Theoretical treatment of channel mixing in excited Rb$_2$ and Cs$_2$ ultracold molecules: Determination of predissociation lifetimes with coordinate mapping

V. Kokouline,1,2 O. Dulieu,1 R. Kosloff,3 and F. Masnou-Seeuws1

1Laboratoire Aimé Cotton, Bâtiment 505, Campus d’Orsay, 91405 Orsay Cedex, France
2The Institute of Physics, Saint Petersburg State University, Saint Petersburg 198904, Russia
3The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

(Received 7 February 2000; published 18 August 2000)

The treatment of the dynamics of ultracold molecules requires new theoretical tools. Previous work of the present authors [J. Chem. Phys. 110, 9865 (1999)] for calculation of vibrational levels by a Fourier grid representation with use of adaptive coordinates is generalized here to the treatment of the bound-continuum interaction in a two-channel problem. Two numerical methods are presented: a time-dependent method using a Chebyshev propagator to compute the correlation function and a time-independent method with diagonalization of a Hamiltonian that includes an absorbing optical potential. In both cases the adaptive coordinate is defined by a numerical rather than an analytical procedure. Lifetimes are reported for the predissociated levels of the Rb$_2$ and Cs$_2$ 0$^+_1(ns + np^2 P_{1/2})$ spectra, where $n = 5,6$. The two numerical methods give similar results. The lifetimes increase with the vibrational quantum number proportionally to the classical vibration period estimated from the Le Roy–Bernstein law for an asymptotic R^{-3} potential, and the energy variation can be fitted to an analytical formula. The results are shown to be very sensitive to the molecular parameters, potentials, and couplings. The measured width of 8.5 GHz reported by Cline et al. [Phys. Rev. Lett. 73, 632 (1994)] for one predissociated level of 85Rb$_2$ is reproduced. A strong isotopic effect is found for the rubidium dimer, the lifetimes of 85Rb$_2$ and 87Rb$_2$ levels differing by a factor of 3. Finally, we present a third approach, in the framework of a generalized two-channel quantum-defect theory, where lifetimes are determined by extrapolation of parameters fitted to Lu-Fano plots of computed bound levels below the $P_{1/2}$ dissociation limit. Excellent agreement is obtained with the numerical results, suggesting the possibility of fitting to experimental spectra.

PACS number(s): 33.80.Gj, 33.80.Ps, 31.15.—p, 31.50.+w

I. INTRODUCTION

The rapid development of photoassociation experiments [1,2] in a sample of cold alkali-metal atoms has supplied a wealth of information on the long-range excited molecules formed during the process. Besides their intrinsic interest for spectroscopic studies of asymptotic interactions, these short-lived molecules may decay by spontaneous emission into a bound molecular triplet or singlet ground state, as demonstrated already for Cs$_2$ [3], K$_2$ [4,5], and Rb$_2$ [6]. The photoassociation scheme therefore offers an interesting intermediate state for the production of ultracold molecules. In the near future, this scheme could even be efficient in transforming an atomic Bose-Einstein condensate into a molecular condensate [7–9]. Study of the dynamics of photoassociated molecules is thus a priority for theoreticians.

For that purpose, development of theoretical tools has proved necessary since, in the case of long-range R^{-3} potentials, the vibrational motion of the photoassociated molecule extends up to very large interatomic distances R where the local de Broglie wavelength becomes several orders of magnitude larger than at short range. Standard methods should be adapted to this novel situation, or alternatively new methods should be created. In a first paper [10], hereafter referred to as paper I, we have proposed a mapped Fourier grid representation of the Hamiltonian to determine energies and wave functions for vibrational levels close to the dissociation limit. The size of the grid in position and in momentum space, as well as the occupation of phase space, were efficiently optimized by use of an adaptive coordinate, mapped on the local de Broglie wavelength and defined through analytical or numerical transformation of the radial coordinate. Besides applications to vibrational motion in a single potential, generalization to a two-channel problem was considered, with the study of the strong perturbations in the Rb$_2$ $0^+_u(5s + 5p^2 P_{1/2,3/2})$ vibrational series. Then in a second paper [11], hereafter referred to as paper II, those calculations were further developed for Rb$_3$ and Cs$_2$, and their results analyzed to give a physical interpretation of the perturbations. For both heavy dimer molecules, although there exists strong spin-orbit coupling between the two Hund’s case a $^1\Sigma^+_u$ and $b^3\Pi_u$ potential curves, the picture of two Hund’s case c $0^+_u(ns + np^2 P_{1/2})$ and $0^+_u(ns + np^2 P_{3/2})$ (where $n = 5,6$ for Rb$_2$ and Cs$_2$, respectively) uncoupled adiabatic channels is never fully valid. Perturbations are present all over the spectral range (i.e., 5200 cm$^{-1}$ in the case of Cs$_2$ and 5700 cm$^{-1}$ in the case of Rb$_2$): the channel mixing is manifested through the oscillations of the binding energies and rotational constants between two limiting curves corresponding to the two unperturbed series for vibrational motion in the uncoupled adiabatic potentials. We showed that in the vicinity of the $(ns + np^2 P_{1/2})$ dissociation limit, the spectra can be interpreted as one vibrational series perturbed by a quasi-continuum, and that it is possible to generalize quantum-defect concepts [12–14] in order to visualize the results on Lu-Fano plots.

1050-2947/2000/62(3)/032716(10)/$15.00 62 032716-1 ©2000 The American Physical Society
FIG. 1. Rb$_2$ potential curves without (a) and with (b) spin-orbit coupling. (a) Hund’s case a $A^1\Sigma_u^+$ ($5s+5p$) (broken line) and $b^3\Pi_u (5s+5p)$ (dash-dotted line) curves from Ref. [16]; (b) Hund’s case c $0_u^+ (P_{1/2})$ and $0_u^+ (P_{3/2})$ potential curves correlated, respectively, to the dissociation limits ($5s+5p^2P_{1/2}$) and ($5s+5p^2P_{3/2}$). A vibrational level close to the $P_{1/2}$ limit, and its turning point in the $0_u^+ (P_{3/2})$ potential, are displayed for illustration.

The aim of the present work is to extend the methods of the two previous papers to the description of the bound-continuum interaction. Calculation of predissociation lifetimes are reported, taking as the main example the 0_u^+ spectra of Rb$_2$ in the energy range above the $5s$ and below the $5s+5p^2P_{1/2}$ and $5s+5p^2P_{3/2}$ dissociation limits (simply denoted $P_{1/2}$ and $P_{3/2}$ in the following), where the $P_{3/2}$ series of bound vibrational levels is perturbed by the continuum of the $P_{1/2}$ series. Results for the Cs$_2$ predissociated spectrum will also be presented. Generalization to the description of continuum-continuum interaction and interpretation of experimental data on fine-structure cross sections [15] will be treated in a forthcoming paper.

The potential curves and couplings are discussed in Sec. II. The two methods used for the numerical calculations, time-dependent with calculation of the correlation function and time-independent with absorbing potential, are explained in Sec. III. The results for the predissociation lifetimes are given in Sec. IV, where the sensitivity to molecular data is discussed in connection with experiment. In the final section, the computed lifetimes are compared with lifetimes extracted from quantum-defect theory (QDT) parameters fitted to the bound spectrum, showing how the problem of the uncertainty on short-range potentials could be bypassed.

Effects due to rotation or to hyperfine structure interaction will be neglected. Atomic units will be used except when otherwise stated, the unit for distances being 1 a.u. = 5.29177×10^{-11} m. The energies of the levels will be given in cm$^{-1}$, the $P_{1/2}$ asymptote being considered as the origin, and the lifetimes will be given in picoseconds (ps).

II. THE TWO-CHANNEL PROBLEM: POTENTIALS AND COUPLINGS

In the calculations for Rb$_2$, we use Hund’s case a potential curves $A^1\Sigma_u^+$ and $b^3\Pi_u$ from accurate quantum-chemistry calculations [16], matched at $R \approx 17a_0$ to asymptotic calculations [17]. The corresponding curves, hereafter referred to as diabatic curves and labeled $V_a(R)$ and $V_b(R)$, respectively, are displayed in Fig. 1 (a) for the Rb$_2$ dimer. For the Cs$_2$ dimer, the curves obtained by matching the ab initio curves of Meyer’s group [18] to asymptotic calculations [17] have been presented in paper II and will not be reproduced here. They are qualitatively similar to the Rb$_2$ curves, the crossing point being located at a slightly larger distance ($9.6a_0$ for Rb$_2$ and $10.4a_0$ for Cs$_2$). Introducing the spin-orbit coupling by an effective Hamiltonian and diagonalizing the 2×2 electronic Hamiltonian, as already described in paper II, yields the Hund’s case c potential curves, displayed in Fig. 1 (b). In the following, the two adiabatic potential curves $0_u^+(P_{1/2})$ and $0_u^+(P_{3/2})$ will be called $V_1(R)$ and $V_2(R)$, respectively.

The dynamical coupling between the two channels depends markedly upon the value of the nondiagonal spin-orbit coupling $W(R)$ in the vicinity of the crossing, at $R \approx 10a_0$, of the $V_a(R)$ and $V_b(R)$ diabatic curves. At such distances, due to configuration mixing, $W(R)$ should be lower than the asymptotic atomic value $W_a = \Delta E_{SO} \sqrt{2}/3$, where ΔE_{SO} is the splitting between the $np^2P_{3/2}$ and $np^2P_{1/2}$ fine-structure levels. The curve $W(R)$ has been computed only for Cs$_2$ [18] (see Fig. 2) and $W(R)$ is indeed reduced by 35% as compared to W_a. For Rb$_2$ we have used two model curves $W^{m1}(R)$ and $W^{m2}(R)$ scaled on the computed Cs$_2$ curve and represented in Fig. 2. For $W^{m1}(R)$, the scaling factor is the ratio $237.6/554.1$ of the atomic spin-orbit splittings, which gives at infinity the correct value $W^{m1} = 237.6$ cm$^{-1}$ for a rubidium atom. In the crossing region, $W^{m1}(R_c)$ is then reduced by 35% relative to W^{m1}. As the $4d-5p$ splitting for the rubidium atom is a factor of 2 larger than the $5d-6p$ splitting for the cesium atom, it is expected that due to a relatively weaker admixture of the $4d$ configuration, the reduction of the coupling might be smaller in the Rb$_2$ molecule: we have also considered the possibility for a 20% reduction, yielding the $W^{m2}(R)$ curve.

We have computed the eigenstates of the Hamiltonian H written as a 2×2 matrix in the diabatic representation,

$$H = T + V,$$

(2.1)
where T is the diagonal two-channel kinetic energy operator while V is written as

$$V(R) = \begin{pmatrix} V_A(R) & W(R) \\ W(R) & V_B(R) - W(R)/\sqrt{2} \end{pmatrix}. \quad (2.2)$$

Adiabatic energies and wave functions are then deduced by rotation, the 2×2 transformation matrix M being obtained by diagonalization of H. A discussion of diabatic and adiabatic approaches for calculation of predissociation lifetimes has been given recently by Monnerville and Robbe [19] in the case of the CO molecule.

III. NUMERICAL CALCULATIONS OF THE LIFETIMES

A. Fourier grid representation and mapping procedure

We have used two approaches for the calculations: a time-dependent propagation with calculation of the correlation function and a time-independent method with an absorbing potential. Both approaches are based on a grid representation and take advantage of the mapping procedure.

The Fourier grid representation uses a basis set of plane waves e^{-ipR}. The coefficients of the expansion of a given wave function $\psi(R)$ are a set of values of this wave function in momentum space. On a grid of N points, the Hamiltonian H is represented by a $2N \times 2N$ matrix, the matrix elements being given in paper I. The energies and wave functions of the bound levels are obtained by diagonalization of this matrix. The mapping procedure is expected to reduce the number of points N in the working grid. The mapped Fourier grid representation (MFGFR) uses a basis set e^{-ipR} with R-dependent frequencies p scaled on the inverse of the local de Broglie wavelength $\lambda(R)$. In a two-adiabatic-channel problem, a lower limit for $\lambda(R)$ is estimated from the upper limit of the local classical kinetic energy $E_{\text{c}} = V_1(\infty) + \Delta - V_1(R)$. In the present work, $V_1(\infty) = 0$ is the energy of the $P_{1/2}$ asymptote while Δ has been chosen to be ΔE_{SO}, i.e., the difference between the $P_{3/2}$ and $P_{1/2}$ asymptotes. This is achieved by use of a working grid with a variable step $s_{\text{env}}(R)$ defined as

$$s_{\text{env}}(R) = \beta \frac{\pi}{\sqrt{2\mu[\Delta - V_1(R) + V_1(\infty)]}}, \quad (3.1)$$

The parameter $\beta < 1$ is meant to increase the phase space in order to represent correctly the vanishing part of the wave functions in the classically forbidden region.

The originality of the present mapping procedure is the use of a numerical change of variable in Eq. (3.1) so that the real potential can be included. This choice minimizes the energy range of the Hamiltonian operator compared to an analytical mapping using, for instance, an asymptotic R^{-3} potential [10,20]. This has a direct consequence for time-dependent propagation methods which scale linearly with this energy range.

The efficiency of the mapping procedure is related to the reduction of the number of grid points. If the range of distances considered is $L = R_{\text{max}} - R_{\text{min}}$, the number of points on an equidistant grid will be

$$N_{\text{eq}} = \frac{L}{\Delta R} = \frac{Lp_{\text{max}}}{\pi} = \frac{L\sqrt{2\mu E_{\text{max}}}}{\pi}, \quad (3.2)$$

where E_{max} is the maximum kinetic energy for a given potential. The number of points on the mapped grid can be calculated from (assuming $\beta = 1$)

$$N_m = \int_L^{\sqrt{2\mu E(R)/\pi}} dR, \quad (3.3)$$

where $E(R)$ is the local kinetic energy. Defining the ratio η between the two numbers,

$$\eta = \frac{N_{\text{eq}}}{N_m}, \quad (3.4)$$

the efficiency of the MFGFR calculations for bound states will be enhanced by a factor η^3 since the computing time for diagonalization scales as $O(N^3)$. For time-dependent calculations the enhancement factor is approximately $(\eta/2)(\ln(\eta/2))$, since the bottleneck in the calculation is the FFT procedure. Table I summarizes the grid parameters and efficiency enhancement factors for the different calculations.

B. Time-propagation method for lifetime calculations

The principle of the method [21] relies upon direct determination of the lifetime of a given state from analysis of the correlation function

$$C(t) = \langle \psi_0 | e^{-iHt} | \psi_0 \rangle = \langle \psi_0 | \psi(t) \rangle, \quad (3.5)$$

which is the projection of the wave function $\psi(t)$ at a given time t on the initial wave function ψ_0, giving that part of the wave function of the initial state still “surviving” after the delay t. In case of an exponential decay of the population,
In the stationary MFGR computed as described in Sec. II, we consider a wave function, we show in Fig. 3(a) the probability density for one dissociated wave function of Rb$_2$ computed by MFGR calculations for a grid described in Table I. One can see that the $\Psi_{1/2}^v$ component (middle panel) is looking like a typical bound level in a long-range R^{-3} potential, with a very strong probability density at the outer turning point. In contrast, the $\Psi_{1/2}^V$ component is qualitatively very different, being a continuum function. In order to save computer space, the grid step in Eq. (3.1) is computed choosing $\Delta = 0$ and optimized for bound level calculation only, so that the continuum part of the total wave function is not well represented at large distances, which has no consequence for the results.

We then solve the time-dependent Schrödinger equation in order to determine the time-variation of the two-channel wave function $\Phi_v(t)$ with two components $\Psi_{1/2}^v(R,t)$ and $\Psi_{3/2}^v(R,t)$.

For the definition of the correlation function, it is possible to consider $\Phi_v(0)$ as the initial state ψ_0 or alternatively to extract the $\Psi_{3/2}^v(R,0)$ component and to propagate it in time.

(i) In the first case, the correlation function is the sum of two components:

$$C(t) = C_{1/2}(t) + C_{3/2}(t)$$

$$= \int \Psi_{1/2}^v(R,t=0) \Psi_{1/2}^v(R,t)dR$$

$$+ \int \Psi_{3/2}^v(R,t=0) \Psi_{3/2}^v(R,t)dR.$$ \hspace{1cm} (3.10)

Whereas $\Psi_{1/2}^v(R,t)$ is decaying exponentially with time, the time decay of the continuum component is not exponential. The exponential behavior of $C(t)$ is reached only after the time delay necessary to filter out the $\Psi_{1/2}^v(R,t)$ component so that $C_{1/2}(t)$ becomes negligible.

(ii) In the second case, the component $C_{3/2}(t)$ is computed directly.

As the initial wave function is computed with a working grid different from the one used in the time-dependent calculation (see Table I), an interpolation procedure [10,22] has been implemented to transfer from one grid to the other. The propagation method consists of the expansion of the propagator $e^{-i/t}$ in Chebyshev polynomials [22,23]. The order of the polynomial to be used depends on the energy range of the Hamiltonian matrix representation. The use of the present mapping procedure, where the change of coordinate is defined numerically with the real potential $V_1(R)$ instead of an analytical formula that uses the asymptotic R^{-3} potential, is efficient since it minimizes the energy range. In order to avoid reflection at the end of the grid, the outgoing flux is smoothly absorbed by an absorbing potential, starting at a distance of $80a_0$, as described below.

We have represented in Fig. 3(b) the wave functions obtained by propagating, for a time of 35 ps, the two-component wave function represented in Fig. 3(a) at time $t = 0$. The total norm $\alpha_v(t)$ of the wave function represented...
on the grid is no longer 1, but 0.151: indeed, 85% of the probability has now escaped, the wave packet in channel 1 having reached distances larger than the grid length $L = 80\Delta a_0$. Figure 4 gives examples of the correlation functions $C(t)$ and $C_{3/2}(t)$ for the same predissociated level. While the second one clearly has an exponentially decreasing behavior, the first one corresponds to two characteristic times, a short one for the elimination of the $P_{3/2}$ component, and a long one which is the lifetime of the $P_{3/2}$ component. Therefore, in logarithmic scale the two curves become parallel for $t \approx 30$ ps. The propagation during the time $t = (0$ ps, 30 ps) is thus working as a time filter for the predissociated wave function [21] selecting from the initial wave function only that part belonging to the bound spectrum. For $t > 30$ ps, the population of the predissociated state is decaying exponentially, with the same time constant as $\Delta a_{3/2}$. Small oscillations appear in the two curves of Fig. 4 when time is increasing. They are relatively small in amplitude, as the figure is drawn in logarithmic scale, and can be interpreted as a beating phenomenon, due to coupling via the continuum between the resonance at $E_v^{\text{res}} = 25.37$ cm$^{-1}$ and a neighboring one.

C. The mapped FGR method with an absorbing potential for lifetime calculations

As a second tool for the calculation of lifetimes and as a test for the previous results, we also solved the stationary Schrödinger equation (using MFGR) with an absorbing (optical) potential at the end of the grid. The Hamiltonian now has both real and imaginary components: diagonalization of its matrix in the mapped Fourier grid representation then yields complex eigenvalues $E_v^{\text{res}} + i\Gamma_v/2$, where E_v^{res} is the energy and Γ_v is the width of the vibrational level v.

The potential V_{opt} should be zero in the region where the molecular potentials are not negligible, and purely imaginary in the asymptotic region, where the two atoms no longer interact. The best possible choices were discussed by Vibók et al. [24] and Monnerville et al. [19] and we use one of the potentials proposed in Ref. [24].

\begin{equation}
V_{\text{opt}} = -iA_{S} N_{\text{opt}} \exp \left(-\frac{2L_{\text{opt}}}{R - R_{0}} \right),
\end{equation}

with parameters A_{S}, N_{opt}, and L_{opt} calculated according to the quoted reference. For Rb$_2$: $A_{S} = 0.00029$ a.u., $N_{\text{opt}} = 13.22$, $L_{\text{opt}} = 4.8a_0$; and for Cs$_2$: $A_{S} = 0.000355$ a.u., $N_{\text{opt}} = 13.22$ a.u., $L_{\text{opt}} = 2.5a_0$. R_{0} is the starting point of the optical potential and was chosen as $80a_0$. (See Fig. 5.) This potential should be added to the physical potential V_1 on the $P_{1/2}$ channel in order to absorb the outgoing flux. However, the bound vibrational wave functions in the V_2 potential were shown to remain unchanged when the optical potential was added to V_2. Therefore, in calculations performed in the diabatic representation, we considered the potentials $V_A + V_{\text{opt}}$ and $V_B + V_{\text{opt}}$ in the matrix of Eq. (2.2).

The precision of the method was controlled in different ways.

(i) First, we verified the stability of results with respect to a change of the parameters of the absorbing potential. Moving the starting point R_0 from $80a_0$ to $160a_0$ resulted in a 5×10^{-5} relative change in the calculated lifetimes. In the Rb$_2$ case, increasing the length L_{opt} of the absorbing region from $4.8a_0$ to $20a_0$ modifies the lifetimes by less than 0.01%. Finally, a modification of the strength A_S of the absorbing potential was introduced under the conditions defined by Ref. [24] to ensure that the outgoing flux is not reflected from the absorbing potential: such modification did not affect the calculated lifetimes.

(ii) Second, we compared with the time-dependent method as discussed below in Sec. III D.

D. Comparison of the two methods

In the case of 85Rb$_2$, the lifetimes computed as described above, with the choice $W(R) = W_{\text{at}}^0$ for the coupling, are displayed in Fig. 6 as a function of the level energy E_v^{res}, taking the $P_{1/2}$ dissociation limit as the energy origin. For the lower levels $E_v \leq 100$ cm$^{-1}$, the lifetimes are small and the two methods yield results that are almost identical. When the
The time-dependent method is $O(\tau)$ than the lifetime part of the eigenvalue, the energy, converges much faster. \cite{25,26} The convergence rate of lifetimes for a fixed propagation time t is larger for levels with a longer lifetime. In order to obtain the same accuracy, the wave functions of the optical potential indicating an exponential dependence on the properties of the optical potential. The lifetimes were checked to be stationary with respect to variation in the parameters of the optical potential indicating an exponential convergence. Hybrid methods which are a combination of direct propagation and diagonalization known as filter diagonalization seem to be the best suited for most problems \cite{25,26}. However, we may conclude here that for the particular case of cold atoms the direct diagonalization methods seem to be both more accurate and more convenient.

Thus, for a fixed propagation time the relative error in the determination of τ is larger for levels with a longer lifetime. In order to obtain the same accuracy, the wave functions of levels with large τ should be propagated for a longer time.

In general, in calculating resonance eigenvalues the real part of the eigenvalue, the energy, converges much faster than the lifetime \cite{25}. The convergence rate of lifetimes for the time-dependent method is $O(1/\tau)$. For the time-independent diagonalization method the convergence depends on the properties of the optical potential. The lifetimes were checked to be stationary with respect to variation in the parameters of the optical potential indicating an exponential convergence. Hybrid methods which are a combination of direct propagation and diagonalization known as filter diagonalization seem to be the best suited for most problems \cite{25,26}. However, we may conclude here that for the particular case of cold atoms the direct diagonalization methods seem to be both more accurate and more convenient.

\begin{equation}
\frac{d\tau}{\tau} = 2(\Delta \ln C) \frac{\tau^2}{I},
\end{equation}

where $\Delta \ln C$ is the uncertainty in the determination of the slope of the correlation function. The relative error is

\begin{equation}
\frac{d\tau}{\tau} = 2(\Delta \ln C) \frac{\tau^2}{I},
\end{equation}

\begin{figure}[h]
\centering
\includegraphics[width=\columnwidth]{fig6}
\caption{Lifetimes for the predissociated levels of $^{85}\text{Rb}_2 (0^+_u)$ ($5s + 5p^2\text{P}_{\text{3/2}}$) as a function of the energy above the $\text{P}_{\text{1/2}}$ asymptote: comparison of the results from the time-dependent method (diamonds) and the time-independent method (circles). For the sake of clarity, as the results are very close, only some levels are presented for the time-dependent calculations. The inset shows details of the comparison in the 40–60 cm$^{-1}$ energy range.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\columnwidth]{fig7}
\caption{Predissociation widths $\Gamma_v = 1/\tau_v$ computed for two isotopes, $^{85}\text{Rb}_2$ (circles) and $^{87}\text{Rb}_2$ (triangles), as a function of the level energy above the $\text{P}_{\text{1/2}}$ asymptote. The lines represent a fit, according to Eq. (4.3) in text. The widths are proportional to the classical frequency of the vibrational motion.}
\end{figure}

\section{IV. Lifetimes of Predissociated Levels}

We have computed the energies E_v^res (hereafter given relative to the $\text{P}_{\text{1/2}}$ asymptote) and lifetimes $\tau_v = 1/\Gamma_v$ for the predissociated vibrational levels in the 0^+_u spectrum of the two isotopes $^{85}\text{Rb}_2$ and $^{87}\text{Rb}_2$, as well as for $^{37}\text{Cs}_2$, considering both constant coupling W^{cons} and R-dependent coupling. The first important result is the strong isotopic effect observed in the lifetimes, which are smaller by a factor of 3 in the case of $^{85}\text{Rb}_2$, as can be seen in Fig. 7.

The strong increase of the lifetime near the $\text{P}_{\text{3/2}}$ asymptote can be qualitatively explained by an increase of the period of the classical oscillations at higher energy. Half the classical period for the motion in a potential $U(R) = D - (C_3/R^3)$ at energy E_v^res is given by

\begin{equation}
T = \sqrt{\frac{\mu}{2}} \int_{R_{\text{min}}}^{R_{\text{max}}(E_v)} \frac{dR}{\sqrt{E_v - U(R)}},
\end{equation}

where the integral is calculated as in Ref. \cite{27} assuming that the contribution of the asymptotic region is dominating. In Eq. (4.1), D is the energy of the dissociation limit equal to the splitting between the $\text{P}_{1/2}$ and $\text{P}_{3/2}$ asymptotes, $D = \Delta E_{\text{SO}}$. Assuming that the coupling between the two potentials is effective only at relatively short distances, where the motion can be considered as independent of the energy of the level, we can expect an analytical energy dependence of the lifetimes,

\begin{equation}
\tau(E_v^\text{res}) = \alpha(D - E_v^\text{res})^{-5/6},
\end{equation}

where the parameter α depends upon the physical parameters (transition probability and time delay) in the short-range region and is proportional to $\sqrt{\mu}$. This interpretation will be developed in further work.

The predissociation width should then decrease to the value 0 at the asymptote varying as

E_v^res
phases are very large compared to highly excited levels with high vibrational number, the III, we can link this behavior to a phase effect, where, for a factor of 3 when the reduced mass decreases by less than 3% Thus, for all predissociated levels, the lifetime decreases by a magnitude (a factor of 3), so that a small relative change becomes non-negligible when considering the phase modulo π.

The large difference in lifetimes for the two isotopes of Rb2 is likely to explain the difference of a factor of about 3 in the trap loss signal observed by Wallace et al. [15] for 85Rb2 and 87Rb2. It was interpreted in the quoted reference as a possible consequence of the difference of the hyperfine structure splitting. The present results suggest that it could also be explained as due to a difference in coupling effect, due to a phase variation when the mass is modified.

...
the framework of a two-channel generalized quantum-defect theory. First, we have checked that due to the asymptotic R^{-3} character of both the adiabatic potentials $V_1(R)$ and $V_2(R)$, calculations neglecting the coupling term will yield two series of bound vibrational levels v_1 and v_2 verifying a Le Roy–Bernstein law [27] close to the dissociation limit,

$$E(v_i) = D_i - [H^i_3(v'_D - v_i)]^3.$$ \hfill (5.1)

This law is relating the energy of a given vibrational level to its quantum number v_i by use of two constants where D is the energy of the dissociation limit while H^i_3 is linked to the reduced mass μ and to the asymptotic potential $-C_i/R^3$ through $H^i_3 = 0.991485\mu/\mu(C_i)^{3/2}$. The law does not depend upon the absolute numbering, and an effective quantum number $n^*_i = v'_D - v_i$ or a quantum defect μ_i can easily be related to the quantity $(v'_D - v_i)$, which by definition is zero at the dissociation limit. Generalization to a wider energy range could be performed by means of a numerical law relating the energy of the level to the effective quantum number. Once the coupling between the two channels is introduced, we have shown that for a wide ($\approx 1000 \text{ cm}^{-1}$) energy range, the computed vibrational energies can be fitted by three parameters equivalent to two generalized quantum defects and one coupling parameter. This requires generalization of the Lu–Fano law,

$$\tan[\pi(n^*_2 + \mu_2)] = R^2_{1,2} \tan[\pi(n^*_2 + \mu_2)].$$ \hfill (5.2)

As such parameters have a very weak dependence upon the energy, it is valuable, in the spirit of quantum-defect theory [14], to extrapolate them above the $P_{3/2}$ dissociation limit in order to extract predissociation lifetimes from the formula

$$\tau^{-1} = \Gamma(v_2) = \frac{2}{\pi} R^2_{1,2} (E_{v_2 + 1} - E_{v_2}).$$ \hfill (5.3)

In Eq. (5.3), v_2 is the vibrational numbering of a level of the $P_{3/2}$ series. Once the coupling is introduced, this level has a new effective quantum number so that it is shifted by the quantity

$$\delta E(v_2) = \mu_2(E_{v_2 + 1} - E_{v_2}).$$ \hfill (5.4)

We give in the following a comparison of lifetimes computed by the various methods for $^{87}\text{Rb}_2$. For one predissociated level just above the $P_{1/2}$ limit, the energy and the width calculated directly are $E_{v}^{\text{res}} = 13.037 \text{ cm}^{-1}$ and $\Gamma_v = 24.2 \text{ GHz}$. Using the two parameters $R_{1,2} = 0.47$ and $\mu_2 = -0.36$ derived from the bound spectrum, the asymptotic formula above predicts for the levels $E_{v_2}^{\text{res}} = 13.052 \text{ cm}^{-1}$ and $\Gamma_{v_2} = 26.4 \text{ GHz}$. For a level situated far from the region of determination of parameters $R_{1,2}$ and μ_2, the direct calculations give $E_v = 201.216 \text{ cm}^{-1}$ and $\Gamma_v = 4.97 \text{ GHz}$. The prediction with the same parameters $R_{1,2}$ and μ_2 give $E_{v_2}^{\text{res}} = 201.208 \text{ cm}^{-1}$ and $\Gamma_{v_2} = 5.62 \text{ GHz}$.

We have verified that in the case of $^{85}\text{Rb}_2$ there are ≈ 200 predissociated levels above the $P_{3/2}$ limit for which μ_2 is nearly constant, varying by less than 0.1, while the coupling parameter varies by a few percent.

The parameters μ_2 and $R_{1,2}$ can also be extracted from the relative population $\alpha_{3/2}(v')$ of the $\Psi_{3/2}(R')$ component for bound levels just below the $P_{1/2}$ dissociation limit [11]. In this region the total bound spectrum can be considered as a set of quasiresonances of the V_2 state “predissociated” in the quasicontinuum created by the high density of $P_{1/2}$ vibrational levels.

The results are reported in Table II, where the parameters μ_1, μ_2, and $R_{1,2}$ are extracted from 3 different sources: the relative population of the $P_{3/2}$ component, the Lu–Fano plot, and the lifetime calculations (time-independent and time-dependent). For the energy domain between the two dissociation limits, the relative accuracy of the prediction of the widths and positions of resonances of Rb_2 using the Lu–Fano plot is estimated as 10^{-4} for positions and 10% for widths.

<table>
<thead>
<tr>
<th>Relative population</th>
<th>Lu-Fano plot</th>
<th>Lifetime calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1</td>
<td>not defined</td>
<td>0.82</td>
</tr>
<tr>
<td>μ_2</td>
<td>0.19</td>
<td>0.185</td>
</tr>
<tr>
<td>$R_{1,2}$</td>
<td>0.76</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Table III. Comparison of generalized Lu–Fano parameters μ_1, μ_2, and $R_{1,2}$ for different species and different choices of molecular spin-orbit coupling W.

<table>
<thead>
<tr>
<th>$^{87}\text{Rb}_2$, W^{at}</th>
<th>$^{85}\text{Rb}_2$, W^{m1}</th>
<th>$^{85}\text{Rb}_2$, W^{m2}</th>
<th>$^{85}\text{Rb}_2$, W^{at}</th>
<th>$^{85}\text{Rb}_2$, W^{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1</td>
<td>μ_2</td>
<td>μ_2</td>
<td>μ_2</td>
<td>μ_2</td>
</tr>
<tr>
<td>W^{at}</td>
<td>W^{m1}</td>
<td>W^{m2}</td>
<td>W^{at}</td>
<td>W^{m}</td>
</tr>
<tr>
<td>0.82</td>
<td>-0.81</td>
<td>0.74</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>0.77</td>
<td>-0.76</td>
<td>0.62</td>
<td>0.37</td>
<td>0.048</td>
</tr>
<tr>
<td>0.67</td>
<td>-0.66</td>
<td>0.47</td>
<td>0.097</td>
<td>0.096</td>
</tr>
<tr>
<td>0.37</td>
<td>-0.36</td>
<td>0.03</td>
<td>0.048</td>
<td>0.096</td>
</tr>
<tr>
<td>0.048</td>
<td>0.046</td>
<td>0.1</td>
<td>0.048</td>
<td>0.096</td>
</tr>
</tbody>
</table>

032716-8
Positions of perturbed bound levels below $P_{1/2}$ limit can be predicted using three Lu-Fano parameters down to -1000 cm$^{-1}$ with accuracy varying from 10^{-3} for $E = -200$ cm$^{-1}$ to 5×10^{-4} for $E = -1000$ cm$^{-1}$.

The Lu-Fano representation therefore yields a very compact way of representing both bound and predissociated spectrum. We give in Table III the values of the parameters that we obtain from calculations with the present set of potentials and various choices for the coupling, showing the huge sensitivity to the choice of molecular data. We should note in particular the very small value of the coupling parameter R_{12} for Cs$_2$ when constant spin-orbit coupling is considered and the picture of two uncoupled Hund’s case c channels is nearly valid. We should also note the spectacular variation of the same parameter in the Rb$_2$ case, when either the coupling or the reduced mass are changed. This confirms the necessity of fitting parameters directly to the photoassociation spectra once they are available.

If a part of the discrete spectrum close to the dissociation limit is known (for example, from a photoassociation spectroscopy experiment), the widths and positions of predissociated resonances can be predicted. The asymptotic shift $\delta(v_2)$ of the continuum wave function of the resonances can be defined also from the parameter μ_1 by

$$\delta(v_2) = \pi \mu_1. \quad (5.7)$$

VI. CONCLUSION AND PERSPECTIVES

In the present paper we have presented calculations of the predissociation lifetimes for vibrational levels of an excited ultracold molecule, when the vibrational motion extends out to large distances in a potential with asymptotic R^{-3} behavior. Application to predissociation effects in the $0^+_g(2^2P_{3/2})$ potential predissociated by the $0^+_u(2^2P_{1/2})$ continuum are found to be increasing as a function of the energy E above the $^2P_{1/2}$ limit, being proportional to the classical vibrational period. In accordance with the Le Roy–Bernstein model [27], the latter varies asymptotically as $(D-E)^{-5/6}$, where D is the dissociation limit. We have shown that the computed predissociation lifetimes can be fitted by such a law in the entire energy range for Rb$_2$ but only in a 100 cm$^{-1}$ energy range for Cs$_2$. This can be understood within a simple model where the coupling between the two channels is limited to the short-range region where the motion is energy independent. As for bound state calculations, the results depend markedly upon the choice of potentials and coupling, and we have discussed the effect of the R dependence of the spin-orbit coupling. With a reasonable choice, it is possible to reproduce the only published experimental value of 19 ps measured for a level of 87Rb$_2$ [28].

For all levels, a strong isotopic effect is found in the lifetimes, which for one choice of the coupling are found to be three times larger for 87Rb$_2$ than for 85Rb$_2$. This effect could be the correct interpretation for the isotopic difference in the fine-structure changing cross sections observed experimentally [15] in 1992 and then attributed to the isotopic variation of the hyperfine structure.

The numerical methods presented in the present paper provide results with spectroscopic accuracy once the potentials and couplings are known. However, for heavy dimers such as Rb$_2$ and Cs$_2$, the most accurate ab initio calculations determine short-range potential curves with an uncertainty of a few cm$^{-1}$: only the asymptotic part of the curves can be known with the required accuracy. Nevertheless, for the levels that we are studying, the vibrational motion is governed by the asymptotic region, and this is the reason why the numerical results could be fitted by a formula corresponding to the Le Roy–Bernstein model. The effect of the ill-known short-range region may be represented by energy-independent parameters, and this should allow us to bypass the uncertainty on potentials at small distances. In order to check this point, we have used a generalized quantum-defect theory and Lu-Fano plots to extract parameters from the bound spectrum and extrapolate them through the dissociation limit. For a given set of potentials and couplings, the lifetimes calculated by this asymptotic procedure are in excellent agreement with the results of numerical calculations.

We may therefore conclude that once experimental photoassociation spectra are available, the spectroscopic accuracy of the energies of bound levels below the $P_{1/2}$ asymptote can be exploited to determine the relevant parameters, and we extrapolate them above the first dissociation threshold to deduce accurate lifetimes. Possible further extrapolation above the $P_{3/2}$ threshold should also be considered in future work as a way to compute accurate fine-structure transition cross sections relevant to trap loss experiments [15].