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A novel method, based on genetic algorithms, has been developed and applied to the solution of
differential equations. The new approach is based on the use of real numbers to form the candidate
solutions which are improved iteratively by a suitable breeding process. The algorithm was tested
in the calculation of the bound states of a double well potential and in the nonlinear density
functional calculation. Comparison of the results with those obtained using the direct relaxation
method shows excellent agreement. 1®95 American Institute of Physics.

I. INTRODUCTION erators were used in an adaptive fashion dynamically
changing with the evolution, therefore the algorithm is
Genetic algorithmgGA) are global optimization meth- termed real number adaptive genetic algorittRAGA). In
ods based on several metaphors from biological evolutionthe following, a brief outline of the new GA approach will be
The GA search for an optimal solution from a population ofgiven. A detailed description of the method will be presented
candidate solutions according to an objective function whichelsewheré.
is used to establish the fitness of each candidate as a solution.
The governing process in the search is the appllgatlon olfl_ ALGORITHM DESCRIPTION
appropriate breeding operators to candidate solutions in a
given generation to form the candidates for the next genera- The initial set ofN,, candidate solutions where gener-
tion. These operators are designed to preserve the most suated randomly, where a Gaussian random number generator
cessful aspects of candidate fithess until the best possibleas used to assign the components of the solutions at the
solution is attained. Genetic algorithms have previously beegrid points. Once the initial generation was formed, the fit-
applied in a wide variety of fields including engineering de-ness, fP, values of the different candidate solutions were
sign, neural network synthesis, schedule optimization anéstablishedsee definitions below The next step in the al-
conformational analysis of DNAZ® In chemical physics gorithm was to construct a new generation by the application
these algorithms were applied to coherent corftrol. of various RAGA operators to candidate solutions of the
In a recent publication a genetic algorithm was appliedpresent generation. This procedure was repeated until the
to the solution of ordinary differential equatiof@DE).° The  convergence criteria were fulfilled. The transformation of the
measure of how well does a particular candidate satisfy the’'th generation to the+1 generation was accomplished by
ODE and its boundary conditions, after discretization of thethe application of nine RAGA operators. These are listed as
differential operators, was used to define its fithess. The us®llows:
of finite difference representation of the derivatives is a (1) (Opes: COPY thekyes:highest fitness candidate solu-
source of inefficiency since it involves only nearest neighbottions to the new generationkyes/Np,, = 0.09. (2)
interactions. (Orang: formation of k,,,q random candidates, to the new
Recently, a new approach based on GA has been pr@eneration K;anq/Npop =0.02. (3) (Opmye-n-mutation: one
posed for the search of lowest energy structure of moleculaof the ki.; genes is chosen randomly and some of its ele-
clusters’ This GA search procedure was based on the use ahents(randomly chosenwere modified by the addition of a
the control variables to represent the candidate solutions. Thandom number evaluated from a normal Gaussian distribu-
use of real number representation of the genotypes requireten. (4) (O;,,): inversion of the elements in a randomly cho-
the formulation of an appropriate set of operators which weresen segmeni5) (O.s9: two point cross-link between two
used to form the+1 generation when applied to candidatesparents to form two song6) (Og.s)-N-point cross link: the
in the p'th generatior. In the method described below this elements of two parent genes were copied to form two
approach was adapted, namely, continuous real numbefsons.” The rearrangement of the parent’s elements was ac-
were used to form grid representations of candidate solutionsomplished by the following steps: a random numigervas
to the ODEs. The second important feature of the new apehosen from a uniform distribution in the range 0-1.(If
proach is the use of Fourier representation of the differentiat=0.5 the element of parent 1 was copied to “son 1” and the
operators instead of the finite elements representation. Sin@@rresponding element from parent 2 to “son 2,” while, if
the Fourier representation is a global one it inherently incorZ < 0.5 the element of parent 2 was copied to “son 1" and
porates the boundary conditions and constitutes a more effthe corresponding element from parent 1 to “son 27)
cient description of the differential operat§rhe GA op-  (O,,): the arithmetic average of the elements of two parents
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were used to form a so8) (Ogeom: the geometric average TABLE I. Ground state eigenvalues for the double well system.
of the elements of two parents were used to form a son.

In all cases, the probability to chose ttk individual as Mass lterations Relaxation GA
a parent was proportional to its fitne$8, It should be noted 1 10000 0.886 0.887
that all operations, except 2-point amdpoint cross link, 1%)((; 1‘23888 g-gg g-igg
were performed in coordinate space, whidg,s, and O oq 1000 3000 0.0443 0.0443

were performed in coordinate or momentum space with 0.5
probability for each. An additional RAGA operator used was
an inversion of the momentum space representation of cann. APPLICATIONS
didate solution around its centéd; . -
Fixed probabilities for the application of operations 1, 2  The examples chosen to demonstrate the RAGA algo-

and 9 were used throughout the calculation, while the probtithm are typical applications which have been explored by
abilities to use operators 3-8 were changed during the caPther meghods such as quantum Monte Cériband direct
culation according to their success to form high fitnessmethods:® The first example the double well potential is

candidated.These probabilities were updated evly gen- difficult to converge due to the tunneling splitting of the
erations N,=50). levels. The second example explores the electronic structure

To complete the description of the new method the pro-Problem solved by the Hartree—Fo@KF) or the local den-
cedure of assigning the fitness functiofiiito the candidate Sity functional method¢LDA) which is difficult due to the
solutions is described. The general form of the differentianonlinear character of the equations.
equations considered here is A. Double well potential

HW¥=(T+V)-W=EV, (2.1 The method was applied to the calculation of the eigen-
- - functions of an asymmetric double well potential recently

whereH is the Hamiltonian,T = —#?V?/2M is the kinetic  ysed by Dollet al'% in the study of diffusional Monte Carlo
energy operator and represents the potential energy opera-a|gorithms. Table | shows the convergence of the method for
tor. The kinetic energy operