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Quantum dynamics of driven open systems should be compatible with both
quantum mechanic and thermodynamic principles. By formulating the ther-
modynamic principles in terms of a set of postulates we obtain a thermody-
namically consistent master equation. Following an axiomatic approach, we
base the analysis on an autonomous description, incorporating the drive as
a large transient control quantum system. In the appropriate physical limit,
we derive the semi-classical description, where the control is incorporated as a
time-dependent term in the system Hamiltonian. The transition to the semi-
classical description reflects the conservation of global coherence and highlights
the crucial role of coherence in the initial control state. We demonstrate the
theory by analyzing a qubit controlled by a single bosonic mode in a coherent
state.

1 Introduction
Any realizable quantum system interacts with its environment to some extent. As a con-
sequence, accurate modeling and simulation of quantum dynamics requires equations of
motion which incorporate the environmental influence. Typical experiments include con-
trol of the quantum entity by time-dependent fields. The simultaneous influence of the
external field and environment are inevitably interrelated, i.e., the control modifies the
system-environment interaction and vice versa. Modeling the dynamics in such a scenario
is commonly carried out by a master equation with a time-dependent Hamiltonian and
dissipative components. In order to accurately describe reality, such equations of motion
must reflect the fundamental physical principles. Specifically, the dynamical equations of
the reduced system must comply with both thermodynamical and quantum mechanical
principles. Our current objective is to derive a consistent dynamical equation of motion
for a driven open quantum system.

The standard approach to derive the equation of motion for the reduced quantum
system is based on embedding the system in an extended Hilbert space which includes
the environment [34]. Within this framework, the quantum dynamics are described by a
unitary transformation, generated by a global Hamiltonian. Reduced description of the
system is then obtained by tracing over the environmental degrees of freedom.

Reduced dynamical equations have been obtained primarily by two methodologies.
The first, termed microscopic derivation, starts from the global embedded description and
employs a series of approximations. Such derivations are typically based on a second order
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perturbation theory in the system-environment coupling and memory-less dynamics [9, 20].
Generally, microscopic derivations do not guarantee consistency with thermodynamics or
even positive semi-definiteness of the system state. It is therefore customary, prior to
the derivation, to check the validity of the dynamical equation with respect to physical
principles. In addition, the range of validity of the derived the master equation is limited
by the set of approximations employed in the derivation. There are a number of proposed
constructions, deriving the reduced dynamics of driven open quantum systems. For slow
driving a quantum adiabatic approach has been employed to obtain the master equation
[1, 70]. In addition, under periodic driving, a derivation based on a Floquet analysis gives
the so-called Floquet master equation [5, 67]. We have previously, employed a general
approach for driven systems based on the Davies construction which generalizes these two
cases. This derivation leads the Non-Adiabatic Master Equation (NAME) [16].

An alternative methodology to obtain the reduced dynamical equation of motion relies
on a thematic approach. In this framework, the general physical principles and symmetries
of the dynamics are expressed in terms a set of mathematical restrictions (axioms). The
basic principles then allow to formulate the general structure of the equations of motion.

Based on this embedding principle and the thematic approach, the seminal work of
Gorini, Kossakowski, Lindblad and Sudarshan (GKLS) obtained the general form of the
Markovian master equation [26, 41]. This construction guarantees consistency with the
probability interpretation of quantum mechanics, nevertheless, in certain cases it can vio-
late thermodynamic principles [33, 37]. We have recently addressed this flaw for a system
represented by a static Hamiltonian. The remedy was to introduce an additional constraint
on the system-environment coupling. Namely, we assumed that the interaction satisfies
strict energy conservation between the system and environment. Such a constraint is a
manifestation of an additional symmetry which implies that the dynamical map is covari-
ant with respect to the free propagation [27]. This restriction leads to the general structure
of the master equation which complies with the basic laws of thermodynamics [14] (with-
out relying on further assumptions). In the present study, we extend this methodology to
obtain the dynamical equation for a driven open quantum system. The resulting master
equation is of the GKLS form, where the eigenoperators of the free propagator consti-
tute the Lindblad jump operators. The resulting dynamical structure can be employed to
validate master equations obtained by alternative methods.

The key idea in addressing the time-dependent scenario is to describe the time-dependent
drive as an additional quantum system, which we termed the control system. In such a
description, the explicit time dependence is replaced by an initial non-stationary state of
the control. This procedure can be viewed as an additional embedding of the driven system
within a larger Hilbert space, with dynamics generated by a static Hamiltonian. As will
be shown, under such dynamics the total coherence is conserved. This property highlights
the role of coherence as a resource in the embedded description [43, 66]. That is, coher-
ence that originated in the initial non-stationary state of the control is transferred to the
primary-system. From the reduced perspective of the system, the coherence transfer can
be viewed as an effective time-dependent driving.

We define two possible treatments of the time-dependent control: the autonomous and
semi-classical descriptions. In the autonomous approach the dynamics are generated by a
time-independent Hamilitonian. As a consequence the evolution is fully determined by the
initial state. In the limit of a macroscopic control with respect to the system, the control
can be effectively replaced by time-dependent parameters, which defines the semi-classical
description. In this paper, we analyse the relation between the two descriptions and present
a systematic procedure to translate from the autonomous to the semi-classical description.
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The relation between the two frameworks serves as a crucial tool in our analysis. We will
demonstrate the autonomous-semi-classical transition by analyzing an explicit example, of
a periodically driven qubit.

The outcome of our analysis is a semi-classical master equation which is derived from an
axiomatic approach and is thermodynamically consistent. The structure of this equation
justifies and extends the validity regime of the derived master equations, the adiabatic,
Floquet and NAME. In addition, the axiomatic construction serves as a bridge between a
dynamical description and ideas from quantum thermodynamic resource theory [7, 29, 30].

2 Framework and thermodynamically motivated postulates
To set the stage, we begin with a complete quantum description of all the thermodynamic
constituents. By including the control apparatus within the autonomous quantum de-
scription, we identify the “device system” which is composed of a primary-system and the
control, see Fig. 1. The Hamiltonian of such a system is of the form

ĤD = ĤS + ĤC + ĤSC , (1)

where ĤS and ĤC are the bare primary-system and control Hamiltonians, which domain
is the system and control Hilbert space S and C, and ĤSC is the primary-system-control
interaction term, which domain is the device Hilbert space D. The inclusion of the con-
trol system within the device is the key conceptual step which will allow bridging the gap
between the autonomous and semi-classical descriptions. Complementing the internal in-
teraction ĤSC , the device system also interacts with an external environment. Hence, the
complete system, including the primary-system, control and environment is represented by

Ĥ = ĤD + ĤDE + ĤE , (2)

where ĤE ∈ E is the bare environment Hamiltonian, and the ĤDE is the system-environment
interaction term.

In the present context, the term “autonomous” alludes to the fact that the underlying
framework, Eqs. (1) and (2), incorporates all the relevant subsystems and describes them
as quantized systems, which are represented by time-independent Hamiltonian terms. As
a consequence, the only source of time-dependence originates from “intrinsic” properties
taken into account in Hamiltonian (2) and the initial global state.

When the initial device-environment state is uncorrelated the reduced dynamics are
given by a completely-positive-trace-preserving (CPTP) map:

ρ̂D (t) = Λt [ρ̂D (0)] = trE
(
Û (t, 0) ρ̂D (0)⊗ ρ̂E (0) Û † (t, 0)

)
, (3)

where ρ̂E (0) and ρ̂D (0) are the initial states of the environment and device, and tri signifies
a partial trace over the i system. Throughout this study we label states, operators and
superoperators of a subsystem with a corresponding subscript, for example primary system
operators are designated as X̂S . The joint system dynamics is generated by Eq. (2), and
are governed by the ‘autonomous propagator ’ Û (t, 0) = e−iĤt/~. An exact solution of
Eq. (3) is intractable, as the environment has a vast number of degrees of freedoms.
Therefore, the approach commonly adopted starts from a complete description and derives
the reduced system dynamics by conducting a set of approximations [1, 3, 5, 8, 13, 16, 20,
21, 39, 44, 45, 49, 51, 52, 53, 54, 58, 63, 65, 67, 68, 71]. As a consequence, the equation of
motion obtained, the master equation, has a restricted validity regime, determined by the
approximations involved.
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Figure 1: An illustration of the embedded setup (Matryoshka): the decomposition of the total Hamil-
tonian Ĥ, Eq. (2) into the device (transparent blue tube) and environment (yellow tube). The device
is composed of a primary-system (red) and control (pale blue). Both the primary-system and control
are coupled to the environment by the coupling term ĤDE , Eq. (2), while the primary-system and
control are coupled by an internal coupling ĤSC , Eq. (1). The total Hilbert space is decomposed into
D ⊗ E, where D and E are the Hilbert spaces of the device and environment, correspondingly. The
device’s Hilbert space can be decomposed to the Hilbert space of the primary-system S and control C.
We implicitly assume that the Hilbert space of environment is much larger then the Hilbert space of
the device, and the system’s Hilbert space is the smallest.

Accepted in Quantum 2021-11-17, click title to verify. Published under CC-BY 4.0. 4



In the present paper, we follow an alternative methodology [14], introducing four ther-
modynamically motivated postulated which complement the fundamental postulates of
quantum mechanics. Relying on these postulates, we proved in Ref. [14] that the reduced
system dynamics must be of a limited form (with no additional approximation). The emer-
gent structure of the master equation is consistent with the weak coupling limit Davies
construction [20] and scattering or collision models [22, 60].

The four postulates are:

1. The dynamical map Λt is Markovian, satisfying the semi-group property: Λt =
ΛsΛt−s for any t, s ∈ R.

2. The environment is initially in a stationary state with respect to the environment’s
free Hamiltonian ĤE . In the thermodynamic limit, we can extend this condition to
all times.

3. The dynamical map has a unique fixed point.

4. The composite system satisfies strict energy conservation between the device and
environment:

[
ĤDE , ĤD + ĤE

]
= 0.

