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...Democritus says that [the soul] is hot, a sort of fire; for while there are

infinitely many shapes, i.e. atoms, he says that the spherical ones compose

fire and the soul ... because such shapes can most easily penetrate through

everything and move the others, being themselves in motion.

- Aristotle, De Anima (4th century BCE), showing that Democritus (5th century BCE)

already understood heat as molecular (atomic) motion.

The theory of thermodynamics is today, ca. 100 years after its modern

formulation, a basic concept of physics. Its application makes the description

and implementation of all sorts of physical and technical processes feasi-

ble. Nevertheless, the derivation of basic principles of thermodynamics like,

e.g., the famous second law, from more fundamental theories remains an

intensively disputed problem until these days. Almost all approaches in that

direction are based on classical Newtonian physics. Most of them require

additional postulates like the ergodic hypothesis, the ”a priori postulate”, or

the ”Stosszahlansatz” which are themselves not part of the Newtonian theory.

Furthermore, it is today widely accepted that thermodynamic systems like

gases or solids essentially obey quantum rather than Newtonian laws. This

recently motivated new attempts to base thermodynamics directly on quantum

mechanics.

- Jochen Gemmer (21st century) [1], arguing for quantum thermodynamics.





Abstract

The laws of thermodynamics are generally believed to emerge from the underlying mi-

croscopic mechanics. Notable progress has been made in establishing this emergence

under classical conditions. The understanding of thermodynamics within deeply-quantum

contexts is still lacking, however. The emergence of the third law of thermodynamics is

especially problematic. In this thesis, we aim to further the understanding of quantum

thermodynamics by considering the dynamic emergence of the laws of thermodynamics

in specific models and systems. We focus in particular on the analysis of the cooling rate

by a refrigerator using a medium of quantum harmonic oscillators, and on the analysis of

cooling in spin systems.

After a brief review of quantum thermodynamics, we argue that in a quantum context

the classical formulation of the third law known as the ”unattainability principle”, which

states that it is impossible to cool a system to the absolute zero in a finite number of

physical operations, leads to specific implications in regards to the cooling rate. These are

in excess of the bounds set on the cooling by the second law of thermodynamics.

We then turn to discussing and analyzing in detail a specific quantum refrigerator,

consisting of a quantum analog of the classical Otto cycle. Instead of classical particles in a

piston, the working medium is made up of particles in an harmonic (possibly repelling) po-

tential. Contact with thermal heat baths is modeled through Lindblad (completely positive)

evolution, in accordance with the theory of open quantum systems. We demonstrate that in

the limit cycle the medium is always in a general coherent state, and find the expressions
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for its von Neumann and Shannon entropies. We identify a new invariant of the motion,

which is related to the Casimir of the relevant Lie algebra.

A thermodynamic analysis of the refrigerator shows that in the quasistatic limit (in-

finitely slow change of the external controls) the limit cycle achieves the best possible

asymptotic behavior for the cooling per cycle, as limited by the second law of thermody-

namics. We derive explicit expressions for the cycle’s efficiency, cooling per cycle, and

entropy generation. We show that the cooling rate is maximized when the oscillator’s

energy gap is proportional to the energy scale of the cold bath’s temperature. Then the

cooling rate is limited in accordance with our general discussion.

We find that attempting to move fast, beyond the quasistatic limit, generally leads to

quantum friction that hinders the cooling. We discuss quantum friction in this system and

in general, and argue that it will generically lead to frictional losses in any refrigeration

scheme.

We show, however, that there exist ”frictionless” cycles that can achieve the quasistatic

cooling per cycle in finite time. We find a simple one directly, and through a more elaborate

argument explicitly find the fastest one. Allowing for repelling harmonic potentials, we

show that this optimal solution reaches a cooling rate that asymptotically drops with

temperature close to the limit allowed by the unattainability principle and the second law.

In the course of this study, we also for the first time establish a minimum time for

transitioning between two thermal states. This time is shorter the more energy resources

are available, and explodes as the final temperature approaches zero.

Turning to spin systems, we review results obtained for a two-spin Otto cycle and argue

that the presence of a minimal energy gap in that case prevented cooling to absolute zero.

We analyze cooling more generally based on the process of ”algorithmic cooling”.

We review previous results that show that using this algorithm it is impossible to set the

probability of ground-state for a register of spins below some bound. We generalize these

results, arguing that this implies that in any sensible refrigeration scheme it is impossible

to cool a finite quantum system beyond a certain minimal (non-zero) temperature. This
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temperature approaches zero in the macroscopic limit.

Our results therefore indicate that in the quantum domain the laws of thermodynamics

are subtly different. The third law or unattainability principle, while still valid, can be

improved upon by providing bounds on the asymptotic behavior of rates or a minimal

temperature above zero. These bounds take into account limitations beyond just a ”finite

number of operations”, including finite energy gaps, energy resources, and the finite size

of the refrigerator and heat baths.
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Chapter 1

Introduction

Thermodynamics is formally an axiomatic theory concerning the dynamics of “heat”. But

if it is to fit with our mechanistic understanding of the world, the laws of thermodynam-

ics must emerge from the laws of the underlying mechanics and thus “heat” and other

thermodynamic terms must be filled with physical content. Traditionally, the laws of

thermodynamics are seen as statistical laws emerging from classical mechanics under

certain (in practice, inviolate) assumptions. Heat, specifically, is seen as a type of energy.

The understanding of thermodynamics in a quantum context is less clear. In this thesis

I suggest that thermodynamics should be explored from the point of view of examining

the dynamics of the energy of an open quantum system. This perspective leads to a

simple definition of the first law of thermodynamics (the division into work and heat) for

time-dependent open systems, and to a natural definition of entropy even far from thermal

equilibrium. The second law is maintained universally within this scheme. The validity

of the third law, however, is not trivially evident from these definitions. In this thesis I

explore its validity in specific models. Focusing on the quantum analog of the third law, I

examine the limitations on cooling towards the absolute zero. I suggest that the Third Law

of Quantum Mechanics is that cooling finite systems, using finite resources, is restricted to

a maximal cooling rate and to a minimum temperature.
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1. INTRODUCTION

The work is divided into sections as follows. In Chapter 2 I discuss the general

theoretical background needed to understand the work. I discuss classical thermodynamics

and in particular the unattainability principle and the Otto cycle. I discuss the theory of

quantum open systems, and the Markovian axiomatic approach to it that I use in this work.

I briefly present the standard approach in quantum thermodynamics of time-dependent

systems. I then argue that within a quantum context, the unattainability principle implies

specific bounds on the asymptotic behavior of the cooling rate at low temperatures.

Chapter 3 is the main body of my work. In it I discuss refrigeration using a particular

model, the harmonic-oscillator Otto cycle. I provide a thermodynamic analysis of the

refrigerator’s operation, and investigate its performance near the absolute zero. My main

result is a minimal transition time between two thermal states, and therefore a limit on the

possible cooling rate. The cooling rate goes to infinity as the allowed energy resources do,

however. From these results, I draw more general insights relating to quantum friction.

Chapter 4 concerns spin systems. Citing previous work, I explain why in a two-spin

Otto cycle it is impossible to cool below a finite minimum temperature. I explain the

process of algorithmic cooling, and show that it implies that using a finite refrigerator it is

impossible to cool a finite system to below a minimal temperature.

Finally, I offer my conclusions in Chapter 5. I suggest scaling laws limiting the cooling

rate and minimal temperature that should apply under various limitations, such as using a

finite bath, limited energy resources, and so on.
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Chapter 2

Theoretical Tools

2.1 Open Quantum Systems

The standard formalism of (non-relativistic) quantum mechanics considers a closed quan-

tum system, that does not interact with its environment. The system may be time-

independent or, more generally, it can be time-dependent. This represents being affected by

the environment, but solely by the (semi-)classical effect of an external field. Realistically,

however, every physical system is at least somewhat open, interacting with the environment

in more subtle ways. The treatment of quantum open systems is therefore of fundamental

importance, and leads to effects such as decoherence and applications such as stochastic

Schrödinger equations [2].

The fundamental idea of the theory of open quantum systems is that an open system

can be seen as being a part of a larger, “extended”, closed system. One can then derive the

properties and dynamics of an open quantum system from the well-understood properties

of a closed system.

3



2.1. OPEN QUANTUM SYSTEMS 2. THEORETICAL TOOLS

2.1.1 The Extended System

Consider an extended system, a closed quantum system with some Hilbert space H . This

space can be divided into subspaces, so that the extended space is a tensor product of the

subspaces. For the purposes of this work, we will divide the total Hilbert space into an

open system (S) of interest, and consider the rest to be its environment (B). The extended

Hilbert space is hence

Htot = HS⊗HB . (2.1)

The state of a quantum system is often described by a state vector |Ψ〉 in Hilbert space.

More generally, however, it is a statistical mixture of pure states, represented by a density

matrix or operator

ρ̂ = ∑
j

p j|Ψ j〉〈Ψ j| , (2.2)

where the frequencies p j ≥ 0 are the normalized ∑ j p j = 1 probabilities of finding the

system in the pure state |Ψ j〉. The density operator ρ̂ is an Hermitian (ρ̂† = ρ̂ ; assuring Real

eigenvalues), positive (x†ρ̂x≥ 0; which assures non-negative eigenvalues), trace-1 (tr(ρ̂) =

1; which assures normalized probability distributions) operator. The expectation value

of any observable Ô becomes a statistical mixture of the possible pure-state expectation

values,

〈Ô〉= ∑
j

p j〈Ψ j|Ô|Ψ j〉= tr
(
ρ̂Ô
)
. (2.3)

The state of each subsystem can be derived by taking the partial trace of the extended

state. In matrix form, this is equivalent to summing over only the degrees of freedom

(dimensions) of the other subsystems. The state of the open system is hence the reduced

state

ρ̂S = trB(ρ̂) . (2.4)

The dynamics of the extended system’s state are determined by the Liouville-von
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2. THEORETICAL TOOLS 2.1. OPEN QUANTUM SYSTEMS

Neumann equation
d
dt

ρ̂ =− i
h̄

[
Ĥtot , ρ̂

]
≡Ltot [ρ̂] , (2.5)

where

Ĥtot = ĤS + ĤB + ĤSB . (2.6)

Here Ĥtot is the Hamiltonian of the extended system, an operator that acts on the extended

Hilbert space Htot . ĤS is the Hamiltonian of the open system, defined on HS, while ĤB is

the Hamiltonian of the environment, defined on HB. ĤSB is the interaction of the system

with the environment, operating again in the extended Hilbert space Htot . Ltot is the

so-called Liouvillian, that defines how to advance the system in time.

We can formally write down the dynamics of the open system from the extended

Liouville equation (2.5) and the definition of the reduced state (2.4)

d
dt

ρ̂S =−
i
h̄

trB
(
Ĥtot , ρ̂

)
. (2.7)

2.1.2 Quantum Dynamical Semigroups

Solving the dynamics of the quantum open system using equation (2.7), however, requires

solving the dynamics of the extended system. As the environment is typically very large,

this is often not practical. Approximations must be used to derive more serviceable

equations. Perhaps the most natural is the Markovian approximation. Assuming the

environment is so stable that it is hardly changed by its interaction with the system, the

dynamics of the open system should depend only on the momentary state of the system.

The environment is reduced to serving as a mere constant background - typically, a heat

bath - to the system’s evolution.

Mathematically, we are looking for a dynamical map Λ(t) that will determine the

evolution of the open system

ρS(t) = Λ(t)ρS(0) . (2.8)
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2.1. OPEN QUANTUM SYSTEMS 2. THEORETICAL TOOLS

But not all dynamical maps would do. We can make three demands, motivated by physical

requirements [3, 4].

• Markovian First, we demand that the dynamics will be Markovian. This implies

Λ(t1 + t2) = Λ(t2)Λ(t1) , (2.9)

which characterizes the map as a semigroup (not a full group, as it need not include

an inverse Λ−1 so that Λ(t)Λ(t)−1 = 1).

• Complete Positivity We also need to take into account the fact that the open system

is part of an extended system. The extended system’s state must always be positive,

and its dynamics maintains its positivity. We therefore demand that the map will be

completely positive, i.e. that it will preserve the positivity of the extended state.

• Trace Preserving The state must also always be a trace-1 operator, so the dynamical

map must maintain the trace.

trS (Λ(t)ρS(0)) = trS (ρS(0)) (2.10)

In short, we are looking for a completely positive dynamical semigroup. Any such quantum

semigroup can be generated by taking the exponential of a generator L so that

Λ(t) = eL t (2.11)

and the dynamics obey the differential equation

d
dt

ρS(t) = L ρS(t) . (2.12)

6



2. THEORETICAL TOOLS 2.1. OPEN QUANTUM SYSTEMS

2.1.3 Lindblad’s Form

In 1976 Lindblad, Gorini and Kossakowsi proved that the generator of a completely positive

quantum dynamical semigroup must take a general form [5, 6], which has become known

as the Lindblad form. It can be written as

d
dt

ρS(t) =−i[ĤS, ρ̂S]+∑
i

γi

(
Aiρ̂sÂ

†
i −

1
2
{A†

i Ai,ρS}
)

(2.13)

≡LSρ̂S +LDρ̂S . (2.14)

Here LS induces the standard unitary evolution that we would have expected from the

system’s Hamiltonian ĤS. LD represents the effect of the environment. It can generally

induce non-unitary, dissipative dynamics (hence the ”D”). The sum is on operators Âi that

operate on the system’s Hilbert space HS, and are sometimes called Lindblad operators.

The factors γi are rate constants (having dimensions of inverse time if Ai are dimensionless),

and are always positive.

The dynamics of any observable can be determined from that of the state. The expecta-

tion value of any observable of the open system is

〈
Ô(t)

〉
= trS

(
Ô(t)

)
. (2.15)

Taking into account Lindbdlad’s form (eq. 2.14), this implies

d
dt

Ô(t) =
i
h̄

[
ĤS(t), Ô(t)

]
+∑

i
γi

(
AiÔÂ†

i −
1
2
{A†

i Ai,O}
)
+

∂

∂ t
Ô(t) (2.16)

≡LS(Ô(t))+LD(O(t))+
∂

∂ t
Ô(t) . (2.17)

This will be the master equation that I will use throughout this work.

Lindblad’s form is a very powerful analytical tool as it allows us to explore the behavior

of open quantum systems without needing to worry about the details of the environment.
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2.2. CLASSICAL THERMODYNAMICS 2. THEORETICAL TOOLS

Indeed, different environment can induce the same Markovian dynamics, the same Lindblad

form. There are microscopic derivations that show that Lindblad’s form is indeed a good

approximation under often-reasonable assumptions [2, 3, 7], and in particular that Lindblad

forms that induce thermalization are reasonable. We will from now on therefore make

use of Lindblad’s form in this way, and forgo a detailed consideration of the microscopic

details of the environment and interaction.

The importance of Linblad’s form our perspective is that it allow us to ignore the details

about how thermalization occurs in practice. Environments often lead to thermalization in

a Markovian manner following Lindblad’s form. To treat thermalization, we can therefore

simply choose Lindblad operators and rates that will induce it. Physical ’thermalization’

processes should approach this ideal form.

2.2 Classical Thermodynamics

The first law of thermodynamics is often referred to as the ”conservation of energy”, but it

actually says more than that as it divides changes in energy into two types, work and heat.

dE = δW +δQ (2.18)

where E is the energy of the system. The change in work δW and heat δQ is an imperfect

differential δ , signifying that it is a function of the path (the thermodynamic process). Both

work W and heat Q changes are induced by the environment. The key difference between

them is that heat is also featured in the second law of thermodynamics, the demand that

entropy always increase. Summing over all parts i of the extended system, we can phrase

it as

∆S≥∑
i

dQi

Ti
≥ 0 . (2.19)

8



2. THEORETICAL TOOLS 2.2. CLASSICAL THERMODYNAMICS

From the axiomatic point of view, then, entropy and the second law are required to

understand the division set out in the first law. Heat is defined as that thing that keeps

entropy increasing. From the conceptual point of view, however, statistical mechanics

allowed us to understand work as the change of energy stemming from dynamical changes

in the constraints of the system, whereas heat is understood as stemming from energy-

exchange in thermal equilibration processes (e.g. [8]). These two distinct meanings of

heat, the conceptual and the axiomatic, are merged perfectly in classical mechanics and

mechanical statistics. We would suggest, below, that the situation is less clear in the

quantum case.

The third law of thermodynamics was first defined by Nernst [9, 10], who developed

two main formulations of it, which are equivalent under certain assumptions [10, 11]. The

first, which we can term the ”entropy principle”, states that the entropy of the system

approaches zero as its temperature does. We will be more interested in the second, which

we can call the ”unattainability principle”. It states that it is impossible to reach the

absolute zero temperature by any finite number of thermodynamic steps. In this work we

will be interested in the dynamical ramifications of the third law, that must emerge from

the mechanics if it is to hold. Consider some heat Qc drawn from some system (which

we will soon identify with ”the cold heat bath”) at temperature Tc by some finite-time

process. The third law of thermodynamics implies that it must approach zero as the bath’s

temperature approaches zero [12],

dQc −−−→
Tc→0

0 . (2.20)

For any specific process, there are two ways in which this can happen. Consider a process

that draws a constant amount dQc = ε of heat at each iteration. If the cold bath initially

has a high heat capacity, we can repeat the process until its energy (above its ground state)

is ε or less. We shall assume that drawing energy lowers the system’s temperature, or in

other words that the system’s ground state is the absolute zero temperature. If its energy is

9



2.2. CLASSICAL THERMODYNAMICS 2. THEORETICAL TOOLS

now precisely ε , then the unattainability principle implies that one more iteration would

simply be impossible. This would also be the result of having less than ε remaining, as

then it would be impossible to draw ε from the bath at all. The process will simply fail if

we try to apply it below a certain minimal temperature Tc, or in other words it is impossible

to cool the cold bath to below a certain minimal temperature in this method. Alternatively,

the cooling may decrease gradually, so that dQc = 0 is reached continuously. In this case

there is no contradiction with the third law, as each iteration may draw less than the energy

currently available in the cold bath, leaving it in a finite temperature.

The third law therefore implies that for any particular finite-time process that draws

heat from some ”cold bath”, the cooling per iteration should decrease gradually to zero or

else the process should stop cooling the cold bath at all at some minimal temperature. We

will see both types of effects in the thesis.

2.2.1 Refrigeration Cycles

Thermodynamic cycles are a staple of the theory of thermodynamics. They paradigmat-

ically consist of pistons of ideal gas, at a certain volume and pressure, that are brought

into contact with various heat baths at temperatures Ti. Each type of cycle is characterized

by the manner in which the volume or pressure is changed as the piston is brought into

contact, or isolated, from various baths. A cycle that will be important for our analysis is

the Otto cycle. It is a four-stroke cycle, consisting of two ”adiabatic” steps done without

contact with a heat bath, and two ”isochoric” branches done at constant volume (see figure

2.1 ).

• Hot Isochore The piston is allowed to thermally equilibrate with a hot bath, while

kept at a constant volume.

• Adiabatic Expansion The system is decoupled from the hot bath, and allowed

expand.

10



2. THEORETICAL TOOLS 2.2. CLASSICAL THERMODYNAMICS

Figure 2.1: The classical Otto cycle, schematically drawn on the entropy-volume plane.
The Otto cycle is drawn as an engine, as it is typically considered. In this mode of operation
there is heat intake ∆Qh from the hot bath, exhaust ∆Qc into the cold bath, and net useful
work ∆Whc−∆Wch is produced. The same Otto cycle can, however, be made to work as a
refrigerator with the right choice of parameters.

• Cold Isochore The system is allowed to equilibrate with a cold bath, while kept at

the expanded volume.

• Adiabatic Compression The volume of the piston is decreased back to its initial

value, after it is isolated from the cold bath again.

Operating in this manner, the gas in the piston will soon approach a limit cycle, achieving

a state (pressure, temperature, and so on) depending on the parameters of the cycle (the

hot bath’s temperature, and so on) rather than on its initial state. The properties of a

thermodynamic cycle are the properties of its limit cycle.

The classical Otto cycle waits for full thermalization in both isochores, which in theory

takes infinitely long time. In finite-time thermodynamics, the gas is allowed to equilibrate

partially, for some limited time, before the piston is removed from the heat bath and the

adiabatic stroke commences.

11



2.2. CLASSICAL THERMODYNAMICS 2. THEORETICAL TOOLS

We will be interested in refrigeration cycles. The second law of thermodynamics

imposes limits on the cooling achievable in any refrigeration limit cycle [12]. Consider

some refrigeration cycle operating between two heat baths, a ”cold” and ”hot” one. Since

at each start of the cycle the refrigerator’s entropy returns to its previous value, its entropy

change from the previous cycle is zero. The entropy of the baths, however, may change.

The second law requires that

∆S =−Qc

Tc
+

Qh

Th
> 0 , (2.21)

where the signs have been chosen to represent drawing heat (Qc > 0) from the cold bath,

and putting it (Qh > 0) in the hot one. Let us now consider lowering the cold bath’s

temperature Tc towards zero, keeping all other aspects of the cycle (such as the hot bath’s

temperature) constant. I shall assume that the heat exchange with the hot bath is bounded

Qh ≤ Qmax. The lowered temperature will create a singularity, breaking the second law,

unless the cooling per cycle Qc decreases at least as fast as the temperature. Assuming that

Qc is analytical, to first significant order we must require

Qc ∝ T δ
c , (2.22)

with δ ≥ 1.

Consider now the cooling rate, which is the cooling per unit time. For a refrigeration

cycle, the average cooling rate is the cooling per cycle divided by the cycle’s time R =

Qc/τ . We have already established that the second law limits Qc. As long as τ does not

approach zero as the temperature is lowered, this implies also that R→ 0 at this limit.

The unattainability principle implies that the integral of the cooling rate ∆Q =
∫ t

0 R(t ′)dt ′

must always be smaller than the heat capacity of the bath (for any bath, and any cooling

method). It is not clear what this implies for the cooling rate in classical thermodynamics,

which essentially has no restriction on the bath. We will argue below that within quantum
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2. THEORETICAL TOOLS 2.3. QUANTUM THERMODYNAMICS

mechanics this requirement has much clearer and explicit repercussions.

Finally, consider the efficiency of cooling. This is measured by a Coefficient of

Performance (COP), which is the amount cooled Qc divided by the work intake W necessary

to perform the cycle

COP≡ Qc

W
. (2.23)

Much like an engine’s efficiency, the COP for any process between two baths with Th > Tc

is limited by the Carnot limit COP≤ 1
Th
Tc−1

, where the equality is obtained if the process is

reversible. The COP of an Otto cycle is

COP =
1

(Vh
Vc
)(γ−1)−1

, (2.24)

where Vi is the volume at the hot/cold stroke, and γ =
cp
cv

is the heat capacity ratio, which

is 2 for a two-dimensional monoatomic ideal gas.

2.3 Quantum Thermodynamics

To consider the thermodynamics of a quantum open system, we need to consider the

possible changes to its energy

E = tr(ρsĤs) . (2.25)

The first law of quantum thermodynamics should divide the change of energy into work

and heat. Such a division was first suggested, in the context of open quantum systems, by
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Alicki [13]. He suggested to partition changes to the energy E = tr(ρ̂Ĥ) as follows:

Q̇ = tr
(

dρ̂

dt
Ĥ
)

(2.26)

Ẇ = tr
(

ρ̂
dĤ
dt

)
(2.27)

Geva and Kosloff [14–16] rewrote these equations in the Heisenberg picture as

Q̇ = 〈LD(Ĥ)〉 (2.28)

Ẇ = 〈∂ Ĥ
∂ t
〉 . (2.29)

These are the definitions of work and heat that I will use throughout this work. Conceptually

they correspond to considering work as the change of energy related to the change of

external constraints, changing the Hamiltonian directly, and heat as related to other changes

in energy populations as energy is exchanged with the environment.

As noted above, axiomatically the meaning of heat lies in its relation to the second law

of thermodynamics and therefore to the entropy. In a quantum mechanical context, von

Neumann defined the von Neumann entropy of the state

S =−tr(ρ̂log(ρ)) (2.30)

in analogy to the Gibbs entropy [17]. Assuming that the entropy change of the environment

is related to the definition of heat above via the standard relation dS = dQ/T , Alicki was

able to show [13] that Lindbladian dynamics (with a time-dependent Hamiltonian) imply

positive entropy generation,

σ =
dS
dt

+
Q̇h

Th
− Q̇c

Tc
> 0 , (2.31)

where in the above formula I have restricted the general case considered by Alicki to the
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case of pouring heat into the hot bath and drawing it from the cold one.

The above formulation of the first law demonstrates that quantum thermodynamics is

truly a dynamical theory. Whereas classical thermodynamics is concerned with imperfect

differentials d̄Q that take place in an abstract reality removed from physical time, quantum

thermodynamics is concerned with time derivatives d
dt and is inherently concerned with

physical processes, that take time to complete. Classical thermodynamics, despite its name,

is strictly concerned with processes near thermal equilibrium and hence requires quasistatic

changes that take infinite time to perform. Quantum thermodynamics extends to processes

and states well outside thermal equilibrium, and is thus closer to the field of finite-time

(classical) thermodynamics.

2.3.1 Quantum Refrigeration Cycles

Quantum thermodynamic cycles are defined much like the classical ones, as repeated series

of operations and processes leading to a limit cycle. Based on the above definitions of

work and heat, however, we can divide strokes into two fundamental types.

In an adiabatic stroke the system is isolated from any thermal environment. It is

evolving under a time-dependent Hamiltonian, but the dissipator LD is zero. In this case

the change of energy can be attributed to work alone. Note that the von Neumann entropy

is invariant under unitary evolution, so that such processes are isentropic dS = 0. This

corresponds well to classical adiabatic processes, where dQ = T dS = 0.

In a thermalization stage the system’s Hamiltonian remains time-independent, but its

environment induces some dissipation LD 6= 0 which we will assume, for simplicity, is

thermalization. The change of energy can then be attributed to heat alone. Note that in this

case the von Neumann entropy can change. If we define the temperature as

T ≡
(

δS
δE

)−1

, (2.32)

we can formally write dE = T dS = δQ. This is in analogy to the classical case, where

15



2.3. QUANTUM THERMODYNAMICS 2. THEORETICAL TOOLS

T =
(dE

dS

)
|V , i.e. the derivative where the external constraints (such as the volume V ) are

kept constant. In both the quantum and classical cases this is an imperfect differential, as

the heat and entropy in two different processes can change differently while arriving at the

same final energy.

Realistic processes will likely combine both effects, and cycles can be constructed

with such strokes. However, from a theoretical standpoint these two types of processes

neatly separate the thermodynamic variables and simplify the treatment, requiring time-

independent (and hence easier) open systems treatment on the thermalization strokes

and standard quantum mechanical approaches for closed systems on the adiabatic ones.

This is why the Otto cycle, consisting of only adiabatic and thermalization strokes, is the

fundamental thermodynamic cycle for quantum systems.

Finally, I argue that in a quantum context the unattainability principle implies that

the cooling rate should drop faster than R = Qc/τ ∝ T 1
c . The limiting scaling can be

achieved by the maximal cooling per cycle allowed by the second law, if the cycle’s time

is independent of temperature. To see that this is in contradiction to the third law, assume

that near the absolute zero we can think of the bath as a two-level system, and (without

loss of generality) that its ground state energy is zero and it has an energy gap ∆E. For

low temperatures (Tc→ 0), its energy is approximately E ≈ exp(−∆E/kBT (0)
c )∆E. Then a

single cycle operation (taking some fixed time τ) will draw some heat f (Tc) from the bath,

defining a new temperature E = exp(−∆E/kBT (1)
c )∆E = exp(−∆E/kBT (0)

c )∆E− f (T (0)
c ).

If we let the heat intake scale as the maximum allowed by the second law, f ∝ Tc, then

the temperature will drop nearly-exponentially with time, until it will drop so much that

another iteration would supposedly bring us to zero (or below); since this is impossible by

the unattainability principle, it should simply be impossible to maintain the ideal scaling

Qc ∝ Tc below a certain temperature. Indeed, f must scale at least as fast as the exponent

in order for there not to be some cut-off minimal temperature. I conclude that for cycles of

finite, fixed, time τ the cooling-per-cycle and cooling rate must drop exponentially, or else

meet a sharp cut-off at some finite minimum temperature T min
c below which no cooling
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would be performed.

The situation is markedly different if the cycle’s time changes with the temperature. If

it approaches zero at the limit of zero temperature, then the cooling rate becomes infinite

and the unattainability principle will be trivially violated. It may, however, change so that

it approaches infinity for low temperatures τ → ∞. In this case completing the last cycle,

that brings us to zero energy (and temperature) in violation of the unattainability principle,

is impossible in finite time. There is therefore no hindrance to achieving the maximum

cooling per cycle, Qc ∝ Tc. The cooling rate R = Qc/τ , however, will necessarily approach

zero faster. Assuming it is analytic, we can conclude that the third law of quantum

thermodynamics implies

R ∝ T δ
c (2.33)

with δ > 1. Such a scaling can be only achieved, however, if the cycle time goes to infinity

at this limit; if it is finite, the scaling must be exponential or, barring that, a minimum

temperature T min
c should emerge below which no cooling is possible.
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Chapter 3

The Harmonic Oscillator

In this chapter, which is the main part of my work, I want to use a particular model to

explore the emergence of thermodynamics from quantum mechanics, and in particular the

third law that limits cooling near the absolute zero. The model I will focus on will be the

harmonic oscillator, which allows me to develop analytical solutions.

Since I want to explore cooling, I need to look at an open system that is externally

operated on so that it functions as a refrigerator. I therefore look at quantum particles that

serve as the “working fluid” or gas of the refrigerator. These are kept in a “piston”, or some

bounding potential, which for simplicity I will take to be a one-dimensional harmonic

potential. Thus the system’s Hamiltonian is that of an harmonic oscillator

Ĥ =
1

2m
P̂2

+
1
2

k(t)Q̂2
= h̄ω(t)(â†(t)â(t)+

1
2
) , (3.1)

where to increase generality I would also allow a repelling potential that has a negative

spring constant (k < 0) or, equivalently, imaginary frequency ω .

By changing the frequency and contact with heat baths appropriately, this open system

can function as an Otto refrigeration cycle. In this chapter I explain the cycle and its

dynamics, and derive some general results. I then focus on infinitely slow (quasistatic)

operation, presenting a full thermodynamic analysis of its performance. Moving to finite
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but slow rates, I show that the finite speed results in friction. I show that this is generally

true for arbitrary speeds, and argue that it signifies a quantum source of friction that is

generic and is to be expected in any quantum process.

I then show that there are, however, frictionless cycles in finite time. I determine the

fastest one, leading to the fastest possible cooling, and discuss the relation of this result to

the third law of thermodynamics.

This chapter summarizes several articles and publications [18–24].

3.1 The Refrigeration Cycle

We are interested in cooling some environment (the ”cold bath”) using a quantum open

system consisting of (one-dimensional) harmonic oscillators. There are many ways in

which such a system can be made to cool the bath. In this work I will apply the quantum

Otto refrigeration cycle (cf. section 2.3.1). This cycle consists of four stages (see figure

3.1):

• Hot Thermalization In this stage the frequency of the oscillator is kept constant

at ωh while it is brought into contact with a hot thermal reservoir. The system

equilibrates to the heat bath’s temperature at this frequency, setting fixed ”initial

conditions” for the following cooling steps.

• Adiabatic Expansion In this stage the working fluid is isolated thermally from the

environment, so it is ”adiabatic” in the thermodynamic sense of not exchanging

heat. The frequency of the oscillator is decreased1 to ωc, leading to a decrease in its

energy and a drop in its temperature.

• Cold Thermalization In this stage the frequency of the oscillator is held constant

as it is brought into contact with the cold heat bath. The working fluid is colder still,
1The decrease in frequency can be thought of as ”expansion” if volume is thought of as the inverse of the

frequency V = 1/ω . This is a valid analogy as increasing the volume then leads to a decrease in the energy,
in accordance with classical thermodynamics dU =−PdV . See [18] for further discussion.
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Figure 3.1: A typical quantum Otto refrigeration cycle. The frequency is noted on the
x-axis, and the Shannon energy entropy on the y-axis. The cycle operates clockwise,
starting at point A at the beginning of the hot thermalization stage and continuing with the
four strokes. A finite time is spent on each segment. Isothermals at the bath temperatures
are also drawn for comparison. Note that the cycle never reaches full equilibration.

leading it to heat up as it thermalizes, drawing heat from the cold bath. Thus the

refrigerator cools the target (the cold bath).

• Adiabatic Compression Finally, the system is again decoupled thermally and the

frequency of the oscillator brought back up to ωh. It can now brought into contact

with the hot bath again, restarting the cycle.

All four strokes are in finite time, so that thermalization is partial and the change in

frequency is not infinitely slow. Nevertheless, as we will show below, the cycle approaches

a limit cycle whose performance does not depend on the initial conditions of the working

fluid.

We can establish a bound on the cooling per cycle from this description alone.
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The cooling per cycle Qc is the energy change along the cold thermalization branch.

Qc = ED−EC = h̄ωc(nD−nC) (3.2)

where ni is the expectation value of the population operator N̂ = â†â at point i on the cycle

(see figure 3.1). To bound this quantity, consider that we expect heat intake from the bath,

i.e. that we require the energy to increase along the cold thermalization stroke so that

nD ≤ nCeq (where nCeq is the value at equilibrium with the cold bath). Since the population

at point C is always positive, we can obtain a bound by simply setting nC = 0. Then we

can write

Qc ≤ h̄ωc
1

eβch̄ωc−1
. (3.3)

Optimizing with respect to ωc we obtain that Qc drops with Rc ≡ βch̄ωc, so that Rc→ 0 is

desirable to keep it maximal. At the limit of Rc� 1, however, the above formula reduces

to

Q∗C < kBTc . (3.4)

We obtain that as Tc→ 0, the cooling per cycle Qc could at most scale as Qc ∝ T 1
c . Note

that this is precisely the scaling allowed by the second law of thermodynamics (cf. section

2.2.1).

We are particularly interested in the cooling rate R=Qc/τ , where τ = τh+τhc+τc+τch

is the sum of the times allocated to each branch. To take the times into account, however,

we must turn to consider the actual dynamics along the different segments.
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3.1.1 The Adiabatic Strokes

Along the two adiabatic stages we change the frequency of the oscillator while it is

decoupled from the baths, treating it as a closed quantum system. For thermodynamic

purposes we are interested in the dynamics of the energy, but deriving its equation of

motion shows that this change entangles it with two more quantities: the Lagrangian and

the position-momentum correlation. We receive three coupled differential equations of

motion

d
dt


Ĥ

L̂

Ĉ

=


ω̇

ω
− ω̇

ω
0

− ω̇

ω

ω̇

ω
−2

0 2 ω̇

ω




Ĥ

L̂

Ĉ

 , (3.5)

where we have defined

Ĥ =
1

2m
P̂2

+
1
2

k(t)Q̂2 (3.6)

L̂ =
1

2m
P̂2− 1

2
k(t)Q̂2 (3.7)

Ĉ =
ω

2
(
P̂Q̂+ Q̂P̂

)
. (3.8)

We can therefore determine the dynamics of the energy expectation value H = 〈Ĥ〉 if we

simultaneously consider the other two expectation values L = 〈L̂〉 and C = 〈Ĉ〉.

As these equations of motion are time-dependent, it is impossible to present a general

solution. We will instead consider special solutions below.

3.1.2 The Thermalization Strokes

The dynamics on a thermalization stroke are simply those of thermalization (at constant

frequency). We can represent thermalization using Lindblad’s form (see section 2.1.3). It

involves two processes: one increasing the energy by one quant a† with a rate k↑, and one

decreasing it by one quant a with a rate k↓. The two rates must maintain detailed balance
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k↓/k↑ = e−β h̄ω . Taking these rates and Lindblad operators, we are led to the equation of

motion for any observable

d
dt

Ô =−i[Ĥ, Ô]+
∂

∂ t
O(t)+ k↓

(
âÔâ†− 1

2
{ââ†, Ô}

)
+ k↑

(
â†Ôâ− 1

2
{â†â, Ô}

)
. (3.9)

This will lead to thermalization with a constant rate Γ = k↑− k↓ > 0, i.e. H(t) = (H0−

Heq)e−Γt +Heq. With the correct choice of constants, the correct equilibrium energy

Heq =
h̄ω

2 coth
(

β h̄ω

2

)
for an oscillator with frequency ω at temperature T = 1

kBβ
can also

be achieved.

Applying equation (3.9) to the other two operators of interest Ĉ and L̂ results in a

similar exponential approach to the appropriate thermal equilibrium values, L =C = 0.

3.1.3 General Properties

The state of the working medium in general is not in thermal equilibrium. In order to

consider its general state, let us consider the so-called “general coherent state”, which is

the state of maximum entropy subject to to a set of expectation values 〈X̂ j〉= tr
(
X̂ jρ̂

)
:

ρ̂ =
1
Z

exp

(
∑

j
β jX̂ j

)
(3.10)

where β j are Lagrange multipliers. The generalized canonical form of equation (3.10) is

useful only if the state can be cast in the canonical form during the entire cycle of the

engine, leading to β j = β j(t). This requirement is called canonical invariance [25]. A

necessary condition for canonical invariance is that the set of operators X̂ in equation (3.10)

is closed under the equations of motion, i.e. it forms a dynamical Lie algebra [26, 27].

If this condition is also sufficient for canonical invariance, then the state of the system

can be reconstructed from a small number of quantum observables 〈X̂ j〉(t), which are the

thermodynamic observables in the sense that they define the state under the maximum

entropy principle.
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The condition for canonical invariance on the unitary (adiabatic) part of the evolution

in the cycle is as follows. If the Hamiltonian is a linear combination of the operators in

the set Ĥ(t) = ∑m hmX̂m and the set forms a closed Lie algebra [X̂ j, X̂k] = ∑l C
k j
l X̂l , then

the set X̂ is closed under evolution [28] and canonical invariance prevails [29]. For the

harmonic oscillator, sets such as {Ĥ, L̂, Ĉ} or {Ĥ, â, â†} fulfill these conditions.

On the thermalization stages the set has to be closed also to the operation of the

dissipator LD. This is also fulfilled for the aforementioned sets for an harmonic oscillator.

This is only a necessary condition, however, and need not be sufficient. Nevertheless, for

the harmonic working fluid and the dissipator LD defined in equation (3.9) the closure is

also sufficient for canonical invariance to take place [19].

Let us suppose that at some point on the cycle the system is in the ”general coherent”

[30] state

ρ̂ =
1
Z

eγ âe−β Ĥe−γ∗ .̂a†
(3.11)

Note that a thermal state is such a state with γ = 0. The dynamics maintain this state, and

it is therefore also the state at the limit cycle. It therefore follows that this is the state along

the limit cycle, regardless of initial conditions. We can therefore constantly assume that, at

the limit cycle, the state is always in this general coherent form.

Having an explicit form allows us to determine the entropy of the system. The von

Neumann entropy of the state (3.11) turns out to be [22]

SV N = log

(√
X− 1

4

)
+
√

Xasinh

( √
X

X− 1
4

)
, (3.12)

where

X =
H2−L2−C2

h̄ω
. (3.13)
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Note that the von Neumann entropy should be invariant under unitary evolution[31], and

indeed the quantity X is invariant under our equations of motion (equation 3.5). This can

be understood on group-theoretic grounds as the invariance of the dynamical Lie algebra’s

Casimir to group (and, particularly, Ĥ) operations.

The Shannon energy entropy of the system turns out to be [19]

SE =
1
h̄

ω

(
H +

h̄ω

2

)
log
(

2H + h̄ω

2H− h̄ω

)
− l
(

2h̄ω

2H− h̄ω

)
. (3.14)

We can define a “temperature” that measures how much the energy changes when the

energy-entropy does, T ≡ ∂H
∂SE

. The temperature of our system is hence

kBT =
h̄ω

log
(
−−4H2+(h̄ω)2

(2H−h̄ω)2

) . (3.15)

The inverse temperature 1/kBT essentially measures how much the energy spreads (SE

grows) as energy is put into the system. One should note that this is not, in general, the

coefficient β in the general coherent state; the coefficient is only equal to the inverse

temperature if γ = 0.

3.1.4 The Quasistatic Cycle

As noted, the equations of motion on an adiabatic segment cannot be solved in general,

so we must consider special solutions. A simple - and important - case is the quasistatic

cycle, where the frequency is changed infinitely slowly. The harmonic oscillator has an

adiabatic conserved quantity Ĥ/h̄ω [32]. This means that in the “quasistatic limit” of a

slow change in frequency ω(t), this quantity will be conserved. A quasistatic change from

ωi and energy Ei to frequency ω f will therefore lead to a final energy of E f = (ω f /ωi)Ei.

We can therefore determine the energy at the end of an adiabatic stroke by knowing only its

initial energy. We have already established that the dynamics on a thermalization branch

is also simple (equation 3.9), so that knowing the initial energy at its beginning we can
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similarly determine it at its end. We can therefore let go of the other two expectation values

L and C and consider the dynamics of H alone. Demanding that the cycle closes leads us

to a single limit cycle, independently of initial conditions.

The cooling performed per such cycle is

Q =
(exh−1)(exc−1)

exh+xc−1
h̄ωc

(
nCeq−nHeq

)
(3.16)

≡ F(Γh,τh,Γc,τc) ·G(βc,ωc,βh,ωh) , (3.17)

where xi =Γiτi are dimensionless measures of the time spent on each thermalization branch,

and nH/Ceq is the thermal equilibrium value of the population operator in equilibrium with

the hot/cold bath. We can write G and F explicitly as

F =
(eΓhτh−1)(eΓcτc−1)

eΓhτh+Γcτc−1
(3.18)

G =
h̄ωc

2
(coth(βch̄ωc/2)− coth(βhh̄ωh/2)) (3.19)

Note that cooling per cycle Qc is maximized when z = Γcτc = Γhτh is maximized, and

when Rc ≡ βch̄ωc is minimized. From G one can see that a condition for cooling is that

Rc < Rh, so that ωh/ωc > Th/Tc > 1. (Working at the opposite inequality will result in an

engine-cycle [19].) The cold frequency must hence be smaller than the hot one, which is

consistent with our description of the cycle above.

The efficiency of cooling is measured by the Coefficient of Performance (COP), which

is the intake of heat from the cold bath across the cycle Qc, divided by the total amount of

work invested to perform it. For the quasistatic cycle, this is

COP =
1

ωh
ωc
−1

(3.20)

Note that the COP is always positive as long as ωh > ωc. Because ωh/ωc > Th/Tc, the

maximum COP is the Carnot limit 1/(Th/Tc−1).

27



3.1. THE REFRIGERATION CYCLE 3. THE HARMONIC OSCILLATOR

As the quasistatic cycle is closed, the entropy of the cycle is cyclical as well. But the

entropy of the universe - of the baths - should increase as we operate the cycle. Summing

the heat exchange with the two baths divided by the bath’s temperature, we indeed obtain

an entropy change that is always positive (regardless of the choice of parameters):

∆S =
(exh−1)(exc−1)

exh+xc−1
h̄(βhh̄ωh−βch̄ωc)

(
nCeq−nHeq

)
. (3.21)

Entropy production is maximized when z = xh = xc and when Rc� 1 and Rh� 1 (or

vice versa).

The cooling rate R = Q/τ for the quasistatic cycle is strictly zero, as each quasistatic

adiabatic stroke takes infinite time. Thinking of this limit more physically, however, we

can effectively reach it with a slow-enough stroke. Let us assume that the adiabatic strokes

take some finite time τadi, so that R = Q/(τh + τc + τadi). For simplicity, we will limit

ourselves to the case of equally strong heat coupling to both heat baths, Γ = Γc = Γh. The

function F/τ is then maximal when z = xh = xc and

2z+Γτadi = sinh(z) , (3.22)

and the function F/τ takes the simple form

F/τ = Γ
2ez

(1− ez)2 . (3.23)

In the limit when the time spent on the adiabats τadi is long, the condition 2z+Γτadi =

sinh(z) becomes Γτadi ≈ 1/2exp(z), and F/τ becomes simply

F/τ =
1

τadi
. (3.24)

We expect the time spent on the adiabats to become longer as we reach low temperatures

of the cold bath, as a consequence of the third law of thermodynamics preventing us from
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cooling to zero temperature. We hence expect this result to be applicable near the zero

temperature.

To characterize the behavior of the cooling rate at this limit, then, we need to char-

acterize the behavior of the time τadi. Since we are at the limit of a slow change of

frequency, we must require that ω̇/ω2 � 1. Let us focus on the adiabatic expansion,

which is critical for the cooling, and assume initially (for simplicity) a linear change of

frequency ω(t) = ω0 +α t. Then the demand for a slow adiabat translates into the demand

that (ωh−ωc)/(τexpω2
c )� 1 so that

τadi ∝ ω
2
c . (3.25)

We can see that this quantity will explode, as expected thermodynamically, if ωc decreases

as Tc does. This can be accomplished by any power of ω , however. Let us relaxes our

demand for linear frequency change, and assume that at small temperatures τadi would

scale like some power of the cold frequency ωc,

τadi = αω
−δ
c . (3.26)

Since R = G/τdai, this implies

R =
h̄
α

(
1

eβch̄ωc−1
− 1

eβhh̄ωh−1

)
ω

1+δ
c . (3.27)

This function is maximized when

(1+δ )

(
1

eRc−1
− 1

eRh−1

)
− RceRc

(eRc−1)2 = 0 . (3.28)

Assuming we don’t change the parameters on the hot side of the cycle (which we already

know we should set so that Rh is as high as possible), the maximum cooling rate is obtained
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when Rc is constant.

ω
∗
c ∝ Tc (3.29)

(where ω∗c is the optimal choice of frequency). This is consistent with our previous

observation that ωc should drop as Tc does, and now we know it should drop linearly to

maximize the cooling rate.

We obtained that in the quasistatic limit the maximum cooling rate towards the absolute

zero depends on some power of the cold bath’s temperature

R ∝ T 1+δ
c (3.30)

with δ > 1. We note that for a linear frequency change specifically we received R ∝ T 3
c .

The third law of thermodynamics therefore emerges in this quantum mechanical model

as a dynamic constraint that increases the time needed to perform each cycle as we drop

the temperature, leading to a constraint on the cooling rate above that obtained from the

second law (which corresponds to δ = 0, cf. section 2.2.1).

3.2 Quantum Friction

Let us consider a cycle that is nearly at the quasistatic limit. We have so far derived only

the thermodynamic results at the exact limit. What are the first-order corrections to the

above results? These can be obtained by constructing solutions to the equations of motion

(equation (3.5)) that are correct to first order in the equation’s parameters measuring the

speed the frequency change, α ≡ ω̇/ω [19, 20]. The first significant corrections turn out

to be dependent on α2, signifying that it is the speed of the frequency change rather than

the direction of change that matters. For reasons that would become readily apparent, we

will refer to these corrections as frictional ( f ) terms.

30



3. THE HARMONIC OSCILLATOR 3.3. MORE GENERAL FRICTION

The cooling per cycle is reduced to Q = Q0 +∆Q( f ), where Q0 is the cooling per cycle

at the quasistatic limit (equation (3.16)) and ∆Q( f ) is the correction to the first significant

order.

∆Q( f )
c =−

(
α

2ωh

)2 h̄ωc

2
coth(βhh̄ωc) (3.31)

This quantity is always negative, so that operating close to the quasistatic limit always

lowers the cooling performed per cycle.

The COP is also lowered,

∆COP( f ) =− α2

4ωcωh

ω2
h coth(βhh̄ωh)+ω2

c coth(βhh̄ωh)

(ωh−ωc)2(coth(βch̄ωc)− coth(βhh̄ωh))
. (3.32)

The entropy production is increased [19],

∆S( f ) =
1
8

((
α

ωc

)2

βhh̄ωhcoth(βch̄ωc/2)+
(

α

ωh

)2

βch̄ωccoth(βhh̄ωh/2)

)
. (3.33)

These are the hallmarks of friction. As we attempt to go faster, we produce heat

(entropy production increases) and lower the efficiency and effectiveness of our efforts.

But this “quantum friction” phenomena extends far beyond the quasistatic limit. To see

this, we need to consider an arbitrary change in frequency.

