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Abstract

Quantum Thermodynamics is a continuous dialogue between two
independent theories: Thermodynamics and QuantumMechanics. When-
ever the two theories have addressed the same phenomena new insight
has emerged. We follow the dialogue from equilibrium Quantum Ther-
modynamics and the notion of entropy and entropy inequalities which
are the base of the II-law. Dynamical considerations lead to non-
equilibrium thermodynamics of quantum Open Systems. The cen-
tral part played by completely positive maps is discussed leading to
the Gorini-Kossakowski-Lindblad-Sudarshan ”GKLS” equation. We
address the connection to thermodynamics through the system-bath
weak-coupling-limit WCL leading to dynamical versions of the I-law.
The dialogue has developed through the analysis of quantum engines
and refrigerators. Reciprocating and continuous engines are discussed.
The autonomous quantum absorption refrigerator is employed to il-
lustrate the III-law. Finally, we describe some open questions and
perspectives.

1 Introduction

Quantum mechanics was conceived from a consistency argument on the na-
ture of thermal emitted light. In 1900, Planck, as an act of despair, intro-
duced a fix to the frequency distribution law of black body radiation [1]. In
1905 Einstein reanalysed the problem, based on consistency with thermody-
namics, he writes: In terms of heat theory monochromatic radiation of low
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density (within the realm of validity of Wien’s radiation formula) behaves as
if it consisted of independent energy quanta of the magnitude hν. Einstein’s
conclusion is a quantised electromagnetic field [2] the dawn of quantum me-
chanics. From this point on, quantum mechanics developed independently
eventually setting its own set of assumptions [3]. Currently, the consistency
argument is used in reverse, deriving the laws of thermodynamics from the
established quantum principles. This approach allows naturally the addition
of dynamical out of equilibrium considerations.

In 1916 Einstein examined the relation between stimulated emission and
radiation absorption using thermodynamical equilibrium arguments [4]. This
paper addressing the light matter interaction is the prerequisite for the theory
of Lasers. Lasers represent a non equilibrium phenomena where amplified
light is generated from a non equilibrium distribution of matter. In 1959,
during the early development of solid state lasers, Scovil and Schulz-Dubios
realized the equivalence of a three-level maser with a Carnot heat engine [5].
This is a seminal paper in contemporary quantum thermodynamics. They
identified the amplified light as work and the kinetic process that establishes
the population inversion as heat generated by a hot and cold bath of different
temperatures. The well known thermodynamical viewpoint that an engine
can be reversed to a heat pump led Geusic, Scovil and Schulz-Dubios to
suggest Maser cooling [6] and in 1967 Laser cooling in the summarizing paper
quantum equivalence of Carnot cycle [7]. These studies preceded the work
of Wineland and Hänsch which reinvented laser cooling in 1975 [8, 9] which
was not based on thermodynamical arguments.

Thermodynamics is usually viewed as a theory of large scale macroscopic
processes. In view of the trend toward miniaturization, how far down can
thermodynamics be applicable? J von Neumann set the foundation for quan-
tum theory on a probabilistic footing relevant for a single particle. Thus
quantum mechanics enables thermodynamical ideas to be applicable on any
scale.
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2 Equilibrium Quantum Thermodynamics

2.1 The von Neumann mathematical formalism of quan-
tum statistical physics

A mathematically precise framework of quantum mechanics for systems of fi-
nite number of degrees of freedom has been developed by J. von Neumann in
his book [3]. He synthesized the contribution of E. Schrödinger, W. Heisen-
berg and P.A.M. Dirac in the language of Hilbert spaces and linear operators
acting on them [10, 11, 12]. von Neumann established the following funda-
mental structure of quantum probability [3]:
i) quantum observables are self-adjoint (hermitian) operators (denoted by
Â, B̂, ..) acting on the Hilbert space H,
ii) quantum events are the particular yes-no observables described by pro-
jectors (P̂ = P̂ 2),
iii) quantum probability measures are represented by density matrices, i.e.
positive operators with trace one (denoted by ρ̂, σ̂, ..),
iv) probability of the event P̂ for the state ρ̂ is given by

P = Tr(ρ̂P̂ ), (1)

v) an averaged value of the observable Â at the state ρ̂ is equal to

〈Â〉ρ = Tr(ρ̂Â). (2)

The reversible dynamics of a quantum system formulated in terms of den-
sity matrices is governed by the von Neumann evolution equation with the
generally time-dependent Hamiltonian Ĥ(t)

d

dt
ρ̂(t) = − i

~
[Ĥ(t), ρ̂(t)], (3)

with the solution in terms of the unitary propagator Û(t, t0)

ρ̂(t) = Û(t, t0)ρ̂(t0)Û(t, t0)†, Û(t, t0) = T exp
{
− i
~

∫ t

t0

Ĥ(t′)dt′
}
. (4)

where T is the time ordering operator. von Neumann introduced also the
notion of entropy of the density matrix, called now von Neumann entropy
and defined by the expression

Svn(ρ̂) = −kBTr(ρ̂ ln ρ̂) = −kB
∑
j

λj lnλj (5)
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where ρ̂ =
∑

j λj|j〉〈j| is a spectral decomposition of the density matrix.
Notice, that this entropy is well-defined and non-negative (albeit can be in-
finite) in contrast to the generally ill-defined Boltzmann entropy for classical
probability distributions on phase-spaces. The von Neumann entropy is an
invariant of the state ρ̂ and is the lower bound for SA(ρ̂) ≥ Svn(ρ̂) where
SA = −kB

∑
j pj ln pj is the Shannon entropy defined by the probability dis-

tribution obtained by a complete measurement of the operator Â.
The quantum counterpart of the canonical (Gibbs) ensemble, correspond-

ing to the thermodynamic equilibrium state at the temperature T , for the
system with the Hamiltonian Ĥ, is described by the density matrix of the
form

ρ̂β =
1

Z
e−βĤ , β =

1

kBT
, Z = Tre−βĤ . (6)

The Gibbs state maximizes entropy under the condition of a fixed mean en-
ergy (internal energy in thermodynamic language) E = Tr(ρ̂Ĥ) or minimizes
E for a fixed entropy Svn. In this case Svn = SH .

Similarly to the classical Hamiltonian evolution the reversible dynamics
given by (3) preserves entropy and hence cannot describe the equilibration
process for an isolated quantum system without additional coarse-graining
procedures. In particular, a pure state represented in the Hamiltonian eigen-
basis by |ψ〉 =

∑
j cj|j〉 remains a pure state. von Neumann proposed as a

first step towards thermalization the time-averaging procedure leading from
|ψ〉 to the following density matrix (for a generic case of a non-degenerated
Hamiltonian spectrum).

ρ̂D = lim
τ→∞

1

τ

∫ τ

0

e−i/~Ĥt|ψ〉〈ψ|e−i/~Ĥtdτ =
∑
j

|cj|2|j〉〈j|. (7)

The problem of thermalization mechanism for closed, complex quantum sys-
tem is still open [13].

2.2 Finite quantum systems

To avoid mathematical problems we begin with the discussion of equilibrium
states for quantum systems with finite-dimensional Hilbert spaces. The basic
property of an equilibrium system is related to the Kelvin formulation of the
Second Law: It is not possible to extract work from a single heat source at a
fixed temperature in a cyclic process [14]. This leads to the notion of a passive
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state [15, 16, 17] for a given system with a Hamiltonian Ĥ as the state ρ̂ for
which

Tr(ρ̂Ĥ) ≤ Tr(Û ρ̂Û †Ĥ) (8)

for any unitary Û . This arbitrary unitary map represents any reversible
external driving applied to the system and the inequality (8) means impossi-
bility of extracting work by such a procedure. It is not difficult to show that
any passive state ρ̂p is diagonal in the Hamiltonian eigenbasis which can be
ordered in such a way that

ρ̂p =
n∑
j=1

λj|j〉〈j|, Ej ≤ Ej+1, λj+1 ≤ λj (9)

where Ĥ|j〉 = Ej|j〉.
Gibbs states (6) are obviously passive, but there exist many others, like

for instance a variant of microcanonical ensemble determined by the energy
scale E and defined as

ρ̂[E] =
1

#{j;Ej ≤ E}
∑

{j;Ej≤E}

|j〉〈j|. (10)

However, only Gibbs states possess the property of complete passivity which
means that also its n-fold product ρ̂⊗n is passive with respect to n-fold sum
of its Hamiltonian, for arbitrary n = 1, 2, 3, .... No energy can be extracted
by a unitary even from the n-fold product completely passive state, which is
a quantum version of Kelvin’s II-law.

Any density matrix ρ̂ can be transformed into a unique passive state ρ̂p =

Û ρ̂Û † by a unitary Û which maps the eigenvectors of ρ̂ into the eigenvectors
of Ĥ with the proper ordering.

Kubo introduced multi-time correlation functions (called Green func-
tions) at the equilibrium states as a link between quantum statistical me-
chanics and nonequilibrium dynamics [18]. Generalizing an idea by Einstein
on the relation between drag and restoring force of a brownian particle Green
and Kubo [19] expressed the transport coefficients in terms of integrals of
equilibrium time correlation functions. As an illustration consider a two-
point correlation function for finite system at the Gibbs state corresponding
to the Hamiltonian Ĥ

FAB(t) = Tr
(
ρ̂βÂ(t)B̂

)
, Â(t) = e

i
~ ĤtÂe−

i
~ Ĥt (11)
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for two observables Â and B̂. Discreteness of the Hamiltonian spectrum
implies that FAB(t) is a quasi-periodic function, i.e. after sufficient time
its value returns arbitrarily close to the initial one, which corresponds to
Poincare recurrences in classical mechanics.

By analytic continuation the functions FAB(t) can be extended to a com-
plex domain (t → z) and one can show that Gibbs states are completely
characterized by the following the Kubo-Martin-Schwinger (KMS) condition
[18, 20]

FAB(−t) = FBA(t− i~β) (12)

valid for any pair of observables and arbitrary time.

2.3 Infinite quantum systems and KMS states

Large, many-particle quantum systems are important in quantum thermo-
dynamics for studying physical properties of bulk matter or models of heat
baths in the context of nonequilibrium theory of open systems. A very use-
ful idealization called the thermodynamic limit is a mathematical procedure
replacing a system of N particles in a volume V by its infinite volume limit
with a fixed density N/V . The mathematically rigorous theory of infinite
quantum systems has been developed in the 60-ties and 70-ties and allowed
to study, for example, decay of spatial and temporal correlations or define
precisely the notion of phase transition and spontaneous symmetry breaking.

The original Hilbert space description in terms of density matrices and
hermitian operators loses its meaning in the thermodynamical limit and must
be replaced by a more abstract algebraic formalism. However, one can use
an alternative approach involving Green functions, for which their thermo-
dynamic limit can be well-defined.

As an example, consider a free Bose or Fermi gas confined in a finite
volume and described by a set of annihilation and creation operators âk ,
â†k labeled a discrete set of quantum numbers {k} and satisfying canonical
commutation and anticommutation relations, respectively. The Hamiltonian
is given by

Ĥ =
∑
k

εkâ
†
kâk, (13)

and the thermal equilibrium state by the grand canonical ensemble

ρ̂β,µ = Z−1(β, µ)e−βĤµ , Z(β, µ) = Tre−βĤµ (14)
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which can be treated as a Gibbs state with the modified Hamiltonian

Ĥµ = Ĥ − µN̂ =
∑
k

(εk − µ)â†kâk. (15)

where µ is a chemical potential.
For a pair of observables A =

∑
k(fkâk + f̄kâ

†
k) and B =

∑
k(gkâk + ḡkâ

†
k)

the Green function in the thermodynamic limit can be computed replacing
the discrete energy levels εk by the continuous variable ~|ω| and fk, gk by
functions f(|ω|, α), g(|ω|, α) where α denotes additional (discrete and con-
tinuous) quantum numbers. Then

FAB(t) =

∫ +∞

−∞
dω e−iωt

∫
dα
{
f̄(|ω|, α)g(|ω|, α)[1− (∓)n(~|ω|)]Θ(ω)

+
[
f(|ω|, α)ḡ(|ω|, α)n(~|ω|)Θ(−ω)

}
, (16)

where
∫
dα denotes integral and sum over continuous or discrete α-s , Θ(·)

is the Heaviside function and

n(x) =
1

eβ(x−µ) ∓ 1
, (17)

with the convention that in ∓ the minus sign corresponds to bosons and the
plus sign to fermions. The Green function (16) has an explicit structure of a
Fourier transform that illustrates the fact that in the thermodynamic limit
time correlations decay to zero for long times without Poincare recurrences.
Moreover, one can expect that in the generic case of infinite systems the in-
verse Fourier transforms F̃AB(ω) are meaningful and then the KMS condition
(12) implies the relation [18, 20]

F̃BA(−ω) = e−~βωF̃AB(ω), (18)

which plays an important role in the quantum theory of open systems.
The KMS condition in the form (12) has been proposed to define thermal

equilibrium states for infinite systems [18, 20]. It has been subsequently
proved that KMS states possess desired stability properties with respect to
local perturbations. Moreover, passivity (originally introduced in context
of infinite systems [21]) combined with a certain clustering property, which
excludes long-range order, implies the KMS condition [17].

For finite systems at the given temperature the corresponding Gibbs state
is unique. In the case of an infinite system at the given temperature many
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KMS states can coexist, usually below a certain critical temperature. This is
exactly the mechanism of phase transition, the notion which can be precisely
defined only in the thermodynamic limit Qbook:Ch.19.

3 Non-equilibrium Thermodynamics of Quan-

tum Open Systems

The progress in the field of quantum optics and laser physics in 60-ties and
70-ties stimulated efforts to develop a mathematically sound theory of ir-
reversible quantum dynamics. As noticed by Kraus [22], the mathematical
theory of completely positive (CP) maps [23] provided a natural framework
for both, the dynamics of open quantum systems and quantum measurement
theory. The general form of CP and trace preserving map reads

Λρ̂ =
∑
j

Ŵ †
j ρ̂Ŵj, (19)

where Ŵj are called Kraus operators and satisfy the condition
∑

j ŴjŴ
†
j = I.

For any CP dynamical map Λ, Lindblad proved a kind of H-theorem [24]

S(Λρ̂|Λσ̂) ≤ S(ρ̂|σ̂) (20)

valid for the relative entropy of an arbitrary pair of density matrices

S(ρ̂|σ̂) = Tr
(
ρ̂ ln ρ̂− ρ̂ ln σ̂

)
. (21)

The highlight of this period was the discovery in 1976 of the general form of
the Markovian Master Equation (MME) satisfying CP condition

d

dt
ρ̂ = − i

~
[Ĥ, ρ̂] +

1

2

∑
j

([V̂j ρ̂, V̂
†
j ] + [V̂j, ρ̂V̂

†
j ]) ≡ − i

~
[Ĥ, ρ̂] + Lρ̂ . (22)

called the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation [25].
While in [26] finite-dimensional Hilbert spaces were considered, the case

of bounded generators L for open systems with infinite-dimensional spectrum
was independently proved in [27]. For a recent discussion of the still open
unbounded case see [28].
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3.1 Quantum Thermodynamics in the Markovian regime

Two years before the appearance of the GKLS equation Davies presented a
rigorous derivation of MME for a N -level system weakly coupled to a heat
bath represented by a an ideal fermionic gas at the thermodynamic limit [29].
The derivation incorporates in a single mathematical procedure, called weak
coupling limit (WCL), which includes the heuristic ideas of Born, Markovian
and secular approximations, previously applied to various examples of open
systems such as nuclear magnetic resonance by Bloch [30] and later Redfield
[31]. Other approaches to the MME include the projection technique of
Nakajima-Zwanzig [32, 33].

Adding to the WCL method a kind of renormalization procedure which
allows to use the physical Hamiltonian Ĥ of the system, containing lowest
order Lamb corrections, and parametrizing the system-bath interaction as
Ĥint =

∑
k Ŝk ⊗ R̂k one obtains the following structure of MME which is in

the GKLS form

d

dt
ρ̂ = −i[Ĥ, ρ̂] + Lρ̂, Lρ̂ =

∑
k,l

∑
{ω}

Lωlkρ̂ (23)

where

Lωlkρ̂ =
1

2~2
R̃kl(ω)

{
[Ŝl(ω)ρ̂, Ŝ†k(ω)] + [Ŝl(ω), ρ̂Ŝ†k(ω)]

}
. (24)

Here, the operators Ŝk(ω) originate from the Fourier decomposition ({ω}-
denotes the set of Bohr frequencies of Ĥ).

ei/~ĤtŜke
−i/~Ĥt =

∑
{ω}

e−iωtŜk(ω), (25)

and R̃kl(ω) is the Fourier transform of the bath correlation function 〈R̂k(t)R̂l〉bath
computed in the thermodynamic limit R̃kl(ω) =

∫ +∞
−∞ eiωt〈R̂k(t)R̂l〉bathdt.

The derivation of (23),(24) makes sense for a generic stationary state of
the bath and implies two properties:
1) the Hamiltonian part [Ĥ, ·] commutes with the dissipative part L,
2) the diagonal (in Ĥ-basis) matrix elements of ρ̂ evolve (independently of
the off-diagonal ones) according to the Pauli Master Equation with transition
rates given by the Fermi Golden Rule [34, 35].
If additionaly the bath is a heat bath, i.e. an infinite system in a KMS state
the additional relation (12) implies that:
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3) Gibbs state ρ̂β = Z−1 exp−βĤ is a stationary solution of (23),

4) under the condition that only scalar operators commute with all {Ŝk(ω), Ŝ†k(ω)},
any initial state relaxes asymptotically to the Gibbs state: The 0-Law of
Thermodynamics [36].

The derivation of (23),(24) can be extended to slowly varying time-
dependent Hamiltonian (within the range of validity of the adiabatic the-
orem) [37] H(t) and an open system coupled to several heat baths at the
inverse temperatures {βk = 1/kBTk}. The MME takes form

d

dt
ρ̂(t) = −i[Ĥ(t), ρ̂(t)] + L(t)ρ̂(t), L(t) =

∑
k

Lk(t). (26)

Each Lk(t) is derived using a temporal Hamiltonian Ĥ(t), Lk(t)ρ̂j(t) = 0

with a temporary Gibbs state ρ̂j(t) = Z−1
j (t) exp{−βjĤ(t)}. The energy

conservation in this case is the First Law of Thermodynamics [38]

d

dt
E(t) = J (t)− P(t). (27)

Here
E(t) = Tr

(
ρ̂(t)Ĥ(t)

)
(28)

is the internal energy of the system,

P(t) ≡ −Tr
(
ρ̂(t)

dĤ(t)

dt

)
, (29)

is the power provided by the system, and

J (t) ≡ Tr
(
Ĥ(t)

d

dt
ρ̂(t)

)
=
∑
k

Jk(t), Jk(t) = Tr
(
Ĥ(t)Lk(t)ρ̂(t)

)
. (30)

is the sum of net heat currents supplied by the individual heat baths.
The H- theorem (20) directly implies the following mathematical identity

[39] and [40]

−Tr [Lρ̂(t) (ln ρ̂(t)− ln ρ̂st)] ≥ 0 , for Lρ̂st = 0 , (31)

which applied to individual generators Lk(t) reproduces the Second Law of
Thermodynamics in the form

d

dt
Svn(t)−

∑
k

1

Tk
Jk(t) ≥ 0. (32)
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obtained first for the constant Ĥ in [41] and ultimately generalized in [38].
For external periodic modulation of the Hamiltonian Ĥ(t) = Ĥ(t+ τ), a

very similar WCL formalism for open systems has been developed [42, 43, 44,
45]. One assumes that modulation is fast, i.e. its angular frequency Ω = 2π/τ
is comparable to the relevant Bohr frequencies of the Hamiltonian, therefore
the previous adiabatic approximation is not appropriate. According to the
Floquet theory the unitary propagator (4) Û(t) ≡ Û(t, 0) can be written as

Û(t) = Ûp(t)e
− i

~ Ĥavt (33)

where Ûp(t) = Ûp(t + τ) is a periodic propagator and Ĥav can be called
averaged Hamiltonian. Under similar assumptions as before one can derive,
using the WCL procedure, the Floquet- Markovian ME in the interaction
picture

d

dt
ρ̂int(t) = Lρ̂int(t), Lρ̂ =

∑
k,l

∑
{ωq}

Lωqlk ρ̂ (34)

where

Lωqlk ρ̂ =
1

2~2
R̃kl(ωq)

{
[Ŝl(ωq)ρ̂, Ŝ

†
k(ωq)] + [Ŝl(ωq), ρ̂Ŝ

†
k(ωq)]

}
. (35)

Now, the summation in (34) is taken over the set of extended Born frequen-
cies {ωq = ωav + qΩ|ωav − Bohr frequencies ofĤav, q ∈ Z}, which takes into
account the exchange processes of energy quanta ~|q|Ω with the source of
external modulation. Here again the operators Ŝk(ωq) originate from the
Fourier decomposition

Û †(t)ŜkÛ(t) =
∑
{ωq}

e−iωqtŜk(ωq). (36)

Notice, that the interaction picture generator is time-independent and the
Schrödinger picture dynamics is given by the composition ρ̂ 7→ Û(t)

(
eLtρ̂

)
Û †(t).

Typically, L possesses a single stationary state ρ̂0 and then for any ini-
tial state ρ̂(0) the Schrödinger evolution drives the system to a limit cycle
ρ̂lc(t) = Ûp(t)ρ̂0Û

†
p(t).

Heat currents corresponding to different baths can be defined for any
time. As a result the Second Law is satisfied for this definition, nevertheless
the form of the First Law is problematic. Namely, for fast modulation the
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instantaneous decomposition of energy into work and internal energy of the
system is not clear. Only in the limit cycle, where the system’s internal
energy and entropy are constant, and the heat currents are time independent
we can write the First Law as

P =
∑
j

Jj, (37)

and the Second Law as ∑
j

1

Tj
Jj ≤ 0. (38)

Here, the heat current associated with the j bath is given in terms of the
corresponding interaction picture generator

Jj =
∑
l,k∈Ij

∑
{ωq}

ωq
ωav

Tr
(
ĤavLωqlk ρ̂0

)
, (39)

and Ij denotes the subset of indices corresponding to the interaction with
the j-th heat bath. The above scheme has been extended to non-equilibrium
stationary baths in [46], with possible applications to non-thermal radiation
baths, rotating heat baths, etc. [47, 48].

3.2 Beyond the WCL Markovian Approximation

The theory of open quantum systems together with the Davies construction
supplies a consistent framework of Thermodynamics where the basic laws
have a quantum dynamical framework [49]. This framework is quite restric-
tive and therefore one may ask if some of the assumptions can be relaxed
without compromising the consistency with thermodynamics.

Many suggestions have been proposed:

• Challenging complete positivity.

• Local vs Non Local GKLS equation.

• Non Markovian dynamics.

• Strong system-bath coupling.
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The complete positivity structure assumes that initially the system and
bath are uncorrelated [22]. This has been challenged by Pechukas [50] who
claimed that positivity of the dynamical map is sufficient. Alicki responded
that one should stress that beyond the weak coupling regime there exists no
unique definition of the quantum reduced dynamics [51]. A similar answer
was given by Lindblad [52]. It has been claimed that the second law of
thermodynamics is violated by a non-CP dynamics [53, 54].

An alternative approach to open system dynamics has been proposed by
Caldeira, and Leggett, based on a path integrals formalism, generating a
QME for quantum Brownian motion [55]. The equation is not guaranteed to
be positive in particular at low temperature. A fix to the problem has been
suggested by Diosi adding terms to the equation to obtain a GKLS format
[56]. For a Brownian particle one would expect that the friction is isotropic
meaning that the dissipation equations should be translational invariant. It
has been noticed by Tannor and Kohen that complete positivity, translation
invariance and detailed balance cannot be satisfied simultaneously [57, 58].
This is also true for the fix of Diosi which adds a diffusion-like term in
position.

The Davies construction of the GKLS equation Eq. (23) requires that
the jump operators Eq. (24) are generated from the complete system Hamil-
tonian Eq. (36). What happens when the system can be deconstructed into
segments which are weakly coupled to each other? Can one use a local GKLS
equation for each segment and then linking together to construct a network?
Careful analysis has shown that such a construction can violate the II-law:
Heat can flow from the cold to the hot bath spontaneously [59]. In degenerate
networks when the links are identical the secular approximation may fail for
vanishing small links. In these cases local GKLS equations give the correct
heat current with respect to numerical converged approaches [60, 61, 62].
General conditions of adding up consistently GKLS generators have been
suggested [63].

A violation of the II-law has also been identified if the Floquet GKLS
equation Eq. (39) is replaced by the standard stationary GKLS. This is even
true for the well known two-level Bloch equation [42] and for the three-level
amplifier [64].

It is customary to start the non-Markovaian investigation from the second
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order integro-differential equation [32, 33, 65, 66, 67]:

d

dt
ρ̂s = −i[Ĥeff , ρ̂s] +

∫ t

0

dt′K(t, t′)ρ̂s(t
′) (40)

where Ĥeff is an effective system Hamiltonian and K(t, t′) is termed a mem-
ory kernel.

Different approaches can be classified by the type of approximation to the
memory kernel. One option is to generate a time local kernel [68, 69] which
can lead to a GKLS-like equations with time dependent coefficients. Com-
plete positivity is not ensured which manifests itself by negative coefficients.

Another option is termed the Hierarchical Equations of Motion Approach
[70, 71, 66, 72, 73] which decomposes the kernel to exponentially decaying
functions Qbook:Ch.23. One then adds a set of auxiliary variables which
leads to a hierarchy of coupled differential equations. This is equivalent to a
Markovian description embedded in a larger Hilbert space. The thermody-
namical consequence of non-Markovian dynamics has recently been addressed
[74]. It has been observed that in the absence of the semigroup property, if the
reduced dynamics has a thermal asymptotic state, this need not be station-
ary. Then even the integrated entropy production becomes negative. These
observations imply that, when the conditions leading to reduced dynamics
of semigroup type are relaxed, a consistent formulation of the second law of
thermodynamics requires that the environment contribution to the entropy
balance be explicitly taken into account [75].

An alternative theory of quantum thermodynamics in the framework of
the nonequilibrium Green’s functions has been proposed by Esposito and
Galperin [76, 77]. The theory was applied to noninteracting open quantum
systems strongly coupled to their reservoirs. The theory is non-Markovian
and nonlocal in time. As a consequence the particle number, energy, and
entropy of the system are redefined as energy-resolved versions of the stan-
dard weak coupling definitions. The approach has been criticised as failing,
already at equilibrium, to describe correctly the energy fluctuations [78].

Strong system bath coupling is another challenge that has been met by
embedding in a larger system. The main idea is to move the system bath
partition further into the bath Qbook:Ch.22. The polaron transformation
is such an example. It incorporates part of the bath degrees of freedom in a
modified system [79, 80, 81, 82, 83, 84, 85, 86, 87]. If weak coupling is incor-
porated on the new system bath boundary, consistency with thermodynamics
is maintained.
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Another approach to strong coupling is to embed the system in a finite
surrogate spin bath which represents the true infinite bath. The total system
and bath are described by unitary dynamics. To model the infinite bath
thermal boundary conditions are imposed between a thermal secondary bath
and the primary bath. A random swap operation is employed for this task.
Each individual realization is unitary. Averaging the individual realizations is
equivalent to a Poisson type GKLS equation on the boundary of the primary
bath. Thermodynamic properties can be obtained by evaluating the currents
through the device [88]. Consistency with thermodynamics has been obtained
for the case of heat transfer from a hot to a cold bath irrespective of the
system-bath coupling [88, 89].

4 Models of Quantum Engines and Refriger-

ators

Since the pioneering work of Carnot [90], learning from example has been a
major theme in thermodynamical studies. This is also true in QT where the
issues of heat and work obtain a concrete meaning [38]. In addition the trade-
off between efficiency and finite power can be explored. The trend toward
miniaturisation has led to the construction of quantum heat devices com-
posed from a microscopic working entity, for example a single ion in a Paul
trap [91] Qbook:Ch.36. This macroscopic scale raises the question: What
quantum effects to expect? Is there a role for coherence or entanglement?
Can we expect quantum supremacy?

Models of heat engines and refrigerators can lead to new insight in QT.
They can be broadly classified as reciprocating and continuous.

4.1 Reciprocating engines and refrigerators

Reciprocating engines are composed of a series of strokes which combine to
a cyclic operation. The different cycles are defined by the individual stroke
operations and their order. In QT a reciprocating engine can be defined by
a product of CP maps Eq. (19), which operate on the working medium:

Ucyc =
∏
j

Uj (41)
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where Ucyc is the cycle propagator and Uj are stroke propagators. The steady
state operation is an invariant of the cycle propagator Ucycρ̂st = ρ̂st. For
cycles that have a single non-degenerate invariant the CP character of Ucyc,
Eq. (21) guarantees a monotonic convergence to the steady state cycle,
termed the limit cycle [92].

The four stroke Otto cycle is a primary example Qbook:Ch.2 Qbook:Ch.4.
It is composed of two unitary strokes and two thermalization strokes: The
Hamiltonian of the working medium is parametrically externally controlled:
Ĥ(ω) where ω is an external parameter which changes the energy scale. For

example Ĥ = 1
2m
P̂ 2 + mω(t)2

2
X̂2 for the harmonic working medium [93] and

Ĥ = ω(t)Ŝz + JŜx for a spin system [94, 95].
The quantum Otto cycle is therefore described as:

1. The hot isochore: heat is transferred from the hot bath to the working
medium without change in the external parameter ωh. The stroke is
described by the propagator Uh.

2. The expansion adiabat: the working medium reduces its energy scale
from ωh to ωc, with ωh > ωc, producing work while isolated from the
hot and cold reservoirs. The stroke is described by the propagator Uhc.

3. The cold isochore: heat is transferred from the working medium to the
cold bath without change in the external parameter ωc. The stroke is
described by the propagator Uc.

4. The compression adiabat: the working medium increases its energy
scale from ωc to ωh, consuming power while isolated from the hot and
cold reservoirs. The stroke is described by the propagator Uch.

The cycle propagator becomes the product of the segment propagators:

Ucyc = UchUcUhcUh . (42)

It should be mentioned that the stroke propagators do not commute for
example: [Uhc,Uh] 6= 0. The Otto cycle can operate in two extreme protocols,
adiabatic and sudden.

In the adiabatic cycle the working medium state is diagonal in the energy
representation throughout the cycle. Such cycles are called stochastic [96, 97].
The efficiency becomes ηo = 1 − ωc

ωh
≤ ηc where ηc = 1 − Tc

Th
is the Carnot

efficiency.
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To obtain finite power the time allocated to the propagators Uhc and Uch
should be shortened. For the unitary strokes this means deviating from the
adiabatic limit. Whenever [Ĥ(t), Ĥ(t′)] 6= 0 coherence will be generated and
ρ̂ will not be diagonal in the energy basis SH > Svn. Generating coherence
will always cost additional external work. This phenomena has been termed
quantum friction [95, 98]. Quantum friction can be understood using the
notion of passivity Eq. (8). In the adiabatic limit the eigenvalues of the
density operator remain passive in the energy basis. The minimum work can
be associated to the change in energy scale. Any nonadiabatic deviation will
increase the required work.

The price of generating coherence can be reduced if at the end of the
adiabatic stroke the state is restored to be passive in the energy basis. Such
protocols are termed shortcuts to adiabticity or frictionless [99, 100, 101]
Qbook:Ch.4. These protocols allow to achieve adiabatic like solutions in
finite time for the propagators Uhc and Uch. The fast shortcut solutions raise
the question what is the shortest time allocation for frictionless adiabatic
strokes. This issue is in the realm of the quantum speed limit [102, 103]
with the caveat that the energy scale of the Hamiltonian also changes. The
transformation can be made faster if temporary energy is stored in the work-
ing fluid. Optimal control protocols that constrain the stored energy in the
working fluid lead to a scaling of the time allocation as τ ∝ 1√

ωcωh
for ωc → 0

[104, 105].
Coherence can also be introduced as a resource by employing a non-

thermal bath. Even single bath is sufficient to extract work [106]. Nev-
ertheless there is no violation of the II-law if accounting is done properly
[107].

For finite power also the time allocated to thermalization Uc and Uh should
be restricted. Typically in most studies the generator of thermalization L is
the GKLS equation (22) [94]. Finite time allocation is obtained by avoiding
the infinite time full thermalization. Optimizing the time allocation in the
stochastic limit leads to a finite power engine. The efficiency at maximum
power at high temperature becomes [93]:

ηca = 1−
√
Tc
Th

(43)

which is known as the Novikov-Curzon-Ahlborn efficiency [108, 109]. The
importance of Equation (43) is that it points to the tradeoff between efficiency
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and power. For the Otto cycle at high temperature the efficiency at maximum
power is limited by the energy level structure of the working medium with
the leading term η ≈ 1

2
ηc + .. [110]. This result has been obtained from

general considerations in the adiabatic limit [111].
In QT the Carnot cycle has received less attention than the Otto cycle.

The reason is that the hot and cold isochores are replaced by isotherms where
the thermalization takes place with a time dependent Hamiltonian. In the
adiabtic limit of slow change GKLS equations of motion can be obtained
[94]. Beyond the adiabatic limit deriving GKLS equations is complicated
due to the non-periodic driving. The original motivation for the study of QT
cycles was to supply a more fundamental justification for the empirical Finite-
Time-Thermodynamics approach [112, 113]. In the infinitely slow cycle limit,
the efficiency converges to the ideal Carnot efficiency ηc. Optimizing power
leads to the Novikov-Curzon-Ahlborn efficiency ηca, which is universal in the
stochastic low dissipation limit [114, 115]. In this limit the irreversibility can
be associated to heat transport, thus termed endo-reversible.

A two stroke engine has been suggested where Ucyc = UTUS [116, 117].
One that resembles the Otto cycle is composed of a four level working
medium. Thermalization, UT is conduced in parallel where two-levels are
connected to the hot bath and the other two-levels to the cold bath. The
unitary US stroke is composed of a swap propagator between these two sets
of levels. The efficiency of this engine is equivalent to the Otto efficiency ηo.

The other extreme operational limit is the sudden limit where a limited
action is performed on each stroke. The work per cycle then decreases but the
power which is the work divided by cycle time can reach a constant. In this
limit each stroke can be expressed as Uj = expLjτ , where Lj is the generator
and τ the time allocation. Then a four stroke cycle becomes equivalent to
a continuous engine with finite power [118] Qbook:Ch.3. In the limit of
τ → 0:

Ucyc = UchUcUhcUh = eLch
1
2
τeLcτeLhcτeLhτeLch

1
2
τ ≈ e(Lch+Lc+Lhc+Lh)τ (44)

which is correct up to O(τ 3) based on the cyclic property of the engine and
Trotter formula [119]. Moreover the work extraction mechanism employs
coherence [118]. Adding pure dephasing to the engine will null the power
which is a signature of a quantum device.