Postulate 1 states that any (invertible) dynamical map up to time t can be written
as the composition of two parts, taking any intermediate time s as a stepping stone be-
tween 0 and t. The statement implies that the memory of the system’s past state does
not influence the present map, i.e., the dynamics are of Markovian nature. This is clearly
an idealization, since, the coupling between system and environment leads to classical and
quantum correlations between the components of the composite system. Information on
the system’s past state is encoded within these global correlations, which do effect the
evolution of the system. Moreover, the complete dynamics (Eq. (2)) are unitary, thus, the
dynamics are reversible and in principle no information is lost. Nevertheless, once the in-
formation is encoded in global correlations (including many degrees of freedom), it becomes
inaccessible and is practically lost. Consequently, when the environment correlations decay
sufficiently fast the system dynamics are essentially Markovian. This idealization is valid
within a coarse-graining time, which is of the order of the typical time associated with
the decay of the environment’s inner correlations. Note that the concept of Markovianity
in the quantum context has a number of possible definitions. A common choice identifies
Markovianity with the CP divisibility of the dynamical map [10, 38, 59]. This serves as
a weaker version of postulate 1, nevertheless, it is also sufficient for the derivation of the
driven master equation.

The second postulate limits the description to environments which are diagonal in
the eigenbasis of ĤE . These include a single or multiple thermal baths with arbitrary
temperatures, all coupled simultaneously to the system. Conversely, squeezed baths are not
included in the present description. The idealization, assuming the environment remains
stationary, is motivated by the fact that the environment is much larger than the system.
As a result, its state is only negligibly altered by the interaction with the system.

Postulate 3 is motivated by the 0-law of thermodynamics, which infers that thermal-
ization leads the system to a unique fixed point [2, 4]. The fourth postulate, strict energy
conservation, implies that energy is not accumulated within the interface between the sys-
tem and environment [30]. This is naturally satisfied in the thermodynamic limit, where
the interface energy is negligible with respect to the bulk energy. Moreover, in the weak
coupling regime and low density limit, postulate 4 is satisfied as an asymptotic limit. For
a critical analysis on the strict energy conservation condition and its implications see Ref.
[14] Sec. III.
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3 Autonomous open system dynamics from thermodynamic principles
The route to the autonomous description of the open systems starts from the complete
description Eq. (2), which introduces a partitions between the device and the environment
and partitions the device into the primary-system and control. Building upon this partition
we employ the four thermodynamic postulates of Sec. 2 to determine the general structure
of the master equation. The presented construction of the autonomous reduced dynamics
is based on the analysis presented in Ref. [14]. Here, we briefly describe the key steps of the
procedure, and derive the fixed point of the dynamical map. The obtained master equation
will serve as a building block to derive the semi-classical dynamical equation in Sec. 5.
The procedure employs a spectral analysis of the dynamical maps and their generators and
relies on their symmetry properties .

The first postulate implies that the dynamical map can be expressed in terms of the
dynamical semi-group generator L: Λt = eLt. The generator can be decomposed into two
terms corresponding to a unitary contribution and a dissipative part

L = −iH+D . (4)

The unitary part is given by H [•] = ~−1
[
Ĥ + ĤLS , •

]
, where ĤLS is the Lamb-shift term

and D is of the GKLS form.
An additional major restriction emerges from the commutativity properties of the dy-

namical map, which imply a time-translation symmetry of the dynamical map with respect
to the free dynamics. Specifically, when strict energy conservation (postulate 4) is satisfied
and the environment is initially in a stationary state (postulate 2), the open system dy-
namical map commutes with the dynamical map of the free dynamics UD (governing the
device dynamics of) [14, 42, 46, 48]

UD [Λ [ρ̂D]] = Λ [UD [ρ̂D]] . (5)

Here, UD = e−iHDt, whereHD is the generator of the unitary mapHD [ρ̂D (t)] = ~−1
[
ĤD, ρ̂D (t)

]
.

The commutativity property , denoted as time-translation symmetry, imposes a strict struc-
ture on the dynamical map Λ. Namely, a spectral analysis infers that the two dynamical
maps share a common basis of eigenoperators.

The eigenoperators of UD can be classified into two types, invariant and non-invariant
operators, both reside within the device’s Hilbert space D. The invariant operators are
composed of the energy projection operators {Π̂j = |ψj〉 〈ψj |} and have a vanishing eigen-
value, whereas the non-invariant are the transition operators {Ĝnm = |ψn〉 〈ψm|} with the
Bohr frequencies of ĤD, {ωnm = (εm − εn) /~} as eigenvalues. When the Bohr frequen-
cies are non-degenerate, i.e. ωnm 6= ωkl for different n,m, k and l, {Ĝnm} also constitute
eigenoperators of open system dynamical map Λ. For the case of degenerate transition
operators, the eigenoperators can be a general combination of the degenerate operators.
For simplicity, in the following analysis we assume that the Bohr frequencies are non-
degenerate.

Under the four thermodynamic postulates, the spectral properties of the dynamical
map impose the following structure for the dissipator

D [•] =
N∑

n,m=1
γnm

(
Ĝnm • Ĝ†nm −

1
2
{
Ĝ†nmĜnm, •

})
−

N∑
n=1

λj
[
V̂j ,
[
V̂j , •

]]
, (6)

where V̂n are Hermitian operators, which are a linear combinations of the projection op-
erators {Π̂j}. The kinetic coefficients are non-negative under Markovian dynamics and

Accepted in Quantum 2021-11-17, click title to verify. Published under CC-BY 4.0. 6



can be determined by the fixed point of the device’s dynamical map ρ̂f.pD , which satisfies
L
[
ρ̂f.pD

]
= 0. For example, when the fixed point is a thermal state of inverse temperature β,

the coefficients satisfy the detailed balance relation: γnm = γmne
−βωnm [14]. In other cases,

such as a non-thermal bath or when the environment is composed of two thermal baths
with different temperatures, the ratio between dependent coefficients may be different. We
refer to Eq. (6) as the autonomous master equation.

Thermodynamically, the first term of D is in charge of heat transfer between the system
and environment, generating transitions between the energy states of ĤD. Whereas the
second sum is related to transfer of information, which induces dephasing in the system’s
energy basis. The commutation of the maps, Eq. (5) implies that the two contributions
are independent [14].

The structure of the dissipator in Eq. (6) allows deriving a general expression for
ρ̂f.pD . In order to derive the general form we utilize the orthogonality of the Lindblad
jump operators {Ĝnm}, which implies that the first term in D can be decomposed into
independent channels. Each independent channel corresponds to transitions between two
energy states |ψn〉 and |ψm〉 of the device and includes the two terms proportional to
γnm and γmn 1. We denote the channel transferring populations between |ψn〉 and |ψm〉
eigenstates of ĤD as the “nm-channel". The positivity of the kinetic coefficients allows
expressing the dual kinetic coefficients as γmn = γnme

−ηnm , where ηnm is an appropriate
real number. This implies that the fixed point of the nm-channel is of the form

ρ̂f.p,nmD = e−H̄nm , (7)

where H̄nm = ηnm
2

(
Ĝ†nmĜnm − ĜnmĜ†nm

)
. Since the independent channels commute the

fixed point of the entire map becomes ρ̂f.pD = Z−1e−H̄ with

H̄ =
∑

nm:n>m
H̄nm , (8)

and Z is the partition function (cf. Appendix C).
Overall, the thermodynamic conditions determine the form of the dynamical semi-group

generator up to a scaling of independent kinetic coefficients.

3.1 The role of initial coherence on the open system dynamics
The presence of coherence with respect to the energy basis is related to the time-dependence
of the ensuing dynamics. Specifically, sufficiently large initial coherence in the control im-
plies coherence in the global framework, leading to transient dynamics. This initial coher-
ence will eventually lead to time-dependence of the primary-system in the semi-classical
limit 4.

Coherence with respect to the global Hamiltonian Eq. (2) is a conserved quantity, and
therefore may be regarded as a resource [43, 47, 48, 66]. This property can be understood by
the following analysis. The global unitary dynamics conserves the eigenvalues (populations)
of the global state ρ̂. Hence, any function of the population is a constant of motion, such
as the von-Neumann entropy SVN = −tr (ρ̂lnρ̂). In addition, strict energy conservation
and the static nature of the Hamiltonian implies that the energy entropy in the basis of
ĤD + ĤE is also a constant of motion SE = −

∑
i pilnpi. From these two properties we

1The transition |ψm〉 → |ψn〉 is induced by the term proportionate to γnm and the reverse transition is
associated with term proportionate to γmn.
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infer the conservation of coherence, which is defined in the present study as the quantum
relative entropy between the state ρ̂ and its diagonal in the energy representation ρ̂d [6, 66]:

D (ρ̂||ρ̂d) = SE − SVN . (9)

In addition, an even stricter conservation condition is satisfied, namely the coherence in
each mode of coherence is conserved, where different coherence modes correspond to the
off-diagonal components in the energy basis which oscillate at different frequencies [47]

The driving force of the control mainly originates from its initial coherence. During the
evolution this coherence is effectively transferred to the system, inducing a local change
of energy in the system. In the local description of the primary system, this effect is
manifested by a modification of the open system reduced dynamics. The transfer and
role of coherence is illuminated by analysing the form of the autonomous eigenoperators
{Ĝnm}. First the general case is analyzed and an explicit example in described in Sec.
9. The autonomous eigenoperators are transition operators, {|ψn〉 〈ψm|}, between the
energy eigenstates of the device, {|ψk〉}. In addition, due to the interaction between the
primary-system and the control (ĤSC) the device’s eigenstates are generally composed of
a superposition of the bare primary-system and control eigenstates {|φi〉} and {|ξj〉}. This
implies that a generic term of the autonomous master equation has the structure

Ĝnm • Ĝ†nm = |ψn〉 〈ψm| • |ψm〉 〈ψn| = |ψn〉

∑
ij

〈φi, ξj | •
∣∣φi′ , ξj′〉

 〈ψn| . (10)

The dynamics of the reduced primary-system is obtained by substituting the device state
instead of •, and then tracing over the control degrees of freedom. As is observed in Eq.
(10), this procedure leads to a sum of terms which are proportionate to 〈ξj | ρ̂C (t)

∣∣ξj′〉.
These terms will contribute to the system dynamics provided the control posses coherence
in the control energy eigenstates for j 6= j′.

