − λ(0) and
λ(t ) = iεκ̄+μ̄ω√

ε2 κ̄2+μ̄2ω2
. Similarly, the expectation value of Ĝ3(t )

leads to the conjugate equation of Eq. (38). These identities
imply the explicit form of the Hilbert space propagator:

Û (t, 0) = ei�(t )|φ1(t )〉〈φ1(0)| + e−i�(t )|φ2(t )〉〈φ2(0)| .

(39)
For different inertial solutions, such as the harmonic os-

cillator or three-level system Secs. IV A and IV C, the Hilbert
space propagator is obtained by following a similar procedure.
First the eigenoperators are divided to pairs, each constitute
adjoint pairs. Taking a product of the two operators (two
options exist ĜiĜ j and Ĝ jĜi) gives a projection operator of
an eigenstate |φk (t )〉. The eigenstates can then be obtained
via diagonalization. The two corresponding eigenstates lead
to an analogous equation as Eq. (38), which determines the
propagator phases αk (t ) and subsequently, from Eq. (37), the
Hilbert space propagator.

We have now reached the point where we can combine two
TLS propagators Û (1)(t, 0) and Û (2)(t, 0), Eq. (39), to obtain
an inertial Hamiltonian for a three-level system Û (t, 0) =
Û (1)(t, 0)Û (2)(t, 0). We consider two propagators that couple
two energy levels with a single common energy state, which
is taken to be the second energy state. Each propagator is
generated by an Hamiltonian in the form of Eq. (21), with
distinct frequencies ε(i)(t ), ω(i)(t ), and inertial parameters
μ̄(i)(t ), with i = 1, 2. Substituting the associated propagators,
Eq. (39), into Eq. (36) leads to a new inertial Hamiltonian

Ĥ (t ) = Ĥ (1)(t ) + Ĥ (2)(t ) + Ĥ12(t ) , (40)

where the correction term is

Ĥ12(t ) = [Û (1)(t, 0), Ĥ (2)(t )]Û (1)†(t, 0) (41)

and [Û (1), Ĥ (2)] is given in Appendix E.
The norm of the correction Hamiltonian Ĥ12 depends on

the control parameters Û (1) and Û (2). We compared the norm
of the correction to the norms of Ĥ (1) and Ĥ (2) and find that
for typical parameter values the norm is at least an order of
magnitude smaller (|μ| ∼ 1 and �(i) ∼ 10). This suggests a
perturbative approach with respect to this correction.

VII. EXTENDING THE INERTIAL THEOREM TO
OPEN-SYSTEM DYNAMICS

The inertial solution describes the free propagation of iso-
lated systems. In reality, no system is truly isolated; as a
consequence, the environment modifies the system dynamics.
By combining the inertial theorem and the nonadiabatic mas-
ter equation (NAME) [16] a reduced description of the system
dynamics can be obtained, where the influence of the bath is
treated implicitly.

The crucial step of the derivation includes solving the free
propagation, which in turn is used to obtain the system-bath
interaction Hamiltonian ĤI in the interaction representation.
Applying the inertial theorem to expand ĤI in terms of
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the eigenoperators F̂k , Eq. (6) and following the derivation
presented in Ref. [16] leads to a NAME incorporating the
effect of a slowly accelerated drive, d �χ/dt = dμ/dt > 0 (see
Appendix C).

The Master equation in the interaction representation is
given:

d

dt
ρ̃S (t ) = −i[H̃LS (t ), ρ̃S (t )]

+
∑

j

γk (αk (t ))

(
F̂k ρ̃S (t )F̂ †

k − 1

2
{F̂ †

k F̂k ρ̃S (t )}
)

.

(42)

Here, ρ̃S (t ) is the system’s density operator in the in-
teraction representation relative to the free evolution and
F̂j ≡ F̂j (0). The term H̃LS (t ) is the time-dependent Lamb-
type shift Hamiltonian. This master equation, Eq. (42),
is an explicit time-dependent version of the Marko-
vian Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) Mas-
ter equation [70,71].

Within the derivation of Eq. (42), the inertial theorem
eigenoperators, F̂k , Eq. (6), are identified as the jump opera-
tors of the master equation. These determine the instantaneous
attractor of the dynamical map and the decay rates [16].
The decay rates γ (αk ) are related to the Fourier transform
of the bath correlation functions with effective frequencies
αk (t ). These effective frequencies are the derivative of the
accumulated phases, associated with the eigenvalues of F̂k . In
Appendix C, the construction of Eq. (42) is demonstrated for
a driven system weakly coupled to a bath.

The framework of the inertial NAME, Eq. (42), has been
employed in an open system control problem: accelerat-
ing thermalization [72,73]. In addition, the theory allowed
constructing a fully quantum Carnot analog engine [74,75],
highlighting quantum signatures in quantum thermodynam-
ics [76,77].

VIII. GEOMETRIC PHASE IN LIOUVILLE SPACE

In 1984, Berry showed that a system transported adiabat-
ically by varying parameters of the Hamiltonian around a
circuit acquires an additional geometric phase [78]. Following
a similar proof, we show that the operator F̂k (θ ) attains a new
geometric phase, φk , when the parameters {χ} are transformed
slowly in circuit C in parameter space, cf. Appendix A. The
geometric phase has the form

φk (C) = −Im

[∫∫
C

d �χ · Vk ( �χ )

]
, (43)

where

Vk ( �χ ) =
∑
n �=k

( �Gk, �∇�χM �Fn) × ( �Gn, �∇�χM �Fk )

(�nλn − �kλk )2
. (44)

The geometric phase in Liouville space, Eq. (43), has a
different physical significance compared to the Berry phase.
The Berry’s phase is an accumulated phase of the wave func-
tion and therefore is nonvanishing only for a closed circuits
including a degeneracy of eigenenergies. As a property of the
wave function, it can only be witnessed by interference.

In contrast, the geometric phase in Liouville space influ-
ences the physical observables directly. Such observables are
determined by a linear combination of the eigenoperators,
[associated with the vector �vH , Eq. (6)] and the initial system
state. Moreover, unlike the Berry phase, the eigenvectors �Fk

are uniquely defined by �χ . As a result, φk is nonvanishing for
open circuits in the parameter space {χ}. For a closed circuit,
φk vanishes when Vk ( �χ ) is analytic within the area encom-
passed by the circuit. When the circuit surrounds a singularity,
which may occur in the case of degeneracies �nλn = �kλk ,
the geometric phase is nonvanishing and will directly affect
the physical state.

Geometric phase examples in Liouville space

As a first demonstration, we consider a two-level system in
a time-dependent magnetic field. This system is represented
by the Hamiltonian

Ĥ (t ) = �̄(Bx(t )Ŝx + By(t )Ŝy + Bz(t )Ŝz ) , (45)

where Bi(t ) = f (t )bi(t ) are the components of the magnetic
field �B(t ) and f (t ) = | �B| is a time-dependent function. In
terms of the spin operator basis {Ŝx, Ŝy, Ŝz}, the dynamics in
Liouville space are generated by

d

dt
�SH (t ) = −iH(t )�SH (t ) , (46)

with H = i�̄{0,−Bz, By; Bz, 0,−Bx; −By, Bx, 0}. The re-
quired decomposition of the dynamical equation in Liouville
space, Eq. (3), is obtained for slowly varying bi(t ). For such
a Hamiltonian, the inertial limit coincides with the adiabatic
limit under the scaling t → ∫ t

0 dt ′ f (t ′). Nevertheless, this
example is instructive, as it demonstrates the properties of
the geometric phase in Liouville space and highlights the
distinctions relative to the Berry phase in the wave-function
Hilbert space.

For simplicity, the magnetic field is varied while keep-
ing the magnitude of �b(t ) = {bx(t ), by(t ), bz(t )}T constant
and equal to unity. For such a protocol, it is natural to
express the dynamics in terms of the spherical angles
(�b(t ) = �b(θ (t ), ϕ(t ))), leading to the eigenoperators F̂k (θ, ϕ)
and associated geometric phases in Liouville space φk , see
Appendix F. A rotation of �b(t ) toward direction n̂(θ f , ϕ f )
leads to accumulated geometric phases: φ± = ± cos (θ f )�φ,
where �ϕ = ϕ f − ϕi is the change in the azimuthal angle,
associated with eigenoperators F̂± correspondingly. These in-
duce a direct effect on the system state.

In Fig. 7, we compare the inertial solution, including the
geometric phase, to a solution where the phase is omitted and
an converged numerical solution. The result demonstrates the
importance of the geometric phase for an accurate dynami-
cal description. Moreover, unlike the Berry phases in Hilbert
space, φk influence the dynamics for closed as well as open
circuits in the (Bx, By, Bz ) space.
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FIG. 7. Expectation value of Ŝx as a function of time for a con-
verged numerical solution (green), complete inertial solution (red
dashed), and an inertial solution not including the geometric phase
(blue). The inset emphasizes the difference in phases at long times.
The error in phase accumulates with time, while the complete inertial
solution follows the converged solution faithfully. Model parameters
are f (t ) = 2 + sin (4t ), �̄ = 2, θ = 3π/4 and the system is initial-
ized in the ground state �v(0) = {0, 0,−h̄/2} (in the spin operator
basis). The total accumulated geometric phase is cos (θ )�φ = √

2π .

