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A dynamical symmetry is employed to determine the structure of the quantum non-Markovian time-local
master equation. Such a structure is composed from two components: scalar kinetic coefficients and the standard
quantum Markovian operator form. The kinetic coefficients are generally time-dependent and incorporate
information on the kinematics and memory effects, while the operators manifest the dynamical symmetry.
Specifically, we focus on time-translation symmetric dynamics, where the Lindblad jump operators constitute the
eigenoperators of the free dynamics. This symmetry is motivated by thermodynamic microscopic considerations,
where strict energy conservation between system and environment imposes the time-translation symmetry. The
construction is generalized to other symmetries, and to driven quantum systems. The formalism is illustrated
by three exactly solvable non-Markovian models, where the exact reduced description exhibits a dynamical
symmetric structure. The formal structure of the master equation leads to a first principle calculation of the exact
kinetic coefficients. This opens the possibility to simulate in a modular fashion non-Markovian dynamics.
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I. INTRODUCTION

Quantum systems exhibit a wide range of characteristic
dynamical behavior. In small isolated systems the fundamen-
tal time-reversal symmetry manifests itself by quasiperiodic
evolution. However, with increasing system size and reduc-
tion in symmetry, the periodicity becomes harder to witness
and the characteristic local behavior becomes increasingly
irreversible. Underlying this typical transition are emerging
correlations between the system under study and its sur-
rounding. Essentially, any interaction, even asymptotically
small, leads to leakage of information to the environment
and formation of joint correlations. In turn, the fragile na-
ture of quantum information, high dimensionality of the
environment and the limited access the observer has to the
environmental degrees of freedom leads to local irreversibility
[1,2].

The materializing system-environment correlations and
their influence on the system dynamics are related to the
concept of “memory”. In the framework of open quantum
systems, memory quantifies the extent information on the
system’s past state influences the future system dynamics.
Under memoryless dynamics only a one-directional flow of
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information occurs from the reduced state to the environment.
However, in practice the information flow rate is limited by
the Lieb-Robinson bound [3], which defines an associated
timescale of decay of system and environment correlations.
For shorter timescales the backflow from the environment
is inevitable. Consequently, correlations forming in the past
influence the system’s future evolution. Between the two
extremes there is a wide range of possible dynamical phenom-
ena.

In practice, neither of the extremes is completely accurate
[4–8]. Any quantum system has some residual interaction with
its surrounding, which inevitably includes a large number of
degrees of freedom. As a result, information on the system’s
past state gets decoded in highly global correlations (including
many degrees of freedom), which only slightly affects the
system present evolution. Conversely, memoryless dynamics
relies on the negligible role of the system and environment
correlations on the reduced dynamics. The description there-
fore includes an implicit effective coarse-graining in time,
leading to deviations in short times spans [9,10].

The aspiration for an accurate description of quantum dy-
namics is motivated by the recent advancements in quantum
technology, which rely on the reduction of the environmental
impact on the quantum system [11–13]. To reduce the detri-
mental environmental influence, one first needs to precisely
model its effect on the quantum dynamics, which include
memory effects. For example, the development of error mit-
igation schemes relies on an accurate dynamical description
[14–20]. It has also been shown that non-Markovianity can
be utilized to assist tasks for quantum information process-
ing [21–28] and quantum metrology [29,30]. In addition, the
inevitable leakage of information and decoherence of the
quantum state motivates rapid operations on the quantum
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system [2]. Consequently, an accurate description in the short-
time regime is required, where information backflow cannot
be ignored.

In the present study, we analyze the non-Markovian dy-
namics of open quantum systems and construct a master
equation, which includes memory effects. This issue is tackled
by adopting a first principle axiomatic approach. We first in-
troduce two thermodynamically motivated postulates, which
manifest a time-translation dynamical symmetry. The sym-
metry of the map enables conducting a spectral analysis and
leads to the general form of the master equation that complies
with the initial postulates. The obtained master equation is
of the GKLS form with time-dependent and possibly nega-
tive kinetic coefficients. This form is coined the dynamical
symmetric structure. Interestingly, the kinetic coefficients
include all the information regarding the dissipation rates,
details of environmental properties and coupling strength.
They can be determined by employing a perturbative treat-
ment, while taking advantage of the master equation’s defined
operatorial structure. In principle, this approach is valid for
strong system-environment coupling as well as highly non-
Markovian environments.

The dynamical symmetric structure complies with the form
of the Davies master equation [31]. Nevertheless, the obtained
master equation can be non-Markovian. We compare the two
master equations and the initial assumptions involved in their
construction. The proposed approach is very general, allowing
a straightforward generalization of the construction to other
dynamical symmetries. We demonstrate this by analyzing
dynamics, which conserve the total number of excitations
in the system and environment. Under this symmetry, the
dynamics does exhibit a Markovian limit in the long-time
regime. Moreover, by building upon the case of a stationary
Hamiltonian, we extend the description to time-dependent
Hamiltonians.

We begin by setting the framework and discuss the basic
postulates of the theory in Sec. III. Following, we shortly
review the prime known results on dynamical generators.
Building upon the postulates we then prove the general form
of the generator of the dynamical map (Sec. IV). In Secs. V
and VI we describe a perturbative treatment to calculate
the accurate kinetic coefficients, and discuss symmetry im-
posed restrictions on the coefficients. Following, we discuss
the subtle relation between strict energy conservation and
non-Markovianity and compare the present approach to the
Davies construction VIII and VII. The framework is then
extended to other symmetries, analyze dynamics under con-
servation of the total number of excitations Sec. X, and
time-dependent Hamiltonians, Sec. XI. Finally, in Sec. XIII
we demonstrate the theory by analyzing the exact dynam-
ical solutions of the Jaynes-Cummings, spin-star models
under time-translation symmetry and a spin-boson bath model
for dynamics conserving the number of excitations, and
conclude.

II. QUANTUM MARKOVIANITY AND BEYOND

In the classical theory of stochastic processes, lack
of memory is formalized in terms of Markovianity. This
property infers that the present system evolution, which

is described in terms of a time-dependent probability
distribution p(x, t ), is independent of the state history
[32,33]. Generalizing this natural concept to the quantum
regime is not straightforward, as classical Markovianity is
a property of probabilities conditioned on the history of
the process: p(xn, tn|xn−1, tn−1, . . . , x0,) = p(xn, tn|xn−1, tn−1)
(meaning that the random variable X takes the value xi at
time ti for tn � tn−1 � · · · � t0). In the quantum setting, the
conditional probabilities depend not only on the dynamics
but also on the chosen measurement procedure. This is a
definition, which may differ from one experiment to another.
To circumvent this complication, we adopt an approach that
identifies quantum Markovianity as a property of the evolution
of the reduced density operator ρ̂S (t ), with no reference to any
measurement scheme.

We associate quantum Markovianity with the property
of complete positive (CP)-divisibility. The identification is
motivated by the fact that on the level of the one-point
probabilities p(x, t ), (classical) divisible and Markovian pro-
cesses are equivalent. That is, when the experimenter only
has access to one-point probabilities she cannot distinguish
between classical Markovian and divisible processes [34].
Note that alternative definitions of quantum Markovian-
ity exist [35], among the best known are the approaches
based on P-divisibility [36,37], the monotonicity of the
distinguishability quantifiers between two distinct reduced
states [37–39] and the change of the volume of accessi-
ble reduced states [40]. All of these characterisations are
based solely on the properties of the dynamics of the open
quantum system. An alternative approach termed process ten-
sor formalism requires a specific environmental realization
[41–43].

A common restrictive case of CP-divisibility includes dy-
namical maps, which form a dynamical semigroup. In the
present analysis we categorize such maps as “strictly Marko-
vian”. Strict Markovianity is abundant in the analysis of open
quantum systems, and is frequently employed in quantum
optics, solid state physics, quantum information, and quantum
thermodynamics [44–48]. This assumption is supported by a
vast number of experiments, which exhibit a typical exponen-
tial decay towards equilibrium [49]. Moreover, the Markovian
assumption highly simplifies the theoretical description, al-
lowing to derive time-local equations of motion of a specified
form.

In their seminal papers, Gorini, Kossakowski, and Su-
darshan and separately Lindblad (GKLS) [50,51] supplied
the general structure of the generator of a strictly Marko-
vian dynamical map. This result was later generalized to
CP-divisible dynamics, which can be described with the
generalized GKLS master equation, where the kinetic co-
efficients are still positive, but time dependent (at least for
finite-dimensional systems) [8,52,53]. Despite the simplified
theoretical structure, we stress that Markovian evolution can
only be an approximate description, which implicitly in-
cludes a coarse-graining of the dynamics over some timescale
�tc.g. Rapid changes occurring within the timescale of �tc.g

are averaged over and one obtains a smoothed theoretical
description. Beyond these regimes the general structure of
the generator is unknown, apart from some restrictive cases
[54,55].
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III. DYNAMICAL MAP, SYMMETRY, AND
THE MASTER EQUATION

The theory of open quantum systems considers a com-
posite system consisting of a primary system coupled to an
external environment. The total system is isolated, leading
to joint unitary dynamics, which are generated by the joint
Hamiltonian

Ĥ = ĤS + ĤSE + ĤE , (1)

where ĤS and ĤE are the bare system and environment Hamil-
tonians and ĤSE is the interaction term. Under a broader
treatment, the description may include an external controller,
which leads to an explicit time-dependence (in a semi-
classical description [45,56–59]), nonetheless, we will first
address the simplest case including a static Hamiltonian ĤS of
dimension N .

Formally, the evolution of the composite state ρ̂(t ) is deter-
mined by the Liouville-von Neumann equation. However, in
practice this relation is not much of use, as a general accurate
solution is intractable due to the vast number of environmental
degrees of freedom. Luckily, a general solution is not essential
for most purposes, since only the reduced system dynamics
are typically of interest. Under the standard assumption of a
separable initial state (no correlations initially) the reduced
system dynamics are given by a linear completely positive
trace preserving (CPTP) dynamical map [60]

ρ̂S (t ) ≡ �(t, t0)[ρ̂S (t0)]

= trE (Û (t, t0)ρ̂S (t0) ⊗ ρ̂E (t0)Û †(t, t0)), (2)

where ρ̂E (t0) is the environment initial state, tri denotes the
partial trace, with i = S, E and Û (t, t0) = e−iĤ (t−t0 )/h̄ is the
total system propagator.

In the present study, the dynamical map is (quantum)
Markovian if and only if it satisfies CP-divisibility. This prop-
erty implies that the map can be expressed as

�(t, t0) = V (t, s)�(s, t0), (3)

where V (t, s) is also a CPTP map, which satisfies the compo-
sition law

V (t, s)V (s, u) = V (t, u). (4)

In case of a semigroup (strictly Markovian dynamics) the
composition law is replaced by [4,50,51]

�(t, t0) = �(t − s + t0, t0)�(s, t0). (5)

Note that the second property, relation (5), implies the former,
Eq. (3), but not conversely.

The composite propagator Û (t, t0) in Eq. (2) has only a for-
mal role, since an exact solution is unfeasible even for simple
environments. As a consequence, Eq. (2) serves as a starting
point for approximate solutions of the reduced dynamics. The
customary derivation begins with a complete description Ĥ ,
defined in Eq. (1), and employs the Born-Markov-secular
approximation [6,8,31,61]. This construction leads to a GKLS
master equation satisfying Eq. (5), corresponding to strictly
Markovian dynamics. Many variants of the construction exist,
nonetheless, they are characterized by three main features:
weak system-environment coupling, rapid decay of environ-
mental correlations, and a coarse graining in time. These

assumptions effectively discard the memory effects and there-
fore lead to a Markovian dynamical map [10]. If some of
these assumptions are not satisfied, one can try to describe
the dynamics with a generalized GKLS equation, which form
guarantees the CPTP property of the associated dynamical
map and satisfaction of Eq. (3).

Our present analysis adopts an alternative methodology,
we introduce two additional thermodynamically motivated
postulates to the standard CPTP framework [62]. We prove the
general structure of the master equation within this axiomatic
framework. We consider the following two postulates:

(1) Strict energy conservation—The system environment
interaction term commutes with the sum of bare Hamiltonians
[ĤS + ĤE , ĤSE ] = 0.

(2) The initial environment state is stationary with respect
to the bare environment Hamiltonian ĤE .

Strict energy conservation implies that the interface be-
tween the system and environment does not accumulate any
energy. This assumption is motivated by the classical ther-
modynamic idealization, which neglects the properties of
the interface between subsystems, and analyses only energy
currents and changes within the subsystems. The second pos-
tulate includes the common case, where the environment is a
thermal reservoir, and allows for generalizations of multiple
reservoirs, which are diagonal in the energy basis of ĤE .
Nonetheless, it excludes any coherent bath such as squeezed
states. This restriction essentially serves as a strict distinction
between what we consider as a control system or environ-
ment. According to our characterization, quantum control
systems include nonstationary dynamics (with respect to their
bare Hamiltonian), while the environment must be stationary
[59,63–66].

These two postulates along with an assumption that the
map satisfy the semigroup property (strictly Markovian dy-
namics) were introduced in Ref. [67]. There they served as
a mathematical basis to prove the general form of thermo-
dynamically consistent strictly Markovian master equation.
In the following, we relax the Markovian assumption and
analyze the structure of the generator of a dynamical map
�(t, t0), Eq. (2), that only complies with postulates 1 and 2.

A. The thermodynamic postulates and
time-translation symmetry

The two thermodynamic postulates, 1 and 2 introduced
above, imply that dynamical map commutes with the isolated
map [67–69] (the proof is presented in Appendix A for com-
pleteness)

�[US[ρ̂S]] = US[�[ρ̂S]], (6)

or equivalently � ◦ US = US ◦ �, where the time depen-
dence was removed for brevity and US (t, t0)[•] ≡ ÛS (t, t0) •
Û †

S (t, t0), with ÛS (t, t0) = e−iĤS (t−t0 )/h̄. This relation is known
in the literature under the name of time-translation symme-
try or phase covariance. A quantum evolution obeying this
symmetry emerges in many different contexts, as nicely sum-
marized in [70]. In particular, in the field of quantum optics
such dynamics is related to the rotating wave approximation
(RWA), i.e., neglection of the counter-rotating terms in the
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interaction Hamiltonian (cf. Jaynes-Cummings model on res-
onance, in Sec. XIII A).

In the following analysis, the two thermodynamic postu-
lates can be replaced by the time-translation condition on
the map, Eq. (6), leading to identical (and somewhat more
general) conclusions. To be precise, the two thermodynamic
postulates define a set of dynamical maps {�}. These consti-
tute a subset of the set of maps, which are symmetric under
time-translation, hence, Eq. (6) serves as a weaker condition
on the dynamics. In the present study we chose to introduce
the framework in terms of the thermodynamic postulates in
order to allow a clear physical picture.

A different point of view on the relation between the
thermodynamics postulates and time-translation symmetry
is obtained by embedding the symmetric dynamics within
a larger Hilbert space. It has been shown that any time-
translation symmetric maps can be cast as strict energy
conserving dynamics of the system, environment, and an
additional auxiliary system [68,71,72] (a result termed as
Stinespring dilation for time-translation symmetric maps).
Therefore, one can always view the dynamics satisfying time
translation as arising from a larger total system, which satis-
fies the thermodynamics postulates.

The relation between strict energy conservation and time-
translation symmetry has been previously studied in the
context of thermodynamic resource theories. This framework
establishes a set of allowed “free” operations and charac-
terizes the possible state transformation, enabled by these
operations. These theories focus on possible transformation
and not the explicit dynamics, which is the subject of the
current study. By comparing the possible state transitions
one obtains insight on the operational implications of each
property. The conditions of strict energy conservation and an
initial thermal environment define the free operations of the
resource theory of thermal operation [63,65,72,73]. Similarly,
an initial thermal environment and a dynamical map satisfying
time-translation symmetry defines the free operations in the
resource theory of thermal processes (or enhanced thermal
operations) [74,75]. Comparing the two resources theories,
the characterized possible transition are identical for both
theories, therefore it is not yet clear whether thermal processes
have any operative advantage over thermal operations.

B. Generators of dynamical maps

The generator of a general quantum dynamical map is
a function of the joint Hamiltonian Ĥ , which contains all
the information regarding both the system and environment.
The structure of such a generator is unknown, nevertheless,
a number of formal approaches have been developed which
allow analyzing specific cases.