4 From autonomous description to an external time dependent drive -
Semi-classical limit.

When the control apparatus is sufficiently large with respect to the primary-system the
autonomous framework can be replaced by a more concise semi-classical description. In
this limit, the influence of the control on the primary-system is manifested by an explicit
time-dependence of the composite Hamiltonian

Ĥs.c (t) = Ĥs.c
S (t) + ĤDE + ĤE . (11)

The transition between the autonomous description to the semi-classical description is
termed the semi-classical limit . The semi-classical limit is defined by the following two
conditions:

1. The control state is only slightly affected by the interaction with the primary-system.

2. The correlations between the primary-system and control are negligible, allowing to
express the device’s state as a separable state ρ̂D (t) = ρ̂S (t)⊗ ρ̂C (t), where ρ̂S and
ρ̂C are the primary-system and control reduced states.

The first condition is satisfied when the control is initialized in a highly excited state and
the interaction with the system is negligible relative to the typical control energy scale,
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i.e. ||ĤSC || � ||ĤC ||. In this regime, the dynamics of the control are dominated by the
control Hamiltonian, indicating that ÛDρ̂CÛ

†
D ≈ ÛC ρ̂CÛ

†
C . This consequence is closely

related to the second condition, since if the primary-system and control are initialized in
separable state, the first condition implies that the states remain approximately separable.
In addition, if we assume that the effective primary-system control coupling is of the order
of the primary-system typical energy, then the magnitude of the coupling strength must
be scaled accordingly, as the control resides in a very energetic state. As a result, as the
initial energy of the control increases the influence of the coupling term on the control state
decreases, for an explicit example of this relation see Sec. 9.

By employing the two conditions above, we next derive the semi-classical description
from the autonomous framework. In the autonomous description, the isolated device dy-
namics are governed by the propagator ÛD (t, 0) ∈ D, which is generated by the composite
time-independent Hamiltonian ĤD, Eq. (1). By expressing the dynamics in an interaction
picture relative to the bare control Hamiltonian, the autonomous propagator can be cast
into the form (cf. Appendix A)

ÛD = ÛCŨD , (12)

where ÛC (t, 0) = e−iĤCt/~ is the propagator of the control and ŨD is the propagator in
the interaction picture. Written explicitly, ŨD (t, 0) = T exp

(
− i

~
∫ t
0 H̃D (τ) dτ

)
∈ D is

generated by the effective Hamiltonian in the interaction picture relative to ĤC

H̃D (t) = ĤS + Û †C (t, 0) ĤSCÛC (t, 0) , (13)

introducing the chronological time-ordering operator T [23]. The corresponding device
dynamics (in the interaction picture) are generated by the Liouville von-Neumann equation

d

dt
ρ̃D (t) = − i

~

[
H̃D (t) , ρ̃D (t)

]
= − i

~

[
ĤS +

∑
i

Ŝ ⊗ C̃i (t) , ρ̃D (t)
]

, (14)

where operators in the interaction picture are designated by superscript tilde: X̃C =
Û †CX̂CÛC (except for the Hamiltonian which is given in Eq. (13)). In the second equal-
ity of Eq. (14) we explicitly expressed the interaction Hamiltonian ĤSC in terms of the
primary-system and control operators {Ŝi} and {Ĉi}. A formal integration of the dynam-
ical equation and tracing over the control degrees of freedom leads to

ρ̂S (t) = − i
~

∫ t

0
trC

([
ĤS +

∑
i

Ŝi ⊗ C̃i (τ) , ρ̃D (τ)
])

dτ . (15)

Next, we utilize the first and second semi-classical conditions, namely: ρ̂D (t) = ρ̂S (t) ⊗
ρ̂C (t), with ρ̂C (t) = ÛC ρ̂C (0) Û †C , and the cyclic property of the trace to obtain

ρ̂S (t) = − i
~

∫ t

0

[
ĤS +

∑
i

Ŝ ⊗ trC
(
C̃i (τ) ρ̃C (τ)

)
, ρ̂S (τ)

]
dτ = − i

~

∫ t

0

[
Ĥs.c
S (τ) , ρ̂S (τ)

]
dτ .

(16)
The differential form of this relation indicates that in the semi-classical limit the primary-
system dynamics (isolated from the environment) are generated by the Hamiltonian

d

dt
ρ̂S (t) = − i

~

[
Ĥs.c
S (t) , ρ̂S (t)

]
. (17)
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where Ĥs.c
S (t) = trC

(
H̃D (t) ρ̃C

)
∈ S is the semi-classical Hamiltonian. Note that for a

highly energetic control state trC
(
C̃i (τ) ρ̃C (τ)

)
is very large, therefore, if the primary-

system-control coupling is on the scale of the system energy the coupling amplitude should
be weak.

Alternatively, the semi-classical propagator Û s.cS satisfies the same differential equation,
which leads to the formal expression

ρ̂S (t) = trC
(
ÛDρ̂D (0) Û †D

)
∼= Û s.cS ρ̂S (0) Û †s.cS , (18)

with
Û s.cS (t, 0) = T exp

(
− i
~

∫ t

0
Ĥs.c
S (τ) dτ

)
∈ S , (19)

where the symbol “ ∼= ” signifies an equality which is satisfied only asymptotically, in the
semi-classical limit. Overall, the two semi-classical conditions and Eqs. (12), (18) and (19)
imply that the composite system dynamics are governed by

ÛD ∼= ÛC⊗Û s.cS . (20)

This relation serves as a key identity in the analysis of the master equation in the semi-
classical regime.

5 Driven open quantum system dynamics (semi-classical regime)
Combining the autonomous dynamical symmetry Eq. (5), with the semi-classical procedure
introduced in Sec. 4, we next derive the reduced dynamics of a driven open quantum
system. Evaluation of the semi-classical limit of Eq. (5) leads to the commutation relation
of the open and isolated semi-classical dynamical maps (see Appendix B for a detailed
derivation)

Λs.c ◦ Us.cS = Us.cS ◦ Λs.c , (21)

where Λs.c [•] (t) = trE
(
U s.cSE (t) • U s.c†SE (t)

)
. Here, Û s.cSE is the semi-classical combined

time-evolution operator, which acts on the Hilbert space of the primary-system and envi-
ronment. This operator satisfies the Schrödinger equation with respect to the semi-classical
composite Hamiltonian Ĥs.c (t) = trC

(
Ĥρ̂C (t)

)
.

The commutation relation of the semi-classical dynamical maps Eq. (21) sets strict
restrictions on the maps structure. Assuming the spectrum of Us.cS is non-degenerate, the
two maps share the same non-invariant eigenoperators, sharing an analogous structure as
in the autonomous case. Despite of the similarity there is an important difference between
the autonomous and semi-classical maps. Namely, the autonomous maps self-commute
at different times, while the semi-classical may not. This implies that the semi-classical
dynamical generators do not necessarily commute with the maps. As a result, the structure
of the semi-classical generator, Ls.cS , which is defined by the relation

d

dt
Λs.c (t) = Ls.cS (t) ◦ Λs.c (t) , (22)

cannot be deduced in a straight forward manner from the structure of Λs.c (t). Note, that
to obtain Ls.cS from Eq. (22) requires a time-ordering procedure when Λs.c (t) does not
commute with itself at different times [23]. However, the issue can be resolved by employing
a time-dependent basis to represent the isolated and open system maps in Liouville space
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in the Heisenberg picture. By choosing a suitable time-dependent operators basis the free
dynamical generator is represented by a Liouville space superoperator which commutes
with it self at different times. In this representation the open system map commutes with
the generator, leading to the operatorial structure of the dynamical generator.

We begin the derivation by studying the eigenvalue solutions to the Heisenberg equation

d

dt
X̂H
S (t) ≡ Gs.cS (t)

(
X̂S (t)

)
= Û s.c†S (t)

(
i

~

[
Ĥs.c
S (t) , X̂S (t)

]
+ ∂X̂S (t)

∂t

)
Û s.cS (t) . (23)

The eigneoperators (of the Hiesenberg representation) {P̂α (t)} are time-dependent opera-
tors which satisfy the eigenvalue equation with respect to the free dynamical generator

d

dt
P̂Hk (t) = iλk (t) P̂Hk (t) . (24)

where the superscript H designates operators in the Heisenberg picture, and λk are real
scalars. The set constitutes a complete basis, they therefore can be utilized to solve the
dynamics of any system operator. For a general drive it may be difficult to obtain a closed
analytical form for {P̂k (t)}, nevertheless their existence is guaranteed for an arbitrary drive
[15]. In Sec. 7 we propose a numerical method, employing a Fourier transform of Eq. (23)
by which to evaluate the eigenoperators.

In analogy with the autonomous case, the set of eigenoperators {P̂k (t)} are composed
on non-invariant operators {F̂k}, for which λk 6= 0, and invariant eigenoperators {Ŵj}
with vanishing eigenvalues. Therefore, if we choose the set of eigenoperators as the op-
erator basis {F̂1 (t) , . . . , F̂N(N−1) (t) , Ŵ1 (t) , . . . , ŴN (t)}, the semi-classical propagator in

the Heisenberg representation, Us.c‡S (t) [•] = T e−i
∫ t

0 G
s.c
S (s)[•]ds, is of a diagonal form

P̂Hk (t) = Us.c‡S (t)
[
P̂k (0)

]
= exp

(
i

∫ t

0
λk (s) ds

)
P̂k (0) . (25)

Here, the Heisenberg and Schrödinger operators coincide at initial time, i.e., P̂Hk (0) =
P̂k (0), and the superscript ‡ designates superoperators in the Heisenberg picture. The
relation implies that {P̂k (0)}, constitute eigenoperators of the free map. This property
along with the dynamical symmetry relation, Eq. (21), enables deducing the exact form
of the semi-classical master equation.

