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Performance of discrete heat engines and heat pumps in finite time
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The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid

of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by
changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The
power output of the engine is optimized with respect to time allocation between the contact time with the hot
and cold baths as well as the adiabats. The engine’s performance is also optimized with respect to the external
fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat
pump is also optimized. By varying the time allocation between the adiabats and the contact time with the
reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is
approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when
the temperature approaches absolute zero.

PACS numbd(s): 05.70—a, 07.20.Mc, 44.906-c

[. INTRODUCTION friction is a lower bound on the cycle time. This lower bound
excludes the nonrealistic global optimization solutions found
Analysis of heat engines has been a major source of thefer frictionless case$20] where the cooling power can be
modynamic insight. The second law of thermodynamics reoptimized beyond bounds. This observation has led to the
sulted from Carnot’s study of the reversible heat engliie =~ suggestion of replacing the optimization of the cooling
Study of the endoreversible Newtonian engj@¢began the power by the optimization of the cooling efficiency per unit
field of finite time thermodynamids—6]. Analysis of a vir-  time [21-24. Including friction is therefore essential for
tual heat engine by Szilard led to the connection betweemore realistic models of heat engines and refrigerators where
thermodynamics and information thedr¥,8]. Recently this the natural optimization goal becomes either the power out-
connection has been extended to the regime of quantumput or the cooling power. The source of friction is not con-
computation9]. sidered explicitly in the present model. Physically, friction is
Quantum models of heat engines show a remarkable simthe result of nonadiabatic phenomena which are the result of
larity to engines obeying macroscopic dynamics. The Carnathe rapid change in the energy level structure of the system.
efficiency is a well established limit for the efficiency of For example, friction can be caused by the misalignment of
lasers as well as other quantum engifiE8-14. Moreover, the external fields with the internal polarization of the work-
even the irreversible operation of quantum engines with fiing medium. For a more explicit description of the friction
nite power output has many similarities to macroscopic enthe interactions between the individual particles composing
doreversible engings5-19. the working fluid have to be considered. The present model
It is this line of thought that serves as a motivation for ais a microscopic analog of the Ericsson refrigeration cycle
detailed analysis of a discrete four stroke quantum engine. I[25], where the working fluid consists of magnetic salts. The
a previous study20], the same model served to find the advantage of the microscopic model is that the use of phe-
limits of the finite time performance of such an engine butnomenological heat transfer laws can be avoifteg]. The
with the emphasis on power optimization. In that study theresults of the present model are compared to a recent analysis
working medium was composed of discrete level system®f macroscopic chiller§27]. In that study, a universal mod-
with the dynamics governed by a master equation. The pureling was demonstrated. It is found that the discrete quantum
pose was to gain insight into the optimal engine’s perfor-version of heat pumps has behavior similar to that of macro-
mance with respect to time allocation when external paramscopic chillers.
eters such as the applied fields, the bath temperatures, and There is a growing interest in the topic of cooling atoms
the relaxation rates were fixed. and molecules to temperatures very close to absolute zero
The present analysis emphasizes the reverse operation [@8]. Most of the analyses of the cooling schemes employed
the heat engine as a heat pump. For an adequate descriptiare based on quantum dynamical models. New insight can be
of this mode of operation inner friction has to be a consid-gained by employing a thermodynamic perspective. In par-
eration. Without it the model is deficient with respect to op-ticular, the temperatures achieved are so low that the third
timizing the cooling power. Another addition is the optimi- law of thermodynamics has to be considered. The discrete
zation of the external fields. This is a common practice wherdevel heat pump can serve as a model to study the third law
cold temperatures are approached. With the addition of thedamitations. The finite time perspective of the third law is a
two attributes, the four stroke quantum model is analyzedtatement about the asymptotic rate of cooling as the abso-
both as a heat engine and as a refrigerator. lute temperature is approached. These restrictions are im-
Inner friction is found to have a profound influence on posed on the optimal cooling rate. The behavior of the opti-
performance of the refrigerator. A direct consequence of thenal cooling rate as the absolute temperature is approached is
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a third law upper bound on the cooling rate. The main find-
ing of this paper is that the optimal cooling rate converges to
zero linearly with temperature, and the entropy production
reaches a constant when the cold bath temperature ap-
proaches absolute zero.

Il. BASIC ASSUMPTIONS AND FORMAL BACKGROUND
FOR THE HEAT ENGINE AND THE HEAT PUMP

Heat engines and heat pumps are characterized by three
attributes: the working medium, the cycle of operation, and
the dynamics that govern the cycle. Heat baths by definition
are large enough so that their temperature is constant during
the cycle of operation. The heat engine and the heat pump
are constructed from the same components and differ only i, ,
their cycle of operation.

FIG. 1. The heat engine with friction in thes(S) plane. T}, is
hot bath temperaturey, is the time allocation when in contact
with the hot bath.T, and 7, represent the temperature and time
allocation for the cold bathr, represents the time allocation for

A. The working medium compressior(field change fromw, to w,) and 7, for expansion.

1Pl i ;
The working medium consists of an ideal ensemble c)fThe ared,B,C*,D" is the positive work done by the system, while

1 1 H
many noninteracting discrete level systems. Specifically, th%hoengrgsﬁgs‘%tésr?’n‘ andD?,D, Sy, S, represent the negative work
analysis is carried out on two level systeid.S’s) but an '
ensemble of harmonic oscillatof20] would lead to equiva-
lent results.

The TLS’s are envisioned as spin-1/2 systems. The lack 1. Heat-engine cycle
of spin-spin interactions allows a description of the energy The cycle of operation is analyzed in terms of the polar-
_exchange betW‘?e” the working medium and the surro_undinqgation and frequencyS,w). A schematic display is shown
:jne;[iir(argsbgftr?eS;r\]/gelr;;el_gé:;g;iséit;rg]lc:);?)ﬁi ﬁsg,s fnrg F',S ther}n Fig. 1 for a constant total cycle time The present engine

. ) . T is an irreversible four stroke engin@0] resembling the
corresponding to the energié® and— ; , wherew is the  stirling cycle, with the addition of internal friction. The di-
energy gap between the two levels. The average energy pgéction of motion along the cycle is chosen such that net
spin is given by positive work is produced.

The four branches of the engine will now be briefly de-
E=P,(30)+P_(-30). (2.1)  scribed.
On the first branc— B, the working medium is coupled
The polarizatiorSis defined by to the hot bath of temperatuf®, for period 7;,, while the
L energy gap is kept fixed at the valug . The conditions are
S=2(P.—P.), (220 such that the internal temperature of the medium is lower
thanT,,. In this branch, the polarization is changing from the

and thus the energy can be writtentgs S. Energy change jnitial polarizationS, to the polarizatiorS;. The inequality
of the working medium can occur either by population trans+g pe fulfilled is therefore

fer from one level to the othgichangingS) or by changing
the energy gap between the two levaleangingw). Hence

B. The cycle of operation

wWp
S, < — —tan . 2.6
dE=S dv+ w dS. (2.3 T2 k(2|<E;Th) 28

Population transfer is the microscopic realization of heat exsjnce  is kept fixed, no work is done and the only energy

change. The energy change due to external field variation igansfer is the heat,(S,—S,) absorbed by the working
associated with work. Equatid@.3) is therefore the first law  edium.

of thermodynamics: In the second brancB— C, the working medium is de-
u _ B coupled from the hot bath for a periog, and the energy
DW=Sdw; DQ=wdS (2.4 gap is varied linearly in time, fromwy, to w,. In this branch

) . . work is done to overcome the inner friction which develops
Finally, for a TLS the internal temperatuil€ is always de- heat, causing the polarization to increase frémto S, (cf.

fined via the relation Fig. 1). The change of the internal temperature is the result
of two opposite contributions. First, lowering the energy gap

S= Etam—( @ ) 2.5 leads to a lower inner temperature for constant polarization

2 2kgT" )" ' S Second, the increase in polarization due to friction leads to

an increase of the inner temperature for fixedThe inner
Note that the polarizatio is negative as long as the tem- temperaturd’ at pointC might therefore be lower or higher
perature is positive. than the initial temperature at poiBt
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TABLE I. Work and heat exchange along the branches of the heat engine with friction.

Branch Work+ (work against friction Heat

A—B 0 op($—S,)

B—C (wa—wb)[Sl-Fa'Z/(ZTa)] + [Uz(wa+wb)/(27a)] 0

C—D 0 w0 [(S,—S)) — o?(Ury+1/7,)]
D—A (0p=0)[S,—0%(27)] + [0 (wat wp)/(27,)] 0

The third branchC— D is similar to the first. The work- bath. In a periodr, the energy gap is changing back to its
ing medium is now coupled to a cold bath at temperaiye original valuew, . The polarization increases fro8) to the
for time 7.. The polarization changes on this branch fr6gn  original valueS,.

to the polarizatiorS,. For the cycle to close$, should be These results are summarized in Table I.

lower thanS,. At the end of the cycle the internal tempera-

ture of the working medium should be higher than the cold 2. Refrigerator cycle

bath temperaturel’>T., leading to The purpose of a heat pump is to remove heat from the

cold reservoir by employing external work. The cycles of
operation in the §,w) plane are schematically shown in Fig.

s 1 Wq 5
8= = Etan TBTC . ( 7) 2,
The cycle of operation resembles the Ericsson refrigera-
SinceS,< S, (Fig. 1), it follows from Eq.(2.6) and Eq.(2.7)  tion cycle[25]. The differences are in the dynamics of the

that microscopic working fluid which are described in Sec. Il C.
The work and heat transfer for the heat pump are summa-
g oy rized in Table II.
—) <—) (2.9 The four branches for the heat pump are now described:
Te Th In the first branctD — C, the working medium is coupled to

the cold bath of temperatuii, for time 7., while the energy
Inequality (2.8) is equivalent to the Carnot efficiency bound. gap is kept fixed at the value,. The conditions are such
from Eq.(2.8) one gets that the internal temperature of the medium is lower thian
during 7. . Along this branch, the polarization changes from
a c| the initial polarizationS, to the polarizatiorS,. Sincew is
1- P <1- Th 7Icarnot- (2.9 kept fixed, no work is done and the only energy transfer is
the heatw,(S,—S;) absorbed by the working medium. On

The present model is a quantum analog of the Stirling engin1i Pranch,
which also has Carnot’s efficiency as an upper bound.
The polarizationS changes unidirectionally along the Sz<—1tan|'( Wy ) (2.10
“adiabats” due to the increase of the excited level popula- 2 2kgT,
tion as a result of the heat developed in the working fluid
when work is done against friction, irrespective of the direc- In the second brancB— B, the working medium is de-
tion of the field change. coupled from the cold bath, and the energy gap is varied. In
The fourth branctib — A closes the cycle and is similar to the frictionless case the polarizati®) is constant(left of
the second. The working medium is decoupled from the coldrig. 2). The only energy exchange is the work done on the

» ()
SN
Sz
S1 .
Sleq \ E Th
Y e
S

FIG. 2. The cycle of operation of the heat pump. Left: without frictiBff! is the hot bath equilibrium polarizatio83® is the cold bath
equilibrium polarization. The area enclosedd)C,S,,S, is the heat absorbed from the cold bath. The area enclosBCtB/A is the work
done on the system. Right: with friction. The area enclose®¥y,S,,S; is the heat absorbed from the cold bath. The work on the system
is the area defined by the rectang®®?,S,,S; andBY,Al,D,C andALA,S,,S;.
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TABLE Il. Work and heat exchange along the branches of the heat pump without/with friction.

Branch Frictionless work/work- (work against friction Heat
D—C 0 wa($—Sy)
(0p— 0a)S,
C—B (wb—wa)[Sz-i-0'2/(27'3)]+[0'2(wa+wb)/(ZTa)] 0
wp(S1—S,)
B—A 0 wp[ (S1—S,) — 0?(Lry+ 1imp)]
(wa— wp)S;
A—D (wa— 0p)[S1— 0 (27,) ] +[ 0% (wa+ wp)/(27,) ] 0
system(Table 1. When friction is added the polarization is dP,
changing fromS, to S; in a period 7,. The energy gap ar = KPP
changes fromw, to wy, (right of Fig. 2, according to a linear 213
law. In addition to work, heat is developing as a result of the dpP_ :
inner friction (Table II). W=klP+—kTP,,

The third branchB— A is similar to the first. The working

medium is coupled to the hot bath at temperatlife for wherek, andk; are the transition rates from the upper to the
time 7,, keeping the energy gap, fixed. In this branch the  |o\ver level, and vice versa. The explicit form of these coef-
polarization changes fror§, to S, in the frictionless case, ficients depends on the nature of the bath and the system-
and fromS; to S, when friction is added. The constraint is path coupling interactions. The thermodynamics partition be-
that 'the internal temperature of the working 'rned|um.should[Ween system and bath is consistent with a weak coupling
b? higher than the hot bath temperature during the ime  assumption[18]. Temperature enters through detailed bal-
T'>Ty, leading to the inequalityFig. 2), ance. The equation of motion for the polarizat®obtained
from Eq. (2.13 becomes

1 Wp
2\ 2keTy GimT(s-59, (2.14
ThereforeS,>S,. From Eqs(2.10 and(2.11), the condition
for the interrelation between the bath temperatures and thehere
field values becomes F=k +k: (2.15
@a) _[“b and
Tc) <( Th ’ (2.12)
which is just the opposite inequality of that of the heat en- S=-3 Ktk >tan 2KaT) (2.16

gine[Eg. (2.8)]. In the heat pump work is doren the work-
ing fluid and since no useful work is done Carnot’s bound iswhere S°9 is the corresponding equilibrium polarization. It
not violated. should be noticed that in a TLS there is a one to one corre-
The fourth branciA— D closes the cycle and is similar to spondence between temperature and polarization; thus inter-
the second. The working medium is decoupled from the coldhal temperature is well defined even for nonequilibrium situ-
bath, and the energy gap changes back during a pefitd  ations.
its original valuew,,. These results are summarized in Table The general solution of Eq2.14) is
N S(t)=S*9+[S(0)—S*9e ", (2.17)
C. Dynamics of the working medium whereS(0) is the polarization at the beginning of the branch.
The dynamics of the system along the heat exchangErom Eqgs(2.14) and(2.16 the rate of heat change becomes
branches is represented by changes in the level population of _ .
the two level system. This is a reduced description in which Q= wS. (2.18
the dynamical response of the bath is cast in kinetic terms
[18]. Since the dynamics has been described previqagly — S€€ alsq16]. _ _ _
only a brief summary of the main points is presented here, FOr convenience, new time variables are defined:
gmggzg.zmg the differences in the energy exchanges on the x=gTere, y=g Tnm, (2.19

These expressions represent a nonlinear mapping of the time
allocated to the hot and cold branches by the heat conductiv-

The dynamics of the population at the two leveé?s, and ity I'. As a result, the time allocation and the heat conduc-
P_, are described via a master equation tivity parameter become dependent on each other.

1. The dynamics of the heat exchange branches
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Figures 1 and 2 show that the friction induces an asym- 3. Explicit expressions for the polarizations imposed
metry between the time allocated to the hot and cold by the closing of the cycle

branches since more heat has to be dissipated on the cold By forcing the cycle to close, the four corners of the cycle

branch. observed in Fig. 1 are linked. Applying E(.17) leads to
2. The dynamics on the adiabats the equations
) - 91—
The external fieldv and its rate of change are control S1=Sy+SH1-y),
parameters of the engine. For simplicity it is assumed that 5
the field changes linearly with time: S3=S,+ U_, (2.26

a

o(t)=ot+o(0). (2.20 Sy= Sx+ SY1—x)
4 (o !

Rapid change in the field causes nonadiabatic behavior 5
which to lowest order is proportional to the rate of chaage S,=S,+ U__
In this context “nonadiabatic” is understood in its quantum Tb

mechanical meaning. Any realistic assumption beyond th . _
ideal noninteracting TLS will lead to such nonadiabatic beﬁ-he solutions foiS,, S, andS, S, are

havior. It is therefore assumed that the phenomenon can be ASPY(1—y)+ o2y G(X)
described by a friction coefficient which forces a constant S, =S+ 1=xy)
speed polarization chang®
eq AS*%(1—x)— oy G(x)
52 2.2 S (1=xy) '
g AS*HX(1—y)+ o?G(X)
wheret’ is the time allocated to the corresponding adiabat. Sp=S5c+ (1—xy)
Therefore, the polarization as a function of time becomes
eq AS*Y1—x)— 0°G(X)
2 = - ’
g —
S(H=S0)+| 7| t, (2.22 (1=xy)
and
wheret=0, t<t’. A modeling assumption of internally dis- o?(1—y)G(x)
sipative friction, similar to Eq.(2.21), was also made by S —S,=(ASPYF(x,y)— , (2.28
Gordon and Huleihi[26]. Friction does not operate on the (1=xy)
heat exchange branches; there is no nonadiabatic effect Sin%ere
the fieldsw, and wy, are constant in time. The irreversibili-
ties on those branches are due to the transition rdtgsof (1-x)(1-Y)
the master equation. F(x,y)= Taexy) AS*I= (59559,
From Fig. 1, Eq(2.4), and Eq.(2.22) the polarization for y
the B— C branch of the heat engine becomes G(X) = (XI 74t Ll7).
Sc=S:=S,+ 0_2 2.23 The constraint that the cycle must close leads to conditions
Y\ ) ' on the polarizationss; and S, and on the minimum cycle

time 7. min. Equations(2.27) show that botts,; andS, are
The work done on this branch is bounded byS;* and S¢9. The minimum cycle time is ob-
) tained when the polarizations coincide with the hot bath po-
1o
4

S+ larization: S;=S,=S%. In this case,=0, and from Egs.
L+ =
2
(2.24 bath 7. i, is computed,

Wec= J; DW= fo Sw dt=(w,~ wp) (2.19 and (2.28 the minimum time allocation on the cold

The heat generated on this branch in the working fluid, (S-S — 0?7, 229
. . . . . X = .
which is the work against the friction, becomes max (L= + g2/ 7,
Ta Ta . A w,+ o
QBC:J DQ:J det:M. (225 OF
0 0 27,

(S-S —o?/my
S, (2%

This work is dependent on the friction coefficient and in- Temin=~ 1/ cIn

versely on the time allocated to the adiabats. The computa-
tion for the other branches of the heat engine and heat pumirom this expression for, i, the lower bound for the over-
is similar. all cycle time is obtainedthe left of Fig. 3:
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FIG. 3. Left: Minimal cycle timer,,;, as a function of the inner friction parameterfor the heat engine. The vertical line represents the
upper bound ofr. Dimensionless units are used in whikf=1 andf=1. The parameters used avg=1794, w,=4238, T.=500, T,
=2500,I'.=1, andI',=2. Right: Comparison between,;, and 75, the minimum cycle time for power production.

T= Tin= Temint Tat Th - (2.31) increasing function of the friction coefficient. The diver-
gence of 7, imposes a maximum value for the friction
When the minimum cycle time E2.30 diverges, the cycle coefficiento.
cannot be closed. This condition imposes an upper bound on

the friction coefficiento, D. Finite time analysis
o<glP= /Tb(sciq_ Si_q) (2.32 1. Quantities to be optimized
The primary variables to be optimized are the power of
or the heat engine and the heat flow extracted from the cold
reservoir of the heat pump. For a preset cycle time, optimi-
a? zation of the power is equivalent to optimization of the total
Tp=> Tb,minzﬁ' (233 work, while optimization of heat flow is equivalent to opti-
Cc

mization of the heat absorbed. The entropy production will
Closing of the cycle imposes similar constraints on the!SC beé analyzed. .
minimal cycle time under friction for the heat pump. The a. The total work done on the environment per cycle of the

ot : : : heat engineThe total work of the engine is the sum of the
value of the polarization differen® — S; using the notation
of Fig. 2 becpomes &S, using work on each branctcf. Table | and Fig. &

201 _
Sz_sl:(sgq_ Seiq)l:(x y)_o- (1 X)(y/7a+1/7b) . ch0|61: § DW= _(WAB+WBC+WCD+WDA)1
(1—xy) (.34 (2.38
- . ) . which becomes
The minimum cycle time is calculated in the limit whep
=0, leading t0S,=S,=S5%. From Egs.(2.19 and (2.34 Weyclar = (0h— 02)(S1— Sp) — 0w,( L7+ 1Ump).
the minimum time allocation on the hot brane ., is (2.39
computed: ) o i )
The negative sign is due to the convention of positie
a_gety_ ;2 when work is done on the system.
ymaxz($ 1) 0 Tb, (2.35 Analyzing Eq.(2.39, the work is partitioned into three
(39— S(leq)ﬂfz/ Ta positive and negative areas. The positive dieti rotation
(S29— 2% — 02/ 7, Wp=(wp— 03)(S;—S) (2.40

Th,min™ — 1/Fh In y (236)

mr (3-8 + 0%, is defined by the pointd,B,C*,D! in Fig. 1. The two nega-
) _ ) ) ) ) tive aread(right rotation

where S3% is point F and S{% is point E on Fig. 2. Using

Th,min the lower bound for the overall cycle time is computed Wh=02wa(1l7,) + 02 w,(1l7,) (2.4

T2 Trin= Th.mint Tat Tp - (2.37)  are defined by the point€,C*,S;,S; and D!,D,S,,S, in

Fig. 1.
Closing the cycle imposes a minimum cycle time for both The cycle which achieves the minimum cycle time
the heat engine and the heat pump, which is a monotonically- 7 i, produces zero positive work/,=0. The corners
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FIG. 4. Left: Power as a function of the time allocation on the cold branch corresponding to the friction coeéficior@05 with
changing cycle times. The cycle time values are for curve=1r,;,=0.059, for curve 27=0.1 (the first two plots overlap and for curve
3, 7=0.5. Other parameters are the same as in Fig. 3. The dashed horizontal line is the line of zero power. Right: The cycles corresponding
to the power plots. Negative work is in blue and positive work is in red. Note that for cycles 1 and 2, the total area is negative and, therefore,
the power output is negative.

andB coincide atE, andC* coincides withD'. The negative work is done on the environment, aSg starts to increase.
work of Eq.(2.41), is defined by the corneiG,D,S,;,S; and  For long cycle timesS, will approachS;9, while S, will

is “cut” by the S;%line (cf. the right of Fig. 4. The cycle  approachS$?. The constant negative area will become neg-
has negative total work, meaning that work is damethe ligible in comparison to the positive arégig. 5).

working fluid against friction. Whenr increases beyond To study the influence of friction on the work output the
Te.min, Sy diverts fromS,, becoming lower tha®;?[Cf. Eq.  polarization difference from Eq(2.28 S;—S;, is inserted
(2.27]. At a certain point, the work done against friction is into the work expression E¢2.39, leading to

exactly balanced by the useful work of the engine. The mini-

mum time in which this balance is achieved is designatgd Weyeler=(0p— 02)(SpO= SEYF(X,y) = W,1, (2.42
Its value, which can be deduced from Eg.39, is worked
out in Appendix B. where
The minimum cycle timer,,;, is compared tor,, the
minimum time needed to obtain positive power, shown in the L[ op(1=y) (X 7o+ LTy)
right of Fig. 3 as a function of the frictionr. Both functions Wn=o 1—xy
increase with friction, but diverges at a much lower fric-
tion parameter. Above this friction parameter no useful work N wa(1=X)(Ura+yl 1) (2.43
can be obtained from the engine. The divergencergf, 1—xy |
corresponds to a larger friction value where the cycle cannot
be closed. W1 Is the additional “cost” due to friction and is always
When the total time allocation is sufficient, i.e=> 7, positive.
100
80 s,
-0.35 [ —1Bs
60 G, B,
“ CJ B,
% 40 ) 040t
o y A,
20 D Ay
—045 1
0 8™ D As
-20 : : : -0.50 ' ' '
0 1 2 3 1000.0 2000.0 3023.0 4000.0 5000.0

FIG. 5. Left: Power as a function of the time allocation on the cold branch corresponding to the friction coeéfiei®r05 with
changing cycle times. The cycle time values are for curve=4]1, for curve 5,7=2, and for curve 67=5. The dashed horizontal line is
the line of zero power. Right: The cycles corresponding to the power plots. All the constant parameters are as in Fig. 4
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The emergence of positive powgris shown in Fig. 4. 1 1

For a fixed cycle time the optimization of work is equivalent —+1= cop " 1
.Y . . MRf

to the optimization of power. The first two cycles have a
cycle time shorter thamry, and therefore do not produce y, o?(Ury+ 1)
useful work. For cycle 37> 7, and positive work is ob- _wa( W)
tained when the time allocation on the cold bath is sufficient
7.=0.08. For longer total cycle times, the ratio of the nega- Th o?(Ury+ 1)
tive area to the positive area decreases as can be seen in Fig. >-|-_C W ' (2.48

5.

The position of the cycles in thg,w coordinates relative (whereCOP s the coefficient of performangéeading to the
to S;9 and S¢9 changes as a function of the cycle time. In- expression for the efficiency
sight into the origin of the behavior of the “moving” cycles

is presented below in Fig. 11 of Appendix A. ” _Ya 1

The calculation of the total work done on the working R 0y pirictiontess 2(1/r,+ 1Ur,)/(S,— Sy)
fluid per cycle,W¢y e, for the heat pump is described in - 1
appendix D. See also Table Il and Fig. 2. <t FTeTeTeS 3

b. The heat flow(Qf). The heat flowQr extracted from Th 7 E. + 0 (Ura+ Urp) (S~ Sy)
the cold reservoir is (2.49

For both the heat engine and the heat pump, the efficiency is
Qr=wa(S =S/ 7. (2.44 explicitly dependent ?)n time aIIocation,pcycI% time, and baBtIh

temperatures.

Due to the dependence @ only on S,—S;, the cycle is
similar to the cycle of the heat engine.

c. The entropy productio@ S"). The entropy production The performance of both the heat engine and the heat
of the universeAS"Y, is concentrated on the boundaries with pump can be optimized with respect (@ the overall time
the baths since, for a closed cycle, the entropy of the workingeriod 7 of the cycle, and its allocation between the hot and
fluid is constant. The computational details for both the heatold branchesjb) the overall optimal time allocation be-
engine and the heat pump are shown in appendix C. Th&veen all brancheghis optimization is performed only for
entropy production and the power have a reciprocal relatiomhe heat pump and(c) the external fields ¢, , wy).
(see Fig. 12 in Appendix IC For example, the entropy pro- a. Optimization with respect to time allocatiohhe opti-

2. Optimization

duction increases witkr, while the power decreases. mization of time allocation is carried out with the constant

d. EfficiencyThe efficiency of the heat engine is the ratio fields w, and w,. The Lagrangian for the work output be-
of useful work to the heat extracted from the hot bath: comes

) 1 1
Weycle trictionless | @ @a(UTa+ 1imp) L(X,Y,N)=Weyeiet N 7+ F—In(x)+ F—hln(y)— Ta=™ Th |
="— = — y (o}
THE T O hsorbed TE: 0p(S1~Sy) (2,50
(2.45

where\ is a Lagrange multiplier. Equating the partial de-
rivatives of £(X,y,\) with respect tox andy to zero, the

frictionless__ .. . . .
where 7, g =(1-walwy). o condition for the optimal time allocation becomes
When the cycle time approaches its minimu 7y,

the efficiency divergesyy g — —. The efficiency becomes T x[(1—y)*(SS9— St + o2(1—y)(Ura+ Y/ 7)]
positive only whenr= 7,. Using Eq.(2.45 a bound for the

efficiency is obtained: =Thy[(1=X) 4S9 Y — 02 (1= X) (X/ 7o+ L) ].
(2.5)
2
0< g < pirictioniess_ E( M) Wheno =0, the previous frictionless result is retrievg@p-
HE T UHE Tl (S1=S) )7 timizing the entropy productiodS" leads to an identical
(246 time allocation to Eq(2.51).]
Equation(2.51) can also be written in the following way:
The cooling efficiency of the refrigerator will be TX[(L=Y) (1= YXma) 1= Thy[ (1= X) Xma—X) 1,
(2.52
_ 9pc 0a($H—S) where X, was defined in Eq(2.29. The result is depen-
TRE= 7 on T (wp—0,)(S,— S)) + 2wy (Lity+ 1Ty) dent on the time allocations of the adiabats, through the de-

cycle

(2.47) pendence 0Ky, ayx-
For the special case whdri.=T"},, the relation between
the time allocations in contact with the hot and cold baths
or becomes
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FIG. 6. Left: The optimal power with respect to time allocation as a functiorr,ofor different values of friction. Middle: The
corresponding heat flowdg). The parameter values for both left and middle panels are for plej=,=o=0, for all the other plots
7,= 1,=0.01. Theo values for the curves from plot 2 to plot 6 are 0.002, 0.005, 0.007, 0.0135, 0.02, respectively. Right: The entropy
production rate corresponding to the optimal power on the left part of the figure. The additional curve is curve 1, which corresponds to
=0, andr,= 7,=0.01. The parameter values for the other plots are for plet, 2,7,= o=0, for all the other plots,= 7,=0.01. Theo
for the curves from plot 3 to plot 7 are 0.002, 0.005, 0.007 0.0135, 0.02, respectively.

X=Xmaxy- (2.53  (2.58. When friction is introduced, the maximum power de-
creases and is shifted to longer cycle times. The figure also

For the frictionless case, this result coincides with the formenows that for short times the work done by the system is
frictionless onex=y, meaning that equal time is allocated to Begagve, %nd as the friction Cgeff'c'e?"f mcreases,hypte
contact with the cold and hot reservoirs. When friction is>oundary etween positive and negative power shifts to

added this symmetry is broken, E@.53. To compensate longer Cy%l? timesr,]. In the rlniddle of Fir?‘ |6,ﬁt_he Eeat fl_lo_\;]v
S X o . _corresponding to the optimal power on the left is shown. The
for the additional heat generated by friction, the time allo shapes of the power and heat flow curves are similar. The

Eittegr;?]éﬂe cold branch becomes larger than the time on tr‘Heeat rov_v values are always positive and larger th_an the cor-
' . responding power values. The entropy productioight)

The Lagrangian for the heat flow extracted from the  ghows that unlike for the power curves the friction signifi-
cold reservoir is Qeﬁped in parallel to the Lagranglan for thecantly changes the shape of the curves. The entropy produc-
total work. Substituting™, for I'c, x for y, and vice versa, tion rate for the case with friction sharply decreases. The
and alsoymax for Xmax, Whereyn., was defined in Ed. parallel graphs for the heat pump are similar.

(2.39, one gets the optimal time allocation for the heat b. Time allocation optimization between all branches of
pump. the refrigerator Further optimization of the performance of

Optimization of power with respect to time allocation as athe heat pump is possible by relaxing the assumption of con-
function of the cycle timer for different friction coefficients  stant time on the adiabats. First, the time allocation between
is shown in Fig. 6(left), together with the corresponding the two adiabats is optimized, wheg+ r,= &, whered is a
heat-flow (middle) and entropy productiofright). The left  constant. Finally, the time allocation between the adiabats
part shows that in the frictionless case the power obtains itand the heat exchange branches is optimized. These results
maximum at zero cycle time with a value consistent with Eq.are compared to the recent analysis of Gordbal. [27].

b I I I e 0.343,12.202)
2 122 | R .
10 B 7 125
[
g ]
S 5|
©] 1 i
0 1 1 ) )
0 0.1 0.2 0.3 0.4

arbitrary time scale

FIG. 7. The relation between efficiency and cooling power for the heat pump. The parameters are as follows. The constant optimal cycle
time 7=0.78; T,=51.49, T,=257.45,0,=47.699,0,=600,I';=1, I'y=2, 0=0.005. Left: Comparison betweend (plot 1) and 14
(plot 2) as a function of the allocated time transfer from the heat exchange branches to the adiabats. Zero time is the optimal heat flow time
allocation. Right: The universal plot for the heat pump. The starting optimal point in the planey, {1), was(0.342 96,12.20R while
the maximum efficiency poinB is (0.6322,11.637Pand time allocation 1., 7,7, ) =(0.227 21,0.163 28,0.1636,0.2259). The inset
shows the neighborhood of poiAt
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From Egs.(2.44 and (2.34 with constant time alloca-
tions along the heat exchange branches one gets for the cool-
ing power

Qr=Ao— Ay

y ! ) (2.59

_+—
T2 (6—Ta)

whereAy andA, are constant functions of the parameters of

the system. Ord a double inequality is imposee> 6> the FIG. 8. Power for the frictionless engine as a function of the
larger of [ (7— 7h min); To.minl; S€€ EQ(2.33. fields (w,,wp) for constant bath temperatures, and constant time
The optimalr, depends only oy and oné. The optimal  allocations. The maximum power is achievedugt= 1794 andwj,
value of 7, o, becomes =4239 where the bath temperatures age= 500, T,=2500.
—-y+ \/§ influence the energy spacing of the TLS. The work function
Ta,opt™ 5?)/- (2.59 Weycle, OF equivalently the powerR) is optimized with

respect to the fields, subject to the Carnot constraint:

Further optimization by changing the the valueso€hanges
the cycle timer. This optimization step is done by numerical Wa _ Wp

iteration. Typically the sum of the final optimal valuesQf T_C> T_h (2.5
and 7, is about twice their value before, and their ratio is
about 0.7 of the value that was chosen initially. Optimal power is obtained by equating independently to zero

_The next step is to study the time allocation between thehe partial derivatives OWeycte OF Of P=Wpy e/ 7 by vary-
adiabats and the heat exchange branches when all other cQAy w, and w,,. In addition, the optimal solutions have to
trols of the heat pump have optimal values. These controlgjifill the inequality constraints in Eq(2.56. As a result,
include also the external fields of Opt|m|zat|0n which aretWO transcendental equations ma and wp are Obtained,

described later. which are solved numerically.

For comparison with Gordoet al.[27], the results of the The two equations are
optimization are plotted in the (QF,1/%) plane for a fixed
cycle time 7. The following example demonstrates the — (1_yx ) wq 1—-y
method followed: First an optimal starting value O is —————(AS*9+ ozlra)cosr?(ZK T )= T
found which determines the time allocation control param- (wp—wa) sTc/ (4keTe)
eters 7,=0.44221, 7,=0.31779, 7,=0.0084, and 7, (257
=0.0116 with a total cycle time of=0.78. Under such (XmaX_X)(ASeq+ 2/ )cosﬁ( Wy ): 1-X
conditions O max=2.9158 (10g may=0.342 96). (0p—wy) 7 /Ta 2kgTy)  (4KgTp)'

Changing the time allocation between the adiabats and the
heat exchange branches changes the balance between opjhere A Se9= S9— S as defined in Eq(2.28. Examining

mal cooling power and efficiency. Denoting the sum  Eq. (2.5, and fixing the frictiono, it is found thatA S29 is
+ 7h DY 7ch, the ratior, /7. by rpc, the sumra+ 7, by 705, an extensive function of order zefmtensive with respect
and the ratior, /7, Dy rap, time is transferred fromc, by to the quartet of variables,,T¢,wp,Tr. This means that
small steps taryp, While keeping the ratios, andr,, con-  scaling these parameters simultaneously will not change
stant. For each step the correspondin@¢l/and 1 are  AS®9 Also, Xp.c and cosR(w/2kgT) are extensive(order
calculated as in Fig. 7. The relation between the reciprocaterg. The work function, however, is extensive with order
efficiency and the reciprocal cooling power shows the[Egs.(2.42 and(2.43)]. This property will be exploited in
tradeoff between losses due to friction and losses due to heglc. |11.
transfer. Following the curve in Fig. 7, starting from pofat The optimization of power with respect to the fields is
where the cooling power is optimal, resources represented byhown in Fig. 8 for the frictionless engine, as a function of
time allocation are transferred from the heat exchanggnhe fields with fixed time allocation. A global maximum can
branches to the adiabats, reducing the friction losses. Age identified.
point B an optimum is reached for the efficiency. This point  The heat pump optimization ofr with respect to the
has been found by Gordet al. to be the universal operating fields is different and therefore will be presented in Sec. IIl.
choice for commercial chillers. Poif represents the opti- The analysis for optimization with respect to the fields for
mal compromise between maximum efficiency and coolinghe entropy productioAS" is presented in Appendix C. The
power. _ _ optimal solution without friction §=0) leads toAS,;,
PointA is located at the maximum cooling power. If more _ Wheno#0, the minimum value ofAS" is different

time is allocated to the heat exchange branches bafl 1/ from zero and is achieved on the boundary of the region.
and 1/ will continue to increase as seen in the inset of Fig.

7.

c. Optimization with respect to the fieldEhe values of
the fieldsw, andw,, are control parameters of the engine. In  Global optimization of the power means searching for the
a spin system these fields are equivalent to the value of theptimum with respect to the control parameters cycle time,
external magnetic field applied on the system. They directiftime allocation, and the fields. An iterative procedure is used.

E. Global optimization of the heat engine
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TABLE Ill. Global optimization of power. The notatioR "*{w, ,»,) stands for fixed time allocations,

and the notatio®™®{ r,,7,) stands for fixed field values. The other parametersTare500, T, = 2500,
Ta=T7,=0.01, =1, andl',=2.

o T PN w,,wp) P 7., 7) w, wp T T
0.005 2 84.46 1794 4239 0.5999
0.005 1.367 87.18 1794 4239 0.5891
0.005 1.367 88.68 1719.1 4036.31 0.5891
0.005 1.347 87.47 1719.1 4036.31 0.588 56
0.005 1.347 88.704 1718.16 4033.67 0.588 56

The procedure is initiated by setting the optimal time al- A. Optimization of the heat flow Qr with respect to the fields
location from the corresponding Lagrangian, witk 0. The and to the cooling power upper bound
power becomes a product of two functions, one depending The heat flow,0r extracted from the cold reservoir now
only on time and the other only on the fields, and thereforg,ocomes the subject of interest;
the fields can be changed independently of time. The optimal
fields for the above time allocation are then sought. For the Or=wa(S,— )/, (3.9
frictionless case, the overall time on the adiabats tends to
zero. The optimal field values become independent of time
The valueP=107.501 is the short time limit in accordance or from Eq. (2.34,

with the equation 2(1-x)(y! 1)
oz —X)(yl 7o+ 17
P (05— @) (S0= SN (Tl ) [(VT o+ VT)2. Qr=(wal M| (7= STIF(xY) — 1=xy) :

(2.58 (3.2

These fields are inserted into the expression with frictio No global maximum forQF_ with respect to the fields is
o#0, and the new optimal times and fields are computed.ound‘ The derivative oR with respect taw, becomes
The iteration converges after two to three steps, as indicated
in Table lll for 0=0.005. Notice that the location of the d9r F(XY)w, 1
optimum is not very sensitive to the friction parameter. Jwy, - r Akg T, cosR(w,/2KgTh)

In Table 1V, the extensive properties HG.57) are exam-
ined fork=2 andk=10 with respect to Table Ill. The tem- . ) .
perature values will change .= 21000, T,=5000 for k Ieadlng to the result thadg is monptomc inwy, . Under su.ch
=2 andT,=5000, T, =25000 fork=10. The results con- conditions,wy, is set, and the optimum with respectdq is

=0, (3.3

firm the analysis. sought for. The derivative ofr with respect taw, becomes
IQk a?
—(ced_ ceqy_
lll. ASYMPTOTIC PROPERTIES OF THE HEAT PUMP dwq =(S*-S19) (1-y) (y/7a+ 1Ump)
WHEN THE COLD BATH TEMPERATURE
APPROACHES ABSOLUTE ZERO 1 0 (3.4

-, -
The goal is to obtain an asymptotic upper bound on the 4kg T cOst(wa/2KksTc)

cooling power when the heat pump is operating close to

absolute zero temperature. This requires optimizing the pedntroducing from Eq.(3.4) the optimal value of $%—S7%
formance of the heat pump with respect to all control param—[ a?/(1—y)1(y/ 7, + 1/7,) into Eq. (3.2) leads to the opti-
eters. mal cooling rate:

TABLE IV. Global optimization of power, by multiplying the four valueg.,T,,w5,w, by k and
searching first for optimal time allocation, then multiplying only the temperature valu&sabyg searching
for the optimal fields. All the notations and other parameters as in Table III.

o k T PN w,,wp) P 71.,7) Wy wy, Tl

0.005 2 1.367 174.9 3438.2 8072.6 0.588 52
0.005 2 1.367 174.9 3436.7 8070.3 0.58852
0.005 2 1.347 174.94 3436.7 8070.3 0.588 56
0.005 2 1.347 179.8 3437.7 8069.4 0.588 56

0.005 10 1.347 887.04 17181.6 40 336.7 0.588 56




PRE 61 PERFORMANCE OF DISCRETE HEAT ENGINES AN. . . 4785

TABLE V. First step. Starting from an optimal quartet, the procedure creates for a given decreasing set of
wy'S, a decreasing set of @b,’s for fixed bath temperatures. Numbers in brackets denote powers of 10.

TC Th wp wgptimal wgptimal/Tc wb/Th R QF
0.0025 50 60 1.3763] 0.5392 1.2 2.226 5.815]
0.0025 50 55 1.2733] 0.5090 1.1 2.161 5.015]
0.0025 50 50 1.1643] 0.4653 1 2.149 4.2435)
0.0025 50 45 1.0513] 0.4205 0.9 2.140 3.505 45|
0.0025 50 40 9.37¢4] 0.3728 0.8 2.146 2.826]
0.0025 50 35 8.2904] 0.3300 0.7 2121 2.185]
0.0025 50 30 6.954] 0.2794 0.6 2.147 1.613%5]
. F(x,y)wg 1 Assuming the relatiod,=pT; asT; tends to zero, the ex-
optimum_ - .
OF . AkeT, CoSR (@, 12KaTo) ponents can be expanded to the first order to give
F(XrY)/wa 2 Te
- 2 . ) To 1—X + / X —
4kB7' \Tc COSH(a)a/ZkBTC) (3.5 SZ=—C Ymaxt (04 wb)P (Ymax—Y)
1) (1—xy)
a
Due to its extensivity, the rati@,/T. becomes a constant, X(02173) Ymax—Y)
while bothw, and T, can approach zero. +1/2— 1—xy) : (3.8
From Eq.(3.5), an upper bound for the cooling rag- is
obtained:
, Also, S, defines the internal temperatufe through the re-
Qoptimum_ F(xy) ﬁ) (3.6 lation: S;=— ttanh@,/2ksT’). Expanding the hyperbolic
F 4kgr \T¢) € ' tangent, one gets:

From Eq.(3.6), whenT,. approaches zero, the cooling rate
vanishes at least linearly with temperature. This is a third law 1= XYmaxt p(@al @p)X(Ymax—Y)

statement which shows that absolute zero cannot be reached =T (1—xy)

since the rate of cooling vanishes as absolute zero is ap- 5

proached. _ X0a(075)(Ymax—Y) (3.9
(1—xy) '

B. The asymptotic relation between the internal and external

temperatures on the cold branch proving thatT. and T’ both tend asymptotically to zero. It

When the bath temperature tends to zero, the internahould be noted that the term independenT pflepends on
working fluid temperature has to follow. This becomes aw,, which also tends to zero ds tends to zer¢Eq. (3.6)].
linear relationship betweel’ and T, asT, tends to zero.  Equation (3.6) also shows thaQ 2P"™ ™ is a quadratic

Calculating the polarization at the end of the contact withfunction of w, (cf. Fig. 9.

the cold baths,, Equation(3.6) represents an upper bound to the rate of
q . ) cooling. In order to determine how closely this limit can be

S, i (S39=STOX(1-y) = o*X(Urp+ Y/ 7a) approached, a strategy of cooling must be devised which
(1—xy) ' reoptimizes the cooling power during the changing condi-

(3.7  tions whenT,. approaches zero.

TABLE VI. A procedure to get an optimal set of pairs @f, ,T. where their ratio tends to zerd,,
=50 for every cold bath temperatufe . The indexfl stands for the frictionless case, a@{l® denotes the
upper bound forQg . Numbers in brackets denote powers of 10.

Tc wy, wgptimal ASH ASu’ﬂ QF QEP

0.0025 60 1.3703] 0.033 3353 0.0285 5.8[5] 6.084-5)
0.001 25 55 6.3654] 0.0285075 0.024 06 2.45%] 2.626-5)
0.000 625 50 2.914] 0.024 2662 0.02021 1.0B%] 1.098-5)
0.000 3125 45 1.31391] 0.020 338 0.016 69 4.29p8] 4.467-6)
0.000 15625 40 5.825] 0.016 788 0.01354 1.72B9] 1.759-6)
0.000 0781 35 2.5785] 0.013210 0.010357 6.67[FZ] 6.888-7)

0.000 0391 30 1.09146] 0.010 356 0.007 915 2.46[F3] 2.468-7)
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FIG. 9. Left: Solid line is the optimal heat flo@ 2°'™ ™ for the heat pump as a function ®f . The fixed parameter values of the pair

(wp and T,) are T,=64.359, 51.49, 42.9082, 30.035 55, 23.599, 17.153, 4.291, 0.8582, 0.1717, 0.017 17 and accaesglingly

=150,120,100,70,55,40,10,2,0.4,0.04. The other constant parameter values-@r@05, I'.=1, I',=2. dashed line is for fixedo

=3000 for every point. The other parameters are the same as for the solid line. Right: The optimal heat flows multiplied by the correspond-

ing T; as a function ofw, . The optimal time is constant for the chosen parameteys;n. = 0.885 for the solid curves and 0.825 for the

dashed curves.

C. Optimal cooling strategy Qopnmum: F(X,y) ®a optimal 2
The goal is to follow an optimal cooling strategy, which F 4KgToptimal | Tc,optimal
exploits the properties of the equations and achieves the up-
per bound for the rate of coolin@g. The properties of the 2 Te,optimal
equations employed are as follow) The derivative with COSH(wa,optimaI/ZkBTc,optimaI).

respect tow, of Or [Eq. (3.4)] is extensive of order zero in
the “quartet” (w5, wp, T, Th). (i) For dQg /dw, the exten-
sivity holds also for the “doublets” ¢,,T) or (w,,T.).
Scaling these variables by the same number leave$3=.
equal to zero, and the value g2P"™™ does not change.
(i) In spite of Qr being monotonic inw,, Q2PIMUM is

(3.10

In general, the hot bath temperature is constant, and the
property(ii) is used to scale back the value of the optifial
to the bath temperature. As a result, the optimal high field is

) also scaled.
independent ofo, (and of T); thereforeQg saturates as, Property(iii ) will be exploited by changing onlyw,, in the
is increased. optimal quartets and checking for saturati@ee Fig. 13 in

From property(i) it follows that once an optimal quartet Appendix E and the dashed curves of Fiy. Summarizing,
(wa,wp,T¢, Ty) is created, it is possible to cool optimally for every quartet the upper bound in E(.6) can be
with a set of quartets that are scaled by a decreasing,set reached. The details of the cooling strategy can be found in
<1, lim,_.r,=0. For this set the limit of the rati@, /T, Appendix E.

is a nonzero constant. Therefore in E§.5 w, andT, are Figure 10 shows that the cooling strate@ables V and
optimal, leading to VI) can approach the upper bound, leading to a linear rela-

0.00008 . . 0.04

0.00006 0.03

G 0.00004 | W0 002
0.00002 0.01
0.00000 - . 0.00 :
0.000 0.001 0.002 0.003 0 10000 20000 30000
T, 1T,

FIG. 10. Left: The optimal cooling rate as a function of the cold bath temperatureompared with the upper bound for the cooling
rate. Right: The entropy production during cooling shown for the case with frigtipper line, circlesand without friction(lower line,
squares The common parameters for all three casesrgrer,=0.01, c=0.005,I'.=1, I',=2.
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tion of the optimal cooling power with temperature. With
respect to the fields the optimal strategy leads to a decrease
of the field w, that is in contact with the cold bath. This
causes the internal temperature of the TLSto be lower
than the cold bath temperatufg. On the hot side the opti-
mal solution requires as large an energy separation as pos-
sible, w,— o, but this effect saturates. -0.43 |
The linear relation of the cooling rate wiff, leads to a
constant asymptotic entropy production as can be seen on the
right of Fig. 10(cf. Appendix Q.

—0.38 [N

-0.48 : : : -
0.0 0.5 1.0 1.5 2.0

IV. CONCLUSION FIG. 11. Comparison between the polarizati@sand S, as a

The detailed study of the four stroke discrete heat enginéinction of 7., for ten differentr values, 0.06, 0.08, 0.1, 0.25, 0.5,
with internal friction serves as a source of insight into the0-75: 1, 1.25, 1.5, and 2. The solid curves &fewhile the dashed
performance of refrigerators at temperatures that are ver§-TVeS areS;. Superimposed are the values $f and S, for the
close to absolute zero. The next step is to find out if th aximal'S; = S,.
behavior of the specific heat pump described in the study can
be generalized. A comparison with other systems studied in-
dicates that the conclusions drawn from the model are ge- This research was supported by the U.S. Navy under Con-
neric. As a heat engine the model shows the generic behavi@iact No. N00014-91-J-1498. The authors want to thank Jeff
of maximum power as a function of control parametersGordon for his continuous help, discussions, and willingness

found in finite time thermodynamids3—6]. This is despite to clarify many fine points. T.F. thanks Sylvio May for his
the fact that the heat transfer laws in the microscopic modehelp.

of the working fluid are different from macroscopic laws
such as the Newtonian heat transfer [d6]. When operated
as a heat pump with friction, the present model shows the
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APPENDIX A: ANALYSIS FOR THE MOVING CYCLES

universal behavior observed for commercial chill¢2Y] Insight into the origin of the behavior of the moving
caused by a tradeoff between allocating resources to thgycles is seen in Fig. 11, where the polarizati®sand S,
adiabats or to the heat exchange branches. are shown as monotonically decreasing functions of the time

~ Another question is whether the linear scaling of the op-aliocation on the cold bath. However, the envelop&pfor
timal cooling power at low cold bath temperatures is a uni-maximal power, namely, for maxim&; —S,, is worth no-
versal phenomenon. For low temperatures the results of thgcing. It is a decreasing function for short cycle times,
present model can be extended to a working fluid consistingchieves a minimum at,, and starts to increase for> 7.
of an ensemble of harmonic oscillators or atevel sys-  Thys it is responsible for shifting the cycles to smaller po-
tem. This is because at the limit of absolute zero only the twQarization for short cycle times, and for the change of that
lowest energy levels are relevant. When examined, othegend for larger cycle times. The envelopeSffor maximal
havior. For example the continuous model of a quantum heatqyivalently of r, supporting the increase &,—S,. The
engine[ 18] based on reversing the operation of a laser shovigyre also shows that for a short time allocation b8trand
this linear scaling phenomenon. Another example is the EI’I052 are close to the equilibrium polarizatid®®. When not

Sszn refrigeratir(])_nhcyﬁlecf. th‘ (23] in the study I(')f Chenl enough time is allocated on the hot bath both the polariza-
and Yan[25] which shows the same asymptotic linear re & ions S, and'S, approachsed.

tionship.
A point of concern is the dependence of the heat transfer

laws on temperature when absolute zero is approached. The APPENDIX B: THE COMPUTATION OF 74

kinetic parameterk; andk; represent an individual coupling

of the two level system to the bath. Considering coefficients

derived ffom gas phase collisions they settle to a constar‘gnd hot branches for zero work. The natural additional re-
asymptotic value as the temperature is lowef2d]. The o ioment is to seek for the optimal allocationg, and 71, o

reason is that the slow approach velocity is compensated be( . .
. . . Sing Eq(252) T0=TcoT Thot TatT 7p -
the increase in the thermal de Broglie wavelength. : ’ ' .
There has been ongoing interest in the meaning of th Denoting byx, andy, the corresponding andy values

e . . : .
third law of thermodynamicg30—36. The issue at stake has fefined in E.q(2..19), the following two equations far, and
been the question: Is the third law an independent postulatxéo are obtained:

or is it a consequence of the second law and the vanishing of

the heat capacity? This study presents a dynamical interpre- Vo= (Xmax—Xo) ~R (B1)
tation of the third law. The absolute temperature cannot be (Xmax—Xo0) —RXg

reached because the maximum rate of cooling vanishes at

least linearly with temperature. and

The computation ofy Eq. (2.39 is not sufficient since it
ives only the relation between the times spent on the cold
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FIG. 12. Left: The entropy production of the heat engine as a function of the time spent on the cold branch for the fixed walues of
=1794, w,=4238,T.=500, T,=2500,I'.=1, I'y,=2, and7=0.1. Middle: The corresponding cycles. Right: The corresponding powers.
Seven cases are shown. Case 00 is the frictionless case when the times spent on the adiabats are zero and case 01 is the frictionless case wh
the times spent on the adiabatg,and ,, are different from zero and equal to 0.01. The other five cases are with increasing friction, when
alsor,= 7,=0.01, whereas the different friction coefficientsare for plot 1,0=0.003, for plot 2,0=0.004, for plot 3,0=0.005, for plot

4, 0=0.006 and for plot 50-=0.007.