Reversing the sequence of a reciprocating cycle leads to a quantum re-
frigerator: U refcyc = UhcUcUchUh.
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A prerequisite for such a device is that the working medium temperature
is lower than the cold bath temperature at the end of the expansion stroke
ωh → ωc. Reciprocating refrigeration cycles were used to gain insight on
the dynamical approach to the III-law of thermodynamics the vanishing of
the cooling power when Tc → 0 [120]. Optimizing the cooling performance
requires that the energy gap of the system ~ωc will match the cold bath
temperature kBTc [121]. The cooling power can either be restricted by the
thermalization or by the adiabatic propagator. The energy quant removed
from the cold bath per cycle becomes ~ωc. Considering the optimal friction-
less solution, a scaling of Jc ∝ T

3
2 is obtained as Tc → 0.

4.2 Continuous time quantum machines

The three-level engine was the first QT example studied by Scoville et al. [5,
7]. The principle of operation is to convert population inversion into output
power in the form of light. A hot reservoir characterised by temperature
Th induces transitions between the ground state ε0 and the excited state
ε2. The cold reservoir at temperature Tc couples level ε0 and level ε1. The
amplifier operates by coupling the energy levels ε3 and ε2 to the radiation field
generating an output frequency which on resonance is ν = (ε3 − ε2)/~. The
necessary condition for amplification is positive gain or population inversion
defined by:

G = p2 − p1 ≥ 0 . (45)

The positive gain condition dictates:

ωc
ωh
≡ ω10

ω20

≥ Tc
Th

, (46)

The efficiency of the amplifier becomes the Otto efficiency: ηo = ν
ω20

=
1 − ωc

ωh
. Inserting the positive gain condition Eq. (45) and Eq. (46) the

efficiency is limited by Carnot: ηo ≤ ηc This result connecting the efficiency
of a quantum amplifier to the Carnot efficiency was first obtained by Scovil
et al. [5, 7].

The above description of the 3-level amplifier is based on a static quasi-
equilibrium viewpoint. Real engines which produce power operate far from
equilibrium conditions. Typically, their performance is restricted by friction,
heat transport and heat leaks. A dynamical viewpoint is therefore the next
required step [122].
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Engines or refrigerators can be classified as either autonomous or driven.
A continuous autonomous device operates by connecting to three or more
heat baths simultaneously either heating the hottest bath or cooling the
coldest bath. Such a device operates without any external intervention [123,
124, 125]. A driven system is connected to an external power source or to
a more elaborate measurement and feedback device, which syncronizes the
engine [126].

The tricycle model is the template for almost all continuous autonomous
engines [127] Qbook:Ch.5. It can also be viewed as a heat transistor [128,
79]. Surprisingly very simple models exhibit the same features of engines
generating finite power. Their efficiency at operating conditions is lower
than the Carnot efficiency. In addition, heat leaks restrict the performance
meaning that reversible operation is unattainable.

• The basic model consists of three thermal baths: a hot bath with tem-
perature Th, a cold bath with temperature Tc and a work bath with
temperature Tw.

• Each bath is connected to the engine via a frequency filter modelled by
three oscillators or three qubits:

ĤF = ~ωhâ†â+ ~ωcb̂†b̂+ ~ωwĉ†ĉ , (47)

where ωh, ωc and ωw are the filter frequencies on resonance ωw = ωh −
ωc.

• The device operates as an engine by removing an excitation from the
hot bath and generating excitations on the cold and work reservoirs.
In second quantization formalism the Hamiltonian describing such an
interaction becomes:

ĤI = ~ε
(
âb̂†ĉ† + â†b̂ĉ

)
, (48)

where ε is the coupling strength.

• The device operates as a refrigerator by removing an excitation from the
cold bath as well as from the work bath and generating an excitation in
the hot bath. The term â†b̂ĉ in the Hamiltonian of Eq. (48) describes
this action.
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Different types of heat baths can be employed which can include bosonic
baths composed of phonons or photons, or fermonic baths composed of elec-
trons. The frequency filters select from the continuous spectrum of the bath
the working component to be employed in the tricycle. These frequency fil-
ters can be constructed also from two-level-systems (TLS) or formulated as
qubits [44, 129, 130, 131]. A direct realization of Eq. (48) has been perf-
dormed by an absorption refrigerator constructed from three ions in a Paul
trap [132].

The interaction term is strictly non-linear, incorporating three heat cur-
rents simultaneously. This crucial fact has important consequences. A linear
device cannot operate as a heat engine or refrigerator [133]. A linear device is
constructed from a network of harmonic oscillators with linear connections of
the type ~µij

(
âiâ
†
j + â†i âj

)
with additional connections to heat baths con-

structed from harmonic oscillators. In such a device the hottest bath always
cools down and the coldest bath always heats up. Thus, this construction
can transport heat but not generate power since power is equivalent to trans-
porting heat to an infinitely hot reservoir. Another flaw in a linear model is
that the different bath modes do not equilibrate with each other. A generic
bath should equilibrate any system Hamiltonian irrespective of its frequency.

Many nonlinear interaction Hamiltonians of the type ĤI = Â ⊗ B̂ ⊗ Ĉ
can lead to a working heat engine. These Hamiltonians can be reduced to
the form of Eq. (48) which captures the essence of such interactions.

The first-law of thermodynamics represents the energy balance of heat
currents originating from the three baths and collimating on the system:

dEs
dt

= Jh + Jc + Jw . (49)

At steady state no heat is accumulated in the tricycle, thus dEs
dt

= 0. In
addition, in steady state the entropy is only generated in the baths, leading
to the second-law of thermodynamics:

d

dt
∆Su = − Jh

Th
− Jc
Tc
− Jw
Tw
≥ 0 . (50)

This version of the second-law is a generalisation of the statement of Clausius;
heat does not flow spontaneously from cold to hot bodies [134]. When the
temperature Tw →∞, no entropy is generated in the power bath. An energy
current with no accompanying entropy production is equivalent to generating
pure power: P = Jw, where P is the output power.
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The evaluation of the currents Jj in the tricycle model requires dynam-
ical equations of motion. A thermodynamical idealisation assumes that the
tricycle system and the baths are uncorrelated, meaning that the total state
of the combined system becomes a tensor product at all times [49]:

ρ̂ = ρ̂s ⊗ ρ̂H ⊗ ρ̂C ⊗ ρ̂W . (51)

Under these conditions the dynamical equations of motion for the tricycle
become:

d

dt
ρ̂s = Lρ̂s , (52)

where L is the GKLS Markovian generator Eq. (23). The derivation of L is
complicated due to the nonlinearity of the interaction Eq. (48). Solutions can
be obtained in the case when Tw → ∞ or a singular bath [127]. Equivalent
solutions for L can be obtained for the 3-level [123], 2-qubit and 3-qubit
absorption refrigerator [135, 136].