We follow the same deduction as in the autonomous framework Sec. 3. When the
eigenvalues of the non-invariant operators are non-degenerate, the symmetry relation infers
that they constitute eigenoperators of the semi-classical open system map Λs.c‡ (t)

F̂Hk (t) = Λs.c‡ (t)
[
F̂k (0)

]
= ηk (t) F̂k (0) . (26)

where ηk are complex numbers.
Finally, the lack of time-dependence of the eigenoperators in this representation al-

lows obtaining the form of the semi-classical dynamical generator from Eq. (22). The

relation Ls.cS (t) =
(
d
dtΛ

s.c‡ (t)
) (

Λs.c‡ (t)
)−1

infers that the generator is diagonal in the

non-invariant eigenoperators, Ls.c‡S

[
F̂k (0)

]
= η̇kη

−1
k F̂k (0), and maps the invariant sub-

space to itself: Ls.cS
[
Ŵi (0)

]
=
∑
j aij (t) Ŵj (0), where aij are time-dependent coefficients.

Under the four thermodynamic postulates, these relations impose the following structure
for the semi-classical dissipator [14]

Ds.c [•] =
∑
k

γk (t)
(
F̂k (0) • F̂ †k (0)− 1

2
{
F̂ †k (0) F̂k (0) , •

})
+
∑
ij

χij (t) Ŵi (0) • Ŵj (0) .

(27)
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The main feature of the semi-classical master equation is the connection between the
unitary and dissipative parts. The Lindblad jump operators constitute eigenoperators of
the driven (isolated) system and therefore depend on the drive. This relation contrasts with
the standard description in which the environment and drive generate independent terms
in the dynamical generator. Equation (27) demonstrates that the underlying quantum
nature of the drive leads an inevitable dependency between the external affects.

The structure of the master equation is similar to the autonomous case Eqs. (4) and
(6): The semi-classical dissipator is composed of two terms. The first is related to energy
transitions between the eigenstates of Û s.cS , which are induced by the jump operators {F̂k}.
While the second term leads to dephasing in this eigenstates’ basis and also includes a
unitary correction to the effective energy levels due to the presence of the environment,
the so-called Lamb-shift term. Under Markovian dynamics the {γk (t)} are necessarily
positive. A similar structure appears under non-Markovian dynamics, while the coefficients
may obtain negative values [19].

Interestingly, in the semi-classical framework the fixed point of the map is replaced
by a time-dependent instantaneous attractor ρ̂i.aS (t). This operator satisfies the relation
Ls.c (t)

[
ρ̂i.aS (t)

]
= 0 instantaneously. Typically, the instantaneous attractor may not com-

mute with the semi-classical Hamiltonian, which implies that energy and coherence in the
instantaneous eigenbasis of Ĥs.c

S (t) mix [16].
Overall, the present construction shows that the restrictions on the structure of the

master equation, in the semi-classical regime, is a manifestation of the strict energy con-
servation between the device and the environment.

6 General form of the instantaneous attractor
The identification of the Lindblad jump operators as the eigenoperators of the free dynam-
ics allows obtaining a general form for the instantaneous attractor.

We first express the dissipator the interaction picture relative to the free dynamics and
omit the time-dependence from the kinetic coefficients and eigenoperators throughout this
section, i.e, F̂k ≡ (0) ≡ F̂k, Ŵj ≡ (0) ≡ F̂j

D̃s.c [•] =
∑
k

γk

(
F̂k • F̂ †k + 1

2
{
F̂ †k F̂k, •

})
+
∑
ij

χjŴi • Ŵj . (28)

For a finite level system, the non-invariant eigenoperators {F̂k} are effective transition
operators in the primary system-control dressed basis, they therefore satisfy the following
properties: F̂ 2

k = 0̂ and tr
(
F̂kF̂l

)
= δkl. These properties imply that the first term of Eq.

(28) is composed of independent channels, where the k’th channel reads

D̃s.c(k)
S [•] = Γk

(
F̂k • F̂ †k −

1
2
{
F̂ †k F̂k, •

})
+ Γ−k

(
F̂ †k • F̂k −

1
2
{
F̂kF̂

†
k , •

})
. (29)

Physically, such a channel corresponds to a pathway for transfer of probability between
two distinct states of the primary-system. These channels can be thought as independent
connections between the primary-system and environment. In addition, the invariant op-
erators {Ŵj} can be expressed in terms of the projection operators, suggesting that the
second term of Eq. (28) vanishes for • = F̂ †k F̂k or F̂kF̂

†
k . These considerations motivate

defining an effective Hamiltonian

H̄S =
∑
k

δk
2
(
F̂ †k F̂k − F̂kF̂

†
k

)
, (30)
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with undetermined real parameters δk. Such an operator is characterized by the simple
commutation relation [

H̄S , F̂k
]

= −δkF̂k . (31)

In analogy with the autonomous case, these commutation relations suggest that the in-
stantaneous attractor is of the form

ρ̃i.aS (t) = Z−1 exp
(
−H̄S (t)

)
, (32)

where Z is the corresponding partition function. Substituting Eq. (32) into Eq. (28),
determines the parameters δk = ln (Γk/Γ−k) (see Appendix C for a detailed derivation).

7 Determining the eigenoperators
The Lindblad jump operators of the master equation constitute eigenoperators of the dy-
namical generator Gs.cS , Eq. (23). Obtaining the diagonalizing basis is not straightforward
as the generator Gs.cS is generally time-dependent 2. Nevertheless, this complication can be
bypassed by transforming to the frequency domain. Performing a Fourier transform of Eq.
(23), the eigenvalue equation for F̂Hk (t) can expressed as([

ĤS (ω) , •
]

+ ω
)
F̂Hk (ω) = −λk (ω) F̂Hk (ω) , (33)

where F̂k (ω) is an eigenoperator in the frequency domain. Finally, we express Eq. (33) in
a matrix vector form by performing a vec-ing procedure F̂Hk (ω) → ~fk (ω) (cf. Appendix
D) (here any choice of operator basis will also do). This leads to the following eigenvalue
equation (

Î ⊗ ĤS − ĤT
S ⊗ ÎS − ωÎS ⊗ ÎS

)
~fk (ω) = −λk (ω) ~fk (ω) , (34)

where ~fk are vectors in Liouville space. The solution to the eigenvalue problem gives
the eigenvectors in Liouville space ~fk (t) and the corresponding eigenoperators F̂Hk (t).
For a general system Hamiltonian the diagonalization can be performed by numerical
diagonalization methods to obtain the eigenoperators within the desired accuracy.

8 Comparison with other master equations
The master equation for the driven system (S), Eq. (27), has a strict structure which
emerges solely from the thermodynamic postulates. This structure is consistent with a
number of master equations, derived by conducting a microscopic derivation. A prime
example is the non-adiabatic master equation (NAME) [16], which governs the dynamics
of a driven system in contact with a Markovian bath. The procedure leading to the NAME
has a similar starting point of a combined system-environment evolution, Eq. (11), and
utilizes weak coupling-Markov-secular approximation to obtain the GKLS form. In contrast
to the general structure of Eq. (27), the microscopic derivation leads to an explicit form for
the kinetic coefficients of the NAME. These are determined from the Fourier transforms of
the environment correlation functions with a modified frequency compared to bare Bohr

2A naive diagonalization of the differential equation d~V
dt

= GS (t) ~V (t), with the instantaneous diag-
onalizing matrices P (t) leads to d

dt

(
P−1~V

)
=
[
DS + dP−1

dt
P
]

P−1~V (t), where DS = P−1GSP is the a
diagonal matrix. When the generator does not commute with itself at different times, the additional term
dP−1

dt
P may be non-diagonal and the set of differential equations remain coupled.

Accepted in Quantum 2021-11-17, click title to verify. Published under CC-BY 4.0. 13



frequencies of the system. However, the price, of the complete formal derivation is that
the assumptions employed limit the regime of validity.

For periodic driving one can utilize the Floquet analysis to derive a consistent master
equation [5, 54, 67]. This master equation is connected to the NAME, which constitutes a
generalization of the Floquet master equation, see Sec. 9.3 for example.

In the slow driving limit, the obtained structure corresponds to the adiabatic mas-
ter equation [1]. In this case, the free evolution is given by the adiabatic propagator
ÛadiS (t) = e−iĤ

s.c
S (t)t/~, and the eigenoperators become the transitions operators of the “in-

stantaneous" semi-classical Hamiltonian Ĥs.c
S (t). In this driving regime and for a thermal

bath with inverse temperature β, the instantaneous attractor is a Gibbs state with respect
to the instantaneous Hamiltonian ρ̂i.aS (t) = Z−1 (t) e−βĤs.c

S (t), where Z (t) is the partition
function.

An alternative approach to obtain the dynamical equations assumes the driven master
equation can be approximated using a time-dependent Hamiltonian and a static dissipative
part. Due to its relative simplicity, this approximation has gained popularity in many
disciplines, such as, quantum optics, quantum information and spectroscopy. For example,
the well-known Bloch equation has this structure [25]. However, there is only a limited
regime where such a description complies with the thermodynamiclly consistent structure
of Eq. (27). Nevertheless, in the case of a singular bath, the dissipative and unitary part
may be independent. In this scenario transfer energy can occur with no entropy cost, which
is only consistent with thermodynamics for a bath of infinite temperature.

9 Example: Jaynes-Cummings model
The Jaynes-Cummings (JC) model serves as a basic toy model in quantum optics and solid
state physics. It allows a full quantum treatment of a quantum system interacting with
an external field [31, 64]. It describes a qubit interacting with a single mode of a bosonic
field. Since the model can be solved in closed form, it constitutes a natural example to
demonstrate the transition between the autonomous and semi-classical descriptions. We
identify the primary-system with the qubit while the control subsystem is represented by
the bosonic mode, see Table 9 for a summary of the analogies between the notations of
the general case and the example. In the appropriate limit the autonomous quantum dy-
namics converge to the semi-classical dynamics, characterized by Rabi oscillations. There
are many other possibilities to construct a control system which posses the semi-classical
properties. For example, many independent synchronized units will obey the property,
with the appropriate interaction terms [57].