I Xol (1= Y0) (1= YoXmax 1= TnYol (1= Xo) (Xmax—X0) ],

(B2)
whereR is defined as
P wy(Ury+ 1T
R: a( a b) (B3)
(wp— wa) (SHI—-SE4+ 0'2/Ta)
andx,.x Was defined in Eq(2.29 as
(SHI-9 - o?lr,
Xmax™ eq Zq > . (B4)
(S29-S29 + 0%/ 7,
The quadratic equation to be solved fgyis
Ax3+ Bxo+C=0, (B5)

Where A=T"(1+R), B=—{Ty[(1+R)(Xmax—R) + Xmaxl
+T(1+R—Xman} andC=T"1,(Xmax— R) Xmax-

APPENDIX C: ENTROPY PRODUCTION

1. Heat engine
AS¢ycier=—(Qag/Tht Qcp/To), (Cy
or from Table |

2
0w,

Te

ASgyclelz(wa/-rc_“’b/Th)(Sl_Sz)"' (Ura+17y).

(C2

The entropy production results are shown in Fig. 12. The left

ASgyclelz (walTc— wb/Th)(Sﬁq_ qu)F(ny) + ASﬂl '

(C3
where
u 2 “a
AS =0 1—xy) (T—C(l—x)(1/7a+y/7b)
+$—:(1—y)(x/ra+ 1/Tb)>, (C4)

Notice thatASY, is always positive. Folo=0 Eq. (C4)
reduces to the frictionless resu[@0].

2. Heat pump

The entropy production for the heat pump becomes

u (OF) (OPY 2(1)b
AS = T_h_T_c (S5—S)to T—h(llTa+1/Tb)

=($—%)(sg‘*—S‘i‘bF(x,y)wZF(x,y)
h c
wp 1 (1 X| wy 1 (1 y
Tol-x\ra m) Tol-ylm 7))
(CH

The asymptotic entropy production @s tends to zero can
be calculated, leading to
wp

—L2 (1 p(walwp)]?
4kBp2Tg)[ p(walwp)]

AS?eFF(X,y)“

figure showsA S" with increasing friction. The middle figure g2l L (U7t xI7y)
shows the corresponding cycles, while the right figure shows pTc. (1—X) a b
the corresponding power values.
The reciprocal behavior of the entropy production and the wa 1
power is clear from Fig. 12. One also observes that for the JrT_C (1—y) (Urptyl7a) || (C6)

given cycle time the “free” time for the cycles becomes

more restricted with increasing. This follows from the de-
pendence ofr; i, On o. See also Fig. 3.

Introducing Eq.(2.28 into Eqg.(C2), the entropy produc-
tion becomes

SinceTp=pT,, the right-hand side of EqC6) tends to a
constant, for each term depends on the constant ratios
(wp/Th),(w,/Te). This result is demonstrated on the right
side of Fig. 10.
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FIG. 13. Left: The optimal heat flow for the heat pump as a functiomf showing the saturation phenomenon. The fixed parameter
values are, for triangles;,,=64.5725,T,=12.9145,w,=11.9233, starting withw,= 150; for squares],=42.908 15,T.=8.581 68,w,
=7.949 86, starting witlw,= 100; for circles,T,=23.599 05,T.=4.719 81,w,=4.372 47, starting witlw,=55. The common parameters
for all three figures are,= 7,=0.01, 0=0.005,I'.=1, I',=2. Right: The optimal heat flows as a function®f,, the time at which the
optimum is achieved. The fixed parameter values are the same as on the left. We note that the optimal time is becoming constant only at
saturation.

0.0

max

The optimization with respect to time allocation has the APPENDIX D: THE TOTAL WORK DONE
same result as for the heat engine. Therefore, only optimiza- ON THE SYSTEM FOR THE HEAT PUMP
tion with respect to the fields is presented. Equating to zero

the derivatives with respect toandy of the entropy produc- The total work done on the system becomes

E:\o/g,szone gets two equations similar to the total work deriva- ngcle:%:(wb_ 03)(S,— Sy) + 02w Lry+ Ury) o1
or
(1= YXmax) ( Wa )
— " (AS®9+ ¢/ 7,)cosht
(@a To—wpTy) 77N BT, W= (0p— 0a) (S59=STIF(x,y) + Wog,  (D2)
1-y where
+———=0, C
(@Ko 0 )
g
Waa=m[wb(1—Y)(l/Ta+X/Tb)
(Xmax—X) > Wp
m(ASeq+0' | 7,)coslt m T 0 (1=X)(y/ 1o+ 1/7p)]
1—-x _ wb(l X\ oy (1 Y)
_ =0 F(XY)| | =+ = |+ =+ ]|
kT O €8 S e PN b v P
(D3)
whereAS*9 is S{f—S¢9. Equation(D1) can be interpreted as the work done on the

Equationg(C7) and(C8) show that the entropy production working fluid (cf. Fig. 2), the sum of three positive areas,
is @ monotonic function in the allowed range, namely, for (y —.)(S,—S,), c2wy(1/7,), and o?wp(1/7,), with the
corresponding cornersD,C,BY, A, B,B'S,,S;, and

1
0, o ALA'S,,S,.

¢ °h APPENDIX E: THE OPTIMAL COOLING STRATEGY
CLOSE TO THE ABSOLUTE ZERO TEMPERATURE
To conclude, the entropy production has a minimum

valueASU. . which will be for the heat engine The first step in the cooling strategy is to create the first

optimal quartet(1) The system external parameters 7,,
74, I'c, andl’y, are set(2) A decreasing set aby, is chosen.
W, (3) A constant ratio ) for T,,/T., is chosen, which is the
ASumin:-l-—CTz(l/7'a+ 1/7y) (C10  ratio of the initial bath temperaturegl) For the above cho-
¢ sen values, the optimal values of,, T., and 7, and their
optimal allocations between the branches to give maximal
obtained on the boundary of the range. Qg are found for eachwy, in the set in(2), by solving nu-
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merically the following additional equation to E.4), with  and all parameters are fixed excegt, which is allowed to

the condition thalf,=pT,: increase.
In order to approach the upper bound ¢ in Eq. (3.6),
IQr F(Xy)[wa)? 1 a decreasing set @,/ T is created, achieved in an optimal
T, Arkg | T,/ | cosf(w./2kgT,) way. The first step is that after having an optimal quaifet,
and Ty, are fixed. Then, by lowering,, one finds the cor-
_ Wp ~0 (ED) responding optimake, values. This procedure is checked
pwa COSH(wp/2pksTe)) globally, by also iterating the time allocations. The results of
a typical example are shown in Table V.
The above strategy causes a decreask,dbgether with In the second step, using again the property of extensivity,

T.. Nevertheless, according t@) in Sec. IlIC above, the the cooling will be achieved by multiplying the rows of
doubletw, andT,, can be rescaled to increa¥g back to its  Table V by a decreasing sequence, e.g., by for the nth
original value. The solid curves of Fig. 9 are optimal in therow. Table VI describes the cooling strategy, checking also
sense described above. Increasindy the value ofwy, inthe  the nondivergence of the entropy production for both the
optimal quartet according to poifii) in Sec. llIC, leads to frictionless case and the case with friction. The results are
larger values of the cooling rate, but eventually the increasalso summarized in Fig. 10. Table V demonstrates that the
of Qr will slow down and saturate. See Fig. 13 and theprocedure shifts down to the Carnot bound. The rdio
dashed curves of Fig. 9. Figurel3 represents the saturation(wy,/T)/(w,/T;) was computed and showed only small
phenomenon oy, . Three points from Fig. 9 are chosen, changes.
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