3.3 More General Friction

We have seen that near-quasistatic operation leads to friction. But what about other ways

of changing the frequency, far from the quasistatic regime? These too generally lead to

friction. To see this, we need some generic way to consider the change of energy along

the adiabat. It can be directly determined from the equations of motion that the following
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quantity is conserved by the adiabatic dynamics:

X =
〈Ĥ〉2−〈L̂〉2−〈Ĉ〉2

h̄ω2 . (3.34)

This should not be too surprising, as this is the Casimir of the dynamical Lie algebra

involved. A dynamical Lie algebra is one generated by commutation by the Hamiltonian,

and therefore one that allows us to determine the dynamics. The Casimir of such an algebra

would always be constant under the action of the Hamiltonian defining it.

To maximize cooling, we need to minimize the energy at the end of the adiabatic

expansion stroke. The constancy of X implies that this energy would be obtained when

C = L = 0, which characterizes a thermal state. Note that this is the same minimal value

that is reached in the quasistatic limit. Generally, however, it would not be achieved.

Even if we start from a thermal state, changing the frequency will lead to the build-up

of correlations and a deviation from equipartition. The constancy of X therefore implies

that generically the energy HC at the end of the adiabat will be higher than the quasistatic

minimum. As the energy gap HCeq−HC determines the cooling, this implies that a generic

cycle will cool less than the quasistatic cycle. In other words - friction will lower the

cooling per cycle.

What about entropy generation? The lowered Qc means that less entropy is being

decreased in the cold bath, increasing entropy production. The higher HC also means that

a higher HD would be reached with the same τc. This in turn will tend to lead to a higher

HA, especially if the compression adiabat is also fast so friction is added there as well.

And this will mean a higher Qh, so a greater increase in the entropy generated in the hot

bath. Overall, then, entropy generation should generally increase. Quantum friction will

increase entropy generation.

From similar arguments we can see that the COP would also be lowered. We have

already determined that cooling per cycle will be decreased. Since HC will be higher,

the work needed to do the expansion adiabat must also be higher. Since both HD and HA
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increase it is not clear whether the work gained in the compression adiabat will generally

increase or decrease, but if we assume that HD is close to the equilibrium value HHeq then

it can only increase marginally so that any considerable amount of friction should take us

to an HA significantly above the quasistatic limit, causing us to need to invest more work

W and thereby lowering the COP.

We can therefore expect that changing the frequency in finite time would result in

quantum friction, leading to lowered performance and efficiency and an increase in heat

exhaust. This is borne out analytically at the limit of instantaneous change [19, 20], where

all three parameters are significantly below the quasistatic cycle; the equations are too

complex to show here, but see figure 3.2 for an example. More generally, numerical

simulations of the cycle with linear (ω(t) = ω0 + αt) or exponential (ω̇/ω = const)

changes in frequency show decreased performance as well (see figure 3.2).

We therefore see that in every respect - decreasing performance, generating heat,

and decreasing efficiency - a fast change generically acts like friction, even far from the

quasistatic limit.

3.4 Quantum Friction in General

Quantum friction extends well beyond the model I have considered here. Consider a

quantum system with a discrete energy spectrum (we will further assume non-degeneracy

for simplicity). An ensemble will have some average energy E = ∑ piEi (where pi = p(Ei)

is the probability to find the system in a certain energy eigenstate). A rapid change in

external constraints corresponds to a change in some external semi-classical field in the

system’s Hamiltonian. If the change to the external field is slow enough, the quantum

adiabatic theorem assures us that there will be no changes in the energy populations and

therefore the change in the energy will be due only to the change in energy levels. The

energy in such a “quasistatic” process changes minimally in this sense.

Now consider a faster change. The rapid change in energy levels can now lead to
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(a) Cooling Per Cycle

(b) Cooling Rate

Figure 3.2: The decrease in performance in finite time - a numerical example for specific
parameters. The two plots are of the (a) cooling per cycle and (b) cooling rate for linear (red
triangles) and exponential (green squares) frequency change along the adiabatic strokes.
Note that the exponential form is superior, leading to higher Qc and R. The frictionless
limit is marked by a line. Blue stars (drawn for Qc only) are cycles with an instantaneous
adiabat; in this example, the resulting friction is so great that none manage to produce
positive cooling - they fail to cool the cold bath.
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population changes, changing the energy beyond the “minimal” quasistatic change of the

energy levels themselves. For simplicity, let us first assume that we start from the ground

state (zero temperature). Then we can only lose population density to higher states, so that

we can only reach a higher (or equal) energy compared to the quasistatic change. Thus we

receive a “resistance” to velocity: when we strive to derive the system quickly we need to

invest more work.

This process, by itself, is reversible. Simply reversing the field-change protocol will

yield back the original state and the original energy. The evolution is reversible because

it is a unitary dynamics. However, consider appending a non-unitary step to the process.

Now we leave the field at its final value for a time, while bringing the system into contact

with a heat bath at its original temperature (zero, in this case). This will induce irreversible

thermalization and loss of information about the original state. Such thermalization will

convert the extra energy required into extra heat in the environment.

This line of reasoning can be generalized for a finite temperature. Consider the energy

change during some external-field change. Allahverdyan and Nieuwenhuizen proved

that, barring level-crossing, for a system initially at a thermal state the minimal energy

is reached by a quasistatic process [33, 34]. Their derivation hinges on realizing that the

state’s eigenvalues do not change during unitary evolution, and that for a smooth enough

field-change protocol the adiabatic theorem ensures absence of transitions between states.

Their results hold beyond the thermal state, to any initial state with decreasing occupations

in the energy eigenbasis. The condition of no level crossing allows us to estimate the

time scale required for the quasistatic limit as related to the inverse of the minimum

energy level gap [35–38]. We emphasize that if level-crossing does occur, Allahverdyna

and Nieuwenhuizen show that the quasistatic protocol may not be the optimal one. A

quasistatic timescale for the adiabatic theorem can still be defined in this case [39, 40].

Most importantly, the requirement for no level crossing is always satisfied for a single

varying field parameter, a result known as the non-crossing rule [41, 42].

In this discussion we separated the thermalization phase from the driving phase. In
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realistic cases, however, driven systems will be at least weakly coupled to thermal environ-

ments. The two processes will occur simultaneously, implying that any external driving

will be converted through dissipation to some quantum friction.

In addition to thermaliztion, residual interactions with the environment may lead

to dephasing noise. This will also be the effect of imperfect control over the external

field. Since pure dephasing is identical to a weak measurement of the momentary energy,

one would expect it to draw the state towards the momentary energy eigenbasis, thereby

approximating the quasistatic process and thus acting as a “quantum lubricant” that reduces

friction. This indeed happens in some cases [43]. However, in at least some cases pure

dephasing of this sort can decrease efficiency [44]. The effect of dephasing noise in general

is not sufficiently understood, but it does not appear to eliminate quantum internal friction

entirely even when it does function as a lubricant.

Our specific model was an example of such a quantum internal friction process. We

will see below that, formally, there are frequency-change protocols that avoid generating

friction (in these solutions the state returns to its quasistatic analog at some finite time

t f .) Using such protocols, it is seemingly possible to drive the system at a finite rate

and still avoid friction. However, although it appears that such processes can occur in

arbitrarily short time [44–46], that requires an arbitrarily large available energy. This can

be understood in light of the energy-time uncertainty relation: an infinitely fast process

requires an infinite variance in energy. An instantenous frictionless solution is therefore

not viable, and any finite-period solution will result in dissipative losses to the environment

(when t < t f ). In at least some cases, frictionless solutions also seem unstable under

dephasing noise [44]. In the realistic case of weak coupling, then, some frictional loss is

unavoidable (although it may be negligible in practice).

While I have focused on the harmonic oscillator, separate analysis reveals similar

results for spin systems [44, 47], and under continuous coupling to the bath for a three-

level system [16]. Since the underlying features that give rise to the phenomena are the

non-commutative nature of the Hamiltonian at different times and the irreversible nature
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of thermalization, there is good reason to believe that this kind of quantum friction would

be endemic in realistic systems.

3.5 A Frictionless Cycle

Returning to the harmonic oscillator, we argued above that changing the frequency along

an adiabat will generally produce inferior results, as it will lead to the development of

correlations and loss of equipartition (cf. section 3.3). But is there a way to carefully

change the frequency so that we will end up with none, and thus conserve the full efficacy

of the quasistatic cycle at finite time? It turns out that there is a simple way to do so.

Looking at the equations of motion along the adiabat (equation 3.5), it is natural to

consider that case where the dimensionless measure of adiabicity µ ≡ ω̇

ω2 is constant. In

this case it is possible to solve the equations explicitly by changing the time variable to

θ =
∫ t

0 ω(t ′)dt. Then factoring out the term µ~1 and diagonalizing the time-independent

part with the eigenvalues λ0 = 0 and λ± =±Ω where Ω =
√

µ2−4 leads to the adiabatic

propagator Ua for H,L,C along an adiabatic stroke,

Ua(t) =
ω(t)
ω(0)

Ω
−2


µ2c−4 µΩs 2µ(c−1)

µΩs Ω2c 2Ωs

−2µ(c−1) −2Ωs µ2−4c

 (3.35)

where c = cosh(Ωθ), s = sinh(Ωθ), and θ(t) =−log(ω(0)
ω(t) )/µ .

To understand this solution consider the extreme case where ωh→ ∞. Then at the end

of the hot thermalization segment we have EB = 1
2 h̄ωh, and the energy at the end of the

expansion adiabat becomes

EC =
1
2

h̄ωc
1

Ω2

(
µ

2cosh(Ωθc)
)
−4 (3.36)

θc =−
1
µ

log(
ωh

ωc
) . (3.37)

37



3.5. A FRICTIONLESS CYCLE 3. THE HARMONIC OSCILLATOR

For very fast expansion µ → ∞, EC = 1
4 h̄ωc(

ωh
ωc

+ ωc
ωh
). As Tc→ 0 and ωc→ 0 this means

that HC = 1
4 h̄ωh which becomes larger than HCeq so that the cooling stops because of the

friction. Very fast operation thus leads to the arrest of all cooling. In contrast, very slow

operation µ → 0 as expected leads to the quasistatic result as HC→ 1
2 h̄ωc. At this limit

since τexpansion→ ∞, the cooling rate is zero R→ 0.

The surprising point is that it is possible to find an additional frictionless point at

critical times. Because c and s are regular oscillatory trigonometric cosine and sine for

|µ|< 2, we will return to the same values as for θ = 0 at critical times. At these points

c = 1 and s = 0, which makes the matrix at equation (3.35) a unit 1̂ and returns us to the

original values up to a factor ω(t)/ω(0). This occurs for the first time at the critical point

µ
∗ =− 2log(ωh/ωc)√

4π2
Log(ωh/ωc)2

(3.38)

τexpansion = (1− ωh

ωc
)/(µ∗ωh) . (3.39)

Asymptotically as Tc→ 0 and ωc→ 0, the critical terms approach µ∗→−2 and with it

the time allocation τexpansion =
1
2ω−1

c . Combining this with equation (3.30) we obtain that

as we try to cool towards the zero temperature the cooling rate drops as

R ∝ T 2
c . (3.40)

This result is better than a linear frequency change, for which we received τ ∝ ω−2
c and

R ∝ T 3
c . It establishes that frictionless solutions exist and can be effective, but are there

other frictionless solutions? And more importantly, are there ones that take a shorter time?

That would allow even lower exponentials.
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3.6 The Optimal Frictionless Cycle

Any frictionless cycle maximizes the cooling per cycle Qc. But maximizing the cooling

rate requires finding the frictionless cycle that takes the least time to perform. It is possible

to determine it using optimal control theory [22]. For the purposes of this presentation,

however, it would be more intuitive to present a geometrical derivation [48].

3.6.1 The Q2-P2 Plane

The critical stroke in the Otto refrigeration cycle, that determines the cooling, is the

adiabatic expansion (B to C). For ease of analysis I now wish to move from the familiar

variables {Ĥ, L̂, Ĉ} to the time-independent ones ~V = {Q̂2
, P̂2

, Q̂P̂+ P̂Q̂}. These variables

are not directly affected by a change in frequency, so are invariant to an instantaneous

jump in frequency. As the ideal solution will involve such jumps, turning to these variables

eases its derivation. The equations of motion along an adiabatic stroke (cf. equation (3.5))

in these new variables are

dV1

dt
=

1
m

V3 (3.41)

dV2

dt
=−kv3 (3.42)

dV3

dt
=−2kV1 +2/mV3 , (3.43)

and the constant of the motion X is

X = 4V1V2−V 2
3 . (3.44)

Taking equations (3.41) and (3.42) together, we receive that the change in Q2 and P2 is

related, so that for constant k their dynamics is always along a straight line in the {P2,Q2}
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plane.

dV2

dV1
=−km (3.45)

Figure 3.3: The initial and final points, and the optimal trajectory between them, schemati-
cally drawn on the {V2,V1} plane. At thermal equilibrium, including the initial and final
points, the state is on this plane, with V3 = 0. The straight lines represent arbitrary maximal
and minimal slopes, and therefore minimal and maximal spring constants (cf. equation
(3.45)), that define the optimal trajectory.

Our geometric proof of minimal time will be made in this plane. We shall assume that

we have some limitation on the maximal and minimal spring constants (frequencies) that

we can operate the cycle with, kmax and kmin. We allow kmin to be negative. To determine the

time required to conduct the change, we will assume for simplicity that we are starting from

at thermal equilibrium L =C = 0 with the hot bath; this is not a limitation as we are seeking

a bound, and starting from a state that is not yet fully thermalized would only be worse.

In the old variables thermal equilibrium is characterizes by {H,L,C}= {E,0,0}; in the

new variables, thermal equilibrium is characterized by {Q2,P2,XP+PX}= {E/k,mE,0}

(where k is the spring constant and m the mass). A quasistatic adiabat would lead us to a
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new equilibrium, at {Ei
√

k f /ki/k f ,Ei
√

k f /kim,0}. Both points are on the {P2,Q2} plane,

and (since k f < ki) the initial point is above and to the left of the final one (see figure 3.3).

3.6.2 The Optimization Problem

We are seeking to minimize the time it takes to go from the initial to the final point. The

time along the adiabat in the new variables can be integrated from equation (3.41) with the

aid of equation (3.45), and is

τ =
∫ V1( f )

V1(i)

m√
4V1V2−V 2

3

dV1 . (3.46)

From this equation it is evident that to minimize the time for the transition we must, for

each V1 = Q2, seek the largest V2 possible. If forced to choose, it is furthermore better to

adopt small values of V2 at high (rather than low) values of V1. Our task is hence reduced to

seeking such a path from the initial to the final point, where the slope along the trajectory

must be confined by −km, and kmin < k < kmax. Simple geometrical observation (cf. figure

3.3) suffices to see that such a trajectory would consist of two parts: starting at the initial

point we will proceed with minimal k so as to keep V2 as large as possible, and maintain it

for as long as possible until we are forced to turn to kmax to dive back and reach the final

point.

The switching point between the two extreme slopes can be found, again, from geo-

metric considerations. The values of the switching point ~Vs are determined by the need to

connect the initial and final points on the plane. We must demand, for example, that

V2( f ) =V2(i)−mkmin(V1(s)−V1(i))−mkmax(V1( f )−V1(s)) . (3.47)

Physically, we are starting the expansion adiabat at the frequency ωh and ending it

at ωc. The solution above implies that the shortest way to do so (while ending up at the

quasistatic result) is a three-jump “bang-bang” solution, where the frequency is changed
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instantaneously three times at the appropriate moments.

ω(t) =



ωh t = 0

ωmin 0 < t < τ1

ωmax τ1 < t < τ1 + τ2

ωc t = τ1 + τ2

(3.48)

The times τ1 and τ2 can be found by considering the actual solution of the equations of

motion (in the new variables) for constant k. Starting from ~Vi, we can examine how long it

takes to reach the switching point, and this will set the first time. We can determine the

second time similarly. This analysis reveals the critical times to be [24]

τ1 =
1

2
√
|kmin|/m

acosh

(
2kmin(kmax + k f )

√
ki− (kmin + kmax)(kmin + ki)

√
k f

(kmax− kmin)
√

k f (kmin− ki)

)
(3.49)

τ2 =
1

2
√

kmax/m
acos

(
2kmax(kmin + ki)

√
k f − (kmin + kmax)(kmax + k f )

√
ki

(kmin− kmax)
√

ki(kmax− k f )

)
. (3.50)

What are reasonable limits on kmin and kmax? We have already established that large ωh

and small ωc are advantageous. It therefore makes sense that we would set ωh as large as

we physically can, and ωc as small as we can. Assuming that kmax = mω2
h and kmin = mω2

c

leads to the relatively simple expression for the total adiabat’s time: [21],

τ =
1
2

(
1

ωc
+

1
ωh

)
acos

(
ω2

h ω2
c

(ωh +ωc)2

)
→ 1
√

ωhωc
, (3.51)

where the limit is for low cold frequencies ωc→ 0. Note that we have here τadi ∝ ω−0.5
c ,

which by equation (3.30) implies

R ∝ T 1.5
c . (3.52)

It is possible, however, to consider kmin < 0. This implies that the piston binding the
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gas particles becomes a repelling potential for a limited time before convulsing back into a

potential well. A realistic scenario for such a possibility is the “adiabatic cooling” phase

of cooling ions and atoms trapped in harmonic wells. In these cases an harmonic potential

is established to trap atoms, and is slowly dropped to cool the atoms quasistatically. This,

naturally, takes considerable time. Our method allows a shortcut to adiabicity, providing

a way to conduct the same change in finite time. Under these circumstances, the trap’s

maximum strength is typically equal to its maximal possible (repelling) force, kmin =−kmax.

Assuming further that kmax = ki one obtains

τ1 =

acosh
(

k f+ki

2
√

k f ki

)
2
√

ki
m

→−
log
(

k f
ki

)
4
√

ki/m
(3.53)

τ2 =
π

4
√

ki/m
(3.54)

so that the total time at small frequencies (i.e. k f → 0) scales as τ ∝ log(ω2
c ).

More generally, if we assume that kmin and kmax are limited experimentally indepen-

dently of ωc, one obtains

τ1→∝
(kmin− ki)(kmin− kmax)

2k3/2
min

√
−

mk2
min

(ki− kmin)2(kmax− kmin)2 log(ωc) (3.55)

τ2→∝
(kmax− kmin)(ki + kmin)m

2kmaxkmin
ωc +

π + acos
(
−kmax−kmin
kmax−kmin

)
2
√

kmax
m

; . (3.56)

This implies that τ ∝−log(ωc) is the best scaling achievable. In analogy to the argument

in section 3.1.4, we can proceed to ask how the cooling rate R = G/τadi will be affected.

Assuming that the expansion stroke dominates or at least sets the scale, we can ignore the

other strokes’ time. Within the expansion stroke, τ1 dominates. We can therefore consider
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R = G/τ1. Taking the derivative with respect to ωc leads to the the extremum condition

2(−1+ log(ωc))sinh(Rc
2 )sinh(Rc−Rh

2 )

log(ωc)
+Rcsinh(

Rh

2
) = 0 . (3.57)

Now as ωc→ 0 its log goes to −∞, which makes the “-1” negligible. Tentatively removing

it we are left with a condition that is dependent only on Rc and Rh so that the optimal

ωc should be kept to keep Rc constant, i.e. ω∗c ∝ Tc. This does, however, leave us with a

reminder

−
2sinh(Rc

2 )sinh(Rc−Rh
2

log(ωc)
. (3.58)

As log(ωc)→ −∞ this expression approaches zero, so that at the limit we are indeed

correct to set ω∗c ∝ Tc. Considering the expression for R, this implies that it scales as

R ∝−T 1
c /log(Tc) . (3.59)

This is far better than the previous results, of a scaling of R ∝ T 3
c for the linear case, or the

R ∝ T 1.5
c for the previous frictionless solution. In all cases, however, the cooling rate drops

faster than the limitation of the second law requires, R ∝ T 1
c .

3.7 General Notes

We have investigated several ways to operate the Otto cycle. In all cases we were able to

reach the limit set by the second law of thermodynamics on the cooling per cycle, Q ∝ T 1
c .

In all cases the cooling rate was further limited by the cycle time, which exploded to

infinity at the limit of zero temperature. This is a dynamic manifestation of the third law:

it is impossible to cool at the absolute zero, as a cooling cycle would require infinite time.

The cooling rate thus dropped to zero faster than R ∝ T 1
c . We believe that these results are

general, and hold regardless of the specific model: it is possible to reach the cooling limit
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Qc ∝ TC, but the cooling rate must drop faster as we approach zero temperature. We have

achieved such a low drop, R ∝−Tc/log(Tc), that we have effectively established that the

Otto cycle is an ideal cycle in the sense that no other cycle can hope to be meaningfully

faster at low temperatures.

In all cases we have found that to maximize the cooling rate we need to follow the

cold temperature to zero, ω∗c ∝ Tc. When ωc cannot be lowered beyond a certain value,

we receive an exponential drop in cooling as Qc ∝ (nCeq−nHeq) is reduced, until at some

critical temperature T (crit)
c the equilibrium population nCeq becomes too large and the

cooling stops altogether. We will see below that this result extends beyond our particular

model, and we suggest that it, too, is universal. The system’s relevant energy gap must in

some way be “in resonance” with the temperature kBTc, and drop linearly with it, for the

exchange of heat to be efficient. This result is consistent with the quant of heat transfer in

quantum wires, π2k2
BTc

3h̄ [49].

The optimal way to schedule the operation turned out to be a “bang-bang” solution,

where the external controls are changed instantly. This too we believe to be surprisingly

generic. Work by Seifert et al [50] has shown that optimizing minimal work in other and

general models typically requires sudden shifts and discontinuities in the control fields.

While the solutions do not generally correspond to the bang-bang solution, these results do

indicate that in general one should expect discontinuous protocols to be best.

When our results were published [21, 22] they garnered significant interest from the

atomic cooling community. Our analysis was initially limited to positive frequencies, and

it was immediately apparent that atomic cooling allows also imaginary frequencies, or in

other words repelling harmonic potentials, and that this would allow faster cooling rates.

This allowed us to develop our more general results above.

Our results indicate that a transition between two thermal states can only be done in

some minimal finite time. This result is related to the quantum speed limit for transition

between two orthonormal states [51], but this is the first time a bound on the transition

speed between thermal states has been established. This aspect of our work was challenged
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when it was argued that the transition can be accomplished arbitrarily fast by certain

choices of ω(t) [52]. In all such cases, however, the choices ignored our bounds on k.

Under some restrictions, at least, it was shown [53] that the bound on the time is related

to the time-energy uncertainty principle. Shorter times require larger energy resources to

make the transition, so that restricting the available energy (or, equivalently, the oscillator’s

frequency) restricts the time needed to perform the transition. We therefore expect a

universal ban on instantaneous transitions, as long as energy-resources are kept in mind.

Finally, the specific requirement for three jumps in our solution was called into question,

as it was noted that more jumps are advantageous if kmax is large enough [54]. We note

that such cycles always involve “retrograde” motion, from the initial point to points with

lower V1. But this point corresponds to an equilibrium at k > ki, so that it is simpler (and,

for the refrigeration cycle, better) to establish an initial equilibrium at this higher k. When

kmax = ki no such trajectories are possible [24].
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Chapter 4

Spin systems

We consider a different quantum system wit the purpose of generalizing our results. We

have so far only considered the emergence of the third law of thermodynamics in an

harmonic-oscillator system. I now turn to consider spin systems. I review previous results,

and show that they imply that the absolute zero is not, ultimately, achievable.

4.1 Spin Otto Refrigerator

A spin system analogous to the harmonic oscillator studied in Chapter 3 was studied

by Feldmann and Kosloff in a series of papers [43, 44, 47, 55–57]. They consider two

interacting spins under the influence of a time-dependent external field,

Ĥ =
1
2

h̄J(σ̂1
x⊗ σ̂

w
x − σ̂

1
y⊗ σ̂

2
y)+

1
2

h̄ω(t)(σ̂ z⊗ 1̂2
+ 1̂1⊗ σ̂

2
z )≡ h̄JB̂2 + h̄ω(t)B̂1 , (4.1)

which they operate in an Otto cycle. A key difference from the harmonic-oscillator case

is that the energy gaps in the system are proportional to Ω =
√

ω2 + J2 instead of simply

to ω . It is therefore impossible to lower the energy gaps to zero as the temperature is

lowered. Remember that for the harmonic oscillator we have observed that (to maximize

the cooling rate) the energy gap should drop linearly with the temperature ∆E = h̄ω ∝ Tc
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(cf. equation 3.29). This result has also been found in a three-level system [58]. Since

this cannot be maintained for the two-spin Otto refrigerator, this system cannot reach

the ultimate limit allowed by the third law - a cooling rate faster than R ∝ Tc. Instead,

the optimal cycle is characterized by a adiabatic strokes with duration τ
(min)
adi = 1

J (
ωc
Ωc
−

ωhΩh)

√(
2π

asin( ωc
Ωc )−asin( ωh

Ωh
)

)2

−1 [44], which at the limit of cold temperatures approaches

a constant τadi ∝ 1/J (and therefore does not explode). The optimal cooling rate therefore

is proportional to an exponent R ∝ exp(−h̄J/kBTc) [57], as expected from our general

analysis (cf. section 2.3.1).

Assuming finite resources, the finite energy gap even leads to a sharp cut-off tempera-

ture below which no cooling is possible. In Chapter 3, we deduced that for the harmonic

oscillator optimal (frictionless) solutions implied βcωc < βhωh. For the two-spin system,

the analogous result is Tc≥ΩcTh/Ωh. Since Ωc≥ J, this implies the minimum temperature

Tc ≥ JTh/Ωh. Cooling to zero temperature is therefore impossible given finite resources (a

finite field-strength ωh). The above exponential is only obtained under the assumptions of

infinite resources.

For the two-spin cycle, a sharp cut-off exists even given the unphysical assumption

ωh → ∞. At this limit the population after equilibration with the hot bath will all be

in the ground state, at energy HB = −h̄Ωh. After a quasistatic adiabat it will be at the

corresponding ground state HC =−h̄Ωc. If some quantum friction exists, the energy would

be higher by some small amount HC =−h̄Ωc(1−δ ). For the cycle to cool, this must be

lower than the equilibrium energy, −h̄Ωc(1−δ )< H(C)
eq =−h̄Ωc(1− exp(−h̄Ωc/kBTc)),

where the last inequality is at the cold temperatures limit kBTc� h̄Ωc. At the limit of

Tc → 0, this implies that any deviation from the quasistatic result will lead to a finite

temperature Tc(δ ) below which no cooling is possible. The possibility of cooling to the

absolute zero therefore requires not only the unphysical assumption ωh→ ∞, but also the

existence of frictionless cycles. Even a slight deviation from the frictionless conditions,

due to some uncontrollable noise or friction, will lead to a finite minimal temperature [44].
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I note that this is not the case for the harmonic oscillator. The corresponding condition

for the harmonic oscillator Otto cycle is h̄ωc(
1

exp(−βch̄ωc)−1 +
1
2 +δ )< h̄ωc(

1
exp(−βhh̄ωh)−1 +

1
2). Since ωc can go to zero as Tc does, it is now possible to go to zero temperature while

maintaining this condition, so that a finite deviation from the quasistatic solution is allowed

for the harmonic oscillator. Our result that the zero temperature is reachable for the

harmonic oscillator should be robust to small noise.

These results seem to imply that finite energy gaps, under finite resources, lead to a

minimal temperature beyond which cooling is not possible. To explore this further, we

now turn to examine cooling through another spin system: algorithmic cooling.

4.2 Algorithmic Cooling

A key type of restriction we have so far not considered is using only finite (N-level) systems.

We have seen above that limiting the energy resources leads to limitations on cooling, and

limiting the amount of energy levels is a related and, therefore, promising limit that we

wish to explore in this section.

We will thus consider cooling a finite quantum target system T , using a finite quantum

system S as a refrigerator. We will further assume that we have access to an effectively-

infinite hot heat bath, B, however. The above analysis makes it clear that the finitude of

resources matters, so we will restrict ourselves to a refrigerator S with some finite number

of energy levels, N. We will furthermore, for simplicity, assume that near the absolute

zero the target system can be considered as a two-level system. We are thus left with

two resources at our disposal: (a) we can manipulate the refrigerator and target systems,

inducing unitary transformations (by e.g. changing an external field), or (b) we can couple

part of the refrigerator to the (infinite) hot heat bath. Our goal is to cool the target system

as much as possible using these resources. This is a generic recipe for cooling, so that I

consider establishing a minimal temperature in this context to be equivalent to establishing

it generally.
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A similar bound was established by investigations into algorithmic cooling. Algorith-

mic cooling (AC) was first suggested by Boykin et al [59] as a method to initialize the

register of a quantum computer. Let us consider a register, or chain, of n two-level systems.

Each is considered to initially be at some bias ε , defining the one-TLS state

ρε =
1

eε + e−ε

 eε 0

0 e−ε

 , (4.2)

where the bias is related to the temperature through the relation ε = ∆E/2kBT , where ∆E

is the relevant energy gap and T the temperature. A bias of zero corresponds to infinite

temperature, while a bias of infinity to zero temperature1. The goal is to cool m < n spins

on this chain, initializing them into (approximately) their ground state, usually denoted |0〉.

The ability to initialize a quantum register in this manner is vital to quantum computation.

In AC, this is accomplished through two kinds of steps:

• Compression The state of the n-bit register is manipulated through some (specific,

state-independent) unitary transformation. The target m bits are cooled in the process,

and the rest of the chain is necessarily heated up as a result. This can be seen from

the fact that a unitary transformation does not change the total entropy of the chain,

so that when part of it is cooled (lowered in entropy) the rest must heat up (increase

in entropy).

• Thermalization Part of the heated-up part, the ”refrigerator”, is coupled to an

environment, and undergoes complete thermalization. This step allows one to ”reset”

the heated-up qbits to lower (environment) temperatures.

1Bias is sometimes (e.g. [59]) defined according to the linearization

ρε =

(
(1+ ε)/2 0

0 (1− ε)/2

)
so that zero temperature corresponds to a bias of 1. Our definitions are more useful for our purposes. Note
that the two definitions coincide for small bias, which is the focus of algorithmic cooling.
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The two steps are repeated cyclically, an arbitrary number of times. At each compression

step the compression is bound by a (Shannon-derived) bound. The thermalization stage

brings in more resources, allowing the algorithm to cool beyond this limit.

Boykin’s original algorithm was refined and advanced in many of papers (e.g. [60–63]).

It was given a thermodynamical analysis by Rempp [61, 64]. For our purposes, however, it

is better to consider the work of Schulman et al [65, 66], that considered arbitrary unitary

operations between thermalization steps. Schulman et al were able to prove that there is a

bound on how low AC can push the bias of the m bits, and in particular showed that there is

a bound to the bias of even a single qbit. We will use their results to argue, more generally,

that no cooling, given finite resources, is possible beyond a certain minimal temperature.

We must therefore consider their proof in some detail.

In algorithmic cooling one assumes, for simplicity, an initial state where all n qbits

have the same initial bias. Schulman et al assume specifically an initial state of zero bias,

or infinite temperature. This is simply the unit matrix, 1̂. What is important to the rest of

the proof, however, is mainly that this state is diagonal.

We would be interested in cooling spin number 1, and shall assume that only spin n is

thermalized in the thermalization step. Let us denote the initial density matrix as ρ0. Then

AC consists of applying a thermalization stroke i to obtain iρ0, followed by some arbitrary

unitary operation u1 to obtain ρ1 = u1iρ0, and so on. Schulman et al demonstrate that when

starting from a diagonal density matrix ρ0, applying a permutation (which keeps the state

ρ1 diagonal) is always superior to other transformations, in the sense that it majorizes them.

When a density matrix ρ1 majorizes matrix ρ0 (denoted as ρ1 � ρ0), then (amongst other

properties) the bias of the first spin is greater in ρ1. In other words, the target system T

that we want to cool is closer to zero temperature. To maximize cooling, we can therefore

consider only permutations instead of general unitary operations.

To consider the effect of the thermalization steps, consider some initial 2nx2n density
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matrix

ρ0 =

 ρ11 ρ12

ρ
†
12 ρ22

 , (4.3)

where the states |0〉 and |1〉 of the nth quit, the only one that gets to thermalize to ρε ,

determine this division into blocks. Then the application of a thermalization stroke will

result in

ρ2 = ρε ⊗ (ρ11 +ρ22) =
1

eε + e−ε

 eε(ρ11 +ρ22) 0

0 e−ε(ρ11 +ρ22)

 . (4.4)

This implies that the probabilities along the diagonal density are changed in pairs, according

to the transformation

p′ω0 = (pω0 + pω1)
eε

eε + e−ε
(4.5)

p′ω1 = (pω0 + pω1)
e−ε

eε + e−ε
. (4.6)

The general problem is hence reduced to finding the right permutations to do in between

thermalization steps, so as to maximize the bias of the first spin. After each thermalization

stroke, we can jumble the probabilities, choosing which pairs to be acted on by the next

thermalization stroke.

Note that on a logarithmic scale z = log(2n p), the above transformation always pushes

two values to be 2ε apart. The key to establishing the bound is to note that neighboring-

probabilities stay at least as close to each other as that. Schulman et al arrange the

probabilities in descending order p0 ≥ p1..., and define as ”partners” for each even cor-

responding state j the nearest probability j+1. Then for any two partners p and p′ they
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prove the critical relation

‖logp− logp′‖ ≤ 2ε . (4.7)

This is correct for two reasons. First, Schulman et al begin at the initial ”infinite tempera-

ture” density matrix ρ0 = 1̂. This condition is then trivially satisfied. Secondly, Schulman

et al demonstrate that for a state already satisfying the above assumptions applying a

permutation plus a thermalization step will not increase the logarithmic distance between

the two probabilities to more than 2ε .

Another key feature of the transformation is that it does not increase the mean of the

probabilities on the logarithmic scale, z. At small bias the rescaled probabilities are set at

2ε around the mean, and this is the limit Schulman et al are concerned with. I note further

that at very large bias the mean is decreased.

Together, these two features suffice to prove the bound on the bias. In the initial state,

all 2n probabilities are identical at 2−n. Schulman et al define the new quantity z = log2n p

so that all points are initially at zero. The application of a thermalization stage then moves

each two points, chosen to be paired by the prior permutation, apart. It does so in a

particular way, however, keeping them 2ε apart and not increasing their mean. The result

is that no two points are ever driven more than 2ε apart, and that the mean of the overall

distribution of points is never increased. No point can therefore move more than 2nε from

the origin2, or equivalently to a probability of less than pmax = 2−neε2n
.

Notice, however, that in no place was it truly necessary to assume that we are dealing

with a collection of two-level systems. It is enough to consider that we are dealing with

some N = 2n level system. We need only designate the first spin as pertaining to the

two-level target system T that we are trying to cool, and the last spin to a TLS effectively

thermalized by the environment as part of our refrigerator. Without loss of generality, then,

one can simply consider this a treatment of such an N-level system.
2Schulman et al actually also produce a complicated argument for a bound of 2n−1ε , but since the scaling

is identical it is not of concern to us
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Similarly, there was little actual need to assume the initial infinite temperature state,

with uniform probabilities. All one really needed was a diagonal state. We can hence

assume a more reasonable initial state, consisting of a thermal state for both the target

spin and, separately, the rest of the N-level system. Since there is a finite number of

probabilities, there would then be some finite ε such that for all pairs the proximity

condition ‖logp− logp′‖ ≤ 2ε is satisfied. Assuming that the thermalization stroke will

induce at least this bias, we can then proceed with the proof as given above. The only

point one needs to be careful of is that the mean and initial points are no longer at zero,

so that the situation is not symmetric and one must take that into account. Instead, the

mean of z must be calculated and it is approximately proportional to 1
N ∑i−β∆Ei ∝−β∆E

where ∆E is a typical energy gap. I shall assume the relevant temperature is on the scale of

the hot bath’s temperature. The new bound for the distance in z is thus −βh∆E−Nε , and

since for the initial thermal state ε ∼−β∆E this is −βh∆E(N +1). For high bias z ∝ ε so

that the maximum bias in the macroscopic and cold-temperature limit is on the order of N.

In conclusion, we suggest that the quantum third law of thermodynamics is that no

finite (N-level) system can be used to cool a target system to below a minimum temperature

on the scale of

kBTmin > ∆Ec
kBTh

2∆E
1
N

. (4.8)

This result is speculative since we have not truly dealt with an N-level system starting

from a general, coherent, state. One can also inquire into the effect of allowing more

”spins”, or larger subsystems, to thermalize in the thermal stroke. We do not expect this

to meaningfully change the results, however, as the cooling ”cycle” can be expanded

to include spin-exchange operations instead of adding more thermalizing qbits. The

consideration of larger target systems, and in particular degeneracy of the ground or first

excited states, is also a cause for concern. And finally, our result is based on estimations of

the relevant quantities (such as ∆E) and scaling, that may not be easy to determine or verify

54



4. SPIN SYSTEMS 4.2. ALGORITHMIC COOLING

for a specific system. Despite these caveats, I believe the above at least strongly suggests

that the maximal bias achieved by any cooling method that uses an N-level quantum

system as a refrigerator will increase polynomially with N, reaching infinite bias (zero

temperature) only in the macroscopic limit N→ ∞.
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Chapter 5

Conclusions

The laws of thermodynamics are emergent phenomena, arising from the microscopic

underlying mechanics. While classical thermodynamics implies simply the impossibility

of reaching absolute zero in finite time, quantum mechanics adds layers of complications

that result in a more nuanced and meaningful third law of quantum thermodynamics. While

a rigorous or general proof of this third law is still out of reach, the above investigations

have revealed something of its contour. I suggest the following formulations, at various

degrees of restriction on the available resources:

• It is impossible to cool, using finite resources, any finite quantum system below a

certain minimal temperature Tmin.

• Given an N-level refrigerator, the maximum obtainable bias scales as N, so that the

minimal temperature is on the scale of the first energy gap of the cooled system and

approaches zero in the macroscopic limit.

• Given finite energy resources, the minimal time required to cool the system to any

given temperature drops with the energy so that infinite energy resources allow

reaching the temperature in zero time.

• For any refrigeration process, but given finite energy resources, the maximum
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cooling rate as one approaches the absolute zero drops asymptotically faster than the

temperature does (faster than R ∝ Tc).

• Near the absolute zero, given finite energy resources, the time required to draw an

amount of energy from the finite system that is proportional to Tc goes to infinity as

the system’s temperature is reduced. This time can be reduced by investing more

energy, but given finite energy resources it is always finite and scales in the above

way.

• For refrigeration cycles operating in a fixed cycle time, the cooling rate will drop

exponentially past a certain critical temperature.

• Cooling to the absolute zero requires an energy gap that scales with the temperature.

If a minimal energy gap exists, through which the cooling is mediated, then refrig-

eration will stop sharply at some minimal temperature polynomial in this minimal

energy gap.

In the course of my study, I have also showed that quantum friction reduces the

effectiveness of refrigeration so that generically quasistatic processes are superior. Finite-

time frictionless solution exist, however. While these are unstable in some systems (e.g. the

two-spin Otto refrigerator) and disappear under even negligible noise from the environment,

they are expected to be stable for other systems (e.g. the harmonic oscillator). I note, in

this context, that the frictionless limit has since been effectively reached experimentally

[67].

I have also shown that some minimal time is required in order to transition between

two thermal states. This time is dependent on the energy resources available, in accordance

with the time-energy uncertainty principle, so that infinite energy resources could diminish

it to zero. Given finite resources, however, we have seen that it is impossible to drive the

harmonic oscillator to a final thermal state in arbitrarily short times.
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I have also shown that it is impossible to drive an harmonic oscillator to below the

temperature achieved by a quasistatic process. This has great significance for attempts

to cool atoms to ultra-low temperatures in harmonic traps and has already resulted in

experiments attempting to implement the procedures that reach this limit [67–69]. While

my results are technically limited to the harmonic oscillator, I believe they have far wider

applicability. The attempt to establish similar bounds and optimal procedures for cooling

atoms in non-harmonic traps is a current ongoing project [67], that I hope will bear fruit in

the near future. These ideas are also currently being employed to the study of frictionless

quantum transport [70, 71].
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Appendix A

List of Publications

My PhD research was published in four papers, three of which with me as the principal

author.

• Y. Rezek and R. Kosloff. Irreversible performance of a quantum harmonic heat

engine. New Journal of Physics, 8:83, 2006.

This paper [19] summarizes the results of my master’s thesis [18], but includes also

more insights into the performance and thermodynamics of the Otto cycle. The

relevant content is reviewed in the beginning of Chapter 3, and in sections 3.1.1,

3.1.2, parts of section 3.1.3, and the expression for the entropy in section 3.1.4.

• Y. Rezek, P. Salamon, K.H. Hoffmann, and R. Kosloff. The quantum refrigerator:

The quest for absolute zero. EPL (Europhysics Letters), 85:30008, 2009.

In this paper [21] we describe the frictionless cooling solutions, including the first

one we were able to obtain (section 3.5) as well as the optimal bang-bang solution

(section 3.6 with k > 0). Our work relies on the following (”Maximum work in

minimum time”) article for the solution of the optimization problem.

61



62 A. LIST OF PUBLICATIONS

• P. Salamon, K.H. Hoffmann, Y. Rezek, and R. Kosloff. Maximum work in minimum

time from a conservative quantum system. Physical Chemistry Chemical Physics,

11(7):10271032, 2009.

This work [22] discusses the optimization problem leading to the bang-bang solution.

It relies on the previous paper (”The quantum refrigerator: the quest for absolute

zero”) for the thermodynamic significance. Note that Peter Salamon is the principal

author.

• Y. Rezek. Reflections on friction in quantum mechanics. Entropy, 12(8):18851901,

2010.

This review [23] discusses quantum friction in general. It includes results for the

harmonic oscillator (section 3.3) and the more general treatment (section 3.4).

One more paper is at this time in the final stages of peer review, and should be published

shortly.

• K.H. Hoffmann, P. Salamon, Y. Rezek, and R. Kosloff. Time-optimal controls for

frictionless cooling in harmonic traps. To be published.

In this paper [24] we extend the bang-bang solution to imaginary frequencies (k > 0).

Some of its results are included in section 3.6. While the principal author is Karl

Heinz Hoffman, the relevant results presented in this thesis were obtained by me.

In addition, I published one proceedings report.

• Y. Rezek and R. Kosloff. Quantum refrigerator in the quest for the absolute zero tem-

perature. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference

Series, volume 6907, page 10, 2008.

This is a report [20] on the progress in analyzing cooling by the harmonic oscillator

up to this point. Its results are included in sections 3.1.4 and 3.2.
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אנו גם הראנו בפעם הראשונה שקיים זמן מינימלי למעבר בין שני מצבים , במהלך מחקר זה

ומתפוצץ כאשר הטמפרטורה , זמן זה קצר יותר ככול שיותר משאבי אנרגיה זמינים. תרמיים

  . הסופית שואפת לאפס המוחלט

  

בשני  אנו סוקרים תוצאות שהושגו עבור מעגל אוטו המשתמש, בדיוננו במערכות ספינים

  .וטוענים כי העובדה שקיים פער אנרגיה מינימלי מונעת את הקירור לאפס המוחלט, ספינים

  

אנו סוקרים ". קירור אלגוריתמי"אנו מנתחים את הקירור בצורה יותר כללית בהתבסס על 

תוצאות קודמות שמראות שבעזרת אלגוריתם זה ניתן לקבוע את ההסתברות שרגיסטר של 

, אנו מכלילים את התוצאות הללו. היסוד רק עד גבול מקסימלי מסויםספינים יהיה במצב 

וטוענים שמכך נובע שבכל מערך קירור סביר לא ניתן לקרר מערכת קוונטית סופית מעבר 

טמפרטורה זו שואפת לאפס בגבול . מסוימת) גדולה מאפס(לטמפרטורה מינמלית 

  .המקרוסקופי

  

החוק . שונים במובן עדין התרמודינאמיקהקי התוצאות שלנו מעידות שבתחום הקוונטי חו

אך ניתן לשפרו על קביעת גבולות להתנהגות , ההשגה עדיין תקף-השלישי או עקרון חוסר

גבולות אלו לוקחים . האסימפטוטית של קצבים וטמפרטורה מינימלית הגדולה מאפס

משאבי  ,כולל פערי אנרגיה סופיים, "מספר פעולות סופי"בחשבון עוד משאבים מעבר ל

  .והגודל הסופי של המקרר והאמבטים, אנרגיה זמינים

  



 תקצירתקצירתקצירתקציר
  

חלה . נחשבים ככלל כעולים מתוך חוקי המכניקה המיקרוסקופית התרמודינאמיקהחוקי 

ההבנה של , אולם. התקדמות ניכרת בביסוס היווצרותם תחת תנאים קלאסיים

ות החוק השלישי של התהו. בהקשרים קוונטיים במובהק עודנה חסרה התרמודינאמיקה

אנו מכוונים לשפר את הבנת , בתזה זו. הינה בעייתית במיוחד התרמודינאמיקה

 התרמודינאמיקההקוונטית על ידי שקילת ההיווצרות הדינמית של חוקי  התרמודינאמיקה

אנו מתמקדים בפרט בניתוח קצב הקירור של מקרר הפועל על . במערכות ומודלים מסוימים

  .ובניתוח הקירור במערכות ספינים, ורכב ממתנדים הרמוניים קוונטייםידי חומר פעיל המ

  

אנו טוענים כי בהקשר קוונטי הניסוח , לאחר סקירה קצרה של התרמודינאמיקה הקוונטית

אשר אומר שלא ניתן לקרר לאפס " (השגה-עקרון הבלתי"הקלאסי של החוק השלישי הידוע כ

. מוביל להשלכות מסוימות באשר לקצב הקירור )המוחלט במספר סופי של פעולות פיזיקליות

  .אלו חורגות מעבר לגבולות המושמים על הקירור בשל החוק השני של התרמודינאמיקה

  

שמהווה מקבילה קוונטית למעגל אוטו , אנו פונים לדון ולנתח בפירוט מקרר קוונטי מסוים

רכב מחלקיקים החומר הפעיל מו, במקום להשתמש בחלקיקים קלאסיים בבוכנה. הקלאסי

מגע עם אמבט חום ממודל בעזרת דינמיקה ). דוחה או מושך(קוונטיים תחת פוטנציאל הרמוני 

אנו מדגימים . בהתאם לתורת המערכות הקוונטיות הפתוחות, )חיובית שלמה(לינדבלדיאנית 

ומוצאים את הביטויים עבור , שבמגל הגבול החומר הפעיל נמצא תמיד במצב קוהרנטי כללי

הקשורה לקזימיר של , אנו מזהים שמורה חדשה של התנועה. ניומן ושנון שלו-וון ופייתאנטר 

  . אלגברת לי הרלוונטית

  

שינוי איטי במידה אינסופית (סטטי -של המקרר מראה כי בגבול הקוואזי תרמו דינמיניתוח 

מעגל הגבול משיג את ההתנהגות האסימפטוטית הטובה ביותר ) של הבקרות החיצוניות

אני מפתחים . בהתאם להגבלב המוטלת על ידי החוק השני, פשר עבור הקירור לכל מעגלשבא

אנו מראים שקצב הקירור . וייצור האנטרופיה, הקירור בכל מעגל, ביטויים מפורשים ליעילות

בשיאו כשר פער האנרגיה של המתנד פרופורציונלי לסקלת האנרגיה של טמפרטורת האמבט 

  .בל בהתאם לדיוננו הכלליאזי קצב הקירור מוג. הקר

  

מביא באופן כללי לחיכוך , סטטי-מעבר לגבול הקווזי, אנו מוצאים גם שניסיון לזוז מהר יותר

וטוענים כי באופן כללי , אנו דנים בחיכוך הקוונטי במערכת זו ובכלל. קוונטי שפוגע בקירור

  .הוא יוביל להפסדים לחיכוך בכל שיטת קירור

  

שיכולים להשיג את הקירור לכל " חסרי חיכוך"כי קיים מעגלים  אנו מראים, יחד עם זאת

ובטיעון , אנו מוצאים דוגמה פשוטה ישירות. סטטי בזמן סופי-מעגל של הגבול הקוואזי

, כאשר אנו מרשים פוטנציאל הרמוני הודף. מסובך יותר מוצאים את הפתרון המהיר ביותר

ה אסימפטוטית בצורה הטמפרטוררד עם אנו מראים שהפתרון המיטבי מגיע לקצב קירור היו

  .השגה והחוק השני-הקרובה לגבול המותר על ידי עקרון הבלתי
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