Within the rotating wave approximation the JC Hamiltonian is given by [64]

ĤJC
D = ~ωc

(
â†â+ 1

2

)
+ ~ωeg

2 σ̂z + ~g
(
σ̂−â

† + σ̂+â
)

, (35)

where â and â† are the creation anhillation operators of the bosonic mode, σ̂i, i = x, y, z
are the Pauli operators of the qubit, g is the coupling strength and ωc and ωeg are the
oscillator and qubit internal frequencies. The eigenstates of the bare qubit and bosonic
mode Hamiltonians are denoted by |g/e〉 and |n〉, correspondingly.
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General derivation Example

ĤS ~ωegσ̂z/2
ĤC ~ωc

(
â†â+ 1

2

)
ĤSC ~g

(
σ̂−â

† + σ̂+â
)

F̂k F̂±
Ŵk Ŵ

Ĉk {|n〉 〈m|}

9.1 Semi-classical limit for an isolated system
The semi-classical limit is obtained by initializing the control subsystem in a coherent
state ρ̂C (0) = |α〉 〈α| with a large average photon number 〈n〉 = 〈α| â†â |α〉 = |α|2 � 1. In
addition, the effective interaction term g

√
n is kept constant and weak relative to energy

scale of the system ωeg.
The semi-classical limit is demonstrated by two procedures: First we show that the

classical conditions, cf. Sec. 4, lead to the semi-classical propagator Û s.cS , Eq. (20), in
terms of semi-classical Hamiltonian Ĥs.c

S (t). In the second procedure we directly derive
Û s.cS from the autonomous propagator ÛD, Eq. (12), in the semi-classical limit.

The first semi-classical condition, Sec. 4, assumes the control remains unaffected by
the interaction with the primary-system. This is a consequence of the requirement that the
coupling with the primary-system remains moderate. To satisfy this restriction, g must
scale accordingly g ∝ 1/|α| and becomes very small in the semi-classical limit. Therefore,
when comparing the energy scale of the bare control Hamiltonian and the coupling term
we find that ||ĤSC || � ||ĤC ||. As a result, the contribution of the interaction term
to the dynamics of the control state is negligible (does not modify ÛD relative to ÛC
substantially). Moreover, if we assume an initial separable state ρ̂D (0) = ρ̂S (0)⊗ |α〉 〈α|,
the first condition implies that the state remains approximately separable. Thus, the
second condition is obtained as a consequence of the first condition.

The general procedure leads to the semi-classical propagator Û s.cS which is determined
by its generator, the semi-classical Hamiltonian Ĥs.c

S (t) = trC
(
H̃D (t) ρ̃C (t)

)
. In terms of

the JC model parameters the semi-classical Hamiltonian becomes

ĤJC,s.c
S (t) = ~ωeg

2 σ̂z + ~g
(
σ̂−α

∗eiωct + σ̂+αe
−iωct

)
, (36)

which is the Rabi model Hamiltonian. The propagator ÛJC,s.cS is obtained by a suitable
change of basis, leading to (see Appendix F for more details)

ÛJC,s.cS (t, 0) =

 c〈n〉 + i∆s〈n〉
Ω〈n〉

−i2g
√
〈n〉

Ω〈n〉
sn

−i2g
√
〈n〉

Ω〈n〉
sn c〈n〉 −

i∆s〈n〉
Ω〈n〉

 , (37)

with c〈n〉 = cos
(Ω〈n〉t

2

)
, s〈n〉 = sin

(Ω〈n〉t
2

)
and Ω〈n〉 =

√
∆2 + 4g2〈n〉. The matrix in Eq.

(37) is expressed in the basis {|g〉 , |e〉}.
A second approach to demonstrate the convergence to the semi-classical description

utilizes the explicit solution of the JC propagator. This enables solving for the autonomous
propagator ÛJCD (generated by ĤJC

D ) and taking the semi-classical limit. The solution is
obtained by splitting the JC Hamilonian, Eq. (36), into block diagonal matrices operating
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Figure 2: Convergence to the classical limit for increasing α. Panel (a) presents the Uhlmann fidelity
F between the solution of the Jaynes-Cumming model (autonomous description Eq. (36)) and semi-
classical solution (solution of Eq. (36)) as a function of normalized time for different initial coherent
states ρ̂C (0) = |α〉: Orange dotted - α = 5; Red dashed - α = 25; Green dashed dotted - α = 50, Blue
continuous - α = 100. The lowest value of α sticks out, while larger coherent states are close together
and deviate only at longer times. Panel (b) exhibits the expectation value of the Pauli matrix σ̂x as a
function of time with the same color notation, similar results are obtained for the other Pauli matrices.
Time is normalized by the generalized Rabi frequency of the semi-classical solution Ω〈n〉. The chosen
model parameters are: Ω〈n〉 = 2, ∆ = 0 and ωc = 1. Note that similar results are obtained in the
non-resonant case, when ∆ 6= 0.

on subspaces {|g, n〉 , |e, n− 1〉}

Ĥ
(n)
D = n~ωcÎ(n) − ~∆

2 σ̂(n)
z +

√
n~gσ̂(n)

x , (38)

with a detuning ∆ = ωeg − ωc and Pauli operators σ̂(n)
i , operating on the effective two-

dimensional n’th subspace. This decomposition infers that the solution for the autonomous
propagator is given by a sum over the independent propagators ÛJCD =

∑
n Û

(n)
D , where

Û
(n)
D = e−iĤ

(n)
D t/~.

In the semi-classical limit the boson field is initialized in a highly energetic coherent
state, 〈n〉 � 1, while keeping the coupling to the qubit moderate, g

√
〈n〉 = const < ωeg.

In this regime, the fluctuations around the mean value become negligible and the sum
over propagators converges to ÛJCD ' Û

(〈n〉)
D , see Appendix E. This propagator coincides

with the semi-classical propagator ÛJC,s.cS , Eq. (37), as obtained from the first approach.
The convergence to the semi-classical limit is shown in Fig. 2, presenting the Uhlmann
fidelity between the autonomous and semi-classical solutions (Panel (a)) and 〈σ̂x〉 (Panel
(b)) as a function of time for different initial control coherent states |α〉. With the increase
of α, the Janyes-Cummings solution (autonomous) converges to Rabi oscillations result
(semi-classical), manifested by a fidelity close to unity in the chosen time interval.

The convergence to the semi-classical limit can be studied by analysing the coherence
properties for “short" times (gt < 10), which were first studied by Cummings [12] and fur-
ther generalized by Eberly et al. [24]. In this temporal regime, the typical oscillations are
terminated by a Gaussian envelope exp (−φ (t)) [24], with φ (t) = 2〈n〉g2

∆2+4〈n〉g2 (gt)2. Since
g
√
〈n〉 remains constant in the semi-classical limit, the loss of coherence is suppressed by

the magnitude of the coherent state: φ (t) ∝ |α|−2. In Appendix E we present an alter-
native derivation of the convergence to the semi-classical limit, relying on the asymptotic
behaviour of the Touchard polynomials. The eventual deviance between the autonomous
and semi-classical results can be seen in Fig. 2 Panel (a), where the fidelity drops from
unity at times for which t > |α|−2.
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To summarize, the studied example demonstrates the validity of Eqs. (18) and (19),
which determine the semi-classical dynamics. It shows that the semi-classical description
can be obtained solely in terms of the semi-classical Hamiltonian Ĥs.c

S (t), by relying on the
general procedure presented in Sec. 4. This approach serves as a simple straight forward
method to obtain the semi-classical description. The resulting dynamics coincides with the
result obtained by first completely solving the autonomous dynamics and then taking the
semi-classical limit.

9.2 Eigenoperators in the semi-classical limit
The eigenoperators in the semi-classical limit can be derived by introducing a set of time-
dependent operators ~v (t) ≡ {σ̂−eiωct, σ̂+e

−iωct, σ̂z/
√

2}. Along with the identity operator,
this set of operators constitutes a complete basis for the qubit operator vector space, the
so-called Liouville space. Utilizing the Heisenberg equation of motion the dynamics of the
basis operators can be expressed in a matrix-vector form: d

dt~v
H (t) = M~vH (t), where

M = i

 −∆ 0
√

2gα
0 ∆ −

√
2gα∗√

2gα∗ −
√

2gα 0

 . (39)

Diagonalization of M leads to three uncoupled equations of motion, governing the dy-
namics of the eigenoperators of ÛJC,s.cS . The transition operators (eigenoperators with
non-vanishing eigenvalues) in the Schrödinger picture are given by

F̂± (t) = N±

(( √
2αg

∆∓ Ω ±
Ω√
2gα∗

)
σ̂−e

iωct +
√

2gα∗

∆∓ Ω σ̂+e
−iωct + σ̂z√

2

)
. (40)

where N± =
√

2g2|α|2/Ω is a normalization constant and Ω〈n〉 = Ω. Their dynamics are of
the form of Eq. (24) with corresponding eigenvalues θ± (t) = ±Ω〈n〉t = ±

√
4|α|2g2 + ∆2t.

The invariant operator reads

Ŵ (t) = g
(
α∗σ̂−e

iωct + ασ̂+e
−iωct

)
+ ∆

2 σ̂z . (41)

Such an operator constitutes a time-dependent constant of motion, since its expectation
value remains constant under the free dynamics, Eq. (36): 〈Ŵ (t)〉 = tr

(
ŴH (t) ρ̂S (0)

)
=

tr
(
Ŵ (0) ρ̂S (0)

)
.

9.3 Semi-classical limit for an open system
The structure of the master equation for the combined system, including the qubit and the
bosonic mode, can be obtained from the thermodynamical construction presented in Sec.
3 and 4. The key ingredients of the resulting structure are the primary-system and control
semi-classical eigenoperators, which determine the structure of the semi-classical master
equation. Inserting relations (40), (41) into Eq. (27) leads to the reduced dynamics of a
qubit, driven by a classical-field V̂ (t) = ~g

(
σ̂−α

∗eiωct + σ̂+αe
−iωct). The dissipative part

becomes

Ds.c [ρ̂S (t)] =
∑
k=±

γk (t)
(
F̂kρ̂S (t) F̂ †k −

1
2
{
F̂ †k F̂k, ρ̂S (t)

})
+γ0 (t)

(
Ŵ ρ̂S (t) Ŵ − ρ̂S (t)

)
,

(42)
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where F̂± ≡ F̂± (0) and Ŵ ≡ Ŵ (0). Note, that generally corrections to the unitary
dynamics, as the Lamb-shift, arise from the invariant term. If we absorb this into a
an effective Lamb-shift Hamiltonian ĤLS , all the kinetic coefficients are positive under
Markovian dynamics. The total master equation will then obtain the form Ls.c [ρ̂S (t)] =
− i

~

[
Ĥs.c
S (t) + Ĥs.c

LS (t) , ρ̂S (t)
]

+Ds.c [ρ̂S (t)].
As expected, in the semi-classical limit tracing over the control degrees of freedom leads

to a master equation, where the eigenoperators of ÛJC,s.cS (t) (with n = 〈n〉) constitute the
Lindblad jump operator (see Eq. (68) in Appendix E).

9.3.1 Kinetic coefficients and the physical significance of the global strict energy conservation

The kinetic coefficients can be determined by employing a perturbative evaluation of the
dynamical map [19] or alternatively, in the Markovian regime one can supplement the
axiomatic approach by a first principle derivation.

We employ the construction of the NAME [16] to determine the kinetic coefficients for
the Jaynes-Cumming system coupled to a thermal bosonic bath. The derivation is valid in
the Markovian regime, i.e, the typical timescale characterizing the decay of environmental
correlation τE is much smaller then the relaxation timescale τR and the timescale associated
with Jaynes-Cummings model internal dynamics τD. In addition, the interaction with the
environment is considered to be weak, i.e, τR � τD. Under these conditions the the
following kinetic coefficients are obtained (see Appendix G for further details)

γ0 = 2g2|α|2

Ω2 (J (|ωc|) (N (ωc, T ) + 1) + J (|ωc|)N (ωc, T ))

γ− = s−J (|ωc + Ω|) (N (ωc + Ω, T ) + 1) + s+J (|ωc − Ω|)N (ωc − Ω, T ) (43)

γ+ = s−J (|ωc − Ω|) (N (ωc − Ω, T ) + 1) + s+J (|ωc + Ω|)N (ωc + Ω, T ) ,

where s± = ∆(∆±Ω∆)+2g2|α|2
4Ω2 , J is the bath’s spectral density function and N (ω, T ) is the

Bose-Einstein distribution of a bath of temperature T .
Interestingly, the kinetic coefficients depend not only on the driving frequency ωc ≈ ωeg,

but also on the side-band frequencies ωc ±Ω. The specific dependence of the kinetic coef-
ficients and the Lindblad jump operators can be understood by studying the transitions in
the (autonomous) dressed basis {

∣∣∣ψ(n)
+

〉
,
∣∣∣ψ(n)
−

〉
}, Eq. (44). The jump operators constitute

of eigenoperators of the effective Hamiltonian Ĥeff = ∆
2 σ̂z + ~g (σ̂−α∗ + σ̂+α), with eigen

energies ± = ±~Ω/2. As a result, the three terms of the master equation, proportional to
γ− and γ+, are related to emission and absorption of an energy quanta ~Ω. Assuming a
highly excited coherent state Ωn ≈ Ω〈n〉 = Ω (n→ 〈n〉) and the relevant transitions in the
Jaynes-Cumming model are dominated by emission or absorption of photons of frequencies
{ωc, ωc±Ω,Ω}. The first frequency is a resonant transition which associated with γ0, while
an emission and absorption of a photon with a frequency ωc + Ω and ωc − Ω respectively,
requires a transition from

∣∣∣ψ(〈n〉)
+

〉
to
∣∣∣ψ(〈n〉)
−

〉
. Therefore these transitions are associated

with the the decay rate γ−. Similarly the opposite transitions induce an excitation in the
reduced description of the two-level system and are therefore incorporated in the excitation
rate γ+.

The frequency dependence of the coefficients is connected to the so-called Mollow triplet
or dynamical Stark effect [11, 50, 55, 61] and is a strong indication that the our initial
axioms hold effectively. Under resonance and sufficient light intensity (when the Rabi-
frequency becomes comparable to the atomic linewidth) side-bands in the fluorescence
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spectrum start to appear. Along with the main peak, these three spectral peaks form the
Mollow triplet.

A central assumption in our construction is that strict energy conservation between
the device and the environment holds (postulate 4). However, a priori it is not clear
whether this mathematical condition represents the actual physics. One can also imagine
a possibility where the environment interact solely with the primary system, and the control
is effectively isolated from the environmental effects (this is indeed the popular assumption
in quantum optics). Nevertheless, the existence of the side-bands supports our initial
choice. The detection itself is a clear indication that the combined system (two-level system
and harmonic model) emits to the environment (the lab and specifically to the detector)
energy quanta of ~ (ωc ± Ω). In addition, the amounts of fluorescence depends on the
density of states in the environment. If the density of state is small, the the transition of
energy to the environment is suppressed or enhanced when the density is large [32, 35, 36].
This phenomena is captured by the dependence of the kinetic coefficients on the spectral
density J in the side-band frequencies. In contrast, the commonly employed local master
equation, which induces changes only within the primary system energy levels, does does
not capture this feature.

9.4 Role of coherence in the Jaynes-Cummings model
Coherence in the control system is manifested in two distinct ways in the autonomous and
semi-classical descriptions. In the autonomous description the coherence in the initial con-
trol state influences the kinetic coefficients of the reduced description (see also explanation
in Sec. 3.1). Whereas, in the semi-classical description the initial coherence manifests itself
within the Lindblad jump operators of the master equation.

Specifically, in the JC model the jump operators of the (autonomous) master equation
are transition operators between the energy eigenstates {

∣∣∣ψ(n)
±

〉
}, with

∣∣∣ψ(n)
+

〉
= sin

(
αn
2

)
|g, n〉+ cos

(
αn
2

)
|e, n− 1〉∣∣∣ψ(n)

−

〉
= − cos

(
αn
2

)
|g, n〉+ sin

(
αn
2

)
|e, n− 1〉 , (44)

where αn = tan−1 (
√
n~g). The associated eigenenergies are E(n)

± = ±~
2
√

∆2 + 4g2n +
~nωc, which imply that the device’s Bohr frequencies are non-degenerate. This condition
allows employing the construction of Sec. 3 to write the general structure of the equation
of motion which complies with the thermodynamic postulates (Sec. 2). The derived
dynamical equation is of the form of the autonomous master equation, Eqs. (4) and (6),
with jump operators {

∣∣∣ψ(n)
a

〉〈
ψ

(m)
b

∣∣∣} and a, b = ±.
When focusing on the primary-system dynamics, the superposition of bare control

states in the device’s eigenstates Eq. (44), leads to coherent contributions to the reduced
master equation of the qubit. Following the general case in Sec. (3.1) reveals that the
coherence in the control state is manifested by the contribution of ‘cross terms’ 〈n|ρ̂C (t) |m〉
for n 6= m to the kinetic coefficients of the autonomous reduced master equation.

In the semi-classical master equation Eq. (42), the Lindblad jump operators are eigen-
operators of the semi-classical propagator Eq. (37), which in turn is generated by the
semi-classical Hamiltonian ĤJC,s.c

S = tr
(
H̃JC
D ρ̃C (t)

)
Eq. (36). The dependence on ρ̂C

demonstrates that the identity of the jump operators is directly related to the initial con-
trol state.
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In the studied example, when the initial control state lacks coherence, the control
parameter α vanishes and the semi-classical Hamiltonian becomes time-independent and
is unaffected by the control. This behaviour is a general property of the semi-classical
framework when the limit g → 0 is not compensated by large coherence in the control.
Hence, in the semi-classical description the time-dependence of the jump operators in the
Schrödinger picture relies on large coherence in the control state.

10 Discussion
The interrelation between thermodynamics and quantum mechanics suggests applying a
combined approach towards the construction of quantum dynamical equations of motion.
The main emphasis in the current analysis is on transient dynamics, where the obtained re-
duced equations of motion are explicitly time-dependent. To address this issue we employed
two complementary frameworks to describe the same physical system, the autonomous and
semi-classical descriptions. We showed that in the appropriate limit both methods lead to
the same reduced dynamics for the primary-system. This is manifested by the fact that in
this limit the Lindblad jump operators, which are the eigenoperators of the free dynamics,
coincide.

The main difference between the semi-classical and autonomous master equations (Eqs.
(6) and (27)) concerns the emergence of a transient character in the semi-classical frame-
work. This is manifested by an explicit time-dependence in the kinetic and eigenoperators.
The different temporal behaviour replaces the fixed point of the map by a time-dependent
instantaneous attractor. Moreover, in contrast to the autonomous case, the semi-classical
master equation mixes coherence and energy. The generated coherence can be traced back
to the initial coherence in the control [43, 66]. Meaning that coherence is transferred from
the control to the primary-system. As a consequence, if the control is initially in a sta-
tionary state, coherence and energy will evolve independently. Therefore, the source of
the transient character is the non-stationary state of the control. In this context there
is a hidden assumption of a timescale separation between the fast direct influence of the
environment on the primary-system and a slow indirect effect on the control.

In the semi-classical description the instantaneous attractor essentially serves as a mov-
ing target which the primary-system aspires to [40]. The target depends on the state of
the control. Experiments in NV centers [28] have demonstrated the dependence of the
dissipation on the control. This property opens the doors to control the dissipative dy-
namics of the primary-system, which constitutes an open quantum system [17, 18]. In
addition, building upon the present study we have extended this framework to obtain a
master equation which is applicable to non-Markovian scenarios [19].

The thermodynamics of the device emerges from the condition of strict energy conser-
vation which serves as isothermal partition between the system (including primary-system
and control) and environment. As a consequence, heat is identified as the change of en-
ergy in the environment, which also coincides with the combined energy change in the
primary-system and control. If we additionally impose strict energy conservation between
the primary-system and control, we can further partition the energy between the control
and primary-system. In this case, the change in energy in the control cannot be directly
identified as work, since the energy transport may be accompanied by an increase in en-
tropy [62]. Nevertheless, in the semi-classical limit, the primary-system and control state
are separable. Under such a separation, the lack of correlations allows for energy transfer
that leaves the entropy invariant. This property motivates the association of work with
the change of energy in the control.
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The definition of global correlations depend on the type of partition. The partitions
are defined by the conserved quantities (or symmetries). Specifically, in the present study
we imposed strict energy conservation between the device and the environment, Postulate
4, however other partitions are possible. A more comprehensive description on this issue
and the thermodynamics will be given in a future study.

