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In recent experiments on ultracold matter, molecules have been produced from ultracold atoms by photoas-
sociation, Feshbach resonances, and three-body recombination. The created molecules are translationally cold,
but vibrationally highly excited. This will eventually lead them to be lost from the trap due to collisions. We
propose shaped laser pulses to transfer these highly excited molecules to their ground vibrational level. Opti-
mal control theory is employed to find the light field that will carry out this task with minimum intensity. We
present results for the sodium dimer. The final target can be reached to within 99% provided the initial guess
field is physically motivated. We find that the optimal fields contain the transition frequencies required by a
good Franck-Condon pumping scheme. The analysis identifies the ranges of intensity and pulse duration which
are able to achieve this task before any other competing processes take place. Such a scheme could produce
stable ultracold molecular samples or even stable molecular Bose-Einstein condensates.
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I. INTRODUCTION

The creation of cold molecules from atomic Bose-
Einstein condensates(BEC) [1–8] as well as from ultracold
thermal gases[9,10] has advanced remarkably over the past
two years. In both cases, molecules are formed due to inter-
action of atoms with an external field. The latter can be the
electric field of a laser leading to photoassociation[11] or a
magnetic field tuned to drive the atoms across a Feshbach
resonance[12]. Tuning close to a Feshbach resonance can
furthermore be used to obtain a very large scattering length.
This enhances three-body recombination and molecules are
thereby formed[6]. In most experimental schemes, transla-
tionally cold but vibrationally very highly excited molecules
are produced. These highly excited molecules are not stable
with respect to collisions, and dimers consisting of bosonic
atoms in particular decay very rapidly. In the case of sodium
this happens within milliseconds[5]. Creation is therefore
only a first step toward novel experiments using ultracold
molecules[13], and their stabilization is the obvious next
task.

The ultimate goal is to createv=0,J=0 molecules. The
task of transferring the highly excited molecules tov=0,J
=0 is far from being trivial: a long-range molecule and av
=0 molecule are very different(cf. Fig. 1 where the wave
functions for the last bound and the ground vibrational level
of the ground state of Na2 are drawn). This task has to be
solved under three major constraints.(i) The goal has to be
achieved in a time short compared to the collisional lifetime.
The rate for collisional decay is not precisely known at
present, but lifetimes on the order of or shorter than ms
should be expected[5]. Calculations for collisional decay of
molecules in highly excited vibrational levels have been per-
formed in the nonreactive3,4He+H2svd case[14], showing

an increase of the relaxation rate by nearly three orders of
magnitude when the initial state is going fromv=1 (rate
,5310−17 cm3 s−1) to v=10. In the reactive Na+Na2svd
case, quantum calculations for thev=1→0 rate yield,5
310−10 cm3 s−1 [15]. Therefore, at an atomic density of
1011 cm−3, a vibrational quenching relaxation time well be-
low 1 ms is indeed to be expected.(ii ) If laser pulses are to
be used, spontaneous emission has to be avoided. The radia-
tive lifetime of the excited state is on the order of 10 ns.(iii )
Due to vibrational energy “pooling” or vibration-to-vibration
ladder climbing[16], the intermediate range of binding en-
ergies needs to be avoided at any cost, i.e., the molecules
need to be immediately transferred to the lowest levels.

In this paper, we suggest to employ optimal control to
transfer the highly excited molecules to the rovibrational
ground state. Optimal control has been intensely studied both
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FIG. 1. Scheme for the production of stable ultracold molecules:
Vibrationally highly excited molecules are created due to the inter-
action with an external field(1) and are transferred to the ground
state by a shaped laser pulse(2). The wave functions of the last
bound and thev=0 levels are drawn as dashed lines, while the
excited-state vibrational levels which have good Franck-Condon
overlap with the last level and with the ground level, respectively,
are indicated by dotted lines. Obviously, no direct transition exists.
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theoretically and experimentally in many areas of physical
chemistry. Optimal control theory(OCT) [17] offers the
prospect of driving an atomic or molecular system to an
arbitrary, desired state due to the interaction with an external
field. Experimentally, control is achieved via feedback learn-
ing loops; see, e.g.,[18] for a recent review. The difference
between the approach we suggest and control experiments as
they have been performed over the past decade lies in the
different target: In the latter, the goal consists usually in
varying the ratio between different dissociation channels,
i.e., many final states are available and the target is rather
broad, while in the present context a single rovibrational
level is to be achieved. However, this does not pose a prob-
lem in principle—it might make control harder to achieve,
but it does not render it impossible. We suggest optimal con-
trol to transfer the highly excited molecules to the rovibra-
tional ground state because it provides anefficient method
operating on a veryshort time scale.

Alternatively, two-photon Raman transitions have been
suggested[3] to transfer the highly excited molecules to low-
lying vibrational states. However, if really the lowest vibra-
tional levels shall be populated, a Raman scheme with con-
tinuous wave(CW) laser pulses is not conceivable due to
unfavorable Franck-Condon overlaps. The framework of
stimulated Raman adiabatic passage(STIRAP) is not any
more promising since a highly oscillatory wave function
with 80% or more of its probability density in the asymptotic
region cannot be transferred adiabatically into a very com-
pact wave function, typically of Gaussian shape(cf. Fig. 1).
This has been overlooked in previous studies[19,20] in
which the vibrational degree of freedom was not explicitly
taken into account.

Optimal control theory has been applied before in the
context of the formation of ultracold molecules, specifically
to calculate optimal conversion of an atomic into a molecular
BEC [21]. In this work, a laser pulse was employed together
with a magnetic field which induced a Feshbach resonance.
The authors worked in the framework of the Gross-Pitaevskii
equation which is anonlinear Schrödinger equation while
employing alinear variant of OCT. A nonlinear version of
OCT as required for the application to the Gross-Pitaevskii
equation has been worked out recently[22]. The vibrational
structure of the molecules was simply taken into account by
assigning a few vibrational levels in Ref.[21], but the coor-
dinate dependence of the vibrational wave functions, in par-
ticular the qualitatively different character of initial- and
final-state wave functions, was neglected. Finally, the initial
state in Ref.[21] corresponds to two free, colliding atoms. If
one was to include the vibrational structure in the model of
Ref. [21], the resulting Hilbert space would be infinite-
dimensional, and due to the theorem of controllability
[23,24] one would not be guaranteed that an optimal solution
exists at all.

For conceptual clarity, we will therefore separate the cre-
ation of molecules, however weakly bound, from the process
of their stabilization. This approach corresponds furthermore
nicely to the current status of experiments on cold molecules
which create weakly bound dimers via magnetic Feshbach
resonances or three-body recombination[2–8]. The stabiliza-
tion of these molecules in the experiment still remains an

open problem to which no easy answers exist. In this paper,
we will hence start from extremely weakly bound molecules
and employ optimal control theory to obtain short, shaped
laser pulses which drive the system from a specified, highly
excited vibrational level to the ground state.

We will apply the optimal control algorithm to the forma-
tion of stablesodium dimers. From molecular spectroscopy
experiments with CW lasers[25], we know that a pathway
connecting the rovibrational ground state with the last bound
levels exists. Furthermore, sodium has been one of the first
systems to be studied by femtosecond spectroscopy[26] and
control experiments[27]. Its properties under ultracold con-
ditions are equally well studied, see, e.g.,[5,28]. The scheme
we suggest is similar in spirit to that of Ref.[29] where
nanosecond pulses were used. In order to compare to current
experimental control techniques, however, we employ pulses
of femtosecond and picosecond time scale. These pulses are
optimized by the control algorithm while they would serve as
input for a feedback learning loop in a prospective experi-
ment, see e.g.,[18]. This is in contrast to the intuitively
chosen pulses of Ref.[29]. A large number of theoretical
studies on femtosecond pulse control of sodium has been
reported, mostly in the context of photodissociation and ion-
ization; see, e.g.,[30–32]. Our approach has been motivated
by the experiment of Ref.[25] where the last bound levels of
the Na2 ground state were probed. This was achieved by
exciting v=0 Na2 molecules from a molecular beam with
CW lasers to an excited electronic state and subsequent
spontaneous emission. A scheme with multiple excitation-
deexcitation steps was necessary due to Franck-Condon
overlaps. In principle, one could invert this scheme to create
v=0 from highly excited molecules. However, the yield
would be low and the required times cannot compete with
the time scales of collisional loss and spontaneous emission.
We therefore look for optimal ultrashort pulses which realize
this inverse scheme.

We formulate the problem as one of optimizing state-to-
state transitions. This is in contrast to a density matrix for-
mulation which describes transitions from an ensemble of
states to another one[33,34]. As an extreme case, the latter
includes true cooling as a transition from an ensemble of
states to a single state. Note that true cooling requires cou-
pling to a dissipative environment which accepts the entropy
[35,36]. However, the optimization of state-to-state transi-
tions should be sufficient for Bose-condensed samples since
one starts with a coherent sample. Even in the case of ther-
mal samples, state-to-state transitions can serve as an impor-
tant first step in which one state is selected to be transferred
while all others are ionized. We will employ OCT in the
Krotov variant restricting the change in pulse energy at each
iteration [22,36,37]. This guarantees monotonous and
smooth convergence toward the objective.

We will work in the framework of the linear Schrödinger
equation which describes the internuclear dynamics of two
atoms, i.e., in the case of a BEC we neglect the condensate
dynamics. This approach is justified by the time scales
present in standard optical and/or magnetic traps. While the
internuclear dynamics and pulse shaping occur on the time
scale of femtoseconds to picoseconds, the condensate dy-
namics for conventional traps is characterized by microsec-
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onds. The condensate will have to adjust to the new internal
state, but this is going to happen on a much slower time scale
than the one of the pulse[38]. We can hence safely ignore
the influence of the condensate on the dynamics of the state-
to-state transition and assume that the adjustment of the con-
densate takes place once the pulse is over.

The paper is organized as follows: The model for the so-
dium dimer as well as the proposed scheme to form stable
ultracold molecules are described in Sec. II. Section III
briefly reviews the optimal control algorithm with details
given in the Appendix. The results are presented in Sec. IV.
Sec. V concludes with a discussion of the experimental fea-
sibility of our proposed scheme as well as its implications to
vibrational cooling.

II. THE Na 2 SYSTEM

We have chosen Na2 because this system has been in-
tensely studied in ultracold experiments, in control experi-
ments, and by traditional spectroscopy, and a large amount of
experimental data is available. In particular, highly accurate
potential energy curves have been obtained from molecular
spectroscopy[39,40]. Experiments[25] have furthermore
shown that a route from the last bound levels tov=0 exists.
In this scheme, ground state molecules from a molecular
beam with v=0,J=0 are excited by a CW lasersl
=610 nmd to the A1Su

+ excited statesv8=15d. Those mol-
ecules which decay to thev=29 level of the ground state are
excited by a second CW lasersl=540 nmd to excited-state
levels with v8=100–140. A third CW lasersl=595 nmd
probes the transition between these excited-state levels and
the last bound levelssv=61–65d of the ground state.

A. Proposed scheme for the formation of ultracold,
stable molecules

We envisage the following two-step scheme for the pro-
duction of ultracold molecules(Fig. 1). First, loosely bound
molecules are created by tuning an external magnetic field to
sweep an atomic sample across a Feshbach resonance[2–5]
or by enhanced three-body recombination in the vicinity of a
Feshbach resonance[6]. Another possibility is given by ap-
plying a weak off-resonant CW photoassociation laser. The
last level is so extremely loosely bound that even a very
weak field perturbs it, leading to a coupling with the con-
tinuum states[41,53]. Second, a shaped laser pulse is applied
to transfer the highly excited molecules tov=0. This second
step is of our concern in the present study. Following the
experiment[25], we propose to employ fields which induce
transitions between the Na2 ground statesX 1Sg

+d and the
A1Su

+ excited state.
One could imagine a one-step scheme where the optimal

pulse is used to directly transfer a continuum wave function
to the rovibrational ground state. However, in the case of
continuum states the theorem of controllability[23,24] is not
applicable and one is not guaranteed that an optimal solution
exists. Furthermore, the results may depend on how the con-
tinuum is modeled. Since experimentally step(1) seems to
become a standard technique[2–5], we prefer to restrict the

task of the optimal pulse to the transfer of one bound level to
another bound level and to attain a mathematically well-
defined model.

B. Model and methods

We are interested in obtaining an estimate of the feasibil-
ity of optimal control experiments with ultracold molecules.
We therefore restrict our approach to a qualitative model
with two channels which correspond to the two electronic
states of Ref.[25], and we neglect hyperfine interaction,
spin-orbit coupling, and rotational excitation. These effects
should be included to makequantitativepredictions.

Taking hyperfine interaction into account would amount
to studying a model with more than two channels. At the
binding energies at which cold molecules are created in the
current experiments, a single channel description for the
ground state is not valid[39], i.e., the wave function contains
singlet as well as triplet components. The shaped laser pulse
does not alter the coherence of this superposition. A multi-
channel treatment would therefore result in a pulse with parts
corresponding to the excitation pathway of singlet mol-
ecules, and other parts corresponding to the excitation path-
way of triplet molecules. However, in this study we want to
emphasize the importance of the internal structure of the
molecules, i.e., the coordinate dependence of the atom-atom
interaction potentials, for the creation ofstable molecules.
We therefore restrict the model to two channels, one for the
ground state and one for the electronically excited state, and
we perform calculations for singlet states. This amounts to
neglecting the triplet component of the wave function. If the
triplet component of the wave function is larger than the
singlet component, one would have to repeat the present cal-
culations using the corresponding triplet potentials. The
qualitative principle, however, remains unaltered.

The argument concerning rotational excitation is along the
same lines as in the case of hyperfine interaction. Allowing
for rotational excitation would amount to treating additional
channels with the centrifugal barrier for eachJ added to the
atom-atom interaction. The additional channels increase the
size of the search space, but at the same time allow for more
pathways, i.e., for more flexibility. It is thus not cleara priori
whether the search for optimal pulses will be slowed down
or sped up. Moreover, if the initial state contains some rota-
tional excitation, one might speculate that this facilitates con-
trol since such a wave function would be more bound than
one withJ=0. Of course, such a claim can only be proven by
a detailed investigation, which is beyond the scope of the
present work.

We solve the radial Schrödinger equation for the vibra-
tional motion of the sodium dimer,

i"
]

] t
wsR,td = ĤwsR,td, s1d

with R the distance between the two nuclei. The vibrational
wave function consists of two components,w=s wg

we
d, corre-

sponding to the two channels. The Hamiltonian describing
two electronic states and the nuclear degree of freedom,R, is
given by
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Ĥ = ST̂ + V̂g 0

0 T̂ + V̂e

D + S 0 m̂«std
m̂«std* 0

D , s2d

whereT̂ =s" /2mds] /]Rd denotes the kinetic energy operator,
m̂ the dipole operator, and«std the electric field. The ground-

state potentialV̂g describes the state ofX 1Sg
+ symmetry

which is correlated to thes3s+3sd asymptote of sodium, and

the excited-state potentialV̂e describes the state ofA 1Su
+

symmetry correlated to thes3s+3pd asymptote. The ground-
state potential has been obtained by an analytical fit to high-
resolution spectroscopic data[39], while a Rydberg-Klein-
Rees potential has been matched[40] to an asymptotic
expansion[42] for the excited-state potential. We assume the
dipole operator to be independent ofR, m̂=const. While this
approximation needs to be improved, it might well serve as a
first step since the two concerned electronic states do not
show avoided crossings. The electric field is taken to be real,
which means that a fixed(but not specified) polarization is
assumed. The initial guess field is given by«std
=«0 Sstdcosswtd, whereSstd is a Gaussian envelope function
or a sequence of Gaussians andv is the central frequency of
the pulse.

The wave functionwsR,td is represented on a grid em-
ploying a mapped grid method[43] which allows for accu-
rately representing even the last bound levels of the ground-
state potential with a comparatively small number of grid
points sN=1024d. The mapped Fourier grid method[43] in-
troduces, however, unphysical states which can lead to spu-
rious effects in the dynamics. For the sodium system, these
“ghost” states can be eliminated by using a basis of sine
functions(instead of plane waves) [44] and by choosing the
density of points sufficiently high. The mapped grid is cal-

culated from the envelope potential of bothV̂g and V̂e, i.e.,
the same grid is used on both channels.

The time-dependent Schrödinger equation, Eq.(1), is
solved formally by

wsR,td = Ûst,0dwsR,0d. s3d

We employ a Chebychev expansion[45,46] of the time evo-

lution operator,Ûstd, which is numerically exact for a time-
independent Hamiltonian. In our case of an explicitly time-
dependent Hamiltonian, Eq.(3) is second order in the time
step. Note that we cannot use a less expensive propagation
method such as the split propagator since the grid mapping
introduces multiplications between functions in Fourier
space and functions in real space, i.e., terms of the kind
fsRds] /]Rd.

The initial state as well as the target state are taken to be
eigenstates of the ground-state potential. The eigenstates are
computed simply by calculating a matrix representation of
the Hamiltonian in the sine basis and subsequent diagonal-
ization [44].

III. THE OPTIMAL CONTROL ALGORITHM

We formulate the optimal control for state-to-state transi-
tions, i.e., we want to find the field which drives a specified

initial stateuwil to a specified target stateuw fl at the final time
t=T. The objective we want to reach can therefore be defined
as the overlap between the initial state, propagated from time
t=0 to t=T with field «std, and the target state,

F = zkwiuÛ+sT,0;«duw flz2. s4d

Û+sT,0 ;«d denotes the evolution operator which completely
specifies the system dynamics. In the calculations presented
below, uwil will be a highly excited vibrational level of the
Na2 ground state, whileuw fl will be chosen to be the vibra-
tional ground state of the Na2 ground state. The length of the
optimization time interval,T, is an external parameter of the
calculation. If one compares to experiment, it is related to the
bandwidth of the pulse and the number of pixels of the pulse
shaper. TakingT to be twice the longest vibrational period
which occurs in the problem is usually a good guess. In the
case of long-range molecules, very different time scales are
involved, which leads to a problem of feasibility. We present
a work-around in Sec. IV C. A field is optimal if it almost
completely transfers the initial stateuwil to the targetuw fl,
i.e., if F attains a value close to 1.

The objectiveF is a functional of the field«std. However,
it depends explicitly only on the final timeT. To use infor-
mation from the dynamics at intermediate times, i.e., within
the time intervals0,Td, we define a new functionalJ,

J = − F +E
0

T

gs«,wddt, s5d

where the integral term denotes additional constraints over
the system evolution. The optimal field will be found by
minimization of J. The additional constraints provide the
connection between the dynamics and reaching the objective,
they therefore define how the control is accomplished[22].
This becomes particularly apparent in the Krotov variant of
optimal control theory(see[22] for a review), which we will
employ in the following. The Krotov method allows us to
derive an iterative procedure which maximizes the original
functionalF (minimizes −F) at the final timeT while modi-
fying the field at intermediate times and guaranteeing mono-
tonic convergence. Details can be found in Appendix A.

The choice ofgs« ,wd is not arbitrary. It needs to comply
with the requirement of monotonic convergence[37] (see
also Appendix A). In this study, we use

gs«,wd = gs«d =
a

Sstd
f«std − «̃stdg2, s6d

where«̃std is the field of the previous iteration.Sstd denotes
the constraint to smoothly switch the field on and off with
shape functionSstd. We take it to be Gaussian orSstd
=sin2spt /Td. Equation(6) has the physical interpretation of
restricting the change in pulse energy at each iteration. It
allows for a smooth convergence toward the objective since
the change in field vanishes when the optimal field is ap-
proached[37]. The optimization strategy can be controlled
by the parametera: A small value results in a small weight
of the additional constraint and allows for large modifica-
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tions in the field, while a large value ofa represents a con-
servative search strategy allowing only small modifications
of the field at each iteration. The parametera is not directly
related to the number of iterations required to find a solution,
and the best search strategy is usually given by running the

optimal control algorithm first with a small and then with a
large value ofa [47]: A small a will excite many pathways,
then the solution can be refined with largea.

With this choice of gs« ,wd, the change in field,D«
=«new−«old, at every timet, 0, t,T, is given by

s7d

(see Appendix A for the derivation). The change in field is
determined by the “expectation value” of the dipole operator
m̂, i.e., by matching at timet the initial wave function which
has been propagated forward in time fromt=0 to t with the
target wave function which has been propagated backward in
time from T to t. Note that this is not an ordinary quantum-
mechanical expectation value due to the different fields«old

of the previous iteration and«new of the current iteration. We
consider two channels/electronic states for the Na2 system.
The wave function therefore contains two components,s wg

we
d,

and the dipole operator,s 0 m̂
m̂ 0

d, induces electronic transitions.
Note that while for the initial and target statewe=0, the
propagated states have a nonzerowe component due to the
field.

Equation(7) implies that information from the dynamics
in both the past and the future is used to calculate the new
field. The iterative algorithm is thus defined: We first pick a

guess field«old, propagateuwil with ÛsT,0 ;«oldd (forward),
and evaluate the objective. We then propagate the target state
uw fl from time t=T to time t=0 (backward), storing the
propagated wave function for all intermediate times. In a
third step we obtain the new field«new at each timet by
evaluating Eq.(7) and we use«new to propagateuwil (for-
ward). These steps have to be repeated until the objective has
reached the desired value close to 1.

Note that sinceD«=«new−«old, Eq. (7) is implicit in the
new field«new. A simple but sufficient remedy to avoid solv-
ing this implicit equation is found by employing two differ-
ent grids in the time discretization[37]. The time grid for the
wave functions hasNt+1 points and is defined fromt=0 to
t=T, while the grid where the field is evaluated hasNt points
and ranges fromt=Dt /2 to t=T−Dt /2 with Dt=T/Nt the
spacing for both grids. The new field«new at the first inter-
leaved grid pointt=Dt /2 is then calculated from the wave

function at t=0, i.e., fromÛs0,0;«newduwil= uuwil, while the
wave function is propagated fromt=0 to t=Dt using the field
«newsDt /2d. This process is repeated for all other time grid
points.

IV. RESULTS AND DISCUSSION

In the proposed scheme, the ultracold molecules are
formed in one of the last bound levels, close to the dissocia-

tion limit. We have investigated states from the whole range
of the vibrational spectrum(v=10, v=40, v=62) in order to
gain a deeper understanding of the physical mechanism be-
hind the control. Recall that the last bound level of the
ground state of the sodium dimer has quantum numberv
=65.

Optimal pulses transferring all initial states to the target
statesv=0d were found if the guess pulse was chosen in a
physically sensible way. This means that the pulse spectrum
should coincide with the transition frequencies between vi-
brational levels in the ground and excited state which have a
good Franck-Condon overlap. The transition frequencies
with non-negligible Franck-Condon overlap range from
about 6000 cm−1 to about 13 000 cm−1. This corresponds to
a transform-limited pulse of 5 fs full width at half maximum
(FWHM). However, not the whole spectral range of
7000 cm−1 needs to be covered. The Franck-Condon over-
laps of the initial and the target state with the vibrational
levels of the excited state indicate one or two spectral regions
which should be important in the transfer. It was sufficient to
accordingly choose one or two central frequencies of the
guess pulse. Convergence to reach 99% of the objective
could then be achieved with a relatively small number of
iterations.

A. Simple search strategies

In addition to the spectral range covered by the pulse(cf.
Fig. 2), the rate of convergence depends on the two control
knobs of the optimal control algorithm, the intensity of the
pulse(or the integrated pulse energy), and the lengthT of the
optimization time interval. If we choose a comparatively
high intensity and a long timeT (TùT* =2p /v=2ph/ uEv
−Ev−1u with Ev the binding energy of levelv), we allow the
algorithm a lot of freedom. Convergence to 99% of the ob-
jective is then reached very fastsNit ø30d. This corresponds
to a few hours of CPU time forv=10 andv=40 and to a few
days for v=62 on aLINUX PC (the increase forv=62 is
caused by the necessity to store the backward propagated
wave functions on disk rather than in memory for long time
intervals).

The resulting pulses are shown in Figs. 2 and 3. A se-
quence of pulses with 100 fs FWHM was chosen forv=10
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andv=62, while a single pulse of 355 fs FHWM was taken
as a guess forv=40. The spectra of the pulses(solid lines in
Fig. 2) are compared to the Franck-Condon overlaps of the
initial (dotted lines) and target(dashed lines) state with all
vibrational levels of the excited-state potential. For the target
statev=0, the Franck-Condon overlaps with all excited-state
vibrational levels are characterized by a simple broad peak
between 8700 cm−1 and 11 000 cm−1. The corresponding vi-
brational levels of the excited state have quantum numbers
v8=1 to v8=20.

For initial statev=10, nonzero Franck-Condon overlaps
can be found between 7150 cm−1 and 12 500 cm−1 corre-
sponding to levelsv8=0 to v8=54. In this case, the control
task is comparatively simple: There are a number of excited
state vibrational levels which have good Franck-Condon
overlap with both the initial and the target state, i.e., a direct

pathway exists. The simplest solution is therefore given by a
pulse which addresses the transition frequencies between
these “common” levels(v8=1 to v8=20) and initial and tar-
get state. This solution is rapidly found by the optimal con-
trol algorithm: The transition frequencies between these
“common” levels(v8=1 to v8=20) and the target state are
already contained in the guess pulse(gray line in Fig. 2), and
the transition frequencies between the “common” levels and
the initial state around 7800 cm−1 can clearly be seen in the
spectrum of the optimal pulse. Since the guess pulse is rather
intense, other pathways are excited as well. If an initial guess
which is even closer to the direct pathway solution, i.e., a
pulse with two central frequencies, is employed, optimal so-
lutions can be found with less intensity and larger FHWM,
i.e., smaller spectral bandwidth(not shown). Note that even
in this simple case where the solution basically can be
guessed, the knowledge of only the transition frequencies is
not enough. Such a guess pulse with two central frequencies
transfers less than 1% from the initial to the target state while
the time-frequency correlations of the optimal pulse allow
for more than 99% transfer.

The situation becomes more involved for higher excited
initial states. No direct pathways, i.e., no excited-state vibra-
tional levels which simultaneously have good Franck-
Condon overlap with initial and target state exist. Moreover,
nonzero Franck-Condon overlaps with the excited-state vi-
brational levels are usually found in different spectral regions
for the initial and the target state. The guess pulses are there-
fore chosen to contain two central frequencies addressing the
relevant transition frequencies. If sufficient intensity is al-
lowed, a solution can rapidly be found. The intensity is
needed to find other pathways which are not contained in the
guess pulse, and the resulting spectrum is rather broad(cf.
Fig. 2, middle panel). Note furthermore the different time
scales in Fig. 3 where the length of the time intervalT has
been chosen to be at least twice the vibrational period of the
initial state. Since the levelv=62 is very close to the disso-
ciation limit, its binding energy is very small and its vibra-
tional period is very long. The requiredT increases up to
240 ps forv=65. Such long times obviously pose a problem.
This will be addressed in Sec. IV C.

B. Restricting the pulse intensity

Since optimal control is based on constructive and de-
structive interference between different quantum pathways,
the intensity of the pulse must be sufficiently high to excite
several such pathways. Furthermore, the guess pulse must
contain sufficient intensity in the relevant modes for the al-
gorithm to find a solution. If the overlap of the initial state
propagated with the guess field and the target state is very
small in Eq.(7), the changes in the field are also very small.
The algorithm then needs a very large number of iterations,
or it may not converge at all. Therefore, there exists a mini-
mum intensity necessary to find a solution. Note that the
minimum intensity we have found theoretically does not nec-
essarily have to be the same in a corresponding experiment.
This is due to the differents ways in which a solution is
obtained theoretically and experimentally. The relation be-

FIG. 2. The Franck-Condon overlaps of the intial state(v
=10,40,62, dotted lines) and of the target state(v=0, dashed lines)
with all excited-state vibrational levelssv8d are shown vs frequency.
Also shown are the spectra of obtained optimal fields(solid black
lines) and of the corresponding guess fields(solid gray lines).

FIG. 3. The optimal fields(black solid lines) corresponding to
Fig. 2. Also plotted are the respective guess fields(dashed light gray
lines) and the shape functionSstd (solid dark gray lines). The dif-
ferences between optimal and guess fields forv=62 can hardly be
seen on the time scale of 16 ps; therefore the inset shows the en-
largement of a small interval.
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tween the two still needs to be clarified, however this is
beyond the scope of the present work.

The integrated pulse energy is given by

EP = e0 c A E
0

`

uEstdu2dt s8d

with Estd the optimal field,A the area which is covered by
the laser(A=pr2 with r =300mm), c the speed of light, and
e0 the electric constant. The integration can be done numeri-
cally over the optimal field or analytically over the shape
function, the latter usually being sufficient to obtain an esti-
mate. Table I lists the minimum pulse energy necessary to
find an optimal solution withinNit ø100 iterations forv
=10, v=42, andv=62. The increasing difficulty of the con-
trol task with increasing vibrational excitation is reflected in
the increase in required pulse energy.

Since part of the intensity is necessary to find the relevant
frequencies, one can speculate that it should be possible to
further reduce the intensity by dividing an optimal field
which contains already the relevant frequencies by some fac-
tor and to restart the optimal control algorithm. This is in-
deed possible. New optimal solutions within a reasonable
number of iterations were found after dividing the optimal
field of a previous calculation by a factor between 2 and 5
(reducing the pulse energy by a factor between 4 and 25).
Using an analytical guess with the corresponding intensity
did not lead to a convergent solution. An example is shown
for v=62 in Fig. 4. The spectrum of the weaker field be-
comes broader; in particular, new peaks appear at about

6600 cm−1 and 7800 cm−1. The dynamics induced by the two
optimal fields of Fig. 4 has been analyzed by calculating the
time-dependent population of vibrational levels,
zkwv/v8 uwg/estdlz2. The number of levels which attain at some
time t a relative population of more than 10% and 5%, re-
spectively, are given in Table II. The weaker pulse populates
a smaller number of vibrational levels. It is interesting to
note that the levels which get populated are not the same for
the weaker and the stronger pulse. Hence, a different solution
is found after the reduction of intensity. This is confirmed by
the objectiveF beingF=7.9310−5 after the division of the
optimal field by a factor of 2, but becomingF=0.97 after 25
more iterations of the algorithm. The fact that the field is not
simply scaled but a new solution needs to be found explains
why the intensity of the field can only be reduced by a factor
between 2 and 5, but not by one or two orders of magnitude.
Again, while some information is already contained in the
field, a certain minimum intensity is needed to excite other
pathways which constitute the new solution.

C. Restricting the optimization time T

The optimization timeT is a parameter of the calculations,
and as explained in Sec. IV A a good guess is given by
taking T to be twice the time corresponding to the smallest
frequency which occurs in the problem. Since we are inter-
ested in the last bound levels, this time becomes very large
(on the order of nanoseconds for Na2). Such a time scale is
too long to efficiently compete with collisions and spontane-
ous emission.

Simply choosing a smaller value ofT does not solve the
problem. In this case, the optimal control algorithm did not
find any solution for many different guess pulses. A compara-
tively simple remedy to the problem was found by using the
result of an optimization with a large value ofT, restricting it
in time, and employing this modified field as an initial guess
pulse for a second run of the optimization algorithm. The
restriction in time was done by Fourier-transforming the
field, deleting points in frequency space, and Fourier-
transforming it back to the time domain. Keeping only every
10th value of the field in frequency space reduces the time
interval by a factor of 10. The shape function for the second

optimization run was chosen to beSstd=sinspt / T̃d, whereT̃
denotes the reduced time interval.

TABLE I. Minimum intensities needed to find a convergent so-
lution transferring the initial statesv=10,40,62d to the ground state
sv=0d.

v (initial state) 10 40 62

Epulse 60 mJ 1.5 mJ 3.9 mJ

FIG. 4. The fields(a),(b) and spectra(c) of optimal fields for
v=62. The spectrum of the stronger pulse(a) is plotted in black
while the spectrum of the weaker field(b), slightly shifted for vis-
ibility, is plotted in gray. The inset shows an enlargement of the
high-frequency peak.

TABLE II. Number of vibrational levels of the ground and ex-
cited state whose population exceeds 10%sNPop.0.10d and 5%
sNPop.0.05d at some timet s0, t,Td. Note that the seven excited-
state levels with more than 10% population are not the same for
16 mJ and for 4 mJ.

E0=0.01 a.u. E0=0.005 a.u.

Epulse=16 mJ Epulse=4 mJ

NPop.0.10
ground 3 6

NPop.0.05
ground 23 13

NPop.0.10
excited 7 7

NPop.0.05
excited 24 16
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Such a reduction of the optimization time has been tested
for up to a factor of 20. Remarkably, it did not matter
whether the points in frequency space were deleted sym-
metrically aroundv=0 or not. There is no rigorous upper
limit to the factor by whichT can be reduced. However, the
more T is reduced, the slower becomes the convergence.
There is furthermore no upper limit to the objective which
can be reached with reducedT. This is shown in Fig. 5 where
the objective is plotted versus the number of iterations of the
control algorithm. After reducingT by a factor of 8, a field
which transfers more than 90% of the initial state tov=0 is
found afterNit ,1000 iterations. Note that each iteration re-
quires a full time propagtion. Nevertheless, the calculations
do not become prohibitively expensive due to the shorter
propagation timesT/8d. The inset of Fig. 5 showse0

T gs«ddt
versus the number of iterations. The integral corresponds to
the value by which the objective is increased at each itera-
tion. While this value decreases algebraically after about 60
iterations, it is still sufficient to increase the objective from
about 20% afterNit =60 to more than 90% afterNit =1000.
The larger number of required iterations is not only due to
the restriction in time, but also due to a reduction in inte-
grated pulse energy and hence intensity.

An example of an optimal field and its spectrum after
Nit =1000 are shown in Fig. 6. The field shows a sequence of
very short subpulses which is characteristic for optimal fields
[47]. The spectrum is rather broad, covering about
9000 cm−1. It should be noted, however, that already the
spectrum after the first optimization run with largeT was
rather broad. At this point it is very difficult to decide
whether this broadness is physically necessary or whether it
is an artificial by-product of the mathematical algorithm. Un-
fortunately, it is not possible in a straightforward way to
include a restriction in bandwidth as a condition in the algo-
rithm without ruining the property of monotonous conver-
gence(see Appendix B for a more detailed discussion).

More insight is gained by analyzing which vibrational
levels the optimal field populates during the course of time.
Figure 7 shows the total population of the two channels
(solid black lines) with the optimal field(in gray), which has
been scaled for comparison. The subpulse structure of the
field corresponds to population cycling between the ground

and electronically excited state. For the ground state, the
population of the initialsv=62d and targetsv=0d vibrational
level (dashed lines) is also plotted. Finally, the dashed gray
lines in Fig. 7 show the sum of populations of all vibrational
levels, i.e.,ovzkwv

g/euCstdlz2. For the electronically excited
state, the solid black and dashed gray lines overlap, i.e., only
bound levels get excited. This is not surprising: The highest
vibrational levels which get populated(cf. Fig. 8) are those
which have good Franck-Condon overlap with the initial
state. These levels are still comparatively strongly bound
(v8=101, . . . ,108 out of about 220 bound levels). For the
ground state, the solid black and dashed gray lines differ
remarkably, corresponding to a non-negligible population of
the continuum. However, this need not worry us. The con-
tinuum gets populated at intermediate times for a very short
period when the Na2 system is in acoherentsuperposition
with the optimal field. The corresponding population is

FIG. 5. Convergence of the optimal control algorithm after the
total time T (corresponding to the vibrational period of the initial
state) has been reduced by a factor of 8.

FIG. 6. The optimal field and its spectrum. The optimization
time interval has been reduced by a factor of 8.

FIG. 7. Population analysis of the dynamics with the optimal
field for the electronically excited state(a) and the ground state(b).
The total populationzkg/euCstdlz2 (solid black line) is compared to
the sum of populations of all bound vibrational levels
ovzkwv

g/ezCstdlu2 (dotted gray line) with the field plotted in the back-
ground(light gray, scaled for comparison). For the excited state, the
black and the gray lines are almost identical, indicating that the
continuum is not populated, while the curves differ for the ground
state, indicating significant population of the continuum atinterme-
diate times. Panel(b) shows furthermore the population of the ini-
tial sv=62d and target(v=0) vibrational level(dashed lines).
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therefore not lost but brought back to bound levels at later
times and eventually transferred tov=0. Figure 8 shows the
population of those vibrational levels versus time, which ac-
quire more than 5% of the overall population at some time
0ø tøT. Ground-state vibrational levels are displayed in the
upper panel, while excited-state vibrational levels are shown
in the middle and lower panel. The overall number of vibra-
tional levels which get populated is 7 for the ground state
(v=62 andv=0 have been plotted in Fig. 7 for better visibil-
ity) and 16 for the electronically excited state. For the ground
state[Figs. 8(a) and 8(b)], the two neighboring levels of the
initial state get populated at early times. At intermediate
times, the population is spread over many different levels
(and the continuum), while toward the end of the time inter-
val the population is concentrated in three levelssv
=21,22,23d. None of these levels is populated for more than
300 fs. This is the time which needs to be compared to the
time scale of vibrational energy pooling. For the excited state
[Figs. 8(c)–8(f)], the vibrational levels which get populated
can be assigned to three different groups: At early times a
number of levels sv8=101, . . . ,108d with good Franck-
Condon overlap with the initial state get populated. While
the population cycles back and forth between ground and
excited state, these levels are populated overall for a com-
paratively long time. After about 1 ps, intermediate levels
sv8=18,41,51, . . . ,53d are populated. Toward the end of the
time interval, the population is concentrated in levelssv8
=7,8,9d which have a very good Franck-Condon overlap
with the target state,v=0. Also, none of the excited-state
vibrational levels is populated for more than 300–400 fs,
which should be short enough to compete with vibrational
energy pooling.

Note that which specific vibrational levels are populated
differs for different optimal pulses which are the result of
initial guess pulses with different frequencies and intensities

and of reduction ofT by different factors. The same overall
scheme of population, in particular for the excited state with
the three groups at early, intermediate, and long times, is
found in all cases. This is not surprising and it simply reflects
the fact that a multistep scheme is needed to transfer a very
weakly bound state to the vibrational ground state.

V. CONCLUSIONS

We have shown that within a two-electronic-state model
of Na2, optimal fields which transfer highly excited vibra-
tional states to the vibrational ground state with more than
99% can be found. We have performed calculations for mod-
erately, highly, and extremely highly excited initial states
(v=10,40,62 out of 66 bound levels). For moderately ex-
cited vibrational levels, a direct pathway from the initial to
the target state exists, and a single central frequency in the
guess field was sufficient to obtain an optimal field. For
higher excited levels, a multistep scheme is required since
the initial and target state have good Franck-Condon overlap
with different vibrational levels of the excited state. This was
accounted for by assuming two central frequencies in the
guess field. Experimentally, pulses with two central frequen-
cies can be realized by sending a pulse with a single central
frequency through a parametric amplifier.

The two control knobs of the optimization algorithm are
the pulse intensity and the optimization time. A compara-
tively high intensity is needed to excite several quantum
pathways whose interference constitutes the solution. The
optimization time is usually chosen to correspond to the
longest vibrational period of the system. We have explored
ways to restrict both intensity and optimization time. This
was possible by first running the algorithm with a guess field
with large intensity and long optimization time and then us-
ing the optimized field as input in a second run of the algo-

FIG. 8. Vibrational level population of the dy-
namics with the optimal field for the electroni-
cally excited state(c)–(f) and the ground state
(a),(b).
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rithm with smaller intensity and shorter optimization time.
Optimal fields with integrated pulse energy on the order of
milliJoule and overall duration on the order of a few pico-
seconds have thus been obtained.

The optimal control task we have investigated in this pa-
per is much more difficult than those of previous control
studies on the sodium dimer, such as populating certain ion-
ization channels[31] or displacing the ground-state Gaussian
wave packet[32]. The fact that solutions could still be found
is due to the modification of the optimal control algorithm to
calculate the change in field rather than the new field itself
[37]. This ensures a smooth convergence of the field toward
the optimal one and renders the algorithm very powerful.

We have neglected several possible loss channels in the
present two-state model. Two-photon transitions could popu-
late an autoionizing state. However, since molecular autoion-
ization occurs at small distances, the cross sections are very
small [48]. The field could moreover transfer angular mo-
mentum to the system, thus exciting rotations. Both loss
channels can be modeled by adding one or a few electronic
states to the model. In general, additional channels do not
necessarily pose a problem, they may even lead to more
participating pathways improving the control[31]. Intu-
itively, the field is able to avoid population of these loss
channels if its phase is orthogonal to the transition dipole. It
has been shown in local optimization calculations[33,49]
that this condition on the phase of the field can be used to
lock the population in the desired channels. In global opti-
mization, convergence can be facilitated by imposing a pen-
alty on the loss channels[50]. Multiphoton ionization of the
sodium atoms is more dangerous than excitation of rotations
and molecular autoionization. It is rather likely to occur at
the intensities we have found. Our calculations should there-
fore be repeated by adding anN-level Hamiltonian describ-
ing the atomic levels to the model. The task of the modified
control problem is to transfer the vibrationally excited mol-
ecules tov=0 while avoiding population of the ionization
loss channels atany time during the optimization interval.
The latter has to be formulated as an additional constraint.
The function gs«d does then also depend on the statew,
gs« ,wd, and the equation for the new field has to be red-
erived. Work in this direction is in progress.

In a recent experiment[5], ultracold Na2 molecules have
been produced from an atomic sodium condensate with the
molecules occupying thev=14 vibrational level of thea 3Su

+

state. This vibrational level is very weakly bounds,1 cm−1d,
and at such small binding energies the hyperfine interaction
mixes singlet and triplet states[39]. Note that in the
asymptotic region the wave function of the tripletv=14 level
is identical to that of the singletv=64 level. The coupling
between hyperfine states implies that also vibrational levels
of the singlet state are populated, hence our results consider-
ing the X1Sg

+ state should be applicable to the MIT experi-
ment. Second, to obtain quantitative results our model should
be improved to include all the states which are coupled by
hyperfine interaction. This requires, however, several techni-
cal improvements and is therefore the subject of future work.

The MIT experiment raises another question regarding the
feasibility of optimal control experiments with ultracold mol-
ecules. The reported lifetime of the molecular cloud is a few

ms [5]. Conventional pulse shapers operate at about 1 kHz
resulting in one cycle of the learning loop per millisecond. In
standard control experiments, a few thousand cycles can
therefore be performed in a comparatively short time. If the
MIT experiment were to be combined with a control scheme,
only one or two cycles could be performed before the mol-
ecules are lost from the trap. It therefore seems necessary to
provide more information from theoretical considerations
than simply the required spectral bandwidth and intensity of
the pulse. A promising approach has been suggested by de
Vivie–Riedle and co-workers[51], who defined the mask
pattern of the optimal pulse by discrete Fourier transforms.
Provided the calculated pulse is not too complex, this mask
pattern can be directly fed into the pulse shaper avoiding the
many cycles of a learning loop.

In addition to accounting for ionization losses and hyper-
fine interaction, our two-state model should be improved to
consider rotations. This is particularly important because the
molecules are not necessarily created withJ=0 in the experi-
ments using Feshbach resonances or three-body recombina-
tion. Since the rotational excitation is rather small, it will be
sufficient to treat it by additional states, for which the cen-
trifugal barrier for eachJ is added to the atom-atom interac-
tion. One may speculate that some rotational excitation may
even facilitate the stabilization process since the initial wave
function due to the centrifugal barrier is more localized than
the one forJ=0.

Another possibility which leads to a more confined initial
state for the stabilization process is given by forming the
molecules by photoassociation. Two-color photoassociation
or spontaneous emission after one-color photoassociation
can directly populate levels aroundv=40. We have shown in
our calculations that the optimal control task for such vibra-
tional states which are still highly excited but already well
bound is much easier than for the last bound levels. The
required intensities are hence more moderate(cf. an inte-
grated pulse energy of 1.5 mJ forv=40 versus 4 mJ forv
=62).

Finally, our calculations prompt the question whether
spectrally simpler fields than those obtained in this study can
be guessed. Our population analysis has shown that at least
two cycles through the excited-state are required. The first
cycle populates excited-state vibrational levels which have
good Franck-Condon overlap with the initial state, and the
second populates excited-state vibrational levels with good
Franck-Condon overlap with the target state. One could
hence divide these steps, optimizing each separately. First
calculations show that the intensities required for one such
step are much lower than the ones completing the control
task at once. Note that while the intensity is reduced, the
overall time(including all steps) is prolonged. Another pos-
sibility is given by finding a solution for each of the steps
intuitively without the optimal control algorithm, for ex-
ample chirping the sequence of pulses. Furthermore, stabili-
zation via optimal control could be combined with chirped
pulse photoassociation[52,53]. For the cesium dimer, it has
been shown that a spatially focused wave packet can be
formed on the excited state[53]. To stabilize such a state to
the ground vibrational level of the electronic ground state via
OCT should also require comparatively little intensity. Our
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results furthermore indicate that STIRAP or any other adia-
batic process is not likely to be a successful tool in transfer-
ring the highly excited molecules to the vibrational ground
state. The multistep scheme implies that there is no direct
adiabatic path, i.e., the Franck-Condon overlaps of a direct
path are extremely small. Correspondingly, the intensity re-
quired for a direct adiabatic path is expected to be orders of
magnitude larger than that obtained by us for an optimal
field. Adiabaticity moreover requires the transfer to be slow.
If we quantify slow as being at least one order of magnitude
slower than the longest vibrational period of the problem, the
process has to occur on the time scale of nanoseconds in the
case of Na2 and even longer times for heavier molecules.
These are the time scales where loss processes become im-
portant and where condensate dynamics and molecular dy-
namics become entangled.

In conclusion, we have applied in this study optimal con-
trol theory to the stabilization of ultracold molecules. While
we have started with a comparatively simple model, our
present results point toward several directions of improve-
ments which in turn correspond to different experimental
schemes. We thus hope that the present work stimulates fur-
ther research uniting the fields of cold molecules and optimal
control.
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APPENDIX A: BRIEF REVIEW OF OPTIMAL CONTROL
THEORY WITH THE KROTOV METHOD

The Krotov method is one of several methods to derive an
iterative algorithm which connects the objective of optimal
control, calculated at the final timet=T, with the knowledge
of the state of the system at intermediate times 0, t,T. A
general review was given in Ref.[22], while a review for
linear problems in the density matrix formalism was reported
in Ref. [37]. In this paper, we need an even simpler version,
that is, the Krotov method for linear optimization of state-to-
state transitions which we sketch in the following.

The equation of motion of the system is the Schrödinger
equation,

d

dt
uwstdl = −

i

"
Ĥs«duwstdl,

whose right-hand side is abbreviated by

uf„t,wstd,«…l = −
i

"
Ĥs«duwstdl. sA1d

We omit the ket notation when just indicating the depen-
dence onuwstdl. The starting point is now the modified ob-
jective J of Eq. (5), which is a functional of the state of the
system and the field,Jfw ,«g. Due to the integral term in Eq.
(5), J is a functional of the system’s state atall times, i.e., a
functional of the system “trajectory.” The problem is now to
find conditions onJ which maximize the objectiveF.

To this end, one introduces an auxiliary functional
Lfw ,« ;Fg,

Lfw,«;Fg = G„wsTd… − Fs0,wid −E
0

T

R„t,wstd,«…dt

sA2d

with

G„wsTd… = − F„wsTd… + F„T,wsTd…, sA3d

R„t,wstd,«… = − gs«d +
] F

] t
+ ReK ] F„t,wstd…

] w
uf„t,wstd,«…L

sA4d

and F=Fst ,wd an arbitrary continuously differentiable real
function [22,37]. Recall thatuwil= uwst=0dl, and uw fl is the
target state. Note that the derivative ofF with respect to the
state means derivative with respect to both the real and
imaginary part of uwl, u] /]wl= us] /]wRd+ is] /]wIdl. If the
stateuwstdl and the field«std obey the Schrödinger equation,
R is given byR=−gs«d+dF /dt. It can then be shown[22]
that Lfw ,« ;Fg=Jfw ,«g for any scalar functionF, i.e., the
minimization ofJ is equivalent to the minimization ofL. In
the latter one has complete freedom in the choice ofF. This
property is used to construct an iterative algorithm. One first
choosesF such thatL is maximum with respect touwstdl,
i.e., the worst case. A new field is then derived from the
condition of maximizingR, which in turn leads to a minimi-
zation ofL.

The first step(maximization ofL) is equivalent to maxi-
mizing G while minimizing R. This step is taken at the old
state,uwstdln. To simplify the equations, the maximum and
minimum conditions are relaxed to extremum conditions. An
additional condition in the end has then to ensure that the
algorithm indeed improves the objective in each iteration.
The extremum conditions are written as

U ] R„t,wstd,«…
] w

L
uwln

= 0, sA5d

U ] G„wsTd…
] wsTd L

uwln
= 0. sA6d

The partial derivatives are again with respect to both the real
and imaginary part ofuwl. Equation(A5) leads to
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0 =U ]

] w
LF− gs«d +

] F„t,wstd…
] t

+ ReK ] F„t,wstd…
] w

ufst,w,«dLG
uwln

=
]

] t
U ] F

] w
L

uwln
+

1

2
U ]

] w
LKS ] F

] w
D

uwln
ufst,w,«dL

+
1

2KS ] F

] w
D

uwln
ufst,w,«dLK ]

] w
U+

1

2
U ]

] w
L

3K fst,w,«duS ] F

] w
D

uwln
L +

1

2K fst,w,«duS ] F

] w
D

uwln
L

3K ]

] w
U .

Using that ufl=d/dtuwl and calculatingu] /]wlkf u from Eq.
(A1), we obtain

d

dt
U ] F

] w
stdL

uwln
= −

i

"
Ĥ+s«dU ] F

] w
stdL

uwln
. sA7d

Equation (A6) together with the definition ofGsw fd [Eq.
(A3)] gives

U ] F

] w
sTdL

uwln
= − U ] Fswd

] w
sTdL . sA8d

Recall thatF is the original objective, andu]F /]wl can thus
be explicitly calculated. Equation(A7) can then be inter-
preted as a first-order differential equation forugstdl
= u]F /]wstdluwln with the “initial” condition (at timeT) given
by Eq. (A8). The knowledge of Eqs.(A7) and(A8) is there-
fore sufficient to determineFst ,wd to first order inuwstdl,

Fs1dst,wd = ReKS ] F

] w
stdD

uwln
uwstdL

=
1

2
fkgstduwstdl + kwstdugstdlg. sA9d

FromFs1d, G andR can be constructed to first order,Gs1d and
Rs1d. Thereby the first step of the algorithm for alinear op-
timization problem is completed. Note thatFs1d is never ex-
plicitly calculated; the equation of motion forugstdl [Eq.
(A7)] will be solved instead.

To realize the second step,Rs1d must be maximized with
respect to the field. This step is supposed to lead to a new
field, «n+1, which generates a new “trajectory,”uwstdln+1, ac-
cording to the Schrödinger equation. We again relax the
maximum to an extremum condition,

U ] Rs1d

] «
U

«n+1,uwstdln+1
= 0, sA10d

which gives

0 =
]

] «
F− gs«d +

] Fs1d

] t
+ ReK ] Fs1d

] w
ufst,w,edLG

«n+1,uwstdln+1

=−
] gs«d

] «
«n+1 +

1

2
Kgstdu

] fst,w,ed
] «

L
«n+1,uwln+1

+
1

2
K ] fst,w,ed

] «
ugstdL

«n+1,uwln+1

and therefore

U ] gs«d
] «

U
«n+1

= ReKgstdu
] fst,w,«d

] «
L

«n+1,uwln+1
. sA11d

With our choice of the constraintgs«d, Eq. (6), and using

Ĥ =Ĥ0+m̂«std in the calculation ofu]f /]«l, we obtain for the
new field

«n+1std = «nstd +
Sstd
2a

Imfkgstdum̂uwstdln+1g. sA12d

The time evolution of the new state isuwstdln+1

=Ûst ,0 ;«n+1duwil, and ugstdl is obtained by formally solving

Eq. (A7), ugstdl=Ûst ,T;«ndugsTdl,

«n+1std = «nstd +
Sstd
2a

ImfkgsTduÛ+st,T;«ndm̂Ûst,0;«n+1duwilg.

Using the definition of the objectiveF, Eq. (4), ugsTdl is
determined according to Eq.(A8), ugsTdl=cuw fl, with the
coefficient

c = kw fuwsTdln = kw fuÛsT,0;«nduwil sA13d

and finally Eq.(7) is obtained.
Since we relaxed the maximum and mininum conditions

to extremum conditions, we need to ensure that each itera-
tion indeed improves the objective,Jfwn,«ng−Jfwn+1,«n+1g
ù0,

Jfwn,«ng − Jfwn+1,«n+1g

=Lfwn,«n;Fs1dg − Lfwn+1,«n+1;Fs1dg

=D1 +E
0

T

D2stddt

with

D1 = Gs1d
„wsTdn

… − Gs1d
„wsTdn+1

…,

D2std = Rs1d
„t,wstdn+1,«n+1

… − Rs1d
„t,wstdn,«n

….

A sufficient condition for Jfwn,«ng−Jfwn+1,«n+1gù0 is
D1,D2stdù0. ConstructingGs1d from Eq. (A9), and using
ugsTdl=cuw fl with Eq. (A13), we see that

D1 = ukwiuÛ+sT,0;«nd − Û+sT,0;«n+1duw flu2 ù 0.

sA14d

Because of the linearity offst ,w ,«d with respect touwl,
Rs1dst ,w ,end=−gs«nd for any uwl, and we find
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D2std = Rs1d
„t,wstdn+1,«n+1

… − Rs1d
„t,wstdn+1,«n

….

ConstructingRs1d from Eq.(A9) and using again the linearity
of the equation of motion, we obtain as a condition for mo-
notonous convergence

D2std = − gs«1d + gs«0d + s«1 − «0dU ] g

] «
U

«1
ù 0.

sA15d

Equations(A11) and (A15) are the central equations of
the algorithm. The constraints which we formulate ings«d
must fulfill Eq. (A15) to ensure convergence of the algo-
rithm. Throughout this work we have used the constraint of
restricted change in pulse energy, i.e.,gs«d as given by Eq.
(6), which respects Eq.(A15) for all a as one can easily
verify.

APPENDIX B: RESTRICTION OF THE SPECTRAL
BANDWIDTH

We tried other functional forms of the constraintgs«d, in
particular

gs«d = a1stds« − «0d2 − a2stds« − «refd2 sB1d

with ai =a0i /Sstd, where the second term restricts the new
field to a reference field«ref with a prespecified bandwidth
(note that the negative sign of this term implies maximiza-
tion, i.e., the new field should be as close as possible to the
reference field). Condition (A15) is fulfilled for all a01
ùa02ù0. We found no effect fora02!a01 as not enough
weight is put on the second constraint. Still 96% of the ob-
jective can be reached fora02 close toa01, but the spectral
bandwidth is slightly reduced. In particular, spurious high-
frequency components in the optimal pulse can be avoided.
The overall restriction of the bandwidth, however, appears to
be insufficient.

In fact, it is not surprising that a condition formulated in
time domain such as Eq.(B1) cannot achieve the desired
control over a frequency domain property. This is a general
problem of global (in time) optimal control schemes. At-
tempts to restrict the spectral bandwidth of the pulse have
been made before[51,54]. However, this is possible only at
the cost of monotonic convergence. An approach which uni-
fies global optimal control with constraints in the frequency
domain will have to treat time and frequency on the same
footing. This shall be the subject of future work.
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