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Quantum heat engines (QHE) are thermal machines where the working substance is a quantum object. In
the extreme case, the working medium can be a single particle or a few-level quantum system. The study of
QHE has shown a remarkable similarity with macroscopic thermodynamical results, thus raising the issue
of what is quantum in quantum thermodynamics. Our main result is the thermodynamical equivalence of all
engine types in the quantum regime of small action with respect to Planck’s constant. They have the same
power, the same heat, and the same efficiency, and they even have the same relaxation rates and relaxation
modes. Furthermore, it is shown that QHE have quantum-thermodynamic signature; i.e., thermodynamic
measurements can confirm the presence of quantum effects in the device. We identify generic coherent
and stochastic work extraction mechanisms and show that coherence enables power outputs that greatly
exceed the power of stochastic (dephased) engines.
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I. INTRODUCTION

Thermodynamics emerged as a practical theory for
evaluating the performance of steam engines. Since
then, the theory proliferated and has been utilized in
countless systems and applications. Eventually, thermody-
namics became one of the pillars of theoretical physics.
Amazingly, it survived great scientific revolutions such as
quantum mechanics and general relativity. To a certain
extent, thermodynamics even contributed to these theories
(e.g., black hole entropy and temperature).
Despite its success, it is not expected that thermody-

namics will hold all the way to the atomic scale, where the
number of particles in the relevant substance is small or
even equal to 1. Thus, it was anticipated that in the quantum
regime new thermodynamic effects will surface. However,
quantum-thermodynamic systems (even with a single
particle) show a remarkable similarity to the macroscopic
system described by classical thermodynamic. When the
baths are thermal, the Carnot efficiency limit is equally
applicable for a small quantum system [1,2]. Even classical
fluctuation theorems hold without any alteration [3–5].
Since real engines have a finite cycle time, they cannot

be in an exact equilibrium state and perform as a reversible
machine. Consequently, the efficiency is always lower than
the Carnot limit. Furthermore, the performance of a real
engine is more severely limited by heat leaks, friction, and

heat transport. This led to the study of efficiency at
maximal power [6–9] and finite-time thermodynamics
[10,11]. In analogy to the classical case, nonadiabatic
couplings in finite-time quantum evolution give rise to a
new quantum frictionlike mechanism [12,13]. However,
this friction effect is not a generic feature of quantum heat
machines. It can be avoided by applying different schemes.
(See Ref. [14], or the multilevel embedding scheme in
Sec. II E of this paper. See also the discussion in Ref. [15].)
Is there really nothing generic, new, and profound in

the thermodynamics of small quantum system? Can
classical thermodynamics and stochastic analysis predict
and explain any observed thermodynamic effect in quan-
tum heat machines? Do quantum effects always lead to
friction and losses, or can they boost the heat machine
performance? In this work, we present a generic thermo-
dynamic behavior that is purely quantum in its essence and
has no classical counterpart. Furthermore, it is shown that
in the quantum regime, the generic coherent work extrac-
tion mechanism can significantly outperform the stochastic
work extraction mechanism.
Quantum thermodynamics is the study of thermodynamic

quantities such as temperature, heat, work, and entropy in
microscopic quantum systems or even for a single particle.
This study includes dynamical analysis of engines and
refrigerators in the quantum regime [1,14,16–40], theoreti-
cal frameworks that take into account single-shot events
[41,42], and the study of thermalization mechanisms
[43–45]. Another topic of interest in quantum thermody-
namics is algorithmic cooling [46–50]. For updated reviews
on quantum thermodynamics, we recommendRefs. [51,52].
Several proposals for quantum-heat-engine realization

and experimental setup have been studied [53–57].
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However, as will be explained later, only some of them are
suited for exploring the quantum effects studied here. We
hope our findings will motivate experimentalists to come
up with more schemes that can probe the coherent work
extraction regime.
Recently, some progress on the role of quantum coher-

ence in quantum thermodynamics has been made [58–64].
In addition, quantum coherence has been shown to quanti-
tatively affect the performance of heat machines [65–67]. In
this work, we associate coherence with a specific thermo-
dynamic effect and relate it to a thermodynamic work
extraction mechanism.
Heat engines can be classified by their different sched-

uling of the interactions with the baths and the work
repository. These types include the four-stroke, two-stroke,
and the continuous engines (these engine types will be
described in more detail later). The choice of engine type is
usually guided by convenience of analysis or ease of
implementation. Nevertheless, from a theoretical point of
view, the fundamental differences or similarities between
the various engine types are still uncharted. This is
particularly true in the microscopic quantum regime. For
brevity, we discuss engines, but all our results are equally
applicable to other heat machines such as refrigerators and
heaters.
Our first result (21)–(23) is that all three engine types are

thermodynamically equivalent in the limit of small engine
action (weak thermalization and a weak driving field).
The equivalence holds also for transients and for states
that are very far from thermal equilibrium. On top of
providing a thermodynamic unification limit for the various
engine types, this equivalence also establishes a connection
to quantum mechanics, as it crucially depends on phase
coherence and quantum interference. In particular, the
validity regime of the equivalence is expressed in terms
of ℏ.
Our second result (32) is the identification of a quantum-

thermodynamic signatures. Let us define a quantum sig-
nature as a signal extracted from measurements that
unambiguously indicates the presence of quantum effects
(e.g., entanglement or interference). The Bell inequality
for the EPR experiment is a good example. A quantum-
thermodynamic signature is a quantum signature obtained
from measuring thermodynamic quantities. We show that it
is possible to set an upper bound on the work output of a
stochastic, coherence-free engine. Any engine that sur-
passes this bound must have some level of coherence.
Hence, work exceeding the stochastic bound constitutes a
quantum-thermodynamic signature. Furthermore, we dis-
tinguish between a coherent work extraction mechanism
and a stochastic work extraction mechanism. This explains
why in the equivalence regime, coherent engines produce
significantly more power compared to the corresponding
stochastic engine. We estimate that our findings can be
verified with present-day experimental capabilities. For a

suggested realization in solid-state superconducting qubits,
see Ref. [68].
The equivalence derivation is based on three ingredients.

First, we introduce a multilevel embedding framework that
enables the analysis of all three types of engines in the same
physical setup. Next, a “norm action” smallness parameter,
s, is defined for engines using Liouville space. The third
ingredient is the symmetric rearrangement theorem that is
used to show why all three engine types have the same
thermodynamic properties despite the fact that they exhibit
very different density matrix dynamics.
In Sec. II, we describe the main engine types and

introduce the multilevel embedding framework. Next, in
Sec. III, the multilevel embedding and the symmetric
rearrangement theorem are used to show the various
equivalence relation of different engine types. After dis-
cussing the two fundamental work extraction mechanisms,
in Sec. IV, we present a quantum-thermodynamic signature
that separates quantum engines from stochastic engines. In
Sec. V, the over-thermalization effect in coherent quantum
heat engines is studied. Finally, in Sec. VI, we conclude and
discuss extensions and future prospects.

II. HEAT ENGINES TYPES AND THE
MULTILEVEL EMBEDDING SCHEME

Heat engines are either discrete or continuous. Discrete
engines include the two-stroke and four-stroke engines,
whereas a turbine is a continuous engine [69]. These engine
types appear in the macroscopic world as well as in the
microscopic (quantum) realm. Here, we present a theoreti-
cal framework where all three types of engines can be
embedded in a unified physical framework. This framework,
termed “multilevel embedding,” is an essential ingredient in
our theory as it enables a meaningful comparison between
different engine types.

A. Heat and work

A heat engine is a device that uses at least two thermal
baths in different temperatures to extract work. Work is the
transfer of energy from the engine to some external
repository without changing the entropy of the repository.
For example, increasing the excitation number of an
oscillator, increasing the photon number in a specific
optical mode (lasing), or increasing the kinetic energy in
a single predefined direction. “Battery” or “flywheel” are
terms often used in this context of work storage [70,71]. We
shall use the more general term “work repository.” Heat, on
the other hand, is an energy exchange between the system
and a thermal bath that involves entropy change in the bath.
In the weak system-bath coupling limit, the heat is related
to the temperature, via the well-known relation dQ ¼ TdS,
where dS is the entropy change in the bath.
In the elementary quantum heat engines, the working

substance is comprised of single particle (or a few at the
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most). Thus, the working substance cannot reach equilib-
rium on its own. Furthermore, excluding a few nongeneric
cases, it is not possible to assign an equation of state that
establishes a relation between thermodynamic quantities.
Nevertheless, QHE’s satisfy the second law and therefore
are also bounded by the Carnot efficiency limit [1,72].
Work strokes are characterized by zero contact with the

baths and an inherently time-dependent Hamiltonian. The
unitary evolution generated by this Hamiltonian can change
the energy of the system. On the other hand, the von
Neumann entropy and the purity remain fixed (unitary
evolution at this stage). Hence, the energy change of the
system in this case constitutes pure work. The system’s
energy change is actually an energy exchange with the
work repository.
When the system is coupled to a thermal bath and

the Hamiltonian is fixed in time, the bath can change the
populations of the energy levels. In a steady state, the
system reaches a Gibbs state where the density matrix has
no coherences in the energy basis and the population of the
levels is given by pn;b ¼ e−ðEn=TbÞ=

P
N
n¼1 e

−ðEn=TbÞ, where
N is the number of levels and “b” stands for “c” (cold) or
“h” (hot). In physical models where the system thermalizes
via collision with bath particles, a full thermalization can be
achieved in finite time [15,73–76]. However, it is not
necessary that the baths will bring the system close to a
Gibbs state for the proper operation of the engine. In
particular, maximal efficiency (e.g., in Otto engines) can be
achieved without full thermalization. Maximal power
(work per cycle time) is also associated with partial
thermalization [6,8]. The definitive property of a thermal
bath is its aspiration to bring the system to a predefined
temperature regardless of the initial state of the system. The
evolution in this stage does not conserve the eigenvalues of
the density matrix of the system, and therefore, not only
energy but entropy as well is exchanged with the bath.
Therefore, the energy exchange in this stage is considered
as heat.
In contrast to definitions of heat and work that are based

on the derivative of the internal energy [1,77,78], our
definitions are obtained by energy balance when coupling
only one element (bath or external field) at a time. As we
see later, in some engine types, several agents change the
internal energy simultaneously. Even in this case, this point
of view of heat and work will still be useful for obtaining
consistent and physical definitions of heat and work.

B. Three types of engines

There are three core engine types that operate with two
thermal baths: four-stroke engine, two-stroke engine, and a
continuous engine. A stroke is a time segment where a
certain operation takes place, for example, thermalization
or work extraction. By definition, adjacent strokes in heat
engines do not commute with each other. If they do
commute (for example, see the “cold” and “hot” operations

in the two-stroke engine later), they can be combined into a
single stroke since the total effect of the two strokes can be
generated by applying the two operations simultaneously.
Each stroke is a completely positive (CP) map [79], and

therefore, the one-cycle evolution operator of the engine is
also a CP map. For the extraction of work, it is imperative
that some of the stroke propagators do not commute [80].
Otto engines and Carnot engines are examples of four-

stroke engines. The simplest quantum four-stroke engine is
the two-level Otto engine shown in Fig. 1(a). In the first
stroke, only the cold bath is connected to the system. Thus,
the internal energy changes are associated with heat
exchange with the cold bath. The expansion and compres-
sion of the levels are fully described by a time-dependent
Hamiltonian of the form HðtÞ ¼ fðtÞσz (the baths are
disconnected at this stage). In the second stroke, work is
consumed in order to expand the levels, and in the fourth
stroke, work is produced when levels revert to their original
values. There is a net work extraction since the populations
in stages II and IV are different. In different engines, much
more general unitary transformation can be used to extract
work. Nevertheless, this particular operation resembles the
classical expansion and compression of classical engines.
The work is the energy exchanged with the system during
the unitary stages: W ¼ WII þWIV ¼ ðhE3i − hE2iÞþ
ðhE5i − hE4iÞ. We consider only energy expectation values
for two main reasons. First, investigations of work fluctua-
tions revealed that quantum heat engines follow classical
fluctuation laws [72], and we search for quantum signatures
in heat engines. The second reason is that, in our view,
the engine should not be measured during operation. The
measurement protocol used in quantum fluctuation
theorems [3,4,72] eliminates the density-matrix coher-
ences. These coherences have a critical component in

FIG. 1. (a) A two-level scheme of a four-stroke engine. (b) A
two-particle scheme of a two-stroke engine. (c) A three-level
scheme of a continuous engine.
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the equivalence and quantum signature we study in this
paper. As shown in Sec. IV, measurements or dephasing
dramatically change the engine. Thus, although we fre-
quently calculate work per cycle, the measured quantity
is the cumulative work, and it is measured only at the
end of the process. The averaged quantities are obtained by
repeating the full experiment many times. Engines are
designed to perform a task, and we assume that this
completed task is the subject of measurement. The engine
internal state is not measured.
The heat per cycle taken from the cold bath is

Qc ¼ hE2i − hE1i, and the heat taken from the hot bath
is Qh ¼ hE4i − hE3i. In a steady state, the average energy
of the system returns to its initial value after one cycle [81]
so that hE5i ¼ hE1i. From this result, it follows immedi-
ately that Qc þQh þW ¼ 0; i.e., the first law of thermo-
dynamics is obeyed. There is no instantaneous energy
conservation of internal energy, as energy may be tempo-
rarily stored in the interaction field or in the work
repository.
In the two-stroke engine shown in Fig 1(b), the engine

consists of two parts (e.g., two qubits) [82]. One part may
couple only to the hot bath, and the other may couple only
to the cold bath. In the first stroke, both parts interact with
their bath (but do not necessarily reach equilibrium). In the
second unitary stroke, the two engine parts are discon-
nected from the baths and are coupled to each other. They
undergo a mutual unitary evolution, and work is extracted
in the process.
In the continuous engine shown in Fig. 1(c), the two

baths and the external interaction field are connected
continuously. For example, in the three-level laser system
shown in Fig 1(c), the laser light represented by HwðtÞ
generates stimulated emission that extracts work from the
system. This system was first studied in a thermodynamics
context in Ref. [83], while a more comprehensive dynami-
cal analysis of the system was given in Ref. [84]. It is
imperative that the external field is time dependent. If it is
time independent, the problem becomes a pure heat trans-
port problem where Qh ¼ −Qc ≠ 0. In heat transport, the
interaction field merely “dresses” the level so that the baths
see a slightly modified system. The Lindblad generators are
modified accordingly, and heat flows without extracting or
consuming work [85]. Variations on these engine types
may emerge because of realization constraints. For exam-
ple, in the two-stroke engine, the baths may be continu-
ously connected. This variation and others can still be
analyzed using the tools presented in this paper.

C. Efficiency vs work and heat

Since the early days of Carnot, efficiency received
considerable attention for two main reasons. First, this
quantity is of great interest from both theoretical and
practical points of view. Second, unlike other thermody-
namics quantities, the efficiency satisfies a universal bound

that is independent of the engine details. The Carnot
efficiency bound is a manifestation of the second law of
thermodynamics. Indeed, for Markovian bath dynamics, it
was shown that quantum heat engines cannot exceed the
Carnot efficiency [1]. Recently, a more general approach
based on a fluctuation theorem for QHE showed that the
Carnot bound still holds for quantum engines [72]. Studies
in which higher-than-Carnot efficiency are reported [66] are
interesting, but they use nonthermal baths and therefore, not
surprisingly, deviate from results derived in the thermody-
namic framework that deals with thermal baths. For exam-
ple, an electric engine is not limited to Carnot efficiency
since its power source is not thermal. Although the present
work has an impact on efficiency as well, we focus on work
and heat separately in order to unravel quantum effects. As
will be exemplified later, in some elementary cases, these
quantum effects do not influence the efficiency.

D. Bath description and Liouville space

The dynamics of the working fluid (system) interacting
with the heat baths is described by the Lindblad-Gorini-
Kossakowski-Sudarshan (LGKS) master equation for the
density matrix [79,86,87]:

ℏdtρ¼LðρÞ¼−i½Hs;ρ�þ
X
k

AkρA
†
k−1

2
A†
kAkρ−1

2
ρA†

kAk;

ð1Þ

where the Ak operators depend on the temperature, relax-
ation time of the bath, system bath coupling, and also on the
system Hamiltonian Hs [79]. This form already encapsu-
lates within the Markovian assumption of no bath memory.
The justification for these equations arises from a “micro-
scopic derivation” in the weak system-bath coupling limit
[88]. In this derivation, a weak interaction field couples
the system of interest to a large system (the bath) with
temperature T. This interaction brings the system into a
Gibbs state at temperature T. The Lindblad thermalization
operators Ak used for the baths are described in the next
section. The small Lamb shift is ignored.
Equation (1) is a linear equation, so it can always be

rearranged into a vector equation. Given an index mapping
ρN×N → jρi1×N2 , the Lindblad equation now reads

iℏdtjρi ¼ ðHH þ LÞjρi ≐ Hjρi; ð2Þ

where HH is a Hermitian N2 × N2 matrix that originates
from Hs, and L is a non-Hermitian N2 × N2 matrix that
originates from the Lindblad evolution generators Ak. This
extended space is called Liouville space [89]. In this paper,
we use calligraphic letters to describe operators in Liouville
space and ordinary letters for operators in Hilbert space.
For states, however, jAi will denote a vector in Liouville
space formed from AN×N by “vec-ing” A into a column in
the same procedure ρ is converted into jρi. A short review
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of Liouville space and some of its properties is given in
Appendix A.
In unitary dynamics, the largest energy gap of the

Hamiltonian sets a speed limit on the rate of change of
a state (e.g., rotation speed in the Bloch sphere). SinceH is
not Hermitian, the energy scalar that sets a speed limit on
the evolution speed is the spectral norm (or operator norm)
of H, kHk ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eigðH†HÞ

p
(The spectral norm is the

largest singular value of H [90]). In particular, we show in
Appendix B that the norm action, defined as

s ¼
Zτ

0

kHðtÞkdt; ð3Þ

sets a limit on how much a state can change during a time τ
because of the operation ofH. For time-independent super-
HamiltonianH, the evolution operator in Liouville space is

jρðtÞi ¼ Kjρðt0Þi ¼ e−iHðt−t0Þ=ℏjρðt0Þi: ð4Þ
Writing the evolution operator as an exponent of a matrix
has a significant advantage since commutator exponentia-
tion is avoided. Furthermore, the action has a natural
definition in this formalism. In principal, it should be
possible to reformulate the derivations using density
matrixes and the Kraus operators. However, it seems that
the Hilbert space formalism is far more cumbersome and
complicated (for example, see Refs. [91,92]).
While the Lindblad description works very well for

sufficiently long times, it fails for very short times where
some of the approximation breaks down. In scales where
the bath still has a memory of the system’s past states, the
semigroup property of the Lindblad equation no longer
holds: jρðtþ t0Þi ≠ e−iðHsþLÞðt−t0Þ=ℏjρðt0Þi. This will set a
cutoff limit for the validity of the engine-type equivalence
in the Markovian approximation.
Next we introduce the multilevel embedding scheme that

enables us to discuss various heat engines in the same
physical setup.

E. Multilevel embedding

Let the working substance of the quantum engine be an
N-level system. These levels are fixed in time [i.e., they do
not change as in Fig. 1(a)]. For simplicity, the levels are
assumed to be nondegenerate. We divide the energy levels
into a cold manifold and a hot manifold. During the
operation of the engine, the levels in the cold manifold
interact only with the cold bath, and the levels in the hot
manifold interact only with the hot bath. Each thermal
coupling can be turned on and off as a function of time, but
the aliasing of a level to a manifold does not change in time.
If the manifolds do not overlap, the hot and cold thermal

operations commute and they can be applied at the same
time or one after the other. The end result will be the same.

Nevertheless, our scheme also includes the possibility that
one level appears in both manifolds. This is the case for the
three-level continuous engine shown in Fig. 1(c). For
simplicity, we exclude the possibility of more than one
mutual level. If there are two or more overlapping levels,
there is an inevitable heat transport in the steady state from
the hot bath to the cold bath even in the absence of an
external field that extracts work. In the context of heat
engines, this can be interpreted as heat leak. This “no field–
no transport” condition holds for many engines studied in
the literature. Nonetheless, this condition is not a necessary
condition for the validity of our results.
This manifold division seems sensible for the continuous

engine and even for the two-stroke engine in Fig. 1(b), but
how can it be applied to the four-stroke engine shown in
Fig. 1(a)? The two levels interact with both baths and
also change their energy value in time, contrary to the
assumption of fixed energy levels. Nevertheless, this engine
is also incorporated into the multilevel embedding frame-
work. Instead of two levels as in Fig. 1(a), consider the
four-level system shown in the dashed green lines in Fig. 2.
Initially, only levels 2 and 3 are populated and coupled to

the cold bath (2 and 3 are in the cold manifold). In the
unitary stage, an interaction Hamiltonian Hswap generates a
full swap of populations and coherence according to the
rule 1 ↔ 2; 3 ↔ 4. Now, levels 1 and 4 are populated and 2
and 3 are empty. Therefore, this system fully simulates the
expanding-level engine shown in Fig. 1(a). At the same
time, this system satisfies the separation into well-defined

FIG. 2. In the standard two-level Otto engine, there are two-
level Eg;e (purple arrows) that change in time to E0

g;e. In the
multilevel embedding framework, the levels (E1–4) are fixed in
time (black dashed lines), but a time-dependent field (π pulse,
swap operation) transfers the population (green arrows) to the
other levels. For a swap operation, the two schemes lead to the
same final state and therefore are associate with the same work.
Nonetheless, the multilevel scheme is more general since for
weaker unitary transformation (instead of the π pulse), coher-
ences are generated. We show that this type of coherence can
significantly boost the power output of the engine.
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time-independent manifolds, as defined in the multilevel
embedding scheme.
The full swap used to embed the traditional four-stroke

Otto engine is not mandatory, and other unitary operations
can be applied. This extension of the four-stroke scheme is
critical for our work since the equivalence of engines
appears when the unitary operation is fairly close to the
identity transformation. A full swap turns one diagonal
state into another. Consequently, the steady state of an
engine with full swap operation will not contain any
coherences in the energy basis. As will be shown later, a
partial swap or a different “weaker than full swap” unitary
leads to steady-state coherences that dramatically enhance
the power output. Note that these coherences between the
hot and cold manifold imply a superposition of the cold and
hot states. In other words, in contrast to the full swap case,
the particle is not localized exclusively on either the hot or
cold manifold.
Figures 3(a)–(c) show how the three types of engines are

represented in the multilevel embedding scheme. The
advantage of the multilevel scheme now becomes clear.
All three engine types can be described in the same
physical system with the same baths and the same coupling
to external fields (work extraction). The engine types differ
only in the order of the coupling to the baths and to the
work repository. While the thermal operations commute if
the manifolds do not overlap, the unitary operation never
commutes with the thermal strokes.
In the present paper, we use a direct sum structure for the

hot and cold manifolds. However, when there are two or
more particles in the engine [82], it is more natural to
apply a tensor product structure for the manifolds of the
multilevel embedding scheme.
On the right of Fig. 3, we plotted a “brick” diagram for

the evolution operator. Black stands for unitary trans-
formation generated by some external field, while blue
and red stand for hot and cold thermal coupling,

respectively. When the bricks are on top of each other, it
means that they operate simultaneously. Now we are in a
position to derive the first main results of this paper: the
thermodynamic equivalence of the different engine types in
the quantum regime.

III. CONTINUOUS AND STROKE ENGINE
EQUIVALENCE

We first discuss the equivalence of continuous and four-
stroke engines. Nevertheless, all the arguments are valid for
the two-stroke engines as well, as explained later. Although
our results are not limited to a specific engine model, it
will be useful to consider the simple engine shown in Fig. 4.
We use this model to highlight a few points and also
for numerical simulations. The Hamiltonian part of the
system is

H0 þ cosðωtÞHw; ð5Þ
where H0 ¼ −ðΔEh=2Þj1ih1j − ðΔEc=2Þj2ih2j þ ðΔEc=
2Þj3ih3j þ ðΔEh=2Þj4ih4j, Hw ¼ ϵðtÞj1ih2j þ ϵðtÞj3ih4j þ
H:c: and ω ¼ ðΔEh − ΔEcÞ=2ℏ.
The driving frequency that couples the system to the

work repository is in resonance with the top and bottom
energy gaps. The specific partitioning into hot and cold
manifolds was chosen so that only one frequency (e.g., a
single laser) is needed for implementing the system instead
of two.
We assume that the Rabi frequency of the drive ϵ is

smaller than the decay time scale of the baths, ϵ ≪ γc; γh.
Under this assumption, the dressing effect of the driving
field on the system-bath interaction can be ignored. It is
justified, then, to use “local” Lindblad operators obtained in
the absence of a driving field [85,93]. For plotting purposes
(reasonable duty cycle), in the numerical examples, we
often use ϵ ¼ γc ¼ γh. While this poses no problem
for stroke-engine realizations, for experimental demonstra-
tion of equivalence with continuous engines, one has to
increase the duty cycle so that ϵ ≪ γc; γh. In other words,
the unitary stage should be made longer but with a weaker
driving field.

FIG. 3. Representation of the three types of engines (a)–(c) in
the multilevel embedding framework. In this scheme, the differ-
ent engine types differ only in the order of coupling to the baths
and work repository. Since the interactions and energy levels are
the same for all engine types, a meaningful comparison of
performance becomes possible.

FIG. 4. Illustration of the engine used in the numerical
simulation. By changing the time order of the coupling to Hw
and to thermal baths, all three types of engines can be realized in
the model.
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The Lindblad equation is given by Eq. (1) with the
Hamiltonian (5) and with the following Lindblad operators
in Hilbert space:

A1 ¼ ffiffiffiffiffi
γh

p
e−ðΔEh=2ThÞj4ih1j; ð6Þ

A2 ¼
ffiffiffiffiffi
γh

p j1ih4j; ð7Þ

A3 ¼ ffiffiffiffiffi
γc

p
e−ðΔEc=2TcÞj3ih2j; ð8Þ

A4 ¼ ffiffiffiffiffi
γc

p j2ih3j: ð9Þ

In all the numerical simulations, we use ΔEh ¼ 4,
ΔEc ¼ 1, Th ¼ 5, Tc ¼ 1. The interaction with the baths
or with work repository can be turned on and off at will.
Starting with the continuous engine, we choose a unit

cell that contains exactly 6m (m is an integer) complete
cycles of the drive (τd ¼ 2π=ω) so that τcyc ¼ 6mτd. The
difference between the engine cycle time and the cycles of
the external drive will become clear in stroke engines (also,
the factor of 6 will be clarified).
For the validity of the secular approximation used in the

Lindblad microscopic derivation [79], the evolution time
scale must satisfy τ ≫ ð2πℏÞ=minðΔEh;ΔEcÞ. Therefore,
mmust satisfym ≫ ðℏωÞ=minðΔEh;ΔEcÞ. Note that if the
Lindblad description is obtained from a different physical
mechanism (e.g., thermalizing collisions), then this con-
dition is not required.
Next, we transform to the interaction picture (denoted by

tilde) using the transformation U ¼ e−iH0t=ℏ, and perform
the rotating wave approximation (RWA) by dropping terms
oscillating at a frequency of 2ω. For the RWA to be valid,
the amplitude of the field must satisfy ϵ ≪ ω. The resulting
Liouville space super-Hamiltonian is

~H ¼ Lc þ Lh þ
1

2
Hw: ð10Þ

Note that Lh;c were not modified by the transformation to
the rotating system since ½Lh;c;H0� ¼ 0 in the microscopic
derivation [94]. The oscillatory time dependence has
disappeared because of the RWA and the interaction
picture. There is still an implicit time dependence that
determines which of the terms Lc;Lh;Hw is coupled to the
system at a given time. We point out that when the RWA is
not valid, the dynamics becomes considerably more com-
plicated. First, even the basic unitary evolution has no
simple analytical solution. Second, the Lindblad descrip-
tion of the continuous engine becomes more complicated.
Thus, our analysis is restricted to the validity regime of
the RWA.
The Lindblad Markovian dynamics and the RWA set a

validity regime for our theory. This regime is the default
regime used in quantum open systems (see Refs. [77,79]).
It is intriguing to study how the results presented here are

modified by the breakdown of the RWA or by bath memory
effects. However, this analysis is beyond the scope of the
present paper.
Now that we have established a regime of validity and

the super-Hamiltonian that governs the system, we can
turn to the task of transforming from one engine type to
other types and study what properties change in this
transformation. The engine-type transformation is based
on the Strang decomposition [95–97] for two noncom-
muting operators A and B (the operators may not be
Hermitian):

eðAþBÞdt ¼ e
1
2
AdteBdte

1
2
Adt þO½ðs=ℏÞ3� ≅ e

1
2
AdteBdte

1
2
Adt;