To summarize, in this study we presented an axiomatic construction of a master equa-
tion governing the dynamics of a driven open system. This approach generalizes previous
perturbative derivations, based on the Davies construction. The framework illuminates
the connection between the Lindblad jump operators of master equation to the dynam-
ical symmetry (5). This symmetry is closely related to the specific isothermal partition
between subsystems. In addition, the present construction supplies a clear connection
between the complete quantum description (autonomous) and the pragmatic description,
which employs a time-dependent drive (semi-classical). These two possible points of view,
on the same physical system, enhance our insight on the interrelation between quantum
mechanics and thermodynamics.
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A Propagators in different representations
The transition from the autonomous framework to the semi-classical description (Sec. 4)
relied on Eq. (12), which constitutes a relation between the device propagator ÛD (t, 0) =
e−iĤDt/~, the device propagator in the interaction picture ŨD (t, 0) and the bare control
propagator ÛC (t, 0). Here, we present a detailed derivation of this relation.

Let |ψ〉 be the state of the device, which dynamics are governed by the Hamiltonian
ĤD Eq. (1). The state in the interaction picture relative to ĤC is defined as∣∣∣ψ̃ (t)

〉
= Û †C (t, 0) |ψ (t)〉 . (45)

The dynamics of
∣∣∣ψ̃〉 are governed by a Schrödinger equation

i~
∂

∂t

∣∣∣ψ̃〉 = H̃D (t)
∣∣∣ψ̃〉 , (46)

where
H̃D (t) = ĤS + Û †C (t, 0) ĤSCÛC (t, 0) . (47)

In turn, the propagator associated with Eq. (46) reads

ŨD (t, 0) = T exp
(
− i
~

∫ t

0
H̃D (τ) dτ

)
. (48)

Utilizing Eqs. (45) and (48), the dynamics of the device can then be expressed as |ψ (t)〉 =
ÛC (t, 0) ŨD (t, 0) |ψ (0)〉, which leads to

ÛD = ÛCŨD . (49)

B Time-translation symmetry in the semi-classical limit
We present a derivation showing that time-translation symmetry is satisfied in the semi-
classical limit, i.e., the open system dynamical map commutes with isolated system map.
The relation is obtained by building upon the time-translation symmetry of the autonomous
description (Eq. (5)) as well as the procedure in Sec. 4 used to derive the semi-classical
limit.

We introduce the maps in the Heisenberg picture Λ‡ and U‡D. In this picture the
time-translation symmetry obtains the form

Λ‡
[
U‡D

[
ÔD

]]
= U‡D

[
Λ‡
[
ÔD

]]
, (50)

where ÔD is a general device operator.
By expressing the partial trace on the environment in terms of the eigenstates of ρ̂E (0):

{|χi〉}, Eq. (50) becomes (cf. Ref. [14])∑
i

〈χi| Û †Û †DÔDÛDÛ |χi〉 =
∑
i

〈χi| Û †DÛ
†ÔDÛ ÛD |χi〉 . (51)

In the semi-classical limit, the device’s time-evolution operator can be decomposed as
ÛD ∼= ÛC⊗Û s.cS , Eq. (20). A similar decomposition can be obtained for Û , in order to
derive this we repeat the procedure of Sec. (4) for the total system. The composite time-
evolution operator can be equivalently written as Û = ÛCŨ , where the overscript tilde
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designates operators in the interaction picture relative to the bare control dynamics. In
analogy with Eqs. (12) and (13), Ũ is generated by the interaction Hamiltonian H̃ (t) =
ĤS+Û †C (t, 0) ĤSCÛC (t, 0)+ĤSE+ĤE . Following the semi-classical procedure we integrate
over the Liouville-von Neumann equation in the interaction picture and trace over the
control, this leads to an analogous relation to Eq. (15)

ρ̂SE (t) = − i
~

∫ t

0
trC

([
ĤS + ĤSE + ĤE +

∑
i

Ŝ ⊗ C̃i (τ) , ρ̃SE (τ)
])

dτ (52)

where ρ̂SE represents the combined state of the primary system and environment (excluding
the control). Next, we employ the semi-classical conditions, ρ̂ (t) = ρ̂SE (t) ⊗ ρ̂C (t) and
ρ̂C (t) = ÛC (t) ρ̂C (0) Û †C (t). Substituting these relation into Eq. (52) leads to

d

dt
ρ̂SE (t)− i

~

∫ t

0

[
Ĥs.c (τ) , ρ̂SE (τ)

]
dτ , (53)

where Ĥs.c (t) = tr
(
H̃ρ̃C (t)

)
. This equation implies that in the semi-classical limit the

time-evolution operator can be decomposed to a propagator of the control and a semi-
classical propagator on the primary-system and environment state

Û ' ÛC ⊗ Û s.cSE , (54)

where Û s.cSE satisfies the Schrödinger equation with respect to the semi-classical composite
Hamiltonian Ĥs.c (t).

Finally, we consider a primary-system operator ÔD = ÔS ⊗ ÎC , substitute relations
(54) and (20) into Eq. (51) and trace over the control degrees of freedom. The left hand
side then becomes

trC,E
(
Û †Û †DÔSÛDÛ

)
= trC,E

(
Û s.c†SE Û

†
CÛ

s.c†
S Û †CÔSÛCÛ

s.c
S ÛCÛ

s.c
SE

)
= trC,E

(
Û s.c†SE Û

s.c†
S ÔSÛ

s.c
S U s.c

ŜE

)
, (55)

while the right hand side is given by

trC,E
(
Û †DÛ

†ÔDÛ ÛD
)

= trC,E
(
Û s.c†S Û s.c†SE ÔSÛ

s.c
SEÛ

s.c
S

)
. (56)

We now identify the semi-classical open system dynamical map

Λs.c [•] = trE
(
U s.cSE • U

s.c†
SE

)
,

and express Eq. (56) as

Λs.c‡
[
Us.c‡S [OS ]

]
= Us.c‡S

[
Λs.c‡ [OS ]

]
, (57)

or equivalently in the Schördinger picture

Λs.c ◦ Us.cS = Us.cS ◦ Λs.c . (58)

Accepted in Quantum 2021-11-17, click title to verify. Published under CC-BY 4.0. 23



C Instantaneous attractor
In the following section we explicitly derive the action of the dynamical map on the in-
stantaneous attractor ρ̃i.aS . Deriving in detail the relation

D̃S
[
ρ̃i.aS

]
= 0 . (59)

The commutation relations of the Lindblad jump operators and the effective Hamilto-
nian (31), and the Bake-Campell-Housdorff formula lead to

e−H̄S F̂k = eδk F̂ke
−H̄S . (60)

In addition, the generator can be composed to a sum over independent channels D̃S =∑
k D̃

(k)
S , where D̃(k)

S is given by (Eq. (29))

D̃(k)
S [•] = Γk

(
F̂k • F̂ †k −

1
2
{
F̂ †k F̂k, •

})
+ Γ−k

(
F̂ †k • F̂k −

1
2
{
F̂kF̂

†
k , •

})
. (61)

This allows restricting the analysis to a single channel k. The action of the first term in
the k’th channel is

Γk
[
F̂ke

−H̄S F̂ †k −
1
2{F̂

†
k F̂k, e

−H̄S}
]

= Γk
[
e−δk F̂kF̂

†
ke
−H̄S − 1

2
(
F̂ †k F̂ke

−H̄S + e−δk F̂ †ke
−H̄S F̂k

)]
= Γk

[
e−δk F̂kF̂

†
k − F̂

†
k F̂k

]
e−H̄S (62)

And similarly for the second term in Eq. (61)

Γ−k
[
F̂ †ke

−H̄S F̂k −
1
2{F̂kF̂

†
k , e
−H̄S}

]
= Γ−k

[
eδk F̂ †k F̂k − F̂kF̂

†
k

]
e−H̄S . (63)

For Γk/Γ−k = eδk , the two terms cancel each other, leading to D̃(k)
S

[
ρ̃i.aS

]
= 0. A similar

result is obtained for all the channels, determining the identity of the δk parameters.
Summing over the channels we obtain the desired expression

D̃S
[
ρ̃i.aS

]
= 0 . (64)

D Liouville space and the unitarity of the Liouville propagator
Consider a compact system with an associated (wave-function) Hilbert space of dimension
M ∈ N. The equivalent description of the quantum state in Liouville space (known also as
Hilbert-Schmidt space) includes defining an operator basis {X̂}, which spans the Hilbert
space of system operators. A general operator is then expressed in terms of the basis
operators Ô =

∑
i ĉiX̂i, with ci =

(
X̂i, Ô

)
≡ tr

(
X̂iÔ

)
, which defines the corresponding

vector in Liouville space: ~o = {c1, . . . , cN}T , where N = M2 is dimension of the operators
basis. A superoperator S operating on operator Ô, is represented by an N by N matrix
with elements Sij = tr

(
X̂†i S

[
X̂j

])
.
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Vec-ing The vec-ing procedure refers to a certain choice of an operator basis. This
operator basis flattens an operator Ô into an N = M2 dimensional vector. The map-
ping is defined such that the (a, b) entry of Ô is mapped to the (b− 1)M + a entry
of the Liouville vector ~o. If Ô is represented by the wave-function basis {|n〉}, where
M ≥ n ∈ N then the vec-ing procedure is a representation of operators in terms of the
basis {|0〉 〈0| , |1〉 〈0| , . . . , |m〉 〈0| , |0〉 〈1| , . . . , |m〉 〈m|}. For such a choice of basis, the su-
peroperator Â • B̂ is mapped to B̂T ⊗ Â.

Unitarity of the Liouville propagator Utilizing the vec-ing procedure we find that
H =

[
Ĥ, ρ̂

]
is mapped to the matrix

←→
H = Î ⊗ Ĥ − ĤT ⊗ Î. When Ĥ is an Hermitian

operator, as in the case of the Heisenberg equation,
←→
H is Hermitian

←→
H † = Î ⊗ Ĥ† − Ĥ∗ ⊗ Î = Î ⊗ Ĥ − ĤT ⊗ Î =←→H . (65)

which implies that the propagator in Liouiville space
←→
U ‡, defined by ∂

∂t

←→
U = i

←→
H
←→
U is

unitary.