The autonomous absorption refrigerator has been a major model in the
study of the dynamical version of the III-law of thermodynamics Qbook:Ch.24.
Examining the II-law Eq. (50) as Tc → 0, to avoid divergence of ∆Su Jc
should scale as at least linearly with Tc. A stronger version associated to
Nernst Heat theorem [137, 138] demands that Jc ∝ T 1+ε

c which ensures the
vanishing of entropy production from the cold bath as Tc → 0 [139]. For
generic refrigerator models as Tc → 0 the cold bath current obtains the uni-
versal form:

Jc = ~ωcKG (53)

where K is a heat conductance term. When Tc → 0 the gain G is finite only
if ωc ∝ Tc. This leaves the issue: How does the conductance K scale with
ωc, which is model dependent. For example for a Bose Einstein Condensate
(BEC), the conductance is proportional to the uncondensed fraction leading
to Jc ∝ T 3

c [139, 49].
The unattainability principle [140], a different formulation of the III-law

states: The zero temperature can be reached only if infinite resources are
invested. In quantum mechanics a zero temperature system is in a pure
state. This is only possible if at Tc → 0, ρ̂s ⊗ ρ̂B. In addition since ρ̂B =
|0〉〈0|, the system-bath interaction energy will vanish, meaning that when
the bath approaches its ground state the mechanism of extracting energy
ceases to operate. One can consider two scenarios. Cooling an infinite cold
bath and cooling a finite system. Considering an infinite bath the change in
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temperature becomes dTc
dt

= Jc
C where C is the heat capacity. This leads to

a scaling of dTc
dt
∝ T

3/2
c as Tc → 0 for both degenerate Bose and Fermi gases

[139].
A different perspective on the III-law can be obtained from quantum

resource theory. Using quite general arguments the following scaling relation

was obtained dTc
dt
∝ T

1+ 1
7

c [141]. Addition of noise can further restrict the
minimum achievable temperature [142].

Driven continuous devices require an external power source typically
Ĥs(t) = Ĥ0 + V̂ f(t) where f(t) is a periodic function. The most direct
connection to a driven system is to replace the excitation of the power reser-
voir by its semiclassical expectation value ĉ ∼ c̄e−iωwt [122]. A derivation of a
thermodynamical consistent GKLS equation requires to use Floquet theory
(34) [64, 45]. Strong driving alters the system excitations and frequencies
Eq. (36) which can change the operation conditions from an engine to a
dissipator and to a refrigerator [64, 143].

Optimizing the performance of continuous devices leads to the tradeoff
between efficiency and power. For an engine constructed from two coupled
harmonic oscillators the efficiency at high temperature at maximum power
becomes again ηca Eq. (43) [122]. Universal features of the maximum power
efficiency have been obtained by information theory considerations [144].

Driven systems are prototype models of quantum amplifiers and lasers
[145]. Such a treatment ignores the entropy carried away by the amplified
light. This can be solved by incorporating the emitted light as a single mode
harmonic oscillator [146]. A more complete derivation of the 3-level laser has
been derived recently including the entropy dissipated by light[147].

5 Open Problems and Prospects

In this section we discuss some controversial or unsolved questions of QT of
fundamental nature.

5.1 Work generation: steady-state or thermodynamic
cycles

One believes that the energy convertors like photovoltaic, thermoelectric and
fuel cells, and their biological counterparts can directly transform light, heat
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or chemical energy into work carried by electric current. It is assumed that
they do not need any moving parts and operate at non-equilibrium steady-
states. A recent review of this approach mostly concentrated on the conver-
sion of heat at the nanoscale is given in [148]. The phenomenological picture
of heat to electric current conversion is based on the coupled equations for
charge and heat local current densities je, jh

je = λee
(
∇µ/eT

)
+ λeh

(
∇1/T

)
je = λhe

(
∇µ/eT

)
+ λhh

(
∇1/T

)
(54)

with local temperature T , local chemical potential µ and the Onsager matrix
[λab].

The importance of nanoscale devices and the fact that the energy conver-
sion is based on microscopic quantum processes stimulates the development
of more fundamental microscopic theories Qbook:Ch.6. The most popular
is stochastic thermodynamics reviewed in [97]. Here, the force driving charge
carriers is a phenomenological nonconservative force corresponding to a kind
of negative friction powered by the external gradients of temperature and
chemical potential.

Recently, the steady-state picture has been challenged in a series of pa-
pers, where models of cyclic classical [149] and quantum engines [150, 151]
have been proposed. This work was motivated by an apparent inconsistency
of (54) when applied to the devices generating electric current flowing in a
closed circuit. Namely, the integral of the steady electric current over its
closed path should be different from zero, while the similar integration over
the RHS of (54) yields always zero.

The ”moving parts” in the cyclic models correspond to collective delo-
calized charge oscillations at the interface of two different materials. For
semiconductor devices they are THz plasma oscillations, while for organic
photovoltaic or photosynthetic complexes delocalized and infrared sensitive
phonon modes play the role of a “piston”. The cyclic models predict two
types of phenomena: emission of coherent radiation by oscillating ”pistons”
and reverse effect - enhancement of the generated electric current by coher-
ent resonant radiation stimulating the ”piston”. In fact, both effects were
observed in organic photovoltaic systems [152, 153] and the role of selected
phonon modes in photosynthesis has also been discussed [154]. However,
those phenomena were considered as auxiliary effects improving the efficiency
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of energy converters and not as the necessary elements of their operation
principle.

5.2 Information and thermodynamics

The idea of representing physical processes as computation processes or more
generally as information processing is quite popular in the rapidly devel-
oping field of quantum information [155]. For example, one believes that
an acquired bit of information can be traded-off for a kBT ln 2 of work ex-
tracted from the bath at temperature T . This leads to the Landauer formula
[156, 157] which puts the lower limit equal to kBT ln 2 for the work needed
to reset a bit of information in a memory Qbook:Ch.9. The reasoning is
based on the idea of Szilard [158, 159] who proposed a model of an engine
which consists of a box with a single gas particle, in thermal contact with
a heat bath, and a partition. The partition can be inserted into the box,
dividing it into two equal volumes, and can slide without friction along the
box. To extract kBT ln 2 of work in an isothermal process of gas expansion
one connects up the partition to a pulley. Szilard assumed that in order to
realize work extraction it is necessary to know ”which side the molecule is
on” which corresponds to one bit of information. This model was generalized
in various directions including the quantum case, [160] and claimed to be re-
alized experimentally in the classical [161], [162] and the quantum domain
[163].

However, the very idea of the equivalence between information and ther-
modynamics remains controversial [164], [165] [166]. As noticed already by
Popper and Feyerabend [167] there exist procedures of extracting work with-
out knowing the position of the particle and, on the other hand the mecha-
nism of inserting a partition can provide a necessary amount of work to avoid
the conflict with the Kelvin formulation of the Second Law.

The recently developed resource theory of quantum thermodynamics is
another example of the interplay between information theory and thermo-
dynamics [168, 169, 170, 171] Qbook:Ch.25 Qbook:Ch.33. The theory
is an axiomatic approach with a mathematical structure motivated by the
theory of entanglement. The resource in this theory are states with informa-
tional nonequillibrium. Resource theories in quantum information identify
a set of restrictive operations that can act on valuable resource states. For
a given initial state these restrictive operations then define a set of states
that are reachable. For example energy conserving unitaries on the system
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bath and work repository. The single shot regime refers to operating on a
single quantum system, which can be a highly correlated system of many sub-
systems, rather than on an infinite ensemble of identical and independently
distributed copies of a quantum system [171, 172, 173, 174]. The idea is to
find additional restrictions on possible thermodynamical transformation on
finite systems. For example single shot II-laws based on properties of Rényi
divergence [175, 174] which in the thermodynamical limit converge to the
standard II-law. The drawback of the theory is that there is no dynamics so
there is no reference to a fast or slow operation.

.

5.3 Work and Heat

One of the great discoveries in the history of science was the recognition that
heat is a form of energy. This allowed to interpret the phenomenological
First Law of Thermodynamics

dE = δQ− δW (55)

as the instance of energy conservation principle. However, in contrast to
internal energy E, indentified with the total energy of the system, work W
and heat Q are path-dependent and are therefore thermodynamic process
functions. In quantum language it means that there are neither described by
hermitian operators [176] nor by nonlinear functions of density matrices like
e.g. von Neumann entropy.

It seems that, generally, the instantaneous decomposition corresponding
to (55) may be even impossible as one needs certain time-scale to decide
which part of energy is related to a random motion (heat) or to a determin-
istic one (work). It seems also that heat, which is transported by irreversible
processes can be determined easier than work. The case of Markovian dy-
namics illustrates very well this problem. Only for slow driving there exists a
natural ”instantaneous” analog of (55) given by (27), while for fast periodic
driving only temporal heat currents are well-defined and the unique form of
the I-Law is known in the limit cycle only (37).

There exists a number of proposals in the literature to define work and
heat beyond the Markovian approximation:

1. Work defined in terms of two measurements [177, 178] (useful for Hamil-
tonian dynamics, fluctuation theorems and full counting statistics Qbook:Ch.10Qbook:Ch.14).
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2. Heat as the energy exchanged with a bath (including the assumptions
of good ergodic properties of the bath and weak influence on the bath
by the system).

3. Work reservoir represented by a sink (e.g. low lying level) in Markovian
Master equations. Here, the applied standard entropy balance suggests
that the energy flow Jsink dumped in a sink is accompanied by a large
flow of entropy Jen = Jsink/Tsink with the effective sink temperature
usually close or even equal to zero. It suggests that Jsink should be
rather interpreted as a heat flow, as work is ”energy with negligible
entropy”. Otherwise violation of the second law can occur [179].

4. Work reservoir represented by a quantum system (e.g. harmonic os-
cillator). Treating the whole transferred energy as work one can vio-
late the Carnot bound [180]. The proper procedure seems to be us-
ing ergotropy as a measure of work stored in the work reservoir [181]
Qbook:Ch.1Qbook:Ch.7.

5. Work measured by wits (qubits in excited state), resource theory, anal-
ogy to qubits, [168] .

5.4 Thermalization

Considering a finite quantum system: What are the properties that it can
serve as a bath? How large does it have to be? what should be its spectrum?
how should it couple to the system? Does the system bath dynamics mimic
the Markovian GKLS dynamics?

Thermalization can be described as a process where the system loses its
memory partly or completely of its initial state and the system settles to a
steady state. In classical mechanics chaotic dynamics even in a finite system
are sufficient to lead to thermalization. On the contrary, an isolated quantum
system has a discrete spectrum and therefore its dynamics is quasiperiodic.
Thus strictly speaking, in terms of positive Kolmogorov entropy isolated
quantum systems are non chaotic [182]. Another property should lead to
quantum thermalization.

The eigenvalue thermalization hypothesis (ETH) [183, 184] Qbook:Ch.16 Qbook:Ch.18,
applies for strongly coupled quantum systems which therefore possess a
Wigner-Dyson distribution of energy gaps [185]. The conjecture is that the
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expectation value of any operator Â will relax asymptotically to its micro-
canonical value, with the notation of Eq. (7) and Ajj = 〈j|Â|j〉[13]:∑

j

|cj|2Ajj = 〈A〉microcan(E0) =
1

NE0∆E

∑
j

|E0−Ej |<∆E

Ajj (56)

where E0 is the mean energy of the initial state, ∆E is the half-width
of an appropriately chosen energy window centred at E0, and NE0∆E the
normalization. The ETH hypothesis has been extensively tested numeri-
cally and has been found to apply in sufficiently large and complex systems
[13, 186, 187, 188, 189]. One should comment that the popular bath com-
posed on noninteracting harmonic oscillators does not fulfil the requirements
of the eigenvalue thermalization hypothesis, its ergodic properties being weak
because it is a quasi-free system with additional constants of motion.

We can now apply the ETH to a small quantum system coupled to a finite
strongly coupled bath. In this case we expect the system to converge to a
canonical state. The operators of interest are local in the system. Therefore
according to the ETH we expect them to relax to a value which is determined
by the bath mean energy with a correction to the finite heat capacity of the
bath. This idea has been tested for a system consisting of a one and two
qubits and a bath consisting of 32 or 34 strongly and randomly coupled spins.
The initial state of the bath was a random phase thermal wavefunction. A
Hilbert size of ∼ 1011 employed for the study is on the limit of simulation by
currently available classical computers. The ETH proved to be correct with
respect to the asymptotic system expectation values [190, 191]. In addition,
for the one qubit case a Bloch-type equation with time-dependent coefficients
provides a simple and accurate description of the dynamics of a spin particle
in contact with a thermal bath. A similar result was found for the 2-qubit
system with a variety of bath models.

5.5 Concluding remarks

The recent rapid development in the field of quantum thermodynamics is
intimately connected to the quantum theory of open systems and strongly
influenced by the ideas and methods of quantum information. The new direc-
tions of theoretical research are stimulated by the fast technological progress
in construction and precise control of micro(meso)scopic devices for informa-
tion processing and energy transduction. The implementations cover a vast
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spectrum of physical systems including quantum optical, superconducting,
solid state or based on organic molecules devices. The operation conditions
for all these systems requires refrigeration.

These emerging technologies pose problems of reliability, scalability and
efficiency, related to the fundamental principles of thermodynamics, which
have to be properly extended to the quantum domain. This extension is a
highly nontrivial and controversial task because the standard simplifications
used for macroscopic systems are generally not valid at micro(meso) scopic
scale, short time-scales and at the presence of strong correlations. Therefore,
even the unique definitions of fundamental notions like heat, work and en-
tropy are available only in the limiting cases. Although most of the results
suggest that the laws of thermodynamics are still valid in the averaged sense,
the role of quantum effects remains an open problem.

One can expect that the further analysis of particular models like quan-
tum heat/chemical engines, quantum pumps, quantum clocks or quantum
switches, including mechanisms of feedback and self-oscillations should pro-
vide new inputs for improvement and new designs of quantum thermody-
namic machines.
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