ð11Þ

where the norm action (3), s ¼ ðkAk þ kBkÞdt, must be
small for the expansion to be valid. kAk is the spectral
norm of A. In Appendix C, we derive the condition s ≪
1
2
ℏ for the validity of Eq. (11). We use the symbol ≅ to

denote equality with correction O½ðs=ℏÞ3�.
Let the evolution operator of the continuous engine over

the chosen cycle time τcyc ¼ 6mτd be

~Kcont ¼ e−i ~Hτcyc=ℏ: ð12Þ

By first splitting Lc and then splitting Lh, we get

~Kfour stroke ¼ e−ið3LcÞðτcyc=6ℏÞe−ið32HwÞðτcyc=6ℏÞe−ið3LhÞðτcyc=3ℏÞ

× e−ið32HwÞðτcyc=6ℏÞe−ið3LcÞðτcyc=6ℏÞ: ð13Þ

Note that the system is periodic so the first and last
stages are two parts of the same thermal stroke.
Consequently, Eq. (13) describes an evolution operator
of a four-stroke engine, where the unit cell is symmetric.
This splitting is illustrated in Figs. 5(a) and 5(b). There
are two thermal strokes and two work strokes that
together constitute an evolution operator that describes
a four-stroke engine. The cumulative evolution time as
written above is ðmþmþ2mþmþmÞτd¼6mτd¼ τcyc.
Yet, to maintain the same cycle time as chosen for the
continuous engine, the coupling to the baths and field
were multiplied by 3. In this four-stroke engine, each
thermal or work stroke operates, in total, only a third of
the cycle time compared to the continuous engine. Hence,
the coupling must be 3 times larger in order to generate
the same evolution.
By virtue of the Strang decomposition, ~Kfour stroke ≅

~Kcont if s ≪ ℏ. The action parameter s of the engine

is defined as s ¼ R τcyc=2
−τcyc=2 k ~Hkdt ¼ ð1

2
kHwk þ kLhkþ

kLckÞτcyc. Note that the relation ~Kfour stroke ≅ ~Kcont

holds only when the engine action is small compared
to ℏ. This first appearance of a quantum scale will be
discussed later.
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A. Dynamical aspect of the equivalence

The equivalence of the evolution operators ~Kfour stroke ≅
~Kcont has two immediate important consequences. First,
both engines have the same steady-state solution over one
cycle j~ρsi:

~Kfour strokeðτcycÞj~ρsi ≅ ~KcontðτcycÞj~ρsi ¼ j~ρsi; ð14Þ
�
Lc þ Lh þ

1

2
Hw

�
j~ρsi ¼ 0: ð15Þ

At time instances that are not integer multiples of τcyc, the
states of the engines will differ significantly (O½ðs=ℏÞ1�)
since ~Kfour strokeðt < τcycÞ ≠ ~Kcontðt < τcycÞ. In other
words, the engines are still significantly different from
each other. The second consequence is that the two engines
have the same transient modes as well. When monitored at
multiples of τcyc, both engines will have the same relaxation
dynamics to the steady state if they started from the same
initial condition. In the remainder of the paper, when the
evolution operator is written without a time tag, this means
that we are considering the evolution operator of a
complete cycle.
We point out that there are higher-order decompositions

where the correction terms are smaller than O½ðs=ℏÞ3�.
However, it turns out that these decompositions inherently
involve negative coefficients [98]. A negative coefficient
implies a thermal stroke of the form eþiLdt=ℏ (instead of
e−iLdt=ℏ). This type of evolution cannot be generated by a
Markovian bath. Therefore, among the symmetric decom-
positions, the Strang decomposition seems to be the only
one that can be used for decomposing Markovian thermal
engine evolution operators.

B. Thermodynamic aspect of the equivalence

The equivalence of the one-cycle evolution operators of
the two engines does not immediately imply that the
engines are thermodynamically equivalent. Generally, in
stroke engines, the heat and work depend on the dynamics
of the state inside the cycle, which is very different
(O½ðs=ℏÞ1�) from the constant state of the continuous
engine. However, in this section, we show that all thermo-
dynamics properties are equivalent in both engines up to
O½ðs=ℏÞ3� corrections, similarly to the evolution operator.
We start by evaluating the work and heat in the continuous
engine. By considering infinitesimal time elements where
Lc;Lh, andHw operate separately, one obtains that the heat
and work currents are jcðhÞ ¼ hH0jð1=ℏÞLcðhÞj~ρsðtÞi and
jw ¼ hH0jð1=2ℏÞHwj~ρsðtÞi, where hH0j ¼ jH0i† is the
vectorized form of the field-free Hamiltonian H0 of the
system [see Eq. (5)]. See Appendix A for the use of bracket
notation to describe expectation values hAi ¼ trðAρÞ ¼
hAjρi. In principle, to calculate hAi in the rotating
frame using j~ρsðtÞi, hAj must be rotated as well.
However, because of the property hH0jH0 ¼ 0 shown in
Appendix A, hH0j is not affected by this rotation.
In the continuous engine, the steady state satisfies

j~ρsðtÞi ¼ j~ρsi, so the total heat and work in the steady
state in one cycle are

FIG. 5. Graphical illustrations of the super-Hamiltonians of
various engines (a)–(d). The horizontal axis corresponds to time.
The brick size corresponds to the strength of the coupling to the
work repository or to the baths. The Hamiltonians are related to
each other by applying the Strang decomposition to the evolution
operators (12), (13), and (20). The symmetric rearrangement
theorem ensures that in the limit of small action, any rearrange-
ment that is symmetric with respect to the center and conserves
the area of each color does not change the total power and heat
over one cycle.

RAAM UZDIN, AMIKAM LEVY, AND RONNIE KOSLOFF PHYS. REV. X 5, 031044 (2015)

031044-8



Wcont ¼
�
H0

���� 1

2ℏ
Hw

����~ρs
�
τcyc; ð16Þ

Qcont
cðhÞ ¼

�
H0

���� 1ℏLcðhÞ

����~ρs
�
τcyc: ð17Þ

These quantities should be compared to the work and
heat in the four-stroke engine. Instead of carrying out
the explicit calculation for this specific four-stroke
splitting, we use the symmetric rearrangement theorem
(SRT) derived in Appendix D. Symmetric rearrange-
ment of a Hamiltonian is a change in the order of
couplings ϵðtÞ; γcðtÞ; γhðtÞ that satisfies

R
ϵðtÞdt ¼ const,R

γcðtÞdt ¼ const,
R
γhðtÞdt ¼ const, and with the sym-

metry ϵðtÞ ¼ ϵð−tÞ; γcðtÞ ¼ γcð−tÞ; γcðtÞ ¼ γcð−tÞ. Any
super-Hamiltonian obtained using the Strang splitting
of the continuous engine [for example, Htwo strokeðtÞ,
Hfour strokeðtÞ] constitutes a symmetric rearrangement of
the continuous engine. The SRT exploits the symmetry
of the Hamiltonian to show that symmetric rearrangement
changes heat and work only in O½ðs=ℏÞ3�. In Appendix D,
we show that

Wfour stroke ≅ Wcont; ð18Þ
Qfour stroke

cðhÞ ≅ Qcont
cðhÞ: ð19Þ

Thus, we conclude that up to ðs=ℏÞ3 corrections, the
engines are thermodynamically equivalent. When s ≪ 1,
work, power, heat, and efficiency converge to the same
value for all engine types. Clearly, inside the cycle, the
work and heat in the two engines are significantly different
(O½ðs=ℏÞ1�), but after a complete cycle, they become
equivalent. The symmetry makes this equivalence more
accurate as it holds up to ðs=ℏÞ3 [rather than ðs=ℏÞ2].
Interestingly, the work done in the first half of the cycle is
1
2
Wcont þO½ðs=ℏÞ2�. However, when the contribution of

the other half is added, the O½ðs=ℏÞ2� correction cancels
out and Eq. (18) is obtained (see Appendix D).
We emphasize that the SRT and its implications (18) and

(19) are valid for transients and for any initial state—not
just for steady-state operation. In Fig. 6(a), we show the
cumulative work as a function of time for a four-stroke
engine and a continuous engine. The vertical lines indicate
a complete cycle of the four-stroke engine. In addition
to the parameter common to all examples specified before,
we used ϵ ¼ γc ¼ γh ¼ 10−4, and the equivalence of work
at the vertical lines is apparent. In Fig. 6(b), the field and
thermal coupling were increased to ϵ ¼ γc ¼ γh ¼
5 × 10−3. Now the engines perform differently, even at
the end of each cycle. This example is a somewhat extreme
situation where the system changes quite rapidly (conse-
quence of the initial state we chose). In other cases, such as
steady-state operation, the equivalence can be observed for
much larger action values.

The splitting used in Eq. (13) was based on first splitting
Lc and thenHw. Other engines can be obtained by different
splitting of ~Kcont. For example, consider the two-stroke
engine obtained by splitting Lc þ Lh:

~Ktwo stroke ¼ e−i32ðLcþLhÞðτcyc=3Þe−ið32HwÞðτcyc=3Þ

× e−i32ðLcþLhÞðτcyc=3Þ: ð20Þ
Note that in the two-stroke engine, the thermal coupling has
to be 3

2
stronger compared to the continuous case in order to

provide the same action. Using the SRT, we obtain the
complete equivalence relations of the three main engine
types:

Wtwo stroke ≅ Wfour stroke ≅ Wcont; ð21Þ

Qtwo stroke
cðhÞ ≅ Qfour stroke

cðhÞ ≅ Qcont
cðhÞ; ð22Þ

~Ktwo stroke ≅ ~Kfour stroke ≅ ~Kcont: ð23Þ
Note that since K ¼ e−iH0τcyc ~K, the equivalence of the
evolution operators holds also in the original frame, not
just in the interaction frame. Another type of engine exists
when the interaction with the work repository is carried
out by two physically distinct couplings. This happens

FIG. 6. (a) The equivalence of heat engine types in transient
evolution when the engine action is small compared to ℏ. (a) The
cumulative power transferred to the work repository is plotted as
a function of time. All engines start in the excited state j4i, which
is very far from the steady state of the system. At complete engine
cycles (vertical lines), the power in all engines is the same.
(b) Once the action is increased (here, the field ϵ was increased),
the equivalence no longer holds.
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naturally if E4 − E3 ≠ E2 − E1 so that two different
driving lasers have to be used and the Hamiltonian is
H0 þ cos½ðE2 − E1Þt�Hw1 þ cos½ðE4 − E3Þt�Hw2. In such
cases, one can make the splitting shown in Fig. 5(d). In
this numerical example, we used Hw1 ¼ ϵðtÞj1ih2j þ H:c:
and Hw2 ¼ ϵðtÞj3ih4j þ H:c: Since there are two different
work strokes in addition to the thermal stroke, this engine
constitutes a four-stroke engine.

C. Power and energy flow balance

The average power and heat flow in the equivalence
regime are independent of the cycle time:

PW ¼ W
τcyc

¼
�
H0

���� 1

2ℏ
Hw

����~ρs
�
; ð24Þ

JcðhÞ ¼
QcðhÞ
τcyc

¼
�
H0

���� 1ℏLcðhÞ

����~ρs
�
: ð25Þ

Using the steady-state definition (15), one obtains the
steady-state energy balance equation:

Pw þ Jc þ Jh ¼ 0: ð26Þ
Equation (26) does not necessarily hold if the system is not
in a steady state, as energy may be temporarily stored in the
baths or in the work repository.
Figure 7 shows the power in a steady state as a function

of the action. The action is increased by increasing the time
duration of each stroke (see top illustration in Fig. 7). The
field and the thermal coupling are ϵ ¼ γh ¼ γc ¼ 5 × 10−4.
The coupling strengths to the bath and work repository are
not changed. When the engine action is large compared to
ℏ, the engines behave very differently [Fig. 7(a)]. On the
other hand, in the equivalence regime, where s is small with
respect to ℏ, the power of all engines types converges to the
same value. In the equivalence regime, the power rises
quadratically with the action since the correction to the
power is s3=τcyc ∝ τ2cyc. This power plateau in the equiv-
alence regime is a manifestation of quantum interference
effects (coherence in the density matrix), as will be further
discussed in the next section.
The behavior of different engines for large action with

respect to ℏ is very rich and strongly depends on the ratio
between the field and the bath coupling strength.
Finally, we comment that the same formalism and results

can be extended for the case in which the drive is slightly
detuned from the gap.

D. Lasing condition via the equivalence
to a two-stroke engine

Laser medium can be thought of as a continuous engine
where the power output is light amplification. It iswell known
that lasing requires population inversion. Scovil et al. [83]
were the first to show the relation between the population
inversion lasing condition and the Carnot efficiency.

Using the equivalence principle presented here, the most
general form of the lasing condition can be obtained
without any reference to light-matter interaction.
Let us start by decomposing the continuous engine into

an equivalent two-stroke engine. For simplicity, it is
assumed that the hot and cold manifolds have some overlap
so that, in the absence of the driving field, this bath leads
the system to a unique steady state ρ0. If the driving field is
tiny with respect to the thermalization rates, then the system
will be very close to ρ0 in the steady state.
To see when ρ0 can be used for work extraction, we need

to discuss passive states. A passive state is a state that is
diagonal in the energy basis, and with populations that
decrease monotonically with energy [99]. The energy of a
passive state cannot be decreased (or work cannot be
extracted from the system) by applying some unitary
transformation (the Hamiltonian after the transformation
is the same as it was before the transformation) [70,99].
Thus, if ρ0 is passive, work cannot be extracted from the
device, regardless of the details of the driving field (as long
as it is weak and the equivalence holds).
A combination of thermal baths will lead to an energy

diagonal ρ0. Consequently, to enable work extraction,

FIG. 7. Power as a function of action for various engine types in a
steady state. The four-stroke variant (green line) is described in
Fig. 5(d). The action is increased by increasing the stroke duration
(top illustration). (a) For large action with respect to ℏ, the engines
significantly differ in performance. In this example, all engines
have the same efficiency, but they extract different amounts of heat
from the hot bath. (b) In the equivalence regimewhere the action is
small, all engine types exhibit the same power and also the same
heat flows. The condition s < ℏ=2 that follows from the Strang
decomposition agrees with the observed regime of equivalence.
The time-symmetric structure of the engines causes the deviation
from equivalence to be quadratic in the action.
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passivity must be broken by population inversion.
Therefore, we obtain the standard population inversion
condition. Note that the derivation does not require an
Einstein rate equation or any information on the processes
of emission and absorption of photons.
Furthermore, it now becomes clear that if “coherent

baths” are used [66] so that ρ0 is no longer diagonal in the
energy basis (and therefore no longer passive), it is possible
to extract work even without population inversion.
In conclusion, using the equivalence principle, it is

possible to import known results from work extraction
in stroke schemes to continuous machines.

IV. QUANTUM-THERMODYNAMIC SIGNATURE

Can the measurements of thermodynamics quantities
reveal quantum effects in heat engines? To answer this, we
first need to define the corresponding classical engine.
The term “classical engine” is rather ambiguous. There

are different protocols of modifying the system so that it
behaves classically. To make a fair comparison to the fully
quantum engine, we look for the minimal modification that
satisfies the following conditions:
(1) The dynamics of the device should be fully de-

scribed using population dynamics (no coherences,
no entanglement).

(2) The modification should not alter the energy levels
of the system, the couplings to the baths, and the
coupling to the work repository.

(3) The modification should not introduce a new source
of heat or work.

To satisfy the first requirement, we introduce a dephasing
operator that eliminates the coherences [100] and leads to a
stochastic description of the engine. Clearly, a dephasing
operator satisfies the second requirement. To satisfy the
third requirement, we require “pure dephasing,” a dephas-
ing in the energy basis. The populations in the energy basis
are invariant to this dephasing operation. Such a natural
source of energy-basis dephasing emerges if there is some
scheduling noise [101]. In other words, if there is some
error in the switching time of the strokes.
Let us define a “quantum-thermodynamic signature” as a

signal that is impossible to produce by the corresponding
classical engine as defined above.
Our goal is to derive a threshold for power output that a

stochastic engine cannot exceed but a coherent quantum
engine can.
Before analyzing the effect of decoherence, it is instruc-

tive to distinguish between two different work extraction
mechanisms in stroke engines.

A. Coherent and stochastic work extraction
mechanisms

Let us consider the work done in the work stroke of a
two-stroke engine [as in Fig. 5(c)]:

W ¼ hH0je−ið1=2ℏÞHwτw j~ρi − hH0j~ρi; ð27Þ

where τw is the duration of the work stroke. Writing
the state as a sum of population and coherences
j~ρi ¼ j~ρpopi þ j~ρcohi, we get

W ¼
�
H0

����
X
n¼1

ð−i 1
2ℏHwτwÞ2n−1
ð2n − 1Þ!

����~ρcoh
�

þ
�
H0

����
X
n¼1

ð−i 1
2ℏHwτwÞ2n
ð2nÞ!

����~ρpop
�
: ð28Þ

This result follows from the generic structure of
Hamiltonians in Liouville space. Any H that originates
from a Hermitian Hamiltonian in Hilbert space (in contrast
to Lindblad operators as a source) has the structure shown
in Fig. 8(b) (see Appendix A for Liouville space derivation
of this property). In other words, it connects only pop-
ulations to coherences and vice versa, but it cannot
connect populations to populations directly [102]. In
addition, since hH0j acts as a projection on population
space, one gets that odd powers of Hw can only operate on
coherences and even powers can only operate on popula-
tions. Thus, the power can be extracted using two different
mechanisms: a coherent mechanism that operates on
coherences and a stochastic mechanism that operates on
populations.
The effects of the “stochastic” termsP
n¼1ð−i 1

2ℏHwτwÞ2n=ð2nÞ! on the populations are equiv-
alently described by a single doubly stochastic operator. If
there are no coherences (next section), this leads to a simple
interpretation in terms of full swap events that take place
with some probability.

FIG. 8. Panel (a), left side: Dephasing operations (slanted line,
operator D) commute with thermal baths so the dephased engine
in the left side of (a) is equivalent to the one on the right. In the
new engine, the unitary evolution is replace by DUD. If D
eliminates all coherences, the effect of DUD on the populations
can always be written as a doubly stochastic operator. (b) Any
Hermitian Hamiltonian in Liouville space has the structure shown
in (b). Thus, first-order changes in populations critically depend
on the existence of coherence.
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Continuous engines, on the other hand, have only a
coherent work extraction mechanism. This can be seen
from the expression for their work output,

Pcont ¼
�
H0

���� 1

2ℏ
Hw

����~ρ
�

¼
�
H0

���� 1

2ℏ
Hw

����~ρcoh
�
; ð29Þ

where again we used the population projection property of
hH0j and the structure of Hw [Fig. 8(b)]. We conclude that
in contrast to stroke engines, continuous engines have no
stochastic work extraction mechanism. This difference
stems from the fact that in continuous engines, the steady
state is stationary. Consequently, there are no higher-order
terms that can give rise to a population-population stochas-
tic work extraction mechanism. This is a fundamental
difference between stroke engines and continuous engines.
This effect is pronounced outside the equivalence regime
where the stochastic terms become important (see Sec. V).

B. Engines subjected to pure dephasing

Consider the engine shown in Fig. 8(a). The slanted lines
on the baths indicate that there is an additional dephasing
mechanism that takes place in parallel to the thermalization
[103]. Let us denote the evolution operator of the pure
dephasing by D. In principle, to analyze the deviation from
the coherent quantum engine, first the steady state has to be
solved and then work and heat can be compared. Even for
simple systems, this is a difficult task. Hence, we shall take a
different approach and derive an upper bound for the power
of stochastic engines. It is important that the bound contains
onlyquantities that are unaffected by the level of coherence in
the system. For example, the dipole expectation value, does
contain information on the coherence. We construct a bound
in terms of the parameters of the system (e.g., the energy
levels, coupling strengths, etc.), which is independent of the
state of the system. In the pure dephasing stage, the energy
does not change. Hence, the total energy change in theDUD
stage is associated with work.
Let Dcomp ¼ jpopihpopj be a projection operator on the

population space. This operator generates a complete
dephasing that eliminates all coherences. In such a case,
the leading order in the work expression becomes

W ¼ hH0jDcompe−ið1=2ℏÞHwτwDcompj~ρi

¼ τ2w
8ℏ2

hH0jH2
wj~ρpopi þO½ðs=ℏÞ4�; ð30Þ

where we used hH0jD ¼ hH0j andDcompj~ρi ¼ j~ρpopi. Since
Dcomp eliminates coherences, W does not contain a linear
term in time. Next, by using the following relation,
hH0jBjρi ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihH0jH0ihρjρi
p kBk, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihH0jH0i

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
trðH2

0Þ
p

,
we find that for s ≪ ℏ the power of a stochastic engine
satisfies

Pstoch ≤
z

8ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðH2

0Þ − trðH0Þ2
q

Δ2
wd2τcyc;

z ¼ 1 two-stroke;

z ¼ 1=2 four-stroke; ð31Þ

where Δw is the gap of the interaction Hamiltonian
(maximal eigenvalue minus minimal eigenvalue of Hw),
and d is the duty cycle—the fraction of time dedicated to
work extraction (d ¼ τw=τcyc, e.g., d ¼ 1=3 in all the
examples in this paper). We also used the fact that
hρpopjρpopi is always smaller than the purity hρjρi and
therefore smaller than 1. Note that, as we required, this
bound is state independent, and the right-hand side of
Eq. (31) contains no information on the coherences in the
system. Thus, we conclude that for power measurements,

P > Pstoch ⇒ quantum-thermodynamic signature: ð32Þ

As shown earlier, in coherent quantum engines (in the
equivalence regime), the work scales linearly with τcyc [see
Eqs. (16) and (18)], and therefore, the power is constant as a
function of τcyc. When there are no coherences, the power
scales linearly with τcyc.
Numerical results of power as a function of cycle time

are shown in Fig. 9. The power is not plotted as a function
of action as before because, at the same cycle time, the
coherent engine and the dephased engine have different
actions. The coupling parameters are as in Fig. 7. The
action of the dephased engine is

FIG. 9. The power output of the three types of engines (two-
stroke blue, four-stroke red, continuous black) with and without
dephasing [top horizontal solid lines are without dephasing—
same as in Fig. 7(b)]. The power of the continuous dephased
engine is zero. The dashed lines show the stochastic upper bounds
on the power of two-stroke (dashed blue line) and four-stroke
(dashed red line) engines. Any power measurement in the shaded
area of each engine indicates the presence of quantum interfer-
ence in the engine. This plot also demonstrates that for short cycle
times (low action), coherent engines produce much more power
compared to stochastic dephased engines.
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sdeph ¼
�
kLck þ kLhkþ

���� 12Hw

����þ kLdephasingk
�
τcyc:

ð33Þ

If the dephasing is significant, the action is large and
equivalence cannot be observed. In other words, a fully
stochastic engine in a quantum system has a large action
and cannot satisfy s ≪ ℏ.
The stochastic power bounds for a two-stroke engine

(dashed blue line) and for a four-stroke engine (dashed red
line) define a power regime (shaded areas) that is inacces-
sible to fully stochastic engines. Thus, any power meas-
urement in this regime unequivocally indicates the presence
of quantum coherences in the engine.
In practice, the dephasing time may be very small but

different from zero. When the cycle time is large compared
to the dephasing time, the system behaves as if there is
complete dephasing. If, however, the cycle time is small
with respect to the decoherence time (close to the origin of
Fig. 9), the power will form a plateau of finite power instead
of reducing to zero.
Note that to measure power, the measurement is carried

out on the work repository and not on the engine.
Furthermore, the engine must operate for many cycles to
reduce fluctuations in the accumulated work. To calculate
the average power, the accumulated work is divided by the
total operation time and compared to the stochastic power
threshold (31).
Also, note that a complete dephasing would have

resulted in zero power output for the continuous
engine (29).
In summary, the quantum-thermodynamics signature in

stroke engines can be observed in the weak action limit.

V. OVER-THERMALIZATION EFFECT IN
COHERENT QUANTUM HEAT ENGINE

In all the numerical examples studied so far, the unitary
action and the thermal action were roughly comparable for
reasons that will soon become clear. In this section, we
study some generic features that take place when the
thermal action takes over.
Let us now consider the case where the unitary con-

tribution to the action kHωkτ is small with respect to ℏ. All
the time intervals are fixed, but we can control the
thermalization rate γ (for simplicity, we assume it is the
same value for both baths). Common sense suggests that
increasing γ should increase the power output. At some
stage, this increase will stop since the system will already
reach thermal equilibrium with the bath (or baths in two-
stroke engines). Yet, Fig. 10 shows that there is a very
distinctive peak where an optimal coupling takes place. In
other words, in some cases, less thermalization leads to
more power. We call this effect over-thermalization. This
effect is generic and not unique to the specific model used

in the numerical simulations. The parameters used for the
plot are ϵ ¼ γc ¼ γh ¼ 2 × 10−4, and the number of drives
cycles per engine cycle is m ¼ 600.
The peak and the saturation are a consequence of the

interplay between the two different work extraction mech-
anisms (see Sec. IVA). For low γ, the coherences in the
system are significant, and the leading term in the power is
hH0j−ið1=2ℏÞHwj~ρcohid (where d is the duty cycle). In
principle, all Lindblad thermalization processes are asso-
ciated with some level of decoherence. This decoherence
generates an exponential decay of j~ρcohi that explains the
decay on the right-hand side of the peak. At a certain stage,
the linear term becomes so small that the stochastic second-
order term −ð1=8ℏ2ÞhH0jH2

wj~ρpopid2τcyc dominates the
power. j~ρpopi eventually saturates for large γ, and therefore,
the stochastic second-order term leads to a power
saturation. Interestingly, in the example shown in Fig. 10,
we observe that the peak is obtained when γ and ϵ are
roughly equal. Of course, what really matters is the thermal
actionwith respect to unitary action and not just the values of
the parameters γ and ϵ. We point out that this effect for a
continuous engine can be seen in Fig. 3 of Ref. [20] and in
Fig. 11 of Ref. [104]. In the present work, the mechanism
that generates this general effect has been clarified.
If thermalization occurs faster, the thermal stroke can be

shortened, and this increases the power. However, this
effect is small with respect to the exponential decay of the
coherences. We conclude that even without additional
dephasing as in the previous section, excessive thermal
coupling turns the engine into a stochastic machine. For
small unitary action, this effect severely degrades the power
output. The arguments presented here are valid for any
small-action coherent quantum engine.

FIG. 10. The over-thermalization effect is the decrease of power
when the thermalization rate is increased. Over-thermalization
degrades the coherent work extraction mechanism without
affecting the stochastic work extraction mechanism. When the
coherent mechanism gets weak enough, the power is dominated
by the stochastic power extraction mechanisms and power
saturation is observed (dashed lines). The continuous engine
has no stochastic work extraction mechanism, and therefore, it
decays to zero without reaching saturation.
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VI. CONCLUDING REMARKS

We identified coherent and stochastic work extraction
mechanisms in quantum heat engines. While stroke engines
have both mechanisms, continuous engines only have the
coherent mechanism. We introduced the “norm action” of
the engine using Liouville space and showed that when this
action is small compared to ℏ, all three engine types are
equivalent. This equivalence emerges because, for small
actions, only the coherent mechanism is important. Despite
the equivalence, before the engine cycle is completed, the
state of the different engine type differs by O½ðs=ℏÞ1�. This
also holds true for work and heat. Remarkably, at the end of
each engine cycle, a much more accurate O½ðs=ℏÞ3� equiv-
alence emerges. Furthermore, the equivalence also holds for
transient dynamics, even when the initial state is very far
from the steady state of the engine. It was shown that, for
small actions, the coherent work extraction is considerably
stronger than the stochastic work extraction mechanism.
This enabled us to derive a power bound for stochastic
engines that constitutes a quantum-thermodynamics signa-
ture. Any power measurement that exceeds this bound
indicates the presence of quantum coherence and the
operation of the coherent work extraction mechanism.
Experimental schemes where the work is extracted by

changing the energy levels (e.g., Refs. [53–55]) correspond
to a full swap in the multilevel embedding framework.
Consequently, such setups have an inherently large action,
and they are not suited for demonstrating the effects
presented here. In contrast, the scheme in Ref. [105] seems
highly suitable. There, the unitary operation that makes a
swap between superconducting qubits is generated by
creating a magnetic flux through a superconducting ring.
In the original paper, the authors use a flux that generates a
full swap. However, by using weaker magnetic fields, the
unitary operation will become a partial swap, and it should
be possible to attain the small action regime where the
equivalence can be observed. In addition, NV centers in
diamonds also have the potential for exploring heat engine
equivalence in the quantum regime.
The present derivation makes no assumption on the

direction of heat flows and the sign of work. Thus, our
results are equally applicable to refrigerators and heaters.
It is interesting to try and apply these concepts of

equivalence and quantum-thermodynamic signatures to
more general scenarios: non-Markovian baths, engines
with a nonsymmetric unit cell, and engines with quantum
correlation between different particles (entanglement and
quantum discord). We conjecture that in multiple particle
engines, entanglement will play a similar role to that of
coherence in single-particle engines.
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APPENDIX A: LIOUVILLE SPACE
FORMULATION OF QUANTUM DYNAMICS

Quantum dynamics is traditionally described in Hilbert
space. However, it is convenient, in particular, for open
quantum systems, to introduce an extended space where
density operators are vectors and time evolution is gen-
erated by a Schrödinger-like equation. This space is usually
referred to as Liouville space [89]. We denote the “density
vector” by jρi ∈ C1×N2

. It is obtained by reshaping the
density matrix ρ into a larger single vector with index
α ∈ f1; 2;…N2g. The one-to-one mapping of the two
matrix indices into a single vector index fi; jg → α is
arbitrary but has to be used consistently. The vector jρi is
not normalized to unity, in general. Its norm is equal to the
purity, P ¼ trðρ2Þ ¼ hρjρi, where hρj ¼ jρi† as usual. The
equation of motion of the density vector in Liouville space
follows from dtρα ¼

P
βρβ∂ðdtραÞ=∂ρβ. Using this equa-

tion, one can verify that the dynamics of the density vector
jri is governed by a Schrödinger-like equation in the new
space,

i∂tjρi ¼ Hjρi; ðA1Þ

where the super-Hamiltonian H ∈ CN2×N2

is given by

Hαβ ¼ i
∂ðdtραÞ
∂ρβ : ðA2Þ

A particularly useful index mapping is described in
Ref. [106] and in Ref. [90]. In this mapping, the Liouville
index of jρi is related to the original row and column index
of ρ via α ¼ colþ Nðrow − 1Þ. For this form, H can be
compactly written in term of the original H and A:

H ¼ −iðH ⊗ I − I ⊗ HtÞ

þ i
X
k

	
ðAk ⊗ A�

kÞ −
1

2
I ⊗ ðA†

kAkÞt − 1

2
A†
kAk ⊗ I



;

ðA3Þ

where the superscript t stands for transposition and * for
complex conjugation. H ¼ HH þ L is non-Hermitian for
open quantum systems. HH originates from the Hilbert
space Hamiltonian H, and L from the Lindblad terms. HH

is always Hermitian. The skew-Hermitian part ðL − L†Þ=2
is responsible for purity changes. Yet, in Liouville space,
the Lindblad operators Ak in Eq. (1) may also generate a
Hermitian term ðLþ L†Þ=2. Though Hermitian in
Liouville space, this term cannot be associated with a
Hamiltonian in Hilbert space. If L ¼ 0, K is unitary. It is
important to note that not all eigenvectors ofH in Liouville
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space can be populated exclusively. This is due to the fact
that only positive ρ with unit trace are legitimate density
matrices. The states that can be populated exclusively
describe steady states, while others correspond to transient
changes. We remind the reader that, in this paper, we use
calligraphic letters to describe operators in Liouville space
and ordinary letters for operators in Hilbert space. For
states, however, jAi will denote a vector in Liouville space
formed from AN×N by “vec-ing” A into a column in the
same procedure ρ is converted into jρi.

1. Useful relations in Liouville space

In Liouville space, the standard inner product of two
operators in Hilbert space trA†B reads

trA†B ¼ hAjBi:

In particular, the purity P ¼ hrjri is just the square of the
distance from the origin in Liouville space.
A useful relation for HH is

HHjHi ¼ hHjHH ¼ 0: ðA4Þ
The proof is as follows:

HH
ij;mn ¼ Himδjn −Hnjδim: ðA5Þ

Therefore, using Eq. (A5) we get

HHjHi ¼
X
β

HH
αβHβ ¼

X
mn

HH
ijmnHmn ¼ ½H;H� ¼ 0.

ðA6Þ

This property is highly useful. We stress that Eq. (A4) is a
property of Hermitian operators in Hilbert space, where
both H and H are well defined. A general Hermitian
operator in Liouville space may not have a corresponding
H in Hilbert space.
Another property that immediately follows from

Eq. (A5) is

HH
ii;kk ¼ 0: ðA7Þ

This corresponds to a well-known property of unitary
operation. If the system starts from a diagonal density
matrix, then for short times, the evolution generated byHH,
e−iHHdt ¼ I − iHHdtþOðdt2Þ does not change the pop-
ulation in the leading order.

2. Expectation values and their time evolution
in Liouville space

The expectation value of an operator in Hilbert space is
hAi ¼ trðρAÞ. Since ρ is Hermitian, the expectation value is
equal to the inner product of A and ρ, and therefore,

hAi ¼ trðρAÞ ¼ hρjAi:

The dynamics of hAi under the Lindblad evolution
operator is

d
dt

hAi ¼ −ihAjHjρi þ
�
ρ

���� ddt A
�
: ðA8Þ

Note that in Liouville space there is no commutator term
since H operates on jρi just from the left. If the total
Hamiltonian is Hermitian and time independent, the
conservation of energy follows immediately from apply-
ing Eqs. (A8) and (A4) for A ¼ H.

APPENDIX B: GEOMETRIC MEANING
OF THE NORM ACTION

This appendix establishes the relation between the norm
action and the path length in Liouville space. The action
constitutes an upper bound on the length of the path over
one cycle. The infinitesimal path dl between two states
jρðtþ dtÞi and jρðtÞi in Liouville space is given by

dl2 ¼ kjρðtþ dtÞi − jρðtÞik22
¼ hρðtÞjH†HjρðtÞidt2=ℏ2 þOðdt3Þ; ðB1Þ

where kjρðtþ dtÞi − jρðtÞik22 ¼ trð½ρðtþ dtÞ − ρðtÞ�2Þ.
Consequently, the path in Liouville space is given by

L ¼
Z

τcyc

0

�
dl
dt

�
dt ≤

1

ℏ

Z
τcyc

0

kHkhρjρidt; ðB2Þ

where we have used the property of the spectral norm
hρðtÞjH†HjρðtÞi=hρjρi ≤ kHk2sp. Since the purity hρjρi is
always smaller than 1,

L ≤
1

ℏ

Z
τcyc

0

kHkdt≡ s=ℏ: ðB3Þ

Thus, the path length per cycle in Liouville space is
bounded by the action. For previous uses of the norm
action to quantify quantum dynamics, see Refs. [107–110].
This is also true for times shorter than the cycle time τcyc,

LðτÞ ¼
Z

τ

0

�
dl
dt

�
dt ≤ s=ℏ: ðB4Þ

The triangle inequality implies kjρðτÞi − jρð0Þik2 ≤ LðτÞ;
therefore,

maxðkjρðτÞi − jρð0Þik2Þ ≤ s=ℏ: ðB5Þ

Hence, the action limits the maximal state change during
the cycle. For example, if the action is 10−3ℏ, the state will
change by 10−3 at the most.
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APPENDIX C: STRANG DECOMPOSITION
VALIDITY

Let K be an operator generated by two noncommuting
operators A and B:

K ¼ eðAþBÞdλ; ðC1Þ

where we use dλ ¼ dt=ℏ for brevity. The splitted operator
is

Ks ¼ e
1
2
AdλeBdλe

1
2
Adλ: ðC2Þ

Our goal is to quantify the difference between K and Ks,
kKs −Kk, where k · k stands for the spectral norm. In
principle, other submultiplicative matrix norms can be used
(such as the Hilbert-Schmidt norm). However, the spectral
norm more accurately captures aspects of quantum dynam-
ics [108–111]. K can be expanded as

K ¼
X ðAþ BÞndλn

n!
: ðC3Þ

Ks, on the other hand, is

Ks ¼
X∞

k;l;m¼0

ðA=2Þkdλk
k!

Bldλl

l!
ðA=2Þmdλm

m!

¼
X∞
n¼0

Xn
l¼0

Xn−l
k¼0

ðA=2Þk
k!

Bl

l!
ðA=2Þn−l−k
ðn − l − kÞ! dλ

n: ðC4Þ

Because of the symmetric splitting, the terms up to n ¼ 2
(including n ¼ 2) are identical for both operators.
Therefore, the difference can be written as

kKs −Kk ¼
����
X∞
n¼3

Xn
l¼0

Xn−l
k¼0

ðA=2Þk
k!

Bl

l!
ðA=2Þn−l−k
ðn − l − kÞ! dλ

n

−
X
n¼3

ðAþ BÞndλn
n!

����: ðC5Þ

Next, we apply the triangle inequality and the submulti-
plicativity property to get

kKs −Kk ≤
����
X∞
n¼3

Xn
l¼0

Xn−l
k¼0

kA=2kk
k!

kBkl
l!

kA=2kn−l−k
ðn − l − kÞ! dλ

n

þ
X∞
n¼3

ðkAk þ kBkÞndλn
n!

����: ðC6Þ

Using the binomial formula two times, one finds

X∞
n¼3

Xn
l¼0

Xn−l
k¼0

kA=2kk
k!

kBkl
l!

kA=2kn−l−k
ðn − l − kÞ! dλ

n

¼
X∞
n¼3

ðkAk þ kBkÞndλn
n!

; ðC7Þ

and therefore,

kKs −Kk ≤ 2
X∞
n¼3

ðkAk þ kBkÞndλn
n!

¼ 2R2½ðkAk þ kBkÞdλ�: ðC8Þ

The right-hand side is the Taylor remainder of a power
series of an exponential with ðkAk þ kBkÞdλ as an argu-
ment. The Taylor remainder formula for the exponent
function is RkðxÞ ¼ eξðjxjkþ1Þ=ðkþ 1Þ!, where 0 ≤ ξ ≤ 1
(for now, we assume x < 1). Setting k ¼ 2 and ξ ¼ 1
(worst case), we finally obtain

kKs −Kk ≤
e
3
½ðkAk þ kBkÞdλ�3 ≤

�
s
ℏ

�
3

; ðC9Þ

s ¼ðkAk þ kBkÞdt; ðC10Þ

where we call s the norm action of the evolution operator.
To get an estimation where the leading non-neglected term
of K, ðAþ BÞ2dλ2=2, is larger than the remainder, we
require that

ðkAþ BkÞ2dλ2=2 ≥
�
s
ℏ

�
3

: ðC11Þ

Using the triangle inequality, we get the estimated con-
dition for the Strang decomposition:

s ≤ ℏ=2: ðC12Þ
This condition explains why it was legitimate to limit the
range of x to 1 in the remainder formula.

APPENDIX D: SYMMETRIC REARRANGEMENT
THEOREM

The goal of this appendix is to explain why the
equivalence of evolution operators leads to equivalence
of work and equivalence of heat. In addition, we show why
this is also valid for transients. For the equivalence of the
evolution operator, we require that the super-Hamiltonian is
symmetric and that the action is small:

HðtÞ ¼ Hð−tÞ; ðD1Þ

s ¼
Z þτ=2

−τ=2
kHkdt ≪ ℏ: ðD2Þ
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Let the initial state at time t ¼ −τ=2 be

j~ρii ¼ j~ρð−τ=2i: ðD3Þ
This state leads to a final state at τ=2,

j~ρfi ¼ j~ρðτ=2i: ðD4Þ
Our goal is to evaluate a symmetric expectation value
difference of the form

dAtot ¼ ½hAðt2Þi − hAðt1Þi� þ ½hAð−t1Þi − hAð−t2Þi�
¼ ½hAj~ρðt2Þi − hAj~ρðt1Þi�
þ ½hAj~ρð−t1Þi − hAj~ρð−t2Þi�;

t2; t1 ≥ 0; ðD5Þ
that is, the change in the expectation value of A in the
segment ½t1; t2� and its symmetric counterpart in negative
time [e.g., the green areas in Fig. 11(a)]. When A is equal to
H0, this difference will translate into work or heat. We start
with the expansion

½hAðt2Þi − hAðt1Þi� ¼ hAjKt1→t2 − Ij~ρðt1Þi

¼
�
A

����−iHðt1Þ
δt
ℏ
− 1

2
Hðt1Þ2

δt2

ℏ2

����~ρðt1Þ
�

þO

	�
s
ℏ

�
3


: ðD6Þ

For the negative side, we get

½hAð−t1Þi − hAð−t2Þi� ¼ hAjI −K−t1→−t2 jrð−t1Þi
¼

�
A

����−iHð−t1Þ δtℏ þ 1

2
Hð−t1Þ2 δt

2

ℏ2

����~ρð−t1Þ
�

þO

	�
s
ℏ

�
3


: ðD7Þ

Next, we use the fact that

j~ρðt1Þi ¼ j~ρð0Þi − i
Z

t1

0

HðtÞ dt
ℏ
j~ρð0Þi þO

	�
s
ℏ

�
2


;

ðD8Þ

j~ρð−t1Þi ¼ j~ρð0Þi þ i
Z

t1

0

HðtÞ dt
ℏ
j~ρð0Þi þO

	�
s
ℏ

�
2


:

ðD9Þ

When adding the two segments, the second order terms
cancel out and we get

δAtot ¼ −2ihAjHðt1Þj~ρð0ÞiδtþO

	�
s
ℏ

�
3


: ðD10Þ

Note that the result is expressed using j~ρð0Þi, which is not
given explicitly. To correctly relate it to j~ρð−τ=2Þi, we have
to use the symmetric rearrangement properties of the
evolution operator.

1. Symmetric rearrangement

In Fig. 11(a), there is an illustration of some time-
dependent Hamiltonian with reflection symmetry
HðtÞ ¼ Hð−tÞ. We use H to denote a Liouville space
operator which may be any unitary operation or Markovian
Lindblad operation. Assume that in addition to the sym-
metric bins of interest (green bins), the remainder of the
time is also divided into bins in a symmetric way so that
there is still a reflection symmetry in the bin partitioning
also. Now, we permute the bins in the positive side as
desired and then make the opposite order in the negative
side so that the reflection symmetry is kept. An example of
such an operation is shown in Fig. 11(b). Because of the
Strang decomposition, we know that the total evolution
operator will stay the same under this rearrangement up to
third order:

K−τ
2
→τ

2
¼ T sym½K�−τ

2
→τ

2
þO

	�
s
ℏ

�
3


; ðD11Þ

where T sym½x� stands for evaluation of x after a symmetric
reordering.

2. Symmetric rearrangement theorem

From Eq. (D11), we see that if the initial state is the same
for a system described by K, and for a system described by

FIG. 11. The Hamiltonians in (a) and (b) are related by
symmetric rearrangement of the time segments. Up to a small
correction Oðs3Þ, the change in expectation values of an
observable A that takes place during the green segments is the
same in both cases. This effect explains why work and heat are
the same in various types of engines when s is small compared to
ℏ (equivalence regime).

EQUIVALENCE OF QUANTUM HEAT MACHINES, AND … PHYS. REV. X 5, 031044 (2015)

031044-17



T sym½K�, the final state at t ¼ τ=2 is the same for both
systems up to a third-order correction:

����~ρ
�
τ

2

��
¼ T sym

	����~ρ
�
τ

2

��

þO

	�
s
ℏ

�
3


: ðD12Þ

Using Eqs. (D8) and (D9), we see that

j~ρð0Þi ¼ j~ρðτ
2
Þi þ j~ρð− τ

2
Þi

2
þO

	�
s
ℏ

�
2


; ðD13Þ

and because of Eq. (D12), it also holds that

T sym½j~ρð0Þi� ¼ j~ρð0Þi þO

	�
s
ℏ

�
2



¼ j~ρðτ
2
Þi þ j~ρð− τ

2
Þi

2
þO

	�
s
ℏ

�
2


; ðD14Þ

using this in Eq. (D10), we get

δAtot ¼ −2ihAjHðt1Þ
j~ρðτ

2
Þi þ j~ρð− τ

2
Þi

2
δtþO

	�
s
ℏ

�
3


:

ðD15Þ
Expression (D15) no longer depends on the position of the
time segment but only on its duration and on the value ofH.
Thus, the SRT states that the expression above also holds
for any symmetric rearrangement,

dAtot ¼ T sym½dAtot� þO

	�
s
ℏ

�
3


: ðD16Þ

If we replace A by H0 and Hðt1Þ by Lc;Lh, or Hw, we
immediately get the invariance of heat and work to
symmetric rearrangement (up to s3). If j~ρ½−ðτ=2Þ�i is the
same for all engines, then j~ρðτ=2Þi is also the same for all
engine types up to Oðs3Þ. Consequently, for all stroke
engines, the expressions for work and heat are

W ¼ −2ihH0j
Z
t∈tw

HwðtÞ
dt
ℏ

j~ρðτ
2
Þi þ j~ρð− τ

2
Þi

2
þO

	�
s
ℏ

�
3


;

ðD17Þ

QcðhÞ ¼ −2ihH0j
Z

t∈tcðhÞ

LcðhÞðtÞ
dt
ℏ

j~ρðτ
2
Þi þ j~ρð− τ

2
Þi

2

þO

	�
s
ℏ

�
3


: ðD18Þ

Using the identity j~ρðτ=2Þi þ j~ρ½−ðτ=2Þ�i ¼ j~ρðtÞi þ
j~ρð−tÞi þO½ðs=ℏÞ2� that follows from Eq. (D13), the
integration over time of the energy flows jw ¼
hH0jð1=2ℏÞHwj~ρðtÞi and jcðhÞ ¼ hH0jð1=ℏÞLcðhÞj~ρðtÞi

for continuous engines yields expressions (D17) and
(D18) once more. This implies that the SRT (D17) and
(D18) holds even if the different operations Lc;Lh, andHw
overlap with each other.
We emphasize that all the above relations hold for any

initial state and not only in the steady state where
j~ρðτ=2Þi ¼ j~ρ½−ðτ=2Þ�i. The physical implication is that
in the equivalence regime, different engines are thermo-
dynamically indistinguishable when monitored at the end
of each cycle, even when the system is not in its
steady state.
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