E Convergence to the semi-classical limit in the Jaynes-Cummings Hamil-
tonian

The semi-classical description of the Jaynes-Cummings model is obtained by considering
a bosonic mode for which 〈n〉 � 1, while keeping g

√
n constant and moderate compared

to the qubit’s internal frequency. To obtain this limit rigorously we study the autonomous
system dynamics and derive the dynamics of ρS (t) in this regime.

For an initial control state ρ̂C = |α〉 〈α| the reduced state of the qubit becomes

ρ̂S (t) = trC
(
ÛJCD (ρ̂S (0)⊗ ρ̂C) ÛJC†D

)
=
∞∑
m=0

χ̂m (t) ρS(0)χ̂†m (t) , (66)

with Kraus operators

χ̂m (t) ≡ 〈m| ÛS |α (t)〉 =
∞∑
n=0
〈m| Û (n)

D |α (t)〉 . (67)

Here, Û (n)
D is the propagator of the n’th subspace of Ĥ(n)

D , Eq. (38) and ÛJCD is generated
by the Jaynes-Cumming Hamiltonian ĤJC

D , Eq. (36). Written explicitly in terms of the
basis {|g, n〉 , |e, n− 1〉}, the subspace propagator becomes

Û
(n)
D (t, 0) =  e−inωct

(
cn + i∆sn

Ω〈n〉

)
−ie−inωct 2g

√
n

Ωn sn
−ie−inωct 2g

√
n

Ωn sn e−intωct
(
cn − i∆sn

Ωn

)  , (68)

with cn = cos
(

Ωnt
2

)
, sn = sin

(
Ωnt

2

)
and Ωn =

√
∆2 + 4g2n. Utilizing Eq. (68) and (67)

the Kraus operators can be expressed in a matrix form

χ̂m (t) = e−|α|
2/2×  cm + i∆sm

Ωm
αm√
m! −i2g

√
m

Ωm sm
αm−1√
(m−1)!

−i2g
√
m+1

Ωm+1
sm+1

αm+1
√
m+1! cm − i∆sn

Ωn
αm−1
√
m!

 , (69)
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where the chosen basis is {|g〉 , |e〉}
In the semi-classical limit the major contribution is associated with m ≈ |α|2 � 1. In

this regime
√

(m± 1)! =
√
m!+O

(
1
m!

)
, sn±1 = sn+O

(
|α|−2), and cn±1 = cn+O

(
|α|−2),

leading to

χ̂m (t) ≈ αm√
m!
e−|α|

2/2× (
cm + i∆sm

Ωm −i2g
√
m

Ωm sm

−i2g
√
m

Ωm sm cm − i∆sm
Ωm

)
. (70)

To evaluate the Kraus form, Eq. (66), in the semi-classical limit, it is first useful
to calculated the asymptotic behaviour of the sum e−|α|

2 ∑∞
m=0

|α|2m
m! f (m), where f is an

analytical function ofm. Expressing f (m) in terms of a Maclaurin series, f (m) =
∑
j cjm

j

with cj = djf/dmj |m=0 leads to

e−|α|
2
∞∑
m=0

|α|2m

m! f (m)

= e−|α|
2
∞∑
m=0

|α|2m

m!
∑
j

cjm
j

= e−|α|
2 ∑

j

cj

∞∑
m=0

|α|2m

m! mj

=
∑
j

cjTj
(
|α|2

)
, (71)

where Tj (x) = e−x
∑∞
k=0

knxk

k! are the Touchard polynomials. For x ∈ R these polynomials
satisfy the following relation asymptotically (|x| → ∞) [56]

x−jTj (x) = 1 + j (j − 1)
( 1

2x +O

( 1
x2

))
. (72)

Thus, in the classical limit, for which |α|2 � 1, the Touchard polynomials in Eq. (71)
become

Tj
(
|α|2

)
= |α|2j

(
1 +O

( 1
|α|2

))
. (73)

Substituting (73) into Eq. (71) gives the desired expression

e−|α|
2
∞∑
m=0

|α|2m

m! f (m) ∼= f
(
|α|2

)
. (74)

Gathering Eqs. (66), (70) and (74) we obtain the qubit’s dynamics in the semi-classical
limit

ρ̂S (t) ∼= ÛJC,s.cS (t, 0) ρ̂S (0) ÛJC,s.c†S (t, 0) , (75)

with the semi-classical propagator

ÛJC,s.cS =

 c〈n〉 + i
∆s〈n〉
Ω〈n〉

−i2g
√
〈n〉

Ω〈n〉
s〈n〉

−i2g
√
〈n〉

Ω〈n〉
s〈n〉 cn − i

∆s〈n〉
Ω〈n〉

 , (76)

where 〈n〉 = 〈α| â†â |α〉 is the mean photon number of the coherent state.
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F Comparison of the autonomous solution in the semi-classical limit with
the semi-classical solution (Rabi model)

The semi-classical Hamiltonian is obtained by tracing over the environment degrees of
freedom, as defined bellow Eq. (19). In the Jaynes-Cummings model this definition leads
to Eq. (36):

ĤJC,s.c
S (t) = ~ωeg

2 σ̂z + ~g
(
σ̂−α

∗eiωct + σ̂+αe
−iωct

)
. (77)

Performing a rotation by an angle ϕ = −arg (α) around the z axis, we obtain an equivalent
representation of the Hamiltonian

ĤJC,s.c
S → R̂†z (ϕ) ĤJC,s.c

S R̂z (ϕ)

= ~ωeg
2 σ̂z + ~g|α|

(
σ̂−e

iωct + σ̂+e
−iωct

)
, (78)

where R̂z (ϕ) = e−iσϕ/2. The semi-classical dynamics can be obtained by transforming
to an interaction (rotating) picture, defined by |ψV 〉 = V † |ψ〉 with V = e−iωcσzt/2, and
diagonalizing the resulting Hamiltonian. This procedure leads to the propagator ÛJC,s.cS

Eq. (19), which is equivalent to the propagator in Eq. (76), that was obtained from the
autonomous dynamics by taking the semi-classical limit.

G First principle derivation of the of Jaynes-Cumming master equation
We present a first principle derivation of Eq. (43), the derivation supplements the exact
operatorial structure of Eq. (42) and allows evaluating the kinetic coefficients in a certain
physical regime.

Assuming weak coupling between and Markovian dynamics, the Bohr Markov approx-
imation leads to the Quantum Markovian master equation [9].

dρ̃S (t)
dt

= − 1
~2

∫ ∞
0

ds trE
([
H̃I (t) ,

[
H̃I (t− s) , ρ̃S (t)⊗ ρ̂E

]])
, (79)

where ρ̃S (t) and H̃I are the qubits state and interaction term, in the interaction represen-
tation relative to the semi-classical free dynamics Ĥs.c

S (t) + ĤE . In addition, due to the
Markovian nature of the dynamics the primary system and environment can be effectively
described in terms of a separable state, where the environment remains in a stationary
state.

We consider a bosonic bath of temperature T and an interaction of the form

ĤI = σ̂x ⊗ Ê (80)

where Ê =
∑
k gk

(
b̂k + b̂†k

)
is the environment interaction term. This interaction does

satisfy the strict energy conservation condition of postulate 4, nevertheless, the derivation
will lead a master equation which complies with the operatorial structure and dynamical
symmetry dictated by postulate 4. The apparent incongruity can be as an effective inter-
action under a coarse-graining in time. That is, for sufficiently long timescales the effect
of the “non-energy conserving” terms, which do not satisfy the strict energy conservation,
average out and the interface energy between the device and environment is effectively
constant [69].
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Next, we expand the system interaction term in terms of the eigenoperators, leading to

σ̃x (t) = Û s.c†S (t) σ̂xÛ s.cS (t) =
√

2g
Ω

(
αF̂0e

−itωc + α∗F̂0e
itωc
)

+ s
(1)
+ F̂+e

−i(ωc−Ω)t + s
(2)
+ F̂+e

i(ωc+Ω)t

+ s
(1)
− F̂−e

−i(ωc+Ω)t + s
(2)
− F̂−e

i(ωc−Ω)t , (81)

where F̂0 ≡ F̂0 (0),F̂± ≡ F̂± (0), and

s
(1)
± = ± 2g2|α|α∗

Ω (Ω±∆) ; s
(2)
± =

(
∓ 1
|α|
± 2g2|α|

Ω (Ω±∆)

)
α . (82)

Substituting Eq. (80) into Eq. (79) and performing the secular approximation (terminating
fast oscillating terms, valid under the condition that τR � τS) leads to the following master
equation

d

dt
ρ̃S (t) = γ−

(
F̂−ρ̃S (t) F̂+ −

1
2{F̂+F̂−, ρ̃S (t)}

)
+ γ+

(
F̂+ρ̃S (t) F̂− −

1
2{F̂−F̂+, ρ̃S (t)}

)
+ γ0

(
F̂0ρ̃S (t) F̂0 − ρ̃S (t)

)
. (83)

The kinetic coefficients are given by

γ0 = k0 (Γ (ωc) + Γ (−ωc))
γ− = k−Γ (ωc + Ω) + k+Γ (ωc − Ω) (84)
γ+ = k−Γ (ωc − Ω) + k+Γ (ωc + Ω) ,

where
Γ (ν) =

∫ ∞
0

ds eiνs〈Ê (t) Ê (t− s)〉 (85)

is the one-sided Fourier transform of the environment correlation function and

k0 = 2g2|ν|2

Ω2 ; k± = ∆ (∆± Ω∆) + 2g2|ν|2

4Ω2 (86)

are constant coefficients. Following the derivation in Ref. [9] Sec. 3 Eq. (85) becomes

Γ (ν) = |gk(ν)|2Φ (ν) (N (ν, T ) + 1) , (87)

where k (ν) is designates the environment mode which oscillates at frequency ν, Φ (ν) is the
field density of state at frequency ν, (for example for a three-dimensional field Φ (ν) ∝ ν2)
and N (ν, T ) = 1

e~ν/kBT−1 .
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