An addition example demonstrating the geometric phase
employs the Hamiltonian of a fully driven three-level system,

Ĥ (t ) =

⎡
⎢⎢⎣

�α2+2β2δ

2�2
(η1−iη2 )α

�

αβ(�−2δ)
2�2

(η1+iη2 )α
�

−�
2

(η1+iη2 )β
�

αβ(�−2δ)
2�2

(η1−iη2 )β
�

2δα2+β2�

2�2

⎤
⎥⎥⎦ , (47)

where all the Hamiltonian parameters can be time dependent
and � =

√
α2 + β2. The inertial solution for Hamiltonian

Eq. (47) is derived in a similar manner as in Sec. IV C.
The time-dependent transformation Ŝ, Eq. (26), leads to the
dynamical operator basis in Liouville space and the M ma-
trix. The associated inertial variables are χ = (αβ̇ − α̇β )/�3,
γ = �/�, η1, η2 and ξ = δ/�.

An excursion on the eigenvalue manifold is generated by
varying the parameters η1 and η2. Figure 8 compares a numer-
ical solution of the dynamics with the inertial solution, with
and without the geometric phase. We take the initial state as
ρ̂(0) = 1

3 Î + v̂1(0) + v̂8(0) and vary η1 and η2 cyclically. The
errors of the complete inertial solution arise from deviations
from the inertial limit.

The overall phase of the inertial solution is of importance
in the derivation of open system dynamics cf. Sec. VII. The
phase enters into the detailed balance expression and thus is
influenced by the geometric phase. As a result, the kinetic
rates of the master equation are dependent on the geometric
phase.

IX. DISCUSSION

To summarize, the inertial solutions are constructed in
Liouville space, employing a time-dependent operator basis.
The transformation to this basis incorporates a part of the time
dependence while an additional fast timescale is absorbed
into the eigenvalues of the propagator {�(t )λ( �χ )}. This leads
to the required decomposition, allowing us to bypass the
time-ordering obstacle. The transformation is the key toward

5 7.5 10

−1

1

0 2 4 6 8 10
−1

0

1

0

FIG. 8. Geometric phase for a three-level system, Eq. (47).
(a) The distance D(�u, �v) ≡ (�u, �v) between the inertial solution rel-
ative to a converged numerical solution as a function of time. The
red line includes the geometric phase while the blue thin line does
not (both solutions include the dynamical phase). (b) The expecta-
tion value of the first Gell-Mann operator λ̂1 as a function of time.
As expected, the distance between the converged solution and the
solution not including the geometric phase increases. In contrast,
the complete inertial solution remains accurate, achieving distances
close to unity. All the system observables show a typical behavior
as presented in (b). The observable of the complete inertial solution
remains close to the numerical solution, while the solution lacking
the geometric phase deviates from the expected value as the phase in-
creases. Gaps between the inertial and numerical solution arise from
the small deviation from the inertial limit. The model parameters are
� = 1/

√
2, � = −√

2, χ = 0.75, ξ = 0.5, α(t ) = −� sin (�χt ),
β(t ) = � cos (�χt ), η1 = cos (g(t )), and η2 = sin (g(t )) with g(t ) =
(7π/4)(t/t f ) + π/4 for a final time t f a.u. For a complete circle in
parameter space, the total accumulated phase is φtot ≈ 1.04π .

obtaining a suitable decomposition, leading to the inertial so-
lution. An appropriate time-dependent operator basis always
exists (cf. Sec. V) but its construction requires ingenuity. The
symmetries of Lie algebras can serve as a guideline to guess
an appropriate transformation to the time-dependent basis.

The solution is characterized by a set of slowly vary-
ing inertial variables {χ} and expressed in terms of the
eigenoperators {F̂ }, along with dynamical and geometric
phases {φ}. The eigenoperators with vanishing eigenvalues
correspond to time-dependent constants of motion [17,18],
meaning that the expectation values of these operators are
invariant under the driven dynamics. In contrast, the eigenop-
erators with nonvanishing eigenvalues carry a time-dependent
phase.

The inertial solutions share common features with the
quantum adiabatic solutions. These are a consequence of
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the quantum adiabatic theorem, which was derived 90 years
ago by Born and Fock [79]. It states that for a slowly
varying Hamiltonian Ĥ (t ), an eigenstate |n(0)〉 of the ini-
tial Hamiltonian Ĥ (0), remains an eigenstate |n(t )〉 of the
instantaneous Hamiltonian Ĥ (t ) throughout the process. By
inserting the instantaneous eigenstate solution into the time-
dependent Schrödinger equation, the validity of the adiabatic
approximation is be determined.

Comparing the structures of the two solutions, the eigen-
states of the instantaneous Hamiltonian in the adiabatic
solution are replaced by the eigenoperators of the propagator
in the inertial solution. The dynamics in both cases includes a
geometric and dynamical phases, which differ by their physi-
cal meaning. Moreover, the validity of the inertial solution is
verified in a similar fashion, by substituting the solution into
the dynamical equation in Liouville space. In the special case,
where a single transformation generates the time-dependent
dynamical operator basis from a time-independent basis, the
inertial solution can be formulated as an adiabatic solution in
the interaction representation in Hilbert space.

The differences between the adiabatic and inertial solu-
tions are highlighted by applying both methods to the same
driven system. This is quantified by the inertial and adia-
batic parameters, ϒ and μ. The adiabatic parameter restricts
the range of validity of the adiabatic approximation, while
the inertial parameter limits the inertial solutions. Typically,
the inertial parameter is associated with the change in the adi-
abatic parameter, and therefore, the range of valid protocols
is significantly enhanced to include rapid changes associated
with a large μ.

Corrections to the adiabatic approximations have been de-
veloped. There is some confusion in their terminology. One
approach is based on adding a counterdiabatic control to the
Hamiltonian, which eliminates transition terms between adia-
batic states, thus, maintaining adiabatic evolution [80–82]. A
different approach termed superadiabatic is based on a pertur-
bative treatment in orders of the adiabatic parameter [81,83].
An alternative is to employ the adiabatic transformation iter-
atively. For the SU(2) case, this can be carried out to infinite
order [84,85]. This approach could be hard to generalize for a
larger algebra with more than one adiabatic parameter and is
closest in spirit to the inertial procedure.

Generally, similar closed-form solutions serve as a plat-
form to construct control protocols, for example, the adiabatic
STIRAP procedure, which has become extremely popular in
contemporary physics [34]. As closed-form solutions, the in-
ertial solutions also generate a constructive family of control
strategies. As an example, we introduced the inertial STIRAP,
which can be incorporated in similar control tasks as the
adiabatic STIRAP but allows for faster control.

An additional possible control strategy concerns the geo-
metric and dynamical phases of the inertial solution. These
serve as a new template for interference. Overall, since the
inertial solution is stable [51], the control protocols, based
on the solution, are expected to be robust in the presence
of noise [86]. An analysis of the noise has been performed
in Eq. (31) for the three-level system. The generalization to
other algebras is straightforward. Similar treatment concern-
ing the robustness were carried out for the Landau-Zener
scenario [87,88].

The scope of inertial solutions can be extended by com-
bining individual inertial solutions, Sec. VI. For example, in
a multilevel Hilbert space inertial solutions with a common
levels can be combined, generating a new time-dependent
control Hamiltonian.

The inertial solution also has a direct application for open-
system control. Since any quantum system interacts with
the environment to some extent, complete control includes
taking into account the affect of the environment. In contrast
to the typical analysis, the driving has a direct influence on
the system-bath interactions [16]. In the weak system-bath
coupling limit, the influence of the free dynamics can be incor-
porated by the NAME, Sec. VII. In such open system control
scenarios, the controller affects the system directly through
the driving and indirectly through the system-bath coupling.
This property enables extending the common unitary quantum
control to transformations involving changes in entropy [72].
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APPENDIX A: GEOMETRIC PHASE

We derive the geometric phase in Liouville space, assum-
ing a general non-Hermitian generator M [Eq. (3) in the
main text]. The derivation follows the original derivation of
Berry [78], extending the solution to a non-Hermitian gener-
ator. When �vH (χ (t )) completes a contour C in the parametric
of {χ} (not necessarily a closed), the inertial solution acquires
a geometric phase of the form

φk ( �χ (t )) = i
∮

C
d �χ · ( �Gk,∇ �χ �Fk ) . (A1)

When the matrix M includes three inertial variables �χ =
{χ1, χ2, χ3}T , the calculation of the geometric phase is sim-
plified by utilizing common vector calculus identities and
Stoke’s theorem. Following Berry’s derivation [78] and iden-
tities Eqs. (11) and (12) in the main text lead to the final result:

φk (θ ) = Im

[∫∫
C

d�s ·
∑
n �=k

( �Gk,∇�χM �Fn) × ( �Gn,∇�χM �Fk )

(�nλn − �kλk )2

]
.

(A2)

APPENDIX B: COMPARISON OF THE INERTIAL AND
ADIABATIC SOLUTIONS FOR SLOW DRIVING

We compare the inertial and adiabatic solutions to con-
verged numerical results for slow driving. A linear ramp
protocol is considered, for the harmonic oscillator model, the
oscillator frequency increases linearly in time,

ω(t ) = ω(0) + δt , (B1)
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FIG. 9. The fidelity of the final state as function of the protocol
time t f for the (a) harmonic oscillator and (b) two-level-system. Inset:
Results shown at a higher resolution, in the adiabatic regime [A =
− log10 (1 − F )]. The dashed vertical line designates the boundary
of the adiabatic limit, defined when the maximum adiabatic pa-
rameter during a protocol obtains a value of μ = μ̄ = 0.2. As the
accuracy improves, the fidelity converges to unity and A increases.
The inertial solution has a superior accuracy in both the adiabatic
(right of the vertical dashed line) and nonadiabatic (left of the ver-
tical dashed line) regimes. Calculation parameters for the HO are
ω(0) = 10, ω(t f ) = 100. The parameters for the TLS are �̄(0) = 10,
�̄(t f ) = 100 for ε = 8 with initial values 〈H̃ (0)〉 = 4 and 〈L̃(0)〉 =
〈C̃(0)〉 = 1.

with δ = (ω(t f ) − ω(0))/t f . The two-level system is modified
by a similar protocol, varying the Rabi frequency linearly,
�̄(t ) = �̄(0) + δ̄ · t .

The comparison between the two solutions is presented in
Fig. 9, demonstrating the superiority of the inertial approxi-
mation over the adiabatic approximation, in both the adiabatic
and nonadiabatic regimes.

APPENDIX C: NONADIABATIC MASTER EQUATION

We present a derivation of a master equation for a driven
quantum system interacting with a thermal electromagnetic
field with temperature T , see Ref. [16] for further analysis.

The composite system is represented by the Hamiltonian

Ĥtot(t ) = Ĥ (t ) + ĤB + ĤI , (C1)

where Ĥ (t ) is the driven system Hamiltonian, the bath
Hamiltonian is composed of all the bath modes of the
form ĤB =∑λ=1,2

∑
�k ωkb̂†

λ(�k)b̂λ(�k), and ĤI is the system
bath interaction term. The interaction term under the dipole
approximation can be written as ĤI = �E · �D, where �D is
the system dipole operator and �E is the electromagnetic

field operator. Such a field operator obtains the form �E =
i
∑

�k
∑

λ=1,2

√
h̄ωk

2ε0V �ek (�k)(b̂k (�k) + b̂†
k (�k)), where V is the vol-

ume of the field, ε0 is the electric constant, b̂λ(�k) and b̂†
λ(�k)

are the annihilation and creation operators of a bath mode
in the kth direction with a frequency ωk , (k ≡ |�k|), and
polarization λ.

Following the microscopic derivation [89–91], we trans-
form to the interaction picture relative to the free Hamiltonian
Ĥ (t ) + ĤB. We assume the conditions are such that the inertial
approximation is valid. In this regime, the dipole operator in
the interaction representation can be decomposed in terms of
the time-independent eigenoperators {F̂ }, Eqs. (4) and (6) in
the main text, as

D̃(t ) =
∑

n

anF̂ne−i�n (t ) , (C2)

where �n(t ) is given by

�n(t ) ≡
∫ θ (t )

θ (0)
dθ ′
[
λn − i( �Gn,∇�χ �Fn) · d �χ

dθ ′

]
. (C3)

Here, F̂n ≡ F̂n(0), an = tr( �D(0)F̂ †
n ) and an upscript tilde

designates operators in the interaction picture. Utilizing
Eq. (C2), the composite Hamiltonian in the interaction picture
can be written as

H̃tot(t ) = H̃I (t ) = i
∑
�k,λ,n

√
h̄ωk

2ε0V
�ek (�k)anF̂ne−i�n (t )

× (bk (�k)e−iωkt + b†
k (�k)eiωkt ) . (C4)

We proceed by assuming the Born-Markov approximation to
obtain the quantum Markovian Master equation,

d

dt
ρ̃S (t ) = − 1

h̄2

∫ ∞

0
ds trB[H̃I (t ), [H̃I (t − s), ρ̃S (t ) ⊗ ρ̃B]] ,

(C5)
where ρ̂B is the density operator of the bath. Assuming the
bath correlation functions decay fast relative to the external
driving we approximate �k (t − s) as

�k (t − s) ≈ �k (t ) − αk (t )s , (C6)

where αk (t ) ≡ �k (t )λk (t ) − i( �Gk (t )|∇ �χ �Fk (t ) · d �χ
dt ). This ap-

proximation is justified, as the bath correlation functions
decay in a typical timescale which is much smaller than the
timescale of the change in the system parameters, namely,
the function �k (t ). Thus, the contribution to the integral in
Eq. (C5) vanishes when the approximation Eq. (C6) is not
satisfied, see Ref. [16] for further details.

Gathering Eqs. (C4)–(C6) leads to

d

dt
ρ̃S (t ) =

∑
i, j

e−i[�i (t )+� j (t )]�i j (α j (t ))

×
(

F̂j ρ̃S (t )F̂i − 1

2
{F̂iF̂j ρ̃S (t )}

)
, (C7)

with the spectral correlation tensor given by

�i j (α j (t )) = aia j

h̄2

∫ ∞

0
ds eiλ jα(t )s〈Ei(t )Ej (t − s)〉 . (C8)
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We assume �i(t ) + � j (t ) � 1 for �i(t ) �= −� j (t ), and by
performing the secular approximation terminate terms in
Eq. (C7) which oscillate rapidly. Furthermore, by follow-
ing a similar derivation as presented in Ref. [89] Part II,
Sec. 3.4.1, the spectral correlation tensor �i j can be cal-
culated and written as a sum of two terms � j (α) ≡ �i j =
δi j ( 1

2γ j (α) + iS j (α)), with

γ j (α) = α3|a j �d|2
12π2h̄ε0c3

(1 + N (α)) , (C9)

and

S j (α) = |a j �d|2
6π2h̄ε0c3

P
∫ ∞

0
dωkω

3
k

[
1 + N (ωk )

α − ωk
+ N (ωk )

α + ωk

]
.

(C10)

Here, c is the speed of light, P designates the Cauchy principle
part, and N (α) is the occupation number of the Bose-Einstein
distribution at frequency α.

The final form of the NAME in the interaction picture can
be written as
d

dt
ρ̃S (t ) = − i

h̄
[H̃LS(t ), ρ̃S (t )]

+
∑

j

γ j (α j (t ))
(

F̂j ρ̃S (t )F̂ †
j − 1

2
{F̂ †

j F̂j, ρ̃S (t )}
)

,

(C11)

where H̃LS is the Lamb shift correction term in the interaction
representation

H̃LS(t ) =
∑

j

h̄α j (t )F̂ †
j F̂j . (C12)

Equation (C11) is of the GKLS form, guaranteeing a complete
positive trace preserving the dynamical map [70,71,90].

APPENDIX D: EIGENOPERATORS AND EIGENVALUES
AND INVARIANTS

1. Parametric harmonic oscillator

The matrix B, Eq. (18) in the main text, can be decomposed
to two block matrices, the eigenvectors in the {Ĥ, L̂, Ĉ} basis
of the upper 3 × 3 matrix are �F1 = 1√

4+μ2
{2, 0, μ}T , �F2 =

1√
8
{μ, iκ, 2}T and �F3 = 1√

8
{μ,−iκ, 2}T , corresponding to the

eigenvalues λ1 = 0, λ2 = κ and λ3 = −κ . Each eigenvector

�Fk corresponds to the eigenoperator F̂k , which is obtained by
summing over the product of the coefficients and the basis
operators. For �Fk = { f 1

j , f 2
j , f 3

j }T , F̂j = f 1
j Ĥ + f 2

j L̂ + f 3
j Ĉ.

The eigenvectors that correspond to the eigenoperators of the
bottom block 2 × 2 matrix are

�F+ = 1√
8
{2, μ + iκ}T �F− = 1√

8
{2, μ − iκ}T , (D1)

with the eigenvalues λ+ = κ
2 and λ− = − κ

2 . The dynamics
of the eigenoperators has an additional scale ω(t )

ω(0) associated
with the diagonal of terms of B. For example, the dynamics
of the operator associated with �F1 (vanishing eigenvalue) is
F̂ H

1 (t ) = ω(t )
ω0 F̂1(0), where the upper-script H designates that

the operator is in the Heisenberg picture. Explicitly, the dy-
namics becomes

F̂ H
1 (t ) = ω(t )

ω(0)

1√
4 + μ2

(2Ĥ (0) + μĈ(0)) . (D2)

The geometric phase [Eq. (7) in the main text] is obtained
by integrating over the Berry connection: i( �Gk,∇�χ �Fk ) =
i( �Gk, ∂μ �Fk ). This expression vanishes for the eigenvectors of
the harmonic oscillator, therefore, the inertial solution does
not contain a geometric phase.

2. Two-level system

The eigenvectors that correspond to the eigenoperators
and eigenvalues of the propagator [Eq. (23) in the main
text] are �F1 = 1

κ̄
{1, 0, μ̄}T , �F2 = 1√

2κ̄
{−μ̄,−iκ̄, 1}T and �F3 =

1√
2κ̄

{−μ̄, iκ̄, 1}T , with the eigenvalues λ1 = 0, λ2 = κ̄ , λ3 =
−κ̄ , where κ̄ =

√
μ̄2 + 1. The operator proportionate to the

invariant �F1 is

F̂1(t ) = 1

κ̄
(H̄ (t ) + μ̄C̄(t )) , (D3)

where the invariant is Ĝ1(t ), given in Eq. (E1).
In a similar fashion as in the harmonic oscillator model, the

Berry connection, associated with the various eigenvectors,
vanishes.

3. Three-level system

The dynamics of the inertial solution �vH (t ) in the {{T̂ }, Î}
basis in Liouville space is generated by d

dt �vH = −iM(t )�vH ,
where M(χ1(t ), χ2(t )) is given by

M = i�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −χ1 0 0 0 −χ2 0 0

χ1 0 2 0 0 0 χ2 0

0 −2 0 −χ2 0 0 0 0

0 0 χ2 0 0 0 1
√

3χ2

0 0 0 0 0 −1 0 0

χ2 0 0 0 1 0 χ1 0

0 −χ2 0 −1 0 −χ1 0 0

0 0 0 −√
3χ2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D4)
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with χ1 = �/� and χ2 = (αβ̇ − α̇β )/�3 is the adiabatic
parameter.

The eigenvectors in Liouville space with vanishing eigen-
values correspond to invariant observables. The three-level
system (described in Sec. III C in the main text) has a set of
two independent invariants. Any linear combination of these
operators is also an invariant of the dynamics. These invariants
form a vector space, spanned by the vectors (given in the T̂
basis)

�e1 = N1

{√
3, 0,−

√
3χ1

2
, 0,−

√
3χ2, 0, 0,

χ1

2

}
, (D5)

�e2 = N2

{
χ1 − 8χ1χ

2
2 , 0, χ2

1

(
3χ2

2 − 1

2

)

− 3χ2
2

(
χ2

2 + 1
)
, 0, χ1χ2

(− 2χ2
1 + 2χ2

2 − 7
)
, 0,

× 2χ2
(
χ2

1 + 3χ2
2 + 3

)
,

− 1

2

√
3
(
2
(
χ2

1 + 1
)
χ2

2 + χ2
1 − 2χ4

2 + 4
)}

, (D6)

where N1 and N2 are the normalization factors. The
vector representing the invariant Ĉ is given by �C =
(2

√
χ2

1 + 3χ2
2 + 3)

−1
(c1�e1 + c2�e2), with

c1 = (−6
(
χ2

1 − 1
)
χ2

2 + χ2
1 + 6χ4

2

)
/
∣∣χ1

∣∣
c2 = −

√
12χ4

1 χ2
2 + 3χ2

1

(− 8χ4
2 + 20χ2

2 + 1
)+ 12

(
χ2

2 + 1
)3

.

(D7)

The vector corresponding to the invariant D̂ is �D =
(2

√
χ2

1 + 3χ2
2 + 3)

−1
(c2�e1 − c1�e2).

APPENDIX E: CONSTRUCTION OF INERTIAL
HAMILTONIANS—DETAILED DERIVATION

We begin by presenting a detailed derivation of the wave-
function propagator Û (t, 0), starting from the inertial solution
in Liouville space. The inertial solution of the two-level sys-
tem, Sec. III B, leads to three othonormal operators which are
proportionate to the eigenoperators {F̂1, F̂2, F̂3},

Ĝ1(t ) =
√

2

�̄(t )κ̄
(H̄ (t ) + μ̄C̄(t )),

Ĝ2 = Ĝ†
3(t ) = 1

�̄(t )κ̄
(−μ̄H̄ (t ) − iκ̄L̄(t ) + Ĉ(t )) ,

(E1)

The vec-ing procedure, described in Sec. V in the main
text, implies that Ĝ2 and Ĝ3 are of the form |φi(t )〉〈φ j (t )|,
where i, j = 1, 2 with i �= j, and {|φi(t )〉} are the eigenstates
of the Û (t, 0). This structure allows obtaining the eigenstates

be diagonalization of Ĝ2 or Ĝ3, substituting the two-level
system operators {H̄, L̄, C̄}, Sec. IV B into Eq. (E1) leads to
the eigenstates

|φ1(t )〉 =
√

κ̄�̄ + ω

2�̄κ̄

{
i
μ̄�̄ + iε

κ̄�̄ + ω
, 1

}T

,

(E2)

|φ2(t )〉 =
√

κ̄�̄ − ω

2κ̄�̄

{
− i(μ̄�̄ + iε)

κ̄�̄ − ω
, 1

}T

,

where all the Hamiltonian parameters may be time dependent.
In turn of the eigenstates, the operators are given by Ĝ2(t ) =
Ĝ†

3(t ) = eiλ(t )|φ1(t )〉〈φ2(t )|, where λ(t ) iεκ̄+μ̄ω√
ε2 κ̄2+μ̄2ω2

and Ĝ1 =
1√
2
(|φ2(t )〉〈φ2(t )| − |φ1(t )〉〈φ1(t )|). We can now compare the

dynamics of the expectation values,

〈Ĝ2(t )〉 = eiλ(t )tr(|φ1(t )〉〈φ2(t )|Û ρ̂(0)Û †)

= eiλ(t )tr(Û †|φ1(t )〉〈φ2(t )|Û ρ̂(0))

= eiλ(t )〈φ1(0)|Û †|φ1(t )〉〈φ2(t )|Û |φ2(0)〉
× 〈φ2(0)|ρ̂(0)|φ1(0)〉, (E3)

where the last equality stems from the fact that Û (t ) is a sum
of terms of the form |φk (t )〉〈φk (0)| [Eq. (38) in the main text].

We now compare Eq. (E3) with the result obtained from
the inertial solution in Liouville space:

〈Ĝ2(t )〉 = tr
(
ĜH

2 (t )ρ̂(0)
) = e−i

∫ t
0 κ̄�̄dt ′ 〈Ĝ2(0)〉

= e−i
∫ t

0 κ̄�̄dt ′
eiλ(0)〈φ2(0)|ρ̂(0)|φ1(0)〉 . (E4)

The results of Eqs. (E3) and (E4) determine, up to a global
phase, the phases of the propagator αk , Eq. (8) in the main
text, and the propagator becomes

Û (t, 0) = ei�(t )|φ1(t )〉〈φ1(0)| + e−i�(t )|φ2(t )〉〈φ2(0)| .

(E5)

Construction of a three-level-system Hamiltonian

By combining two TLS propagators, we obtained an in-
ertial Hamiltonian for a three-level system. We considered
two propagators that couple two energy levels with a single
common energy state, which is taken to be the second energy
state. The new Hamiltonian is given by [Eq. (41) in the main
text]

Ĥ (t ) = Ĥ (1)(t ) + Ĥ (2)(t ) + Ĥ12(t ), (E6)

where Ĥ i = ω(i)(t )Ŝ(i)
z + ε(i)(t )Ŝ(i)

x . The correction term is
Ĥ12(t ) = [Û (1)(t, 0), Ĥ (2)(t )]Û (1)†(t, 0), where the commuta-
tion relation is given by

[Û (1), Ĥ (2)] =
⎛
⎝ 0 −ω(2)F ( f+(t )y+, f−(t )y−) −ε(2)F ( f+(t )y+, f−(t )y2)

ω(2)F ( f ∗
+(0)y+, f ∗

−(0)y−) 0 ε(2)
(
F (y+, y−) − 1

2

)
ε(2)F ( f ∗

+(0)y+, f ∗
−(0)y−) −ε(2)

(
F (y+, y−) − 1

2

)
0

⎞
⎠,
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with F (x, y) = 1
2 (xei�(1) + ye−i�(1)

) and

f±(t ) = ε(1)(t ) − iμ(1)�(1)(t )

κ (1)�(1)(t ) ± ω(1)(t )
, g±(t ) =

√
κ (1)�(1)(t ) ± ω(1)(t )

2κ�(1)(t )
, y±(t ) = g±(t )g±(0), (E7)

�(1)(t ) =
∫ t

0
κ̄�̄dt ′ + λ(1)(t ) − λ(1)(0)

2
. (E8)

APPENDIX F: GEOMETRIC PHASE EXAMPLE

The inertial solution of Hamiltonian [Eq. (46) in the main
text] includes two nonvanishing geometric phases. The solu-
tion, Eq. (6) in the main text, is obtained by introducing a
scaled time τ (t ) = ∫ t

0 t ′ f (t ′) and diagonalizing H. The eigen-
vectors in Liouville space read

�F0 = {sin θ cos ϕ, sin θ sin ϕ, cos θ}T ,

�F± = 1√
2
{− cos θ cos ϕ ± i sin ϕ,

− cos θ sin ϕ ∓ i cos ϕ, sin θ}T , (F1)

where θ and ϕ are the spherical angles describing the direction
of the magnetic field �B(t ). The corresponding eigenvalues
are λ0 = 0 and λ±(t ) = ±| �B(t )|�̄. The geometric phase φk

is obtained by integrating over the Berry connection [Eq. (7)
in the main text],

Ak = i( �Fk,∇θ,ϕ �Fk ) = i{( �Fk, ∂θ �Fk ), ( �Fk, ∂ϕ �Fk )} . (F2)

Substituting Eq. (F1) into Eq. (F2) leads to the as-
sociated geometric phases: φ0 = 0 and φ±(θ (t ), ϕ(t )) =
± cos (θ (t ))(ϕ(t ) − ϕ(0)).
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