The standard Nakajima-Zwanzig projection operator tech-
nique shows that the dynamical properties of the reduced
system can be expressed accurately in terms of the memory
kernel K [6,76,77]

d

dt
�(t, t0) =

∫ t

t0

K(t − s)�(s, t0)ds with �(t0, t0) = I. (7)

The time nonlocal structure of this equation is computation-
ally demanding as the right-hand side depends on the whole

history of the process. Alternatively, when the dynamical map
is invertible [78], the dynamics can be equivalently described
by a time-local equation [79,80]

d

dt
�(t, t0) = L(τ )�(t, t0), (8)

where L is known as the time-local generator or time-
convolution-less generator (referred to as dynamical generator
from here on) and τ = t − t0. The simple form of this time-
local equation may be misleading as L(τ ) contains memory
and is effectively nonlocal in time due to the dependence on
t0 [81]. Similarly to the generator, the dynamical map is also
only a function of the time difference, allowing to replace the
notation, �(t, t0) → �(τ ). This property is a consequence of
the fact that any non-Markovian dynamics can be embedded
within Markovian dynamics of a larger Hilbert space, see
Ref. [81] for further details.

The nonlocal character of the generator is hidden within
the notation, since the initial time is frequently taken to be
zero. Nevertheless, for the sake of brevity we also set t0 = 0
in the following analysis. Therefore, τ is replaced by t , and
the two times dependence in the propagators (t, t0) is replaced
by a single time. Despite the notation it should be clear that
L(t ) is nonlocal in time and depends on the whole history of
the state (τ = t − 0), not solely on time t .

By utilizing Eq. (8) the generator can be expressed as

L(τ ) =
(

∂�

∂τ

)
�−1(τ ). (9)

This relation directly implies the linearity of the generator
whenever an inverse �−1(t ) exists [82].

If the dynamical generator is time independent the dynam-
ics acquire the form �(t ) = eLt . It is then straightforward
to check that such a map satisfies the semigroup property
Eq. (5), and therefore governs strictly Markovian dynamics. In
their pioneering papers GKLS proved the general form of L.
This result was later generalized for time-dependent genera-
tors L(t ) (generalized GKLS form) of CP-divisible dynamical
maps in [8,52]

L(t )[•] = − i[Ĥ ′(t ), •]

+
∑

α

γα (t )

(
V̂α (t ) • V̂ †

α (t ) − 1

2
{V̂ †

α (t )V̂α (t ), •}
)

,

(10)

where Ĥ ′(t ) is Hermitian, γα (t ) � 0 for every α and time t ,
and • denotes any operator in the C∗ algebra of the N × N
complex matrices. It is important to stress that the mentioned
results rely on the CP-divisibility property and therefore their
validity is guaranteed only under Markovian dynamics.

A specific example of non-Markovian generators can be
obtained by considering a set of mutually commutative strictly
Markovian generators {Lk} and real scalar functions {lk (t )},
satisfying

∫ t
0 lk (t ′)dt ′ � 0 at any time [52,81,83]. Taking a

linear combination of these generators

L(t ) = l1(t )L1 + · · · + lK (t )LK (11)

generates a dynamical map, which is guaranteed to be a valid
quantum channel (CPTP). Such a channel necessarily exhibits
memory effects if the coefficients obtain negative values for
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some time t , lk (t ) < 0. Relation (11) serves as a specific
case of the class of dynamical maps, which self commute at
different times, [�(t ),�(s)] = 0 for all times t and s [83].

C. Generators of invertible dynamical maps

The linearity of L(t ), cf. Eq. (9), allows utilizing Lemma
2.2 of Ref. [50] (see Appendix B) to uniquely express the gen-
erator in terms of a complete orthonormal set σ̂α [satisfying
(σ̂α, σ̂β ) = tr(σ̂ †

α σ̂β ) = δαβ]

L(t )[•] =
N2∑

α,β=1

cαβ (t )σ̂α • σ̂
†
β . (12)

A further restriction is imposed by demanding that the map
will preserve the Hermiticity property,

L(t )[•†] = (L(t )[•])†. (13)

As a consequence the coefficients form a Hermitian matrix
cαβ = c∗

βα . Note, that the same form of the time-local gener-
ator can also be obtained under even weaker conditions [84].
By enforcing condition (13) and the trace-preserving property,
tr(L(t )[•]) = 0, on the linear structure, Eq. (12), Gorini et al.
showed that the linear generator acquires the general form
(Theorem 2.2 of [50])

L(t )[•] = −i[Ĥ ′′(t ), •]

+
N2−1∑
αβ=1

cαβ (t )

(
σ̂α • σ̂

†
β − 1

2
{σ̂ †

β σ̂α, •}
)

. (14)

Here, the complete orthonormal set is chosen such that {σi}
for i = 1, . . . , N2 − 1 are traceless, where N is the dimension
of the system’s Hilbert space, and Ĥ ′′(t ) is Hermitian and
satisfies tr(Ĥ ′′(t )) = 0. We emphasise that generally the coef-
ficients cαβ (t ) may be complex for α �= β, but are restricted by
the Hermiticity condition. For such coefficients, the structure
does not guarantee the CPTP of the associated map. Neverthe-
less, Eq. (14), will serve as a template to analyze the general
structure, which complies with the thermodynamic postulates.

IV. GENERAL STRUCTURE OF THE MASTER EQUATION
BEYOND THE MARKOVIAN REGIME

The thermodynamic postulates impose constraints on the
structure of the dynamical equation. Mathematically, we
employ a spectral analysis to translate the postulates into
conditions on the generator. Both �(t ) and US (t ) are linear
(super)operators on the space of system operators, hence, their
commutativity, Eq. (6), implies that they share a common set
of eigenoperators {Ŝ}. Accordingly, these operators satisfy an
eigenvalue type equation [85]

US (t )[Ŝα] = ÛS (t )ŜαÛ †
S (t ) = eiθα (t )Ŝα, (15)

with θα ∈ R and similarly for �(t ) with eigenvalues λα ∈ C.
For a time-independent Hamiltonian with a nondegenerate

spectrum, the eigenoperators can be categorized into two sets:
unitary invariant and unitary noninvariant operators. The uni-
tary invariant operators have unity eigenvalues [θk (t ) = 0] and
are spanned by the energy projection operators of ĤS , {�̂ j =
| j〉〈 j|}, where ĤS|n〉 = εn|n〉. The noninvariant set includes all

the transition operators between energy states {F̂nm = |n〉〈m|}
for which n �= m. For conciseness of the analysis, when con-
venient we use a single index instead of the double index
nm (F̂α = F̂nm). Throughout the paper the single index are
denoted by Greek letters α, β = 1, . . . , N2, where N2 is the
dimension of the space of system operators, while English
letters indices run over states of the system’s Hilbert space
i, j, n, m = 1, . . . , N .

If we assume that the Bohr frequencies are nondegener-
ate, that is εn − εm �= εk − εl for n �= k or m �= l , the unitary
noninvariant eigenoperators also constitute eigenoperators of
�(t ). Meaning that the transition operator satisfy

�(t )[F̂α] = λα (t )F̂α. (16)

In addition, commutativity of the maps (time-translation sym-
metry) implies that the unitary invariant and noninvariant
subspaces are independent, that is, the unitary invariant op-
erators are mapped to invariant operators

�(t )[�̂ j] =
N∑

i=1

μ ji(t )�̂i. (17)

Note, that due to the time dependency of μ ji(t ), the corre-
sponding dynamical map is in general noncommutative and
the associated eigenoperators are generally time dependent
[83].

The above relations, Eqs. (16) and (17), can be rational-
ized by representing the dynamical map as a matrix in the
Hilbert-Schmidt space of operators (also known as Liouville
space). Such a space is the vector space of system operators
{X̂ } endowed with an inner product (X̂i, X̂ j ) = tr(X̂ †

i X̂ j ). In
this framework, by choosing an operator basis

{Ŝ} ≡ {F̂1, . . . , F̂N (N−1), �̂1, . . . , �̂N }, (18)

the dynamical map obtains a block diagonal form. The upper
block is diagonal and contains the eigenvalues λα (t ), while
the lower block is generally a full time-dependent matrix, see
Fig. 1.

Relations (15), and (16) along with Eq. (9) imply that
the generator and dynamical map share a similar structure in
Hilbert-Schmidt space, for details see Appendix B. This struc-
ture implies similar conditions on the dynamical generator,

L(t )[F̂α] = aα (t )F̂α, (19)

and

L(t )[�̂ j] =
N∑

n=1

b ji(t )�̂i. (20)

By enforcing these conditions on Eq. (12), we obtain the
restrictive structure of the dynamical generator.

We begin the derivation by expressing the linear structure
of the dynamical map in terms of the operator basis {Ŝ}. In
this basis Eq. (12) becomes

L(t )[•] =
N2∑

α,β=1

cαβ (t )Ŝα • Ŝ†
β. (21)
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FIG. 1. The schematic structure of �(t ) and its corresponding
dynamical generator L(t ), in Hilbert-Schmidt space, displayed in
the operator basis {Ŝ}, Eq. (18). The matrix representation of the
superoperators is block diagonal: The upper left part is a N (N − 1)
real diagonal matrix (blue), corresponding to the unitary noninvariant
part {F̂nm}, while the lower right part is an N by N Hermitian matrix
(red), which governs the dynamics of the unitary invariant subspace
(spanned by the energy projection operators {�̂ j}). The grey colored
elements vanish.

Next, we enforce conditions Eqs. (13), (19), and (20) on the
linear structure (see Appendix C for an explicit derivation)

L(t )[•] =
N (N−1)∑

α=1

cαα (t )F̂α • F̂ †
α +

N∑
i, j=1

pi j (t )�̂i • �̂ j . (22)

Here, the coefficients of the first term are real, while the
coefficients of the second term pi j correspond to cαβ with
α = N (N − 1) + i and β = N (N − 1) + j. These form an
N-dimensional complex Hermitian matrix. The first term of
Eq. (22) generates transition between the system’s energy
levels, transferring heat between the system and environment.
The second term serves as source or drain term, generating
or destroying coherence in the energy basis (dependent on the
sign of real part of the associated coefficient)

Uniqueness of (22) follows from a dimensional analysis.
This is achieved by counting the number of independent vari-
ables under the Hermiticity preserving property and relations
(15), and (16). The Hermiticity preserving property of L(t ),
Eq. (13), implies that the linear structure has N4 independent
degrees of freedom (DOF) (number of DOF in an Hermitian
matrix of dimension N2). In addition, relations (15), and (16)
enforce N4 − N (N − 1) − N2 constraints on this linear struc-
ture, leaving N (2N − 1) free variables. Alternatively, the DOF
in the generator can be counted by the number of undeter-
mined DOF in the associated superoperator (see scheme 1):
the diagonal noninvariant part contribute N (N − 1) DOF and
the coefficients of the invariant subspace contribute N2 DOF
(Hermitian matrix of dimension N). In comparison, the coeffi-
cients of the transition terms introduce N (N − 1) DOF, while
the source-drain term contribute N2 DOF, giving a total of

N (2N − 1) independent DOF in Eq. (22). Since the number of
independent DOF coincides with the number of free variables,
the resulting form of the dynamical generator is unique.

Equation (22) can be simplified further by enforcing the
trace-preserving property. Following the seminal work of
Gorini et al. [50], we introduce a new operator basis {P̂} for
the invariant subspace (linear combinations of {�̂}), satisfy-
ing P̂N = Î/N , while the rest of the operators are traceless
operators. These operators define a new operator basis for the
system

{T̂ } ≡ {F̂1, . . . , F̂N (N−1), P̂1, . . . , P̂N }. (23)

A possible choice is the diagonal matrices of
the SU (N ) generalized Gell-Mann matrices P̂j =√

2
j( j+1) (

∑ j
l=1 |l〉〈l| − j| j + 1〉〈 j + 1|), for j = 1, . . . , N −

1 [86]. By demanding that the mapping preserves the trace of
the operators, the standard derivation leads to the final form
of the dynamical generator (see details in Appendix D)

L(t )[•] = − i

h̄
[H̄ (t ), •]

+
N (N−1)∑

α=1

cαα (t )

(
F̂α • F̂ †

α − 1

2
{F̂ †

α F̂α, •}
)

+
N−1∑
i, j=1

di j (t )

(
P̂i • P̂†

j − 1

2
{P̂†

j P̂i, •}
)

, (24)

where H̄ (t ) = h̄
2i (P̂

†(t ) − P̂(t )) is a Hermitian operator, with

P̂(t ) = 1
N

∑N−1
i=1 diN (t )P̂i, and di j (t ) = d∗

ji(t ). The kinetic co-
efficients cαα (t ) must be real but may be negative, while di j (t )
are generally complex. The form of Eq. (24) is termed the
open system dynamical symmetric structure. When cαα obtain
negative value the dynamics necessarily is non-Markovian
and include memory effects.

The initial assumption concerning the nondegeneracy of
the spectrum seems limiting. However, in Sec. IX we show
that this assumption does not impose a practical limitation on
the studied systems, as a free propagator with a degenerate
spectrum can be well-approximated by a suitable nondegen-
erate propagator.

Overall, Eq. (24) serves as the general structure of a valid
time-translation symmetric dynamical generator. We empha-
sise that this form does not guarantee complete positivity
of the associated dynamical map. The main advantage of
Eq. (24) is that all the correct Lindblad jump operators are
determined, leading to a generator, which satisfies the desired
symmetries and a minimal number of undetermined kinetic
coefficients. We show in Sec. V that by utilizing a polynomial
expansion these coefficients can be determined up to the de-
sired accuracy, thus restoring complete positivity within the
associated error range.

We would like to point out, that time-translation symme-
try and the form of the corresponding master equations was
mainly addressed in the literature for the case of strictly
Markovian dynamics [87–90]. An exception is the case of the
time-translation symmetry for a qubit (mostly called phase
covariance in this context), for which a large number of
publications have appeared recently, motivated by the phase
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estimation problems [91–95]. These results reproduce our
findings for N = 2, see Sec. XIII A for an example in terms
of the Jaynes-Cummings model.

V. DETERMINING THE KINETIC COEFFICIENTS

When the coupling to the environment is restricted, the
kinetic coefficients of the dynamical generator {{cαα}, {di j}}
can be determined by comparing Eq. (24) to a perturbative
expansion of the exact master equation. We propose a gen-
eral procedure to determine these coefficients up to a chosen
accuracy.

In the interaction picture with respect to the bare system
and environment Hamiltonian (ĤS + ĤE ), the joint system
dynamics are given by

d

dt
ρ̃(t ) = L̃(SE )(t )[ρ̃(t )] = − i

h̄
[H̃SE (t ), ρ̃(t )], (25)

where the overscript tilde designates operators in the inter-
action picture, X̃ = ei(ĤS+ĤE )t/h̄X̂ e−i(ĤS+ĤE )t/h̄ and L̃(SE ) is the
generator of the total system in the interaction picture. For a
generic interaction the solution of Eq. (25) is involved due to
the time dependence in the generator. However, when the in-
teraction satisfies strict energy conservation (Postulate 1) the
interaction term in the interaction picture is time-independent
H̃SE (t ) = ĤSE . As a result, the joint dynamical generator is
also time-independent L̃(SE )(t ) = L̃(SE ), leading to a simpli-
fied solution. Equation (25) can be integrated to obtain the
formal solution

ρ̃S (t ) = trE
(
eL̃

(SE )t [ρ̂(0)]
)
. (26)

We proceed by expressing the joint dynamical map eL̃
(SE )t in

terms of a suitable polynomial expansion. Consequently, this
leads to an expansion for the reduced system generator

L̃(t )[ρ̂S (t )] =
∑

n

wn(t )ϕn(L̃(SE )[ρ̂(0)]), (27)

where {wn} are expansion coefficients and {ϕn} are operator
valued functions, which depend on the chosen polynomial.

We focus on two specific polynomial series, the Maclau-
rin (Taylor expansion around zero) and Chebychev series.
The Maclaurin series is chosen due to its simple form and
widespread use. In addition, its expansion point is the origin,
therefore, it faithfully captures the dynamics in the short-time
regime, which commonly exhibits non-Markovian behavior.
In comparison, the Chebychev series captures the global char-
acter of the approximated function, and is constructed so
to minimize the maximal error for the chosen time interval.
Hence, the Chebychev series is advantageous for intermediate
and long timescales [96].

Other polynomials can be chosen, specifically tailored to
approximate the dynamics at different timescales. The so-
lutions for different time regimes of the kinetic coefficients
can then be stitched together, leading to a combined accurate
description.

A. Solution based on the Maclaurin series

Expanding the joint map in terms of a Maclaurin series
gives

L̃(t )[ρ̃S (t )] =
∞∑

n=1

(
− i

h̄

)n tn−1

(n − 1)!

× trE ([ĤSE , [...[ĤSE , ρ̂(0)]]]), (28)

where the last term includes n commutation relations. We now
truncate the series in the desired order and introduce an ex-
plicit initial state for the joint system. We denote the Mth order
approximate dynamical generator by L̃(M )(t ) (discarding all
terms n > M). By utilizing the orthonormality the operator
basis {Ŝ}, Eq. (18), and the structure of the master equation,
Eq. (22), we obtain a set of the linear equations for the coef-
ficients. In terms of the double indices notation (α → nm) the
set of equation are expressed as [see Eq. (C6) in Appendix C],

cnnmm − 1

2

N∑
i=1

(cinin + cimim ) = tr(F̂ †
nmL̃(M )(t )[F̂nm]), (29)

for n �= m, and [Eq. (C7)]

cinin = tr(�̂†
i L̃(M )(t )[�̂n]), (30)

for i �= m, and

cnnnn −
N∑

i=1

cinin = tr(�̂†
nL̃(M )(t )[�̂n]). (31)

Here cnnmm corresponds to the coefficient pnm of Eq. (22)
(single index notation of the source-drain term) and the co-
efficients of the form cinin are the coefficients of F̂α = |i〉〈n|.

The set of linear coupled equations can be solved by
standard numerical techniques, leading to a complete char-
acterization of the coefficients. Finally, the non-Markovian
generator, Eq. (24), is completely determined by employing
the unitary transformation that relates {Ŝ} and {T̂ }, Eq. (23),
operator bases.

B. Solution based on a Chebychev series

Expansion of the joint dynamical map in terms of the
Chebychev polynomials leads to

L̃(t )[ρ̃S (t )] = es
∞∑

n=1

wn[r(t )]trE (Tn(Õ[ρ̂(0)])) (32)

where Tn(x) = cos(n arccos(x)) is the n ∈ N Cheybychev
polynomial and {wn} are the associated coefficients. The su-
peroperator Õ is a normalized version of the joint dynamical
generator L̃(SE )(t ) and s and r are suitable normalization con-
stants (cf. Appendix E for further details). By following an
analogous treatment as in the Maclaurin series procedure, we
truncate the series, Eq. (32), and evaluate the kinetic coeffi-
cients [Eqs. (29)–(31)]. In Sec. XIII B we demonstrate this
method by calculating the dynamics of a spin star.

Overall, for time-translation symmetric dynamics, the per-
turbative treatment leads to a master equation with the correct
operator structure and kinetic coefficients within the desired
accuracy. This procedure does not guarantee that the associ-
ated dynamical map is completely positive, since the kinetic
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coefficients are determined up to a certain error. Nevertheless,
if the error in the coefficients is taken into account, the gen-
erated map will be completely positive, as the exact CPTP
dynamical map �(t ), defined in Eq. (2), resides with in the
error range.

For a certain order of the polynomial series and time t , the
accuracy improves with a decrease of the interaction strength.
Nevertheless, the proposed method can be employed in the
strong coupling case if a sufficiently high order polynomial is
chosen. The high order polynomial terms include high order
environment correlation functions. These can be calculated
efficiently utilizing Wick’s theorem and graphical tools, such
as Feynman diagrams [97–99].

The computational resources can be reduced, if the en-
vironment’s memory decay rate is taken into consideration.
Typically, the decay rate of environmental correlations in-
creases with the order of the correlations. For example, for
a bath with Gaussian spectrum, the nth order correlations de-
cay n times faster [100]. This behavior motivates performing
a “higher order” Markovian approximation, which involves
choosing a course-graining time �tc.g, and then truncating the
series in orders for which the associated correlations decay
faster then �tc.g.

VI. DYNAMICAL SYMMETRY CONSTRAINTS

The time-translation symmetry of the dynamical map not
only determines the Lindblad jump operators and structure of
the dynamical generator, but also enforces restrictions on the
kinetic coefficients. Essentially, these additional constraints
on the dynamical generator are a consequence of the fact that
the asymmetry of a state cannot increase under symmetric
dynamics. These symmetry considerations can supplement
the perturbative treatment, employed to determine the kinetic
coefficients. Such analysis may be crucial when a detailed
description of the environment spectrum is not possible, there-
fore prohibiting a perturbative treatment.

The concept of asymmetry under symmetric dynamic was
introduced and formalized by Marvian et al. [68,69,101],
highlighting the fact that the conservation laws arising from
Noether’s theorem are neither necessary nor sufficient condi-
tions to characterize the possible transitions of open quantum
systems [102]. In open systems, dynamical symmetries are,
instead, manifested by a monotonic behavior of certain
information-theoretic functions, termed asymmetry mono-
tones. These can be utilized to introduce additional necessary
conditions on the structure of the non-Markovian master equa-
tion.

We begin the analysis with a brief description of the theory
of symmetric dynamics and asymmetry of states. A dynamical
symmetry is defined with respect to a set of symmetry trans-
formations Ug[•] = Û (g) • Û †(g), where Û (g) are unitary
operators, associated with group elements g ∈ G. A symmet-
ric dynamical map, �G with respect to group G, known also
as a G-covariant map, satisfies the property (commutation
relation)

Ug ◦ �G = �G ◦ Ug, (33)

for all g ∈ G. For example, in the present case, the time-
translation symmetry Eq. (6), is associated with the group

U (1). This is a Lie group, which is generated by the system
Hamiltonian ĤS , Û (g = t ) ≡ ÛS (t ) = e−iĤSt/h̄.

The asymmetry of a state is a measure of the extent
it breaks the associated symmetry. For example, for time-
translation symmetry, symmetric states are those which are
invariant under US (t )[•] = ÛS (t ) • Û †

S (t ), i.e., all incoherent
mixtures states in the distinct system’s energy states. In
contrast, states with coherences between eigenstates with dif-
ferent energies are asymmetric.

Under symmetric dynamics, asymmetry can be viewed as
a resource, as the extent of asymmetry of the initial state
dictates, which transformations are possible [101,103]. The
asymmetry of a state can be quantified in terms of asymmetry
monotones. Formally, an asymmetry monotone is a function
A from the space of states to real numbers for which the
existence of a G-covariant channel �(t ) implies that A(ρ̂S ) �
A(�(t )[ρ̂S]). For time-translation symmetry, asymmetry co-
incides with coherences in the energy basis of the generator
ĤS (denoted just as coherences). As asymmetry cannot in-
crease under symmetric dynamics, the connection infers that
time-translation symmetric dynamics degrade coherences.

Another important tool in the analysis of symmetric dy-
namics is the decomposition of a state to asymmetry modes
[69]. A state ρ̂S can be expressed as a sum of asymmetry
modes

ρ̂S =
∑

k

ρ̂
(k)
S (34)

where each mode ρ̂
(k)
S , is an eigenoperator of the symmetry

transformation Ug. For the studied symmetry, the asymmetry
modes correspond to the noninvariant eigenoperators {F̂α},
which satisfy US (t )[F̂α] = e−iωαt F̂α , with corresponding Bohr
frequencies {ωα}.

In order to impose constraints on the master equation we
focus on asymmetry monotones, which only measure the
degree of asymmetry associated with a certain mode. The
trace-norm ‖Ô‖ = tr(

√
ÔÔ†) constitutes such a monotone,

which is crucially nonincreasing under the operation of any
quantum channel. This property along with Eq. (16) then
implies that [69]

‖F̂α‖ � ‖�(t )[F̂α]‖. (35)

This infers that the absolute values of the associated eigenval-
ues of �(t ) are smaller than one. Combining this inequality
with Eq. (8) translates to an integral condition on the eigen-
values of the dynamical generator [Eq. (19)]∫ t

0
aα (s)ds � 0 (36)

for all α.
Finally, the connection to the kinetic coefficients is ob-

tained by following the scheme in Sec. V. We utilize Eq. (29)
and take into account the entire infinite series (M → ∞) to
obtain a constraint on the exact kinetic coefficients of the
source-drain term (the term including the unitary noninvariant
eigenoperators)∫ t

0

(
cnnmm(s) − 1

2

N∑
i=1

[cinin(s) + cimim(s)]

)
ds � 0. (37)
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Further restrictions on the kinetic coefficients depend on
the properties of both the unitary noninvariant and invariant
eigenoperators of �(t ). In Ref. [74] Ćwikliński et al. point
out that the CPTP property and conditions (20) and (19)
imply that the damping matrix M must be positive [104]. The
diagonal of M is constructed from the eigenvalues of the in-
variant eigenoperators diag(M) = {b11, . . . , bNN }, while the
off-diagonal elements coincide with the eigenvalues of the
noninvariant operators Mnm = anm, corresponding to eigen-
operator F̂nm (in the double index notation α = nm). The
positivity of the damping matrix does not translate to straight-
forward restrictions on the kinetic coefficients (for a system
with dimension d > 2 [74]), nevertheless, it can be used to
verify the validity of the master equation.

Restrictions on the kinetic coefficients of the energy trans-
fer term {cαα} arise from the limitations on the possible
transitions of energy population. This issue has been studied
thoroughly for the case of a thermal reservoir, in the con-
text of the resource theory of thermal operations [65,105].
Specifically, the allowed transitions must be such that the
initial state thermomajorizes the final state (for completeness
we provide a complete definition in Appendix G, for further
details see Ref. [72]). Meaning that for a thermal reservoir,
the kinetic coefficients cannot lead to a state, which violates
the thermomajorization condition with respect to the initial
state. On the level of transformations between states, the ther-
momajorization condition has a clear graphical interpretation
utilizing Lorentz curves, however, this restriction does not
translate to concise closed form conditions on the kinetic
coefficients. Nevertheless, as the positivity of the damping
matrix, the thermomajorization condition can be utilized as
an additional validation check of the master equation of sym-
metric dynamics.

VII. STRICT ENERGY CONSERVATION AND
NON-MARKOVIANITY

The derivation of the reduced dynamics of an open quan-
tum system, for a Markovian environment, relies on the rapid
decay of the environment’s correlation functions. These repre-
sent the “memory” of the environment. Such a rapid decay of
correlations implies that the environment effectively remains
in its initial stationary state, and allows simplifying the exact
dynamical equation to obtain the quantum Markovian master
equation [6]. Interestingly, for an environment initially in a
stationary state, the environment correlation functions do not
decay under the strict energy conservation condition. This
property illuminates a basic relation between processes that
violate strict energy conservation and Markovian behavior.

The basic connection can be understood by studying the
reduced system dynamics in the interaction picture relative to
the free dynamics. In this picture the reduced dynamics can be
expressed as

d

dt
ρ̃S (t ) = − 1

h̄2

∫ t

0
ds trE ([H̃SE (t ), [H̃SE (s), ρ̃(s)]]). (38)

This expression depends on the two-time correlation func-
tions trE (B̃k (t )B̃l (s)ρ̃E (s)), where B̂k and B̂l are environment
operators. Here we have approximated ρ̃(s) ≈ ρ̃S (s) ⊗ ρ̃E (s),
which makes the right hand side of Eq. (38) accurate up to the

second order in interaction strength and is well justified in a
try to obtain Markov limit. Under strict energy conservation
the interaction term commutes with the free dynamics leading
to a time-independent term H̃SE (t ) = ĤSE . In addition, due to
the size of the environment the environment is modified only
slightly by the interaction with the system. As a result, the
correlations 〈B̂kB̂l〉E are only slightly modified, and do not
decay in time. The environmental correlations represent the
memory. Since they do not decay the resulting dynamic are
non-Markovianity.

This issue can be bypassed by adopting a practical ap-
proach; assuming weak coupling and taking into account the
basic limit of time-energy uncertainty, one can relax the strict
commutative condition and replace it by an approximate con-
dition. This allows incorporating an effective strict energy
conservation while allowing for Markovian dynamics. Such
an analysis leads to the standard form of the master equation,
which complies with the Davies construction [31].

VIII. COMPARISON TO THE DAVIES CONSTRUCTION

The symmetric structure coincides with the master equa-
tion obtained from the Davies construction [31]. This property
implies that the Davies map obeys time-translation symmetry,
however, there are key differences in the two approaches.

The Davies construction includes first a weak-coupling
limit assumption (Born), justifying the second-order pertur-
bation treatment. Followed, by a renormalization of the time,
associated with the Markovian assumption, and finally im-
poses the secular approximation, leading the GKLS structure.
It is illuminating to compare these well studied approxima-
tions to the thermodynamically motivated postulates, Sec. III.

Time-translation symmetry is closely related to the sec-
ular approximation [95]. In the secular approximation one
neglects in the master equation all mixed terms containing
eigenoperators of the free evolution US (t ) (isolated map) cor-
responding to different eigenvalues. This leads to decoupling
of the dynamics of the unitary invariant and noninvariant
operators and, additionally, to mutually independent evolution
of the noninvariant operators, exactly as in Eqs. (16) and
(20). The secular approximation is often characterized as a
procedure, which neglects the terms that “violate” energy
conservation. However, this justification is misleading since
the joint dynamics are unitary, therefore, they cannot violate
energy conservation. The neglected terms correspond to ac-
cumulation of energy in the interface between system and
environment. The approximation shares similar traits as the
rotating wave approximations (RWA). Both of them can be
justified by the fact that the free evolution of the open system
occurs on a much shorter timescale than the relaxation dynam-
ics. However, the secular approximation is conducted on the
level of evolution equation, while the RWA is employed on the
level of the interaction Hamiltonian itself, which makes the
RWA nonphysical in some respect [106,107]. In comparison,
strict energy conservation prevents any change in the interface
energy, which leads to a master equation without mixed terms.
Hence, the crucial difference between the Davies approach
and the current analysis is the hierarchy of assumptions. In
the present approach, the symmetry restriction is imposed
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at the outset. This allows going beyond the Born-Markov
approximation.

The Markovian dynamics and weak system-environment
coupling of the Davies construction, allows neglecting the
change in environment, leading to ρ̂E (t ) = ρ̂E (0) at all times.
In contrast, the dynamical symmetric structure only limits
the initial environmental state and incorporates the dynamical
changes of ρ̂E (t ) within the kinetic coefficients. Note, that
recently a generalization of Davies master equation beyond
the secular approximation was introduced [108–112].

An additional, important difference between the two con-
structions concerns the system-environment coupling. The
Davies construction relies on weak coupling, while in prin-
ciple, the symmetric structure allows for arbitrary coupling
strength. Under symmetric dynamics the operatorial form is
solely dictated by symmetry considerations, and as long as
these consideration are satisfied, the structure remains unaf-
fected by the coupling strength. In practice, the assumption of
strict energy conservation may be scrutinized as nonphysical
in the strong coupling regime. Nevertheless, certain processes
such as scattering phenomena and the collision model in the
low-density regime satisfy strict energy conservation under
strong coupling [113,114]. For a critical analysis regarding
this issue see Ref. [67] Sec. III. In addition, the practical task
of calculating accurate kinetic coefficients becomes computa-
tionally demanding with the increase of the coupling strength
and the non-Markovian behavior, cf. Sec. V.

IX. BYPASSING THE NONDEGENERACY CONDITION

The spectral analysis of Sec. IV relied on the condition
that the spectrum of the free propagator ÛS (t ) (system’s Bohr
frequencies) is nondegenerate. This restriction can be some-
what overcome by the following reasoning. For simplicity
consider a free propagator with a single degeneracy Û deg

S (t ),
we can introduce a new propagator Û ε

S (t ) for which one of the
degenerate Bohr frequencies is modified by a gap ε > 0, ef-
fectively removing the degeneracy in the spectrum of Û deg

S (t ).
Such modification enables employing the spectral analysis of
Sec. IV to obtain the (ε-exact) master equation and the asso-
ciated dynamical map �ε(t ). The question arises: What is the
difference between the “degenerate” map and the “nondegen-
erate” map? The difference can be evaluated by analyzing the
the difference in the probabilities Pdeg and Pε (associated with
�deg(t ) and �ε(t ), correspondingly) of obtaining a certain
outcome, related to an element M̂ of an arbitrary POVM. The
difference is bounded by (see Appendix F)

|Pdeg − Pε| = |tr((�deg(t ) − �ε(t ))[ρ̂(0)]M̂ )|� εt + O(ε2),

(39)

which for sufficiently small ε becomes negligible. This result
implies that the two maps are practically indistinguishable
with respect to any observable, for an appropriate choice of
ε and a time duration of interest (ε can be chosen to be
time dependent, e.g., ε = δ/t , for some small δ. This enables
removing the degeneracy for any finite time.).

A similar procedure can be done for the case where the
free propagator has multiple degeneracies by introducing

ε-small changes to the spectrum of Û deg
S (t ). Such analysis

leads to analogous conclusions as Eq. (39).
The removal of the degeneracy is also motivated by prac-

tical physical considerations. External interactions typically
break the symmetries of physical systems. Therefore, ex-
cluding degeneracy, which arise from nature’s fundamental
symmetries, tiny perturbations will remove the degeneracy
between eigenstates. Interestingly, if there is an inherent sym-
metry thermalization is not guaranteed due to the existence of
multiple fixed points of the dynamical map [115].

X. GENERALIZATION TO OTHER SYMMETRIES

The symmetry analysis, that was conducted for the case
of time-translation symmetry, can be generalized to other
symmetry classes. An analogous analysis to Sec. IV can be
performed for any dynamical symmetry, represented by a
finite or Lie groups G [68,87]. Generally, condition Eq. (6)
is replaced by Eq. (33), where the initial environmental state
must now be stationary with respect to the generator of the
symmetry. This relation implies that �(t ) shares an eigen-
operator basis with Ug. Moreover, if the spectrum of Û (g) is
nondegenerate, the representation of �(t ) and L(t ) in Hilbert-
Schmidt space are block diagonal (as shown in Fig. 1) in the
eigenoperator basis of Ug. This leads to a master equation of
the form of Eq. (24), where {F̂α} and {�̂ j} are replaced by the
transition and invariant operator of Û (g), respectively.

Finally, when Ug represents a symmetry transformation
belonging to a Lie group, the kinetic coefficients can be
determined by a similar perturbative treatment as described
in Sec. V. In this procedure, instead of transforming to the
interaction picture with respect to the free dynamics, the trans-
formation should be conducted with respect to the generators
of Û (g). An appropriate transformation will then lead an inter-
action Hamiltonian relative to the symmetry transformation,
and analogous relations to Eqs. (29)–(31).

A. Conservation of the number of excitations

Noether’s theorem relates the symmetry of global gauge
invariance to the conservation of the number of excitations
(particles). In thermodynamics this conservation law is as-
sociated with the grand canonical ensemble. We next study
the consequences of such a symmetry on the form of the
dynamical generator. We emphasize that such a conservation
law, does not require the conservation of the total (free) system
and environment energies, therefore does not generally satisfy
strict energy conservation. For instance, when the excitations
are not on resonance. In reverse, strict energy conservation
can hold even when the total number of excitation changes.
For example, when the multiple excitations in the environment
correspond to a single energy quanta of the system.

Conservation of the total number of excitations is repre-
sented governed by the total Hamiltonian

Ĥ (N ) = ĤS + ĤE + ĤI , (40)

with an interaction of the form

ĤI =
∑

k,ω,ω′:ω,ω′>0

Âk (ω) ⊗ B̂†
k (ω′), (41)
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where Âk (ω) and B̂k (ω′) are eigenoperators of the system
and environment. These satisfy [ĤS, Âk (ω)] = −ωÂk (ω) and
[ĤE , B̂k (ω′)] = −ω′B̂k (ω′) and Â†

k (ω) = Âk (−ω) and simi-
larly for B̂k (ω′). In addition, Âk (ω) and B̂k (ω′) must generate
a creation and annihilation of the same number of excitations.
For example, for a system Hamiltonian ĤS = ∑

k εk|εk〉〈εk|
coupled to a bosonic bath, ĤI may include terms of the
form |n〉〈n + 1| ⊗ b̂†(ω′) + H.c and |n〉〈n + 2| ⊗ (b̂†(ω′))2 +
H.c, but not |n〉〈n + 2| ⊗ (b̂†(ω′)) + H.c. The super-script in
Eq. (40) signifies that the Hamiltonian is associated with the
conservation of the total number of excitations.

As expected, the total Hamiltonian, Ĥ (N ), commutes with
the total number operators N̂ = N̂S + N̂E

[N̂, Ĥ (N )] = 0, (42)

where N̂S and N̂E are the system and environment num-
ber operators. These operators can be written explicitly by
enumerating the free energy states of the system {|k〉} and en-
vironment {|χ j〉} in increasing order, giving N̂S = ∑

k k|k〉〈k|
and N̂E = ∑

j j|χ j〉〈χ j |. Relation (42) motivates defining two

associated unitary operators ÛN,S = eiN̂S and ÛN,E = eiN̂E ,
along with their associated propagators UN,i[•] = ÛN,i • Û †

N,i,
where i = S, E . A straightforward generalization of the strict
energy case leads to an analogous dynamical symmetry rela-
tion (see Appendix H)

UN,S ◦ � = � ◦ UN,S. (43)

This relation allows determining the general form of the mas-
ter equation that complies with the conservation of the total
number of excitations.

The eigenoperators of UN,S are composed of several sets of
degenerate operators. All the noninvariant creation operators,
associated with the same excitation number l , are degenerate.
Formally, the operators of the set {|n + l〉〈n|}, with a fixed l ,
all satisfy UN,S[|n + l〉〈n|] = eil , and are therefore degenerate.
A similar relation holds for the annihilation operators. The
degeneracy along with Eq. (43) implies that the Liouville rep-
resentation of the open system map obtains a block diagonal
form in the operators basis {|n〉〈m|}. Each block corresponds
to a different excitation number and can be labeled by it (posi-
tive for creation operators, negative for annihilation operators
and 0 for the invariant operators).

An analogous analysis as performed for the time-
translation symmetry, Sec. IV, implies that the master
equation is of the following form:

L(N )(t )[•] = − i

h̄
[H̄ (N )(t ), •] +

∑
n,m,l

γnml (t )

×
(

Ĝn,n+l • Ĝ†
m,m+l − 1

2
{Ĝ†

m,m+l Ĝn,n+l , •}
)

,

(44)

where H̄ (N )(t ) is generally a linear combination of invariant
operators and Ĝab = |a〉〈b| and γnml are complex coefficients
(there are additional restrictions concerning their values due
to the Hermitiacy preservation property of the map).

The obtained master equation, Eq. (44), contains terms
mixing the transition operators. This contrasts with time-
translation symmetric dynamics, described by Eq. (24), which

is a result of the assumption of nondegeneracy of the Bohr
frequencies. Note, that in the case of reduced system being a
two-level system, the both configurations coincide.

In Sec. XIII C we analyze the non-Markovian master equa-
tion dynamics of a spin coupled to a bosonic bath under the
conservation of the total number of particles condition. Unlike
the strict energy case (Sec. VII), the current symmetry exhibits
a Markovian limit at long-time regimes.

XI. GENERALIZATION TO TIME-DEPENDENT
HAMILTONIANS

In laboratory experiments quantum systems are frequently
manipulated by external “control” fields, which are typically
described in terms of an explicit time-dependent Hamiltonian
ĤS (t ). Such a description is essentially semiclassical, as the
field itself is a quantum system including an infinite number
of modes. In the semiclassical regime the energy of the field
is much larger then the energy stored in the system control
interaction. As a result, the effect of the field can be reliably
captured by a time-dependent scalar function, denoted as the
drive or control.

This realization allows extending the dynamical sym-
metry based framework to driven time-dependent systems.
It suggests the following approach to solve the open sys-
tem dynamics: (i) Incorporate the field within the complete
quantum description. (ii) Deduce the structure of the mas-
ter equation utilizing symmetry considerations. (iii) Take the
semiclassical limit to obtain the master equation for a driven
quantum system.

We next analyze this procedure for non-Markovian dynam-
ics under time-translation symmetry. The Markovian case was
developed in Ref. [59] for a certain time-translation symmetry.

The composite system, including the primary system, con-
trol and environment, is represented by the Hamiltonian

Ĥ = ĤS + ĤC + ĤSC + ĤI + ĤE , (45)

where ĤC is the control Hamiltonian and ĤSC and ĤI are the
system-control and environmental interaction terms.

The semiclassical description is obtained by taking an
asymptotic limit. This limit is defined by two conditions: (i)
The control field state is only slightly affected by the interac-
tion with the system. (ii) The correlations between the control
field and system are negligible. In this limit the semiclassical
Hamiltonian reads

Ĥ s.c(t ) = Ĥ s.c
S (t ) + ĤI + ĤE . (46)

Physically, the semiclassical regime occurs when the control
system is initially prepared in a very energetic state with
respect to the system’s energy scale, ‖ĤC‖ � ‖ĤSC‖ ∼ ‖ĤS‖.
In this regime, the evolution of the control state is dominated
by the free dynamics ρ̂C (t ) ≈ ÛC ρ̂C (0)Û †

C . As a consequence,
if the system and control are initially uncorrelated they will
remain approximately separable ρ̂D(t ) ≈ ρ̂s.c

S (t ) ⊗ ρ̂C (t ), with
condition (ii) [59].

For open system dynamics, which are symmetric under
time translation, we identify two relevant interaction set ups
(see Fig. 2):

(1) The device set up—The system and control constitute
a “device”, which interacts with the environment via a strict
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FIG. 2. Interaction set ups between system, environment, and
control. Device set up (top panel): System and control form a
composite system called the device (gray background), which is
embedded in the environment. Strict energy conservation is satisfied
between the device and the environment. Tandem set up (bottom
panel): System coupled independently to the environment and the
control. The interface between the system and environment and the
system and control obey strict energy conservation.

energy conserving coupling. That is, the device Hamiltonian
is identified as ĤD = ĤS + ĤSC + ĤC , and the interaction
satisfies [ĤE + ĤD, ĤI ] = 0. This set up corresponds to the
so-called “global” approach towards constructing master
equations [116].

(2) Tandem set up—The system is coupled to both the con-
trol and environment, which do not interact with each other.
In this case, the time-translation symmetry is achieved by
conditions [ĤS + ĤC, ĤSC] = 0 and [ĤS + ĤE , ĤI ] = 0. This
set up is related to the “local” approach towards constructing
master equations.

The scenario are characterized by different time-translation
symmetries. In the device set up, the dynamical map of
the composite system is symmetric under time translation:
�D ◦ UD = UD ◦ �D, where UD(t )[•] = e−iĤDt/h̄ • eiĤDt/h̄. In
comparison, the interactions of the tandem set up imply
that dynamical map of the device (including the primary
system, control and the interaction between them) is time-
translation symmetric with respect to the free dynamics: �D ◦
U0 = U0 ◦ �D [117], where U0(t )[•] = Û0(t ) • Û †

0 (t ) is the
free propagator (excluding all the interactions) with Û0(t ) =
exp(−i(ĤS + ĤC )t/h̄). The distinct dynamical symmetries
lead to different master equations.

The connection to the semiclassical regime and a time-
dependent Hamiltonian is obtained by taking the semiclassical

limit [59]. This procedure includes tracing over all control
degrees of freedom.

In the device setup, the Lindblad jump operators are
associated with the propagator related to trC (ÛD). In the semi-
classical limit, the device’s free propagator can be written
as a product of the free control and system’s semiclassical
propagators [59]

ÛD(t ) = ÛC (t ) ⊗ Û s.c
S (t ), (47)

where

Û s.c
S (t ) = T exp

(
− i

h̄

∫ t

0
Ĥ s.c

S (s)ds

)
, (48)

which is generated by the semiclassical Hamiltonian
Ĥ s.c

S (t ) = trC (ĤDρ̂C (t )). Relation (47) then leads to a master
equation, which Lindblad jump operators are eigenoperators
of U s.c

S [•] = Û s.c
S • Û s.c†

S . For further details, see Ref. [59]
The tandem set up is characterized by time-translation

symmetry of the device system with respect to the free dynam-
ics. This symmetry implies that the Lindblad jump operators
of the device’s master equation are eigenoperators of the
free propagator. Due to the commutativity between the free
Hamiltonians of the different constituents, the eigenoperators
of the free propagator are composed of a product of primary
system and control eigenoperators. Once the trace over the
control is performed, only the eigenoperators of US[•] = ÛS •
Û †

S remain [117]. This means that in the tandem interaction
scenario, the controlled system dynamics is characterized by
the same symmetry as the case with no control Eq. (6). The
identical symmetry infers that the master equation shares the
same structure as the case of a time-independent Hamiltonian,
Eq. (24). Hence, the energetic transitions and dephasing occur
in the system’s local energy basis, and the effect of the control
system is only incorporated within the kinetic coefficients.

XII. DISCUSSION ON THE VALIDITY OF THE STRICT
ENERGY CONSERVATION

Strict energy conservation between the system and en-
vironment constitutes an idealized mathematical condition,
which is associated with the neglection of any change in the
interface energy. When the system is large, as is the case in
traditional thermodynamics, the interface energy is discarded
due to its relative minuscule contribution to the energy flows.
However, in microscopic systems the interface energy (and
the change in the interface energy) is comparable with the
bulk energy, and therefore cannot be discarded. Hence, we do
not expect strict energy conservation to hold under generic
conditions, or even to be strictly valid for real physical sys-
tems. Nevertheless, when the system interacts weakly with
the environment, the strict energy conservation condition ef-
fectively holds in the timescales of interest. In this regime, the
condition can be viewed as an emerging effective symmetry
of the dynamics.

This claim can be understood by studying the reduced
system dynamic in the weak-coupling limit. The composite
dynamics are governed by the Hamiltonian of Eq. (1), and the
interaction term is of the order ‖ĤI‖ ∼ h̄g, where h̄g � ‖ĤS‖.
Up to second order in the system-environment coupling, and
when the environment initially resides in a stationary state
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(with respect to its bare Hamiltonian) the reduced system
dynamics in the interaction picture relative to the bare Hamil-
tonian can be expressed as

d

dt
ρ̃S (t ) = − 1

h̄2

∫ t

0
ds[H̃I (t ), [H̃I (s), ρ̃(s)]]. (49)

Next, we decompose the interaction Hamiltonian into the
system (or device) and environment eigenoperators (transi-
tion operators between the different energy eigenstates) ĤI =∑

k Ŝk ⊗ B̂k . Following the standard microscopic derivation
[6], we substitute this expression into the master equation,
which leads to terms of the form ∼g2ei(ω−ω′ )s. Such terms con-
tribute to the dissipative dynamics corrections, which oscillate
with an amplitude ∝ 1/[(ω − ω′)t], relative to the resonant
terms that comply with the strict energy conservation, see
for instance Ref. [110] or [112]. Since the coupling with the
environment is weak, such oscillating corrections add small
rapid oscillations on top of the dominant free evolution. In this
regime, the rapid oscillations can be averaged over, producing
an effective evolution, which complies with strict energy con-
servation.

XIII. EXAMPLES

A. Jaynes-Cummings model in resonance

We start with a simple model of a qubit coupled to a single
bosonic mode, where the Hamiltonian is given by

Ĥ = ω

2
σ̂z ⊗ ÎE + g(σ̂+ ⊗ b̂ + σ̂− ⊗ b̂†) + ωÎS ⊗ n̂, (50)

with the number operator n̂ = b̂†b̂. The model is exactly solv-
able [118]. It serves as an extreme example of non-Markovian
dynamics, where the combined evolution is quasiperiodic,
while the reduced description can still be cast in the format
of the open system dynamical symmetric structure, Eq. (24).

For this model, the strict energy conservation (Postulate 1)
requires both resonance condition and the RWA (absence of
the terms σ̂− ⊗ b̂ and σ̂+ ⊗ b̂†). If we additionally assume that
the initial environmental operator commutes with the num-
ber operator [ρ̂E (0), n̂] (Postulate 2), the corresponding exact
master equation takes the phase covariant form (interaction
picture) [119]

d

dt
ρ̃S (t ) = γ+(t )

(
σ̂+ρ̃S (t )σ̂− − 1

2
{ρ̃S (t ), σ̂−σ̂+}

)

+ γ−(t )

(
σ̂−ρ̃S (t )σ̂+ − 1

2
{ρ̃S (t ), σ̂+σ̂−}

)

+ γz(t )(σ̂zρ̃S (t )σ̂z − ρ̃S (t )), (51)

where the time-dependent rates read

γ±(t ) = η‖(t )

2

d

dt

1 ± r(t )

η‖(t )
,

γz(t ) = 1

4

(
η̇‖(t )

η‖(t )
− 2

η̇⊥(t )

η⊥(t )

)
,

which are defined in terms of expectation values over the
environment’s state

η‖(t ) = 〈w(n̂, t )w(n̂, t ) + w(n̂ + 1, t )w(n̂ + 1, t )〉E − 1,

r(t ) = 〈w(n̂ + 1, t )w(n̂ + 1, t ) − w(n̂, t )w(n̂, t )〉E ,

η⊥(t ) = 〈w(n̂, t )w(n̂ + 1, t )〉E ,

w(n̂, t ) = cos(g
√

n̂t ), (52)

with 〈•〉E ≡ trE (•ρ̂E (0)). The quantities |η⊥(t )| and |η‖(t )|
describe shrinking of the Bloch ball in the x-y plane and in
the z direction, respectively, and the r(t ) is responsible for its
translation along the z axis [93].

Note, that the resonance condition is not necessary for a
master equation of a phase covariant form [119]. It can be
seen by the fact that the off-resonant Hamiltonian conserves
the number of excitations, Sec. X A. In the qubit case under
this symmetry, the master equation obtains the same operator
structure as the time-translation symmetry.

The master equation, Eq. (51), is of the expected form,
Eq. (24), where the coherent part is absent due to the reso-
nance condition. Only in the situation when γ+(t ) = νγ−(t )
for a constant ν, the generator is commutative at different
times and the associated eigenoperators are time independent.
They generally read

1√
2

{
Î − γ−(t ) − γ+(t )

γ−(t ) + γ+(t )
σ̂z, σ̂x, σ̂y, σ̂z

}
. (53)

The commutativity of the generator implies the com-
mutativity of the dynamical map and in this case their
eigenoperators coincide [83,91]. In particular, this is true for
unital dynamics, i.e., when no translation along the z axis
takes place, r(t ) = 0. In this situation the rates corresponding
to dissipation and heating are the same, γ−(t ) = γ+(t ).

Additionally, the constant ratio between γ+ and γ− also
occurs for an environment initially in a vacuum state, for
which it follows ν = 0. Remarkably, in this case we get
η2

⊥(t ) = η‖(t ), which implies that also γz(t ) = 0 and only the
term associated with decay of excitations to the bath remains.
Note that γz does not vanish in the corresponding time non-
local master equation, Eq. (7), where the term still appears.
As a result, the operator structure is not preserved in the
transition between the time-local and time-nonlocal master
equations, and one should be cautious in the interpretation of
the disappearance of a term in one of the pictures [83,119].
The non-Markovianity is clearly manifested by negative val-
ues γ−(t ). However, note that at some discrete points in time
the time local-generator is ill defined, as the γ−(t ) diverges.
Interestingly, for certain choices of the initial environmental
state all three rates can diverge, see Fig. 3 for an example
with ρE (0) = |1〉〈1|. This happens at times when one of the
functions η⊥(t ), η‖(t ) vanish.

The ill defined time-local master equation does not gener-
ally have a unique solution [120]. Nevertheless, typically one
can assign a physically well-behaved Hamiltonian (i.e., whose
change in time is not too rapid in comparison to the timescale
of the reduced system) to only a single solution. A possible
approach to bypass such singularities derives a corresponding
higher order, well defined, evolution equation [121]. Sur-
prisingly, the corresponding higher-order equation contains a
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FIG. 3. The time behavior of rates corresponding to the Jaynes-
Cummings master equation, Eq. (51), and the functions η⊥(t ), η‖(t ),
and r(t ), Eq. (52), for the environment initially in the number state
|1〉. All three rates γ+(t ), γ−(t ), and γz(t ) are negative for some time
intervals and diverge at isolated points in time.

different operatorial structure relative to the original master
equation.

B. Spin-star model

The spin star model describes the dynamics of a cen-
tral spin residing within a hot bath of environmental spins
[122–125]. Such a system may represent a two-level system
in a bulk, as a nitrogen vacancy (NV) center within a diamond
at room temperature [126], or an electron spin qubit coupled to
a nuclear spin bath in a GaAs quantum dot [127]. The model
is both tractable and shows strong non-Markovian behavior,
hence constitutes a natural choice in studying non-Markovian
dynamics. In the asymptotic long time limit, the populations
of the energy states of the central spin exhibit a complete
relaxation to equilibrium, while the coherences only partially
decohere.

To be concrete, we consider K + 1 localized spin 1
2 parti-

cles with an identical transition frequency. The central spin
interacts with K environmental spins by a Heisenberg XY
type interaction. The joint dynamics are generated by the
composite Hamiltonian

Ĥ = h̄ωσ̂z + 2h̄g(σ̂+Ĵ− + σ̂−Ĵ+) + h̄ω

K∑
k=1

σ̂ (k)
z , (54)

where σ̂i and σ̂
(k)
i , i = x, y, z are Pauli operators of the central

and environmental spins, correspondingly, ω is the transition
frequency, and g is the coupling constant. The total spin
angular momentum of the environment is denoted by �J =
1
2

∑K
k=1 �σ (k), with associated creation annihilation operators

Ĵ± = ∑K
k=1 σ̂

(k)
± , where �σ is the vector of Pauli operators,

σ̂
(k)
± = (σ̂ (k)

x ± iσ̂ (k)
y )/2 and similarly for the central spins. We

assume the environment is initially in a fully mixed state
ρ̂E (t ) = ÎE/2−K .

The present model complies with the two thermody-
namics postulates: Due to the resonance condition, the
interaction term of Eq. (54) commutes with the free Hamil-
tonian h̄ω(σ̂z + ∑K

k=1 σ̂ (k)
z ), and the initial environment state

is stationary under the free environment dynamics. This
stationary state represents a thermal bath in the high tem-
perature regime kBT � h̄ω, serving a suitable approximation
for room-temperature experiments (energy scale of THz) on

NV-centers (GHz) and GaAs quantum dots (MHz). Overall,
these conditions and the previous analysis infers that the mas-
ter equation should be of the form Eq. (24).

We verify this by comparing the predicted structure with
the explicit solution. Due to the high symmetry of Ĥ one can
derive an exact solution for the reduced central spin dynamics,
given by

ρ̂S (t ) = ÎS

2
+ rz(t )

2
σ̂z + r+(t )σ̂+ + r−(t )σ̂−, (55)

where

rz(t ) = κz(t )rz(0),

r±(t ) = e±iωtκ (t )r±(0), (56)

with

κz(t ) =
∑
j,m

d ( j)

2K
cos [4h( j, m)gt],

κ (t ) =
∑
j,m

d ( j)

2K
cos [2h( j, m)gt] cos [2h( j,−m)gt]. (57)

Here, j � K/2 and − j � m � j are the angular momentum
quantum numbers and the ( j, m) dependent functions are
given by

d ( j) =
(

K
K/2 − j

)
−

(
K

K/2 − j − 1

)

h( j, m) =
√

j( j + 1) − m(m − 1). (58)

Given the exact solution, it is straightforward to deduce
the associated dynamical generator in the interaction picture
relative to the free dynamics (see details in Appendix I)

L̃(t )[•] = η−(t )D−[•] + η+(t )D+[•], (59)

with D±[•] = σ̂± • σ̂∓ − 1
2 {σ̂∓σ̂±, •} and

η±(t ) = ξ±(t )

2κ (t )[rx(0) − ry(0)]

ξ±(t ) = ∓ 2κ̇rx(0)[rz(t ) ± 1]

+ 2κ̇ry(0)[rz(t ) ± 1] + κ ṙz(0)[rx(0) − ry(0)], (60)

where rx(0) = r+(0) + r−(0) and ry(0) = i[r+(0) − r−(0)].
Equation (59) constitutes the exact dynamical generator of

the central spin when the kinetic coefficients η±(t ) are well
defined, see exact solution in Fig. 4. When these coefficients
obtain negative values the map violates CP-divisibility, which
indicates that the dynamics are non-Markovian. In Fig. 5 we
present the kinetic coefficients in the weak-coupling regime,
clearly demonstrating that the dynamics of the central spin are
non-Markovian.

In comparison to the exact expression, the Lindblad jump
operators of the general structure Eq. (24) constitute the
eigenoperators of the free propagator ÛS (t ) = exp(−iωσ̂zt ).
Accordingly, the noninvariant unitary eigenoperator are the
raising and lowering operators F̂± = σ̂±, and the invariant
subspace is spanned by σ̂z and the identity. These identifica-
tions verify that the exact solution Eq. (59) complies with the
general structure Eq. (24).
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FIG. 4. Time derivative of 〈σ̂z〉 = tr(σ̂zρ̂S (t )) as a function of
time for the exact solution (black continuous line) and approximate
solution with various expansion orders M. Colored lines correspond
to: Red dashed - M = 2, blue dotted - M = 6 and purple dot-dashed
line - M = 10 for the Maclaurin series. A solution using a Cheby-
chev series of order M = 10 (orange dashed) and M = 38 (dashed
magenta) are represented for the strong coupling case. The different
panels correspond to different interaction strengths. (a) Weak inter-
action regime: g = 0.01, (b) intermediate interaction: g = 0.1, and
(c) strong interaction: g = 1. The quality of the Maclaurin series is
determined by the coupling strength and expansion order. For very
weak interaction strength (a) small expansion order is sufficient,
however, with increase of g [(b),(c)], M must be increased as well to
ensure accurate kinetic coefficients. The Chebychev series remains
precise over its entire validity range, and deviates rapidly for large t .
The behavior of d

dt 〈σ̂x〉 is qualitatively similar to the presented result,
while d

dt 〈σ̂y〉 vanishes due to the chosen initial central spin state.
Model parameters (in arbitrary units): ω = 2, rz(0) = 0.3, r−(0) =
r+(0) = 0.1, K = 10, and tmax = 10.

Comparison of the approximate and exact master equations

The kinetic coefficients of the master equation can be
evaluated with the perturbative treatment of Sec. V. We
demonstrate this approach by calculating the approximate

FIG. 5. Exact kinetic coefficients of the spin star model as a
function of the normalized time in the weak-interaction regime. The
continuous purple and dashed orange lines correspond to the kinetic
coefficients η− and η+, respectively. The coefficients characterize the
dissipation and pure dephasing rates. The approximate kinetic coef-
ficients obtained from the Maclaurin and Chebychev series, follow a
similar behavior in the regime where the approximation holds. Model
parameters are the same as in Fig. 4, with g = 0.01 and tmax = 200.

master equation of the spin star model, and compare it to the
exact solution.

As expected, the Maclaurin series produces accurate results
in the vicinity of the origin t = 0, see Fig. 4. The accuracy
improves with the reduction of the interaction strength g.
Nevertheless, for sufficient polynomial order M, the master
equation can capture the dynamics under strong interactions.

In comparison, the Chebychev series enjoys a “global”
accuracy, within its convergence range, see Fig. 4(c).

C. Spin-boson bath model conserving the total
number of excitations

The spin-boson model is a central model in the field of
open quantum systems. It showcases both Markovian and
non-Markovian open system dynamics in the short- and
long-time regimes. In the following section, we demonstrate
how the kinetic coefficients of Eq. (44) can be determined,
allowing to completely characterize the spin dynamics in
the weak-coupling limit under the conservation of the total
number of excitations. The demonstration involves a slight
adjustment of a recent paper of Rivas [110].

We consider a spin interacting with a bosonic bath via an
excitation conserving interaction. Such a scenario is repre-
sented by the following Hamiltonian:

Ĥ (N ) = h̄ω0

2
σ̂z +

∑
k

h̄ωkb̂†
kb̂k +

∑
k

gk (σ̂−b̂†
k + σ̂+b̂k ).

(61)

Note, that this Hamiltonian can be also obtained by applying
the RWA to the standard dipole approximation interaction
[45].

The reduced dynamics can generally be expressed in terms
of a cumulant expansion

ρ̃S (t ) = �[ρ̂S (0)] = eZ (t )[ρ̂S (0)], (62)

where the exponent can be written as a sum of cumulants
Z (t ) = ∑∞

i=1 K (i)(t ), where K (i) is of ith order in interaction
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strength [128]. For a detailed derivation of the open system
cumulants see Ref. [108], Sec. II B. The symmetry associated
with the conservation of the number of particles ([N̂, Ĥ (N )] =
0) restricts the form of the map and the exponent Z (t ). In
Sec. X we showed that representation of the open system map
in Liouville space must acquire a block diagonal form, in
the operator basis {|εn〉〈εm|}, where each block is related to a
different value of the excitation number l . The representation
of the exponent Z has an identical structure, implying that Z
is of the form of L(N ), Eq. (44). Namely, for the spin case this
form has the same operatorial structure as the strict energy
conservation case [Eq. (51)]

Z (t )[•] = − i

h̄
[H̄ (N ), •] + �

(N )
+ (t )D+[•]

+ �
(N )
− (t )D−[•] + �(N )

z (t )Dz[•], (63)

where the kinetic coefficients {�(N )} are real (due to the
Hermiticity preserving property of the map), and H̄ (N ) is
proportionate to σ̂z from the trace preserving property of the
map. We emphasis that the operatorial structure of Eq. (63)
is valid for arbitrary system-environment coupling and bath
size, it describes the exact reduced dynamics generated by
Hamiltonian Eq. (61) for an initial stationary environment
state of arbitrary size.

To derive the form of the dynamical generator we express
the dynamical generator in the interaction picture in terms of
the map’s exponent

L̃(N )(t )[ρ̃S (t )] ≡ d

dt
ρ̃S (t )

=
(

d

dt
eZ (t )

)
ρ̃S (0)

=
[(

d

dt
eZ (t )

)
e−Z (t )

]
ρ̃S (t ). (64)

This relation identifies the generator with the term in
square brackets. Finally, by utilizing the identity d

dt [eZ (t )] =∫ 1
0 ds esZ (t )[ dZ (t )

dt ]e(1−s)Z (t )ds [129,130] the generator be-
comes

L̃(N )(t ) =
∫ 1

0
ds esZ (t )

[
dZ (t )

dt

]
e−sZ (t )ds (65)

For a closed algebra of superoperators the expression can be
solved explicitly.

In order evaluate the kinetic coefficients of the master
equation, we consider a weak system-environment coupling
(gk � 1). This assumption allows truncating the cumulant
expansion after second order, leading to

Z (t ) ≈ K (2)(t )

= −1

2
T

∫ t

0

∫ t

0
dt1dt2 trE ([H̃I (t1), [H̃I (t2), ρ̂(0)]]),

(66)

where T is antichronological time-ordering operator, ĤI is the
interaction term of Eq. (61). Here the first-order cumulant van-
ishes due to the trE (b̂k ρ̂E (0)) = 0 for a stationary initial state
(this is also true for any odd-order environment correlation

FIG. 6. Kinetic coefficients of the spin boson model as a function
of the normalized time. The bath is taken to be thermal with an
Ohmic spectral density function J (ω) = αωe−ω/ωc.o , where ωc.o is the
cut-off frequency [see Eqs. (J7) and (J13) in Appendix J for explicit
expressions of the kinetic coefficients]. The black, red, blue, dark
grey, and grey dots correspond to the kinetic coefficients γ̄

(N )
− , γ̄

(N )
+ ,

γ̄ (N )
z , γ

(N )
− , and γ

(N )
+ , respectively, as defined in Eqs. (68) and (67).

Model parameters are: ω0 = 0.5, ωc.o = 1, α = 0.01, tmax = 20 and
the reservoir bath is at T = 2/kB.

function, implying the present result is accurate up to third
order in the coupling strength).

Schaller and Brandes [131] showed that K (2)(t ) has a
GKLS form for all t , and accordingly, the approximated dy-
namical map, Eq. (62) is CPTP for all t (also for arbitrary
small t). This is the strength of this approach, since in many
other derivations in the weak-coupling limit, at short times the
positivity of the map is lost. A well-known example of such a
case is the Redfield equation [132], which nevertheless, does
not affect its accuracy at later times [133]. Another notable
exception to the evolution equation retaining positivity of
the evolved density operator for all times in weak-coupling
regime has been obtained by employing a correlation picture
approach [134].

We proceed by substituting the explicit form of the interac-
tion into Eq. (66) and employ the symmetry considerations to
obtain the second-order approximations for {�(N )} in Eq. (63).
The kinetic coefficient of Dz vanishes, �(N )

z = 0, and �
(N )
± are

given in Appendix J.
Finally, by substituting the explicit form of Z (t ) into

Eq. (65) and utilizing the commutation relations [D+,D−] =
D+ − D−, [D′

z,D±] = 0, where D′
z[•] = [σ̂z, •], we obtain

the non-Markovian generator

L̃(N )(t )[•] = − i

h̄
[ϒ (N )(t ), •]

+ γ
(N )
+ (t )D+[•] + γ

(N )
− (t )D−[•], (67)

where ϒ (N )(t ) and γ
(N )
± (t ) are given explicitly in the Ap-

pendix J. Figure 6 presents the kinetic coefficients for an
Ohmic thermal bath.

We emphasis that beyond the weak-coupling regime
the generator maintains a similar structure, which is still
compatible with the symmetry restriction. Interestingly, a non-
vanishing pure dephasing term Dz emerges, see Eq. (63).
In addition, kinetic coefficients are slightly modified by the
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higher-order correction

L̃(N )(t )[•] =− i

h̄
[ϒ̄ (N )(t ), •] + γ̄ (N )

z (t )Dz[•]

+ γ̄
(N )
+ (t )D+[•] + γ̄

(N )
− (t )D−[•], (68)

see Fig. 6 for an example. Further details regarding the cumu-
lant expansion up to fourth order in the interaction strength
appears in Appendix J 2. Note, that the a similar emergence of
pure dephasing at higher orders can be observed by directly
expanding the generator [119].

Imposing particle conservation on an exactly solvable
model of a qubit couple to a spin chain [135] will lead to the
same structure of Eq. (67) with different kinetic coefficients.
In both cases L̃(N )(t ) exhibits highly non-Markovian behavior
at short times, while reproducing the Markovian result in
the long time limit, see Appendix J 1. Such a transition is
completely incorporated in the time dependence of the kinetic
coefficients, while the operatorial structure remains unmodi-
fied.

XIV. DISCUSSION

In the last decade the use of dynamical equations for
open systems has increased significantly. Advancements in
quantum technology has led to the development of novel
experimental platforms, designed to minimize noise and de-
coherence. The design of these experiments requires accurate
theoretical modeling, which includes the environmental influ-
ence. Such simulations commonly rely on master equations.

Precise characterization of the evolution of an open quan-
tum system is a hard task. Many approaches have been
perused in order to construct the desired dynamical equa-
tions of motion. These approaches may at times produce
varying results and conflicting physical predictions, espe-
cially when the underlying assumptions and approximations
are not critically questioned for the particular system. Such
inconsistency can cause confusion and uphold the scientific
advancement. We chose to study the general structure of the
dynamical equations employing an axiomatic treatment and
symmetry considerations to layout a clear picture.

The analysis framework considers a macroscopic view-
point, which assumes the dynamics of the entire universe is
unitary. In addition, the evolution is generated by a constant
total Hamiltonian, which leads to time-reversal symmetric
evolution and conservation of all the energy moments.

In order to achieve a local description, the isolated uni-
verse is partitioned to the system of interest and environment.
At initial time, it is assumed that the environment is in a
stationary state and uncorrelated with the system. These as-
sumptions allow formulating a general formal form for the
dynamical map, however, the detailed reduced description
still remains out of reach. In order to proceed we introduce
a thermodynamically motivated symmetry consideration, and
consider a system-environment interaction that satisfies strict
energy conservation. This property implies time-translation
symmetry of the reduced system dynamics. The cru-
cial symmetry allowed developing the general structure of
the reduced dynamical equations, without imposing the

Markovian (CP-divisibility/semigroup property) or weak-
coupling conditions.

The open system dynamical symmetric structure, Eq. (24),
is similar to the GKLS Markovian master equation. The two
equations differ by their kinetic coefficients, which are time
dependent and may be negative in the non-Markovian case.
Interestingly, the operative form of the two master equations is
the same, as the dynamical symmetry considerations dictate in
both cases that the jump operators constitute eigenoperators of
the free dynamical map [59,67]. The different roles associated
with the two parts of the master equation, the operative struc-
ture and kinetic coefficients, motivate the following physical
interpretation of Eq. (24). The operator structure is associated
with the symmetry of the dynamics, dictating the possible
transitions, which is related to thermodynamic considerations.
Conversely, the kinetic coefficients contain all the details re-
lated to specific timescales of the system and environment,
and therefore are associated with the kinematics.

The influence of the state’s history is the main distinc-
tion between Markovian and non-Markovian dynamics. The
memory is related to the noninstantaneous response of the
environment to the interaction with the system. One of the
main consequences of the formal structure is that it reveals
that memory effects can be completely captured in terms of
scalar functions, the kinetic coefficients. Moreover, these co-
efficients and corresponding memory effects can be classified
according to the associated system’s Bohr frequency.

In order to evaluate the dynamical symmetric structure in
the proper context, it is beneficial to compare it to other known
methods. There are a number possible techniques to obtain the
master equation. A stringent experimental procedure applies
process tomography to fully characterize the open system
dynamical map [136–139]. This procedure produces accurate
results and incorporates all significant noisy effects. However,
the method is limited due a typical scaling of ∼N4, where N
is the Hilbert space size.

A theoretical alternative employs a first principle derivation
to obtain the master equation [31,76,77,112,134,135,140–
142]. The drawback of this approach is that only rarely can
one solve for the equation under realistic experimental con-
ditions. The difficulty is that the environment requires an
explicit description. This can be obtained for idealized cases,
such as, a linear boson bath and certain spin baths. Moreover,
different derivations may lead to contradicting physical pre-
dictions.

A third pragmatic popular approach is to guess a master
equation, based on simpler building blocks. The most-widely
used methodology employs the GKLS framework, adopt-
ing the Lindbladian to the specific physical scenario. This
approach is simple and modular, which explains its popular-
ity in building models of open quantum systems. The main
drawback is that the ensued dynamics can violate physical
principles [143,144]. In contrast, the approach we present is
motivated by thermodynamic principles, which can be cast
in terms of symmetry relations. This allows obtaining a dy-
namical description in modular fashion, while maintaining the
symmetry considerations. The analysis leading to the sym-
metric structure can be used to justify the practical heuristic
approaches utilized to model experiments. Alternatively, the
framework can be inverted, obtaining from the experimental
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data the kinetic coefficients and high-order environment cor-
relation functions.

The current derivation is general and therefore can be ex-
tended to other dynamical symmetries, which are associated
to other conservation laws [145], see Sec. X. We studied var-
ious dynamical symmetries for driven and controlled systems
in Sec. XI. In this case the generator can be obtained even
when the control timescale is comparable to the environment
dynamical timescale. The approach can enable quantum open
system control beyond the Markovian limit. Dynamical de-
coupling methods fall within this operational regime.

The present paper is in the line of generating a dynamical
theory of quantum thermodynamics. Despite its name, tradi-
tional thermodynamics is not concerned with dynamics. It is
a theory that classifies the possible transitions between equi-
librium states [146,147]. Quantum thermodynamic resource
theory extends this approach to the quantum regime, obtaining
a partial order between single quantum states and the possible
transitions [65,72,105]. In analogy with the resource theory
approach, we develop a thermodynamically motivated ax-
iomatic approach to quantum dynamics of open systems. One
of the major elements of both formulations, are the strict parti-
tions between subsystems. Such partition is manifested by the
strict energy conservation or the time-translation symmetry.
In the present study, we show that non-Markovian dynamical
equations can be derived by employing similar initial postu-
lates. Therefore, the present approach can be considered as a
dynamical extension to quantum resource theory.

In the thermodynamic context, the dynamical framework
allows explicitly evaluating the power and heat flow. This may
give a new insight on the quantum dynamical version of the
first law, beyond the adiabatic or Markovian limits. We find
that in the presence of an external drive different partitions
associated with different dynamical symmetries lead to vary-
ing master equations, see Sec. XI, and as a consequence, to
different decompositions of the first law of thermodynamics
[117].
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APPENDIX A: COMMUTATION PROPERTIES OF
DYNAMICAL MAPS AND GENERATORS

The dynamical map associated with the composite dynam-
ics and the map of the isolated system dynamics satisfy the
following theorem (a similar proof was given in Ref. [67] we
present it here for the sake of completeness).

Theorem 1. Let Ĥ be the time-independent Hamiltonian
of the composite system Eq. (1), with [ĤSE , ĤS + ĤE ] = 0,

and let the initial state ρ̂E (0) be a stationary state of
ĤE then the dynamical maps �, Eq. (2) and US[ρ̂S (0)] =
ÛS (t, 0)ρ̂S (0)Û †

S (t, 0) commute, where ÛS (t, 0) = e−iĤSt/h̄ is
the free propagator of the system and Û (t, 0) = e−iĤt/h̄.

Proof. We first introduce some notations: The free prop-
agators of the environment and composite (uncoupled)
system are given by ÛE (t, 0) = e−iĤE t/h̄ and ÛSE (t, 0) =
e−i(ĤS+ĤE )t/h̄, moreover, the spectral decomposition of the en-
vironment Hamiltonian reads ĤE = ∑

i ci|χi〉〈χi|. Since the
initial state of the environment is stationary with respect to
ĤE , it can also be expressed as ρ̂E (0) = ∑

i λi|χi〉〈χi|. To sim-
plify the notation, in this proof we emit the time dependence
of the propagators and maps, nevertheless, it should be clear
that they induce a time translation from initial time (t ′ = 0) to
time t ′ = t .

Utilizing the spectral decomposition of the environment’s
initial state any quantum dynamical map can be expressed in
a Kraus form [60]

ρ̂S (t ) =
∑

i j

K̂i j ρ̂S (0)K̂†
i j, (A1)

where K̂i j = √
λi〈χ j |Û (t, 0)|χi〉 with

∑
i j K̂†

i j K̂i j = ÎS . In
the Heisenberg representation the dynamical map becomes
ÔH

S (t ) = �∗[ÔS] = ∑
i j K̂†

i j ÔS (0)K̂i j , where the superscript
H and asterisk designate operators and superoperators (dy-
namical maps) in the Heisenberg representation and ÔS is a
system operator.

Using the Kraus representation the product of dynamical
maps is explicitly expressed as

U∗
S [�∗[ÔS]] = Û †

S

(∑
i j

K̂†
i j ÔSK̂i j

)
ÛS

=
∑

i

λi〈χi|Û †
S Û †ÔS

∑
j

|χ j〉〈χ j |ÛÛS|χi〉

=
∑

i

λi〈χi|Û †
S Û †ÔSÛÛS|χi〉, (A2)

where the second equality is achieved by identifying the en-
vironment identity operator ÎE = ∑

j |χ j〉〈χ j |. Inserting the

identity operator ÛEÛ †
E = ÎE twice, we obtain

U∗
S [�∗[ÔS]] =

∑
i

λi〈χi|ÛEÛ †
SEÛ †ÔSÛÛSEÛ †

E |χi〉

=
∑

i

λi〈χi|Û †
SEÛ †ÔSÛÛSE |χi〉. (A3)

The second equality is obtained by utilizing the eigenvalue
equation ÛE |χi〉 = e−icit/h̄|χi〉 for the eigenstates {|χi〉}. Next,
strict energy conservation implies that [Ĥ, ĤS + ĤE ] = 0,
which in turn suggests that the associated propagators satisfy
[Û , ÛSE ] = 0. This relation leads to the final form

U∗
S [�∗[ÔS]] =

∑
i

λi〈χi|Û †Û †
SE ÔSÛSEÛ |χi〉. (A4)
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Following a similar derivation the product in reverse order of
the dynamical maps gives

�∗[U∗
S [ÔS]] =

∑
i j

K̂†
i jÛ

†
S ÔSÛSK̂i j

=
∑

i

λi〈χi|Û †Û †
SEÛE ÔSÛ †

EÛSEU |χi〉

=
∑

i

λi〈χi|Û †Û †
SE ÔSÛSEU |χi〉, (A5)

where the last equality stems from the commutativity of local
operators of the system and environment [ÛE , ÔS] = 0.

Finally, Eqs. (A4) and (A5) imply the desired result

U∗
S [�∗[ÔS]] = �∗[U∗

S [ÔS]] (A6)

�
From the equivalence of the Schrödinger and Heisenberg

representations we can infer that � and US commute.

APPENDIX B: STRUCTURE OF THE DYNAMICAL
GENERATOR

In Sec. IV we utilize Lemma 2.2 of Ref. [50], the lemma
states that:

Lemma. Let L be a linear operator M(N ) → M(N ), where
M(N ) denotes the C∗ algebra of the N × N complex matrices,
and let {V̂α} with α = 1, 2, . . . , N2 be a complete orthonormal
set in M(N ), viz., (V̂α, V̂β ) ≡ tr(V̂ ∗

α V̂β ) = δαβ . Then L can be
uniquely written in the form

N2∑
α,β=1

vαβV̂αÂV̂ †
β , (B1)

where Â ∈ M(N ). In addition, if L(Â†) = (LÂ)†, then vαβ =
v∗

βα .

APPENDIX C: EXPLICIT DERIVATION OF UNITARY
INVARIANT AND NONINVARIANT CONDITIONS

In the following section we derive the restricted form of the
master equation, which complies with unitary invariant and
noninvariant relations [Eqs. (16) and (17)]

�(t )[F̂α] = λα (t )F̂α (C1)

and

�(t )[�̂ j] =
∑

i

μ ji(t )�̂i. (C2)

Since � is assumed to be invertable, Eq. (9) implies that the
dynamical generator L satisfies analogous conditions.

Consider the general form of a linear map [Eq. (21)] in the
{Ŝ} operators basis [Eq. (18)]

L(t )[•] =
N∑

i, j,k,l=1

ci jkl (t )|i〉〈 j| • |k〉〈l|, (C3)

where we expressed the basis operators explicitly in terms
of system’s energy eigenstates and used a double index no-
tation for the coefficients (α → i, j and β → l, k). Condition

Eq. (C3) implies that (C1) now infers that

tr(F̂ †
n′m′L[F̂nm]) ∝ δnn′δmm′ , (C4)

which implies that the coefficients of the mixed terms ciikl =
cklii = 0 for i, k, l = 1, . . . N and k �= l . Similarly, condition
(C2) infers that the coefficients cikkl = 0 for i �= l . These con-
ditions leads to the following structure [equivalent to Eq. (22)]

L(t )[|n〉〈m|] =
N∑

a �=b

cabba(t )|a〉〈b|n〉〈m|b〉〈a|

+
N∑

i, j=1

cii j j (t )|i〉〈i|n〉〈m| j〉〈 j|. (C5)

For n �= m, |n〉〈m| = F̂nm is a unitary noninvariant eigen-
operator, and Eq. (C5) reduces to

L(t )
[
F̂nm

] =
N∑

a �=b

cabba(δbnδmb|a〉〈a|)

+
N∑

k,l=1

dkkllδknδml |k〉〈l|

= dnnmm|n〉〈m| = dnnmmF̂nm. (C6)

Thus, the noninvariant condition, L(t )[F̂nm] ∝ F̂nm, is satis-
fied. For n = m, |n〉〈n| = �̂n and we obtain

L(t )[�̂n] =
N∑

a �=b

cabbaδbn|a〉〈a| +
N∑

k,l=1

dkkll |k〉〈l|δknδln

=
N∑

a �=n

canna|a〉〈a| + dnnnn|n〉〈n|

=
N∑

a �=n

canna�̂a + dnnnn�̂n, (C7)

which demonstrates that the invariant condition, L(t )[�̂ j] =∑N
i=1 b ji�̂i for bi j ∈ C, holds.

APPENDIX D: TRACE PRESERVING CONDITION

The proposed structure for the dynamical generator,
Eq. (22), is simplified in Sec. IV by imposing the trace pre-
serving property. This leads to the final form for L(t ), given
in Eq. (24). Here we provide an explicit derivation for this
result. This derivation follows a similar line as Lemma 2.3 of
Ref. [50].

We begin by introducing a new operator basis {P̂i} for the
invariant subspace (linear combinations of {�̂i}), satisfying
P̂N = Î/N , while the rest of the operators are traceless opera-
tors. In this basis the source-drain term becomes

N∑
i, j=1

pi j (t )�̂i • �̂ j →
N∑

i j=1

di j P̂i • P̂j, (D1)

where the matrices [pi j] and [dkl ] are related by a unitary
transformation. In terms the operator basis

{T̂ } ≡ {F̂1, . . . , F̂N (N−1), P̂1, . . . , P̂N }, (D2)

043075-19



ROIE DANN, NINA MEGIER, AND RONNIE KOSLOFF PHYSICAL REVIEW RESEARCH 4, 043075 (2022)

the dynamical generator [Eq. (22)] becomes

L(t )[•] =
N (N−1)∑

α=1

cαα (t )F̂α • F̂ †
α +

N∑
i, j=1

di j (t )P̂i • P̂j

≡
N2∑

i, j=1

ri j T̂i • T̂j . (D3)

Note that ri j does not vanish only for i, j ∈ [1, N (N − 1)] or
i, j ∈ [N (N − 1), N2].

For any operator in Â ∈ M(N ) the of the dynamical gener-
ator expressed as

L[Â] = 1

N
rN2N2 Â

+ 1

N

N2−1∑
i=1

(riN2 T̂iÂ + rN2iÂT̂i ) +
N2−1∑
i, j=1

ri j T̂iÂT̂j

= − i

h̄
[H̄, Â] + {Ḡ, Â} +

N2−1∑
i, j=1

ri j T̂iÂT̂j, (D4)

where

H̄ = h̄

2i
(T̂ † − T̂ )

Ḡ = 1

2N
rN2N2 Î + 1

2
(T̂ † + T̂ ), (D5)

with

T̂ = 1

N

N2−1∑
i=1

riN2 T̂i = 1

N

N∑
1=1

diN P̂i. (D6)

The trace preserving property implies that

tr[L(t )Â] = tr

[(
2Ḡ +

N2−1∑
i, j=1

ri j T̂
†
j T̂i

)
Â

]
= 0, (D7)

for all Â ∈ M(N ). This infers that Ḡ = − 1
2

∑N2−1
i, j=1 ri j P̂

†
j P̂i,

which leads to the final form

D[Â] = − i

h̄
[H̄ , Â] +

N−1∑
i, j=1

ri j

(
T̂iÂT̂ †

j − 1

2
{T̂ †

j T̂i, Â}
)

. (D8)

By expressing the T̂ basis in terms of {F̂ } and {P̂} [Eq. (D3)]
the relation between ri j to cαα and di j coefficients, we obtain
Eq. (24)

L(t )[•] = − i

h̄
[H̄ (t ), •]

+
N (N−1)∑

α=1

cαα (t )

(
F̂α • F̂ †

α − 1

2
{F̂ †

α F̂α, •}
)

+
N−1∑
i, j=1

di j (t )

(
P̂i • P̂†

j − 1

2
{P̂†

j P̂i, •}
)

. (D9)

APPENDIX E: CHEBYCHEV EXPANSION

The Chebychev expansion is utilized in Sec. XIII B to
approximate the dynamical map of the spin star and obtain

accurate kinetic coefficients. We first define a normalized
generator so the associated eigenvalues are contained with in
the convergence range of the Chebychev polynomial

O = 2
L̃ − λmin

λmax − λmin
− I ∈ [1,−1] (E1)

where λmax and λmin are the maximum and minimum eigen-
values of L, and I is the identity. This definition gives

eL̃t = eserÕ, (E2)

where s = t (λmax + λmin)/2 and r = t (λmax − λmin)/2. The
Chebychev series for eirÕ is obtained by expanding the func-
tion eix with x ∈ [−1, 1], utilizing the orthogonality condition∫ 1

−1
Tn(x)Tm(x)

dx√
1 − x2

=
{0 if n �= m

π if n = m = 0
π
2 if n = m �= 0

. (E3)

Leading to

ρ̃S (t ) = es
∑

m

am(r)trE (Tm{Õ[ρ̂(0)]}), (E4)

where the expansion coefficients are given by

am(r) = (2im − δm0)Jm(r), (E5)

and Jm is the mth Bessel J function.
The coefficients of the expansion for L̃, Eq. (32), are given

by

wm[r(t )] = d

dt
am[r(t )]. (E6)

APPENDIX F: ERROR BOUND ASSOCIATED WITH
REMOVAL OF A DEGENERACY

Consider two quantum channels �U (t ) and �V (t ) of the
form of Eq. (2), with corresponding unitaries Û and V̂ , an
initial system-environment state ρ̂(0) = ∑

i pi|ψi〉〈ψi|, ex-
pressed in terms of the orthonormal basis {|ψi〉}, and an
element M̂ of an arbitrary POVM. The difference in the prob-
abilities PU and PV (associated with the reduced dynamics
�U (t ) and �V (t )) of obtaining a certain outcome related to
the element M̂ can be bounded. Following Ref. [12] (pg. 195)
we introduce the state |�i〉 ≡ (U − V )|ψi〉 and employ the
Cauchy-Schwarz inequality

|PU − PV | = |tr((�U (t )[ρ̂(0)] − �V (t )[ρ̂(0)])M̂ )|
=

∑
i

pi|〈ψi|Û †M̂Û |ψi〉 − 〈ψi|V̂ †M̂V̂ |ψi〉|

=
∑

i

pi|〈ψi|U †M|�i〉 + 〈�i|MV |ψi〉|

�
∑

i

pi(|〈ψi|U †M|�i〉| + |〈�i|MV |ψi〉|)

�
∑

i

pi(‖|�i〉‖ + ‖|�i〉‖)

� 2E (Û , V̂ ), (F1)

with

E (Û , V̂ ) = max
|ψ〉

||(Û − V̂ )|ψ〉||, (F2)

and the norm is defined as ‖|ψ〉‖ = √〈ψ |ψ〉.
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For Û (t ) = e−iĤt/h̄, V̂ = e−iĤ ′t/h̄ and E (Ĥ , Ĥ ′) = ε, we
get

|PU − PV | � max|ψ〉||(Î − eiĤ ′t/h̄e−iĤt/h̄)|ψ〉||
= ||[i(Ĥ ′ − Ĥ )t/h̄ + O(ε2)]|ψ〉||
� εt + O(ε2). (F3)

The connection to the error between the degenerate and non-
degenerate maps, Eq. (39) Sec. IX, is achieved by identifying
Ĥ and Ĥ ′ with the joint Hamiltonian (of the system and en-
vironment), generating the unitary dynamics associated with
�̂deg(t ) and �̂ε(t ).

APPENDIX G: THERMOMAJORIZATION CONDITION

Thermomajorization is a mathematical condition involv-
ing two vectors �x, �y ∈ Rn and an associated Hamiltonian Ĥ .
In the present context the vectors are constructed from the
populations of two density operators ρ̂x and ρ̂y in the en-
ergy eigenbasis of the associated Hamiltonian Ĥ . To evaluate
whether �x thermomajorizes �y, one first defines the so-called
β-ordered vectors of �x and �y, with indices x↓β

i = xπ (i) where
π (i) is the permutation ensuring that xπ (1)eβE1 � xπ (2)eβE2 �
· · · xπ (n)eβEn and similarly for y↓β . The β-ordered vectors are
next utilized to define the thermomajorization-curves, these
are piece-wise linear curves joining the origin and points
(
∑k

i=1 eβEπ (i) ,
∑k

i=1 xπ i ) for k = 1, . . . , n, and similarly for �y.
The vector �x thermomajorizes �y iff the thermomajorization
curve associated with �x does not lie below the thermoma-
jorization curve of �y.

APPENDIX H: DYNAMICAL SYMMETRY ASSOCIATED
WITH THE CONSERVATION OF THE NUMBER OF

EXCITATIONS

Conservation of the total number of excitations is mani-
fested by the commutation of the total Hamiltonian with the
number operators N̂ = N̂S + N̂E . In the following we should
that the conservation law, along with an initial stationary en-
vironment state, implies the dynamical symmetry UN,S ◦ � =
� ◦ UN,S .

Proof. We first as introduce a number of notions: The spec-
tral decomposition of the environment Hamiltonian is given
by ĤE = ∑

i ci|χi〉〈χi|. The environment is initially assumed
to be in a stationary state with respect to the free dynamics,
allowing to express it as ρ̂E (0) = ∑

i λi|χi〉〈χi|. UN, j = ÛN, j •
Û †

N, j , with ÛN, j = eiN̂j and j = S, E , and ÛN,SE = ei(N̂S+N̂E ).
The reduced system dynamics are given by

ρ̂S (t ) = trE [Û (t, 0)ρS (0) ⊗ ρ̂E (0)Û †(t, 0)] (H1)

Substituting the spectral decomposition of the initial environ-
ment state leads to the Kraus form [60]

ρ̂S (t ) =
∑

i j

K̂i j ρ̂S (0)K̂†
i j (H2)

where K̂i j = √
λi〈χ j |Û (t, 0)|χi〉 with

∑
i j K̂†

i j K̂i j = ÎS . In the
Heisenberg representation the dynamical map obtains the
form ÔH

S (t ) = �‡[ÔS] = ∑
i j K̂†

i j ÔSK̂i j where ÔS is a general

system operator and the superscript H designates that the
operator is in the Heisenberg representation. Similarly, UN,S

in the Heisenberg representation becomes U‡
N,S[•] = Û †

N,S •
ÛN,S .

The product of maps can be now expressed as

U‡
N,S[�‡[ÔS]] = Û †

N,S

(∑
i j

K̂†
i j ÔSK̂i j

)
ÛN,S

=
∑

i

λi〈χi|Û †
N,SÛ †ÔS

∑
j

|χ j〉〈χ j |ÛÛN,S|χi〉

= λi〈χi|Û †
N,SU †ÔSÛÛN,S|χi〉.

Utilizing the relations ÛN,E |χk〉 = eik|χk〉 we get

= λi〈χi|Û †
N,EÛ †

N,SÛ †ÔSÛÛN,SÛN,E |χi〉
= λi〈χi|Û †

N,SEÛ †OSÛÛN,SE |χi〉
= λi〈χi|Û †Û †

N,SE ÔSÛN,SEÛ |χi〉, (H3)

where in the last equality with utilize the commutation relation
[N̂S + N̂E , Ĥ ].

The reverse product can be expressed as

�‡[U‡
N,S[OS]] =

∑
i j

K̂†
i jÛ

†
N,SÔSÛN,SK̂i j

=
∑

i

λi〈χi|U †Û †
N,SEÛN,E ÔSÛ †

N,EÛN,SEÛ |χi〉

=
∑

i

λi〈χi|Û †Û †
N,SE ÔSÛN,SEÛ |χi〉, (H4)

where in the second equality we inserted the identity
ÛN,EÛ †

N,E = ÎE and utilized the fact that environment and
system operators.

Finally, equations (H3) and (H4) infer the desired result

�‡[U‡
N [OS]] = U‡

N [�‡[OS]] (H5)

�

APPENDIX I: DYNAMICS OF THE SPIN-STAR MODEL

The dynamical solution of the spin-star model (Sec. XIII B)
was first presented in Ref. [123]. For the sake of completeness,
we briefly discuss the solution and give a detailed derivation.

The connection between the present model, Eq. (54) and
the derivation in [123] is obtained by transitioning to the in-
teraction picture with respect to the free dynamics ĤS + ĤE =
h̄ω(σ̂z + ∑K

k=1 σ̂ (k)
z ). In the interaction picture, the Liouville-

von Neumann equation becomes

d

dt
ρ̃(t ) = L̃(SE )[ρ̃(t )] = − i

h̄
[H̃, ρ̃(t )] (I1)

with

H̃ = 2g(σ̂+Ĵ− + σ̂−Ĵ+), (I2)

where operators in the interaction picture are designated by
a superscript tilde, and ρ̂(t ) is the joint density operator. The
solution for the joint dynamics can be formally expressed in
terms of the generator of Eq. (I1): ρ̂(t ) = egL̃(SE )t [ρ̂(0)]. This
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relation allows writing the central spin evolution in terms of a
power series of the generator

ρ̃S (t ) = trE
(
egL̃(SE )t [ρ̂S (0) ⊗ ρ̂E (0)]

)
=

∞∑
k=0

(gt )k

k!
trE ((L̃(SE ) )k[ρ̂S (0) ⊗ ρ̂E (0)]), (I3)

where

(L̃(SE ) )k[•] = ik
k∑

l=0

(−1)l

(
k
l

)
H̃ l • H̃k−l . (I4)

The symmetric structure of H̃ leads to a simple relation for
the moments

H̃2n = 4n[σ̂+σ̂−(Ĵ−Ĵ+)n + σ̂−σ̂+(Ĵ+Ĵ−)n]

H̃2n+1 = 2 · 4n[σ̂−Ĵ+(Ĵ−Ĵ+)n + σ̂+Ĵ−(Ĵ+Ĵ−)n]. (I5)

For an odd k, trE (H̃ l ρ̂S (t ) ⊗ ρ̂E H̃k−l ) = 0, due to an odd
power of Ĵ+ or Ĵ− with ρ̂E (0) ∝ ÎE . As a result, only the even
powers k = 2n contribute to the infinite sum of Eq. (I3).

We separate the treatment to two cases, even or odd values
of l . For an even l = 2m one obtains

H̃ l ρ̂(0)H̃k−l

= 1

2K
(4g2)n(σ̂+σ̂−ρ̂S (0)σ̂−σ̂+(Ĵ−Ĵ+)m(Ĵ+Ĵ−)(n−m)+H.c),

(I6)

which contributes

1

2K
(−g2)n

n∑
m=0

(−1)2m

(
2n
2m

)
4n

× (σ̂+σ̂−ρ̂S (0)σ̂−σ̂+〈(Ĵ−Ĵ+)m(Ĵ+Ĵ−)n−m〉E + H.c)

= (−4g2)n

[
n∑

m=0

(
2n
2m

)
Rn−m

m

]
(r+(0)σ̂+ + r−(0)σ̂−) (I7)

to Eq. (I4), where

Rn−m
m = 1

2K
〈(Ĵ+Ĵ−)n−m(Ĵ−Ĵ+)m〉. (I8)

For an odd l = 2m + 1 we obtain

H̃ l ρ̂(0)H̃k−l = (4g2)n[σ̂−ρ̂S (0)σ̂+(Ĵ+Ĵ−)n + H.c]

= (
4g2

i

)n
[

ÎS

2
− rz(0)

2
σ̂z

]
(Ĵ+Ĵ−)n, (I9)

which contributes a term

(−16g2)n rz(0)

2
σ̂z〈(Ĵ+Ĵ−

n
)〉 (I10)

to Eq. (I4). In the last transition we utilized the relation

n−1∑
m=0

(−1)2m+1

(
2n

2m + 1

)

=
2n∑

m=0

(
2n
m

)
(−1)m12n−m −

2n∑
m=0

(
2n
l

)
1m12n−m

= (1 − 1)n − (1 + 1)n = −4n. (I11)

Gathering Eqs. (I7) and (I10) we get

trE [(L(SE ) )2nρ̂S (0) ⊗ 2−K ÎE ]

= (−16g2)nQn
rz(0)

2
σ̂z + (−4g2)n

[
n∑

m=0

(
2n
2m

)
Rn−m

m

]

×[r+(0)σ̂+ + r−(0)σ̂−], (I12)

with

Qn = 1

2K
〈(Ĵ+Ĵ−)n〉. (I13)

We can now recognize that corresponding time-dependent
coefficients of ρ̂S (t ) [Eq. (55)] are

rz(t ) = κz(t )rz(0), r±(t ) = e±iωtκ (t )r±(t0), (I14)

where

κz(t ) =
∞∑

k=0

(gt )2k

2k!
(−16)kQk

= 1

2K
trE

[ ∞∑
k=0

1

2k!
(4ig

√
Ĵ+Ĵ−t )2k

]

= 1

2K
trE [cos(4g

√
Ĵ+Ĵ−t )], (I15)

and

κ (t ) =
∞∑

2k=0

(gt )2k

2k!
(−4)k

[
k∑

l=0

(
2k
2l

)
Rk−l

l

]

= 1

2N
trE

( ∞∑
k=0

1

2k!

k∑
l=0

(
2k
2l

)

×[(2ig
√

Ĵ+Ĵ−t )2k−2l (2ig
√

Ĵ−Ĵ+t )2l ]

)

= 1

2K
cos(2g

√
Ĵ+Ĵ−t ) cos(2g

√
Ĵ−Ĵ+t ). (I16)

Here we utilized the relation

cos (x) cos (y) = 1

2
[cos (x + y) + cos (x − y)]

= 1

2

( ∞∑
k=0

(x + y)2k

2k!
+

∞∑
k=0

(x − y)2k

2k!

)

=
∞∑

k=0

1

2k!

[
k∑

l=0

(
2k
2l

)
x2l y2k−2l

]
. (I17)

We next introduce a basis for the environment’s Hilbert
space, consisting of simultaneous eigenstates of �J2 and Ĵz:
{| j, m, ν〉}, where the index ν label eigenstates, which cor-
respond to the same ( j, m) quantum numbers. This allows
simplifying the time-dependent coefficients rz(t ) and r±(t )
by utilizing the degeneracy of states with the same ( j, m)
quantum numbers: d ( j, m), and the relation

√
Ĵ+Ĵ−| j, m, ν〉 =

h( j, m)| j, m, ν〉, as defined in Eq. (58). Finally, the final form
of the time-dependent coefficients determine the exact re-
duced dynamics of the central spin, given in Eqs. (55) and
(57).
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The approximate kinetic coefficients of Sec. XIII B 1 (rely-
ing on the Maclaurin and Chebychev) can be calculated using
Eq. (I12) and the relation

trE [(L̃(SE ) )nρ̂(t0)]

=
(

− i

h̄

)n

trE ([ĤSE , [...[ĤSE , ρ̂(t0)]]]), (I18)

including n commutation relations on the right-hand side.

Derivation of the dynamical generator

The dynamical generator associated with the exact dynam-
ical map can be obtained by the following procedure. We
work in the interaction picture relative to the free dynamics
(Ĥ0 = h̄ωσ̂z). In this picture the coefficients of the density
matrix evolve according to [see Eq. (55)]

r̃z(t ) = rz(t ) = κz(t )rz(0), r̃±(0) = κ (t )r±(0). (I19)

Alternatively, the density matrix can be expressed in terms of
the Pauli operators

ρ̃S (t ) = 1
2 [ÎS + r̃x(t )σ̂x + r̃y(t )σ̂y + r̃zσ̂z], (I20)

where

r̃x(t ) = r̃+(t ) + r̃−(t ), r̃y(t ) = i[r̃+(t ) − r̃−(t )]. (I21)

Now the action of the dynamical generator in the interaction
picture gives

L̃(t )[ρ̃S (t )] = d

dt
ρ̃S (t ) = ˙̃rx(t )σ̂x + ˙̃ry(t )σ̂y + ˙̃rzσ̂z. (I22)

In addition, the most general structure of the master equa-
tion for a two-level system, which complies with the strict
energy conservation is of the following form [a specific case
of Eq. (24)]

L̃[•] = − iη0[σ̂z, •] + η−(t )D−(t )[•] + η+(t )D+[•]

+ ηz(t )Dz[•], (I23)

where the superoperators D± are defined bellow Eq. (59),
Dz[•] = σ̂z • σ̂z − •, and η+, η−, ηz, η0 are real time-
dependent variables. First, we identify that the dynamics
of r̃±(t ) in Eq. (I19) is determined by a real function κ (t ).
Since the commutation relation of the lowering and raising
operators satisfy [σ̂z, σ̂±] = ±σ̂± the unitary term in the
interaction picture (the term proportionate to i) vanishes, i.e.,
η0 = 0.

Equating tr(L̃(t )[ρ̃S (t )]σ̂i ) for Eqs. (I22) and (I23) for i =
x, y, z, leads to a set of linear equations connecting the kinetic
coefficients to {r̃i} and { ˙̃ri(t )}. The relation can be summarized
by ⎡

⎢⎣
− 1

2 r̃x − 1
2 r̃x −2

− 1
2 r̃y − 1

2 r̃y −2

1 − r̃z −(1 + r̃z ) 0

⎤
⎥⎦

⎡
⎣η+

η−
ηz

⎤
⎦ =

⎡
⎣ ˙̃rx

˙̃ry
˙̃rz

⎤
⎦. (I24)

By solving for the vector of kinetic coefficients we obtain

η+ =−2˙̃rx(1 + r̃z ) + 2 ˙̃yr(1 + r̃z ) + ˙̃rz(r̃x − r̃y)

2(r̃x − r̃y)
,

η− =2˙̃rx(r̃z − 1) − 2˙̃ry(r̃z − 1) + ˙̃rz(r̃x − r̃y)

2(r̃x − r̃y)

ηz =
˙̃rxr̃y − ˙̃ryr̃x

2(r̃x − r̃y)
. (I25)

Substituting relations (I21) and (I19) into Eq. (I25) leads the
final form of the kinetic coefficients, ηz vanishes and

η±(t ) = ξ±(t )

2κ (t )[rx(0) − ry(0)]
(I26)

with

ξ±(t ) = ∓ 2κ̇rx(0)[rz(t ) ± 1]

+ 2κ̇ry(0)[rz(t ) ± 1] + κ ṙz(0)[rx(0) − ry(0)].
(I27)

These kinetic coefficients obtain negative values (see Fig. 5),
indicating that the dynamical map violates CP-divisibility,
which signifies that the dynamics are non-Markovian.

APPENDIX J: KINETIC COEFFICIENTS OF THE
SPIN-BOSON BATH MODEL UNDER CONSERVATION OF

THE TOTAL NUMBER OF EXCITATIONS

We derive the master equation of a spin coupled weakly
to a bosonic thermal bath, under dynamics satisfying the the
conservation of the number of excitations.

In the interaction picture the total dynamics [Eq. (61)] are
governed by the interaction Hamiltonian

H̃I (t ) =
∑

k

gk (σ̂−b†
ke−i(ω0−ωk )t + H.c), (J1)

where ω0, ωk > 0. We substitute the interaction Hamiltonian
into the second cumulant Eq. (66), and utilize the known
relations for a thermal bosonic bath: 〈b̂k b̂k′ 〉 = 0, 〈b̂k b̂†

k′ 〉 =
δkk′ [1 + n̄T (ωk )], 〈b̂†

kb̂k′ 〉 = δkk′ n̄T (ωk ), were n̄T (ωk ) is the
Bose-Einstein distribution at temperature T . These ansatzes
lead to

Z (t ) ≈ K (2)(t ) = ρ̂S (0) − i

h̄
[H̄ (N )(t ), ρ̂S (0)]

+ �
(N )
− (t )D−[ρ̂S (0)] + �

(N )
+ (t )D+[ρ̂S (0)], (J2)

where D± are defined bellow Eq. (59) and the kinetic coeffi-
cients are considered to be correct only up to second order in
spin-bath interaction. The second-order contribution to Ĥ (N )

[Eq. (63)] becomes (for more details see Appendix B of
Ref [110])

H̄ (N )(t ) = 1

2i

∫ t

0
dt1

∫ t

0
dt2sgn(t1 − t2)

× trE
[
H̃I (t1)H̃I (t2)ρ̂E (0)

]
= �+(t )σ̂+σ̂− + �−(t )σ̂−σ̂+, (J3)
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with

�∓(t ) =
∑

k

g2
k

1

2i

∫ t

0
dt1

∫ t

0
dt2

× sgn(t1 − t2)e∓i(ω0−ωk )(t1−t2 )〈b̂∓kb†
∓k〉E , (J4)

and

�
(N )
± (t ) =

∑
k

g2
k

∫ t

0
dt1

∫ t

0
dt2e∓iω0(t1−t2 )

× tr[b̃∓k (t1)b̃†
∓k (t2)ρ̂E (0)]

=
∑

k

g2
k

∫ t

0
dt1

∫ t

0
dt2e∓i(ω0−ωk )(t1−t2 )〈b̂∓kb̂†

∓k〉E ,

(J5)

where b̂−k = b̂†
k .

Taking the continuum limit and defining the bath spectral
density function J (ω) ∼ ∑

k g2
kδ(ω − ωk ), we get

�
(N )
± (t ) =

∫ ∞

0
dωkJ (ωk )〈b̂∓kb̂†

∓k〉Et2sinc2[(ω0 − ωk )t/2],

(J6)
In explicit form, the kinetic coefficients become

�
(N )
+ (t ) =

∫ ∞

0
dωkJ (ωk )n̄T (ωk )t2sinc2[(ω0 − ωk )t/2],

�
(N )
− (t ) =

∫ ∞

0
dωkJ (ωk )[n̄T (ωk ) + 1]t2sinc2[(ω0 − ωk )t/2].

(J7)
The integral of the Lamb-shift term, Eqs. (J3) and (J4), can

be simplified (see Appendix B of Ref. [110])

�∓(t ) = 1

2i

∫ ∞

−∞
dϕ

∫ t

0
dt1

∫ t

0
dt2

ei(±ω0−ϕ)(t1−t2 )P
∫ ∞

0
dωk J (ωk )

〈b̂∓kb̂†
∓k〉E

ϕ − ωk
, (J8)

where P denotes the Cauchy principle value of the integral.
This leads to

�∓(t ) = 1

2π

∫ ∞

−∞
dω t2sinc2

(ω ∓ ω0

2

)

× P
[∫ ∞

0
dωk J (ωk )

〈b̂∓kb̂†
∓k〉E

ω − ωk

]
. (J9)

Next, we substitute σ̂+σ̂− = (Î + σ̂z )/2 and σ̂−σ̂+ =
(Î − σ̂z )/2 into Eq. (J3), which gives the simple form

H̄ (N ) = �(t )σ̂z, (J10)

where

�(t ) = [�+(t ) − �−(t )]/2

= 1

4π

∫ ∞

−∞
dω t2

×
{

sinc2

(
(ω − ω0)t

2

)
P

[∫ ∞

0
dωkJ (ωk )

n̄T (ωk )+1

ω − ωk

]

− sinc2

(
(ω + ω0)t

2

)
P

[∫ ∞

0
dωkJ (ωk )

n̄T (ωk )

ω − ωk

]}
.

(J11)

Finally, Z (t ) ≈ K (2)(t ) is substituted into Eq. (65)
and algebra of the super operators [D+,D−] = D+ − D−,
[D′

z,D±] = 0 is employed to obtain the non-Markovian gen-
erator [Eq. (67)]

L̃(N )(t )[•] = − i

h̄
[ϒ (N )(t ), •]

+ γ
(N )
+ (t )D+[•] + γ

(N )
− (t )D−[•], (J12)

where the kinetic coefficients are given by (Appendix A
Ref. [110])

γ
(N )
± = 1

(�(N )
+ + �

(N )
− )2

× {[e−(�(N )
+ +�

(N )
− ) − 1](�̇(N )

∓ �
(N )
± − �̇

(N )
± �

(N )
∓ )

+ (�̇(N )
+ + �̇

(N )
− )[(�(N )

± )2 + �
(N )
+ �

(N )
− ]}, (J13)

and the Lamb-shift by

ϒ (N ) = �̇, (J14)

where we left out the explicit time dependence for the sake of
conciseness.

1. Markovian limit

In the Markovian limit, the coefficients of the second
cumulant become time independent, and the master equa-
tion converges to the standard Markovian result. We denote
the long time of a general variable x(t )

x(∞) ≡ lim
t→∞ x(t ). (J15)

In the long-time regime the sinc functions can be approxi-
mated by delta functions, and the kinetic coefficients converge
to [Eq. (J7)] (see for example Appendix D of Ref. [112])

γ
M(∞)
− = eh̄ω0/kBT γ

M(∞)
+

= lim
t→∞ γ M

− (t )/t

= 2πJ (ω0)[n̄T (ω0) + 1], (J16)

where kB is the Boltzmann constant, and the Lamb-shift term
is given by

ϒM(∞) = 1

2
P

[∫ ∞

0
dωkJ (ωk )

(
n̄T (ωk + 1)

ω0 − ωk
+ n̄T (ωk )

ω0 + ωk

)]
.

(J17)

This implies that the second-order cumulant becomes Z (t ) =
L̃Mt (M signifies the Markovian limit), where

L̃M[•] = − i

h̄
[ϒM(∞), •]

+ γ
M(∞)
+ D+[•] + γ

M(∞)
− D−[•], (J18)

and the dynamical generator [Eq. (65)] converges to
L̃(N )[ρ̂S (t )] = L̃M[ρ̂S (t )].
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2. Derivation of the fourth-order cumulant

To obtain the fourth-order cumulant one expands the dynamical map up to fourth order in interaction strength, obtaining

ρ̃S (t ) ≈ ρ̃S (0) −
∫ t

0

∫ t1

0
dt̃ trE ([H̃I (t1), [H̃I (t2), ρ̃S (0) ⊗ ρβ]])

+
∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0
dt̃ trE ([H̃I (t1), [H̃I (t2)[H̃I (t3), [H̃I (t4), ρ̃S (0) ⊗ ρβ]]])

:=
(

1 −
∫ t

0

∫ t1

0
dt̃c2(t1, t2) +

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0
dt̃c4(t1, t2, t3, t4)

)
ρ̃S (0),

where we have used the fact that the initial state of the environment is assumed to be thermal state and, consequently, only
expectation values consisting of the same numbers of creation/annihilation operators are nonzero. Additionally, we have
introduced the notation dt̃ = dt1dt2... and

c2(t1, t2)· = trE ([H̃I (t1), [H̃I (t2), · ⊗ ρβ]]),

c4(t1, t2, t3, t4)· = trE ([H̃I (t1), [H̃I (t2)[H̃I (t3), [H̃I (t4), · ⊗ ρβ]]]]). (J19)

On the other hand, we write the reduced density operator at time t in terms of cumulants

ρ̃S (t ) = eZ (t )ρ̃S (0) ≈ e
1
2 Z2(t )+ 1

24 Z4(t )ρ̃S (0).

Comparing the two above equations, we identify the relation

Z2 = −2
∫ t

0

∫ t1

0
dt̃c2(t1, t2), Z4 = 12

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0
dt̃[2c4(t1, t2, t3, t4) − C22(t1, t2, t3, t4)],

where a change of limits in the time integrals in the second term leads to

C22(t1, t2, t3, t4) = c2(t3, t4)c2(t1, t2) + c2(t2, t4)c2(t1, t3) + c2(t2, t3)c2(t1, t4) + c2(t1, t4)c2(t2, t3)

+ c2(t1, t3)c2(t2, t4) + c2(t1, t2)c2(t3, t4).

For ease of notation we introduce functions f (t ) and g(t )

g(t ) :=
∑

k

|gk|2nke−i(ω0−ωk )t , f (t ) :=
∑

k

|gk|2(nk + 1)ei(ω0−ωk )t .

Employing the notation f R
12 = �( f (t1 − t2)), etc., after a lengthy calculation we obtain

2c4(t1, t2, t3, t4) − C22(t1, t2, t3, t4) = −2 × Dz
(
2gR

14 f R
23 + 2 f R

14gR
23 + gR

13 f R
24 + f R

13gR
24 + gI

13 f I
24 + f I

13gI
24

)
+ 2D−

[
2 f R

12gR
34 + 2 f R

13

(
f R
24 + gR

24

) + 2 f R
23

(
f R
14 + gR

14

)
− 2 f R

34gR
12 − 2 f I

14

(
f I
23 − gI

23

) − 2 f I
24

(
2 f I

13 − gI
13

)]
+ 2D+

[
2gR

12 f R
34 + 2gR

13

(
gR

24 + f R
24

) + 2gR
23

(
gR

14 + f R
14

)
− 2gR

34 f R
12 − 2gI

14

(
gI

23 − f I
23

) − 2gI
24

(
2gI

13 − f I
13

)]
− i

h̄
D′

z�[g14(2 f23 + f ∗
23 − g23) − f14(2g23 + g∗

23 − f23)

− g13(g24 − f ∗
24) + f13( f24 − g∗

24)],

which determine the higher-order corrections to the kinetic coefficients �̄
(N )
+ (t ), �̄

(N )
− (t ), ϒ̄ (N )(t ), and lead to the appearance of

a pure dephasing term, which strength is determined by the kinetic coefficient �̄(N )
z (t ). The connections between these kinetic

coefficients and the one occurring in the generator, Eq. (68), are the mathematically identical to the second-order case and are
given by Eq. (J13) and Eq. (J14). Additionally, due to commutation of Dz with D−, D+ and D′

z one gets

γ̄ (N )
z (t ) = ˙̄�(N )

z (t ).

[1] W. H. Zurek, Decoherence and the transition from quantum to
classical, Phys. Today, 44(10), 36 (1991).

[2] W. H. Zurek, Decoherence, einselection, and the quantum
origins of the classical, Rev. Mod. Phys. 75, 715 (2003).

043075-25

https://doi.org/10.1063/1.881293
https://doi.org/10.1103/RevModPhys.75.715


ROIE DANN, NINA MEGIER, AND RONNIE KOSLOFF PHYSICAL REVIEW RESEARCH 4, 043075 (2022)

[3] E. H. Lieb and D. W. Robinson, The finite group velocity
of quantum spin systems, in Statistical Mechanics (Springer,
New York, 1972), pp. 425–431.

[4] E. B. Davies, Quantum Theory of Open Systems (Academic
Press, New York, 1976).

[5] D. Huppert, E. Pines, and N. Agmon, Long-time behavior of
reversible geminate recombination reactions, J. Opt. Soc. Am.
B 7, 1545 (1990).

[6] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, 2002).

[7] B. Fain, Irreversibilities in Quantum Mechanics (Springer Sci-
ence & Business Media, New York, 2000), Vol. 113.

[8] A. Rivas and S. F. Huelga, Open Quantum Systems (Springer,
New York, 2012), Vol. 10.

[9] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-
Photon Interactions: Basic Process and Applications (Wiley,
New York, 1998), pp. 257–351.

[10] Á. Rivas, A. D. K. Plato, S. F. Huelga, and M. B. Plenio,
Markovian master equations: A critical study, New J. Phys.
12, 113032 (2010).

[11] W. G. Unruh, Maintaining coherence in quantum computers,
Phys. Rev. A 51, 992 (1995).

[12] M. A. Nielsen and I. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, 2002).

[13] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,
and J. L. O’Brien, Quantum computers, Nature (London) 464,
45 (2010).

[14] P. W. Shor, Scheme for reducing decoherence in quantum
computer memory, Phys. Rev. A 52, R2493 (1995).

[15] A. Ekert and C. Macchiavello, Quantum Error Correction for
Communication, Phys. Rev. Lett. 77, 2585 (1996).

[16] D. Gottesman, Stabilizer codes and quantum error correction,
arXiv:quant-ph/9705052.

[17] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme,
W. H. Zurek, T. F. Havel, and S. S. Somaroo, Experimen-
tal Quantum Error Correction, Phys. Rev. Lett. 81, 2152
(1998).

[18] E. Knill, R. Laflamme, and L. Viola, Theory of Quantum
Error Correction for General Noise, Phys. Rev. Lett. 84, 2525
(2000).

[19] D. Aharonov and M. Ben-Or, Fault-tolerant quantum compu-
tation with constant error rate, SIAM J. Comput. 38, 1207
(2008).

[20] D. A. Lidar and T. A. Brun, Quantum Error Correction (Cam-
bridge University Press, Cambridge, 2013).

[21] R. Vasile, S. Olivares, M. G. A. Paris, and S. Maniscalco,
Continuous-variable quantum key distribution in
non-Markovian channels, Phys. Rev. A 83, 042321 (2011).

[22] S. F. Huelga, A. Rivas, and M. B. Plenio, Non-Markovianity-
Assisted Steady State Entanglement, Phys. Rev. Lett. 108,
160402 (2012).

[23] B. Bylicka, D. Chruściński, and S. Maniscalco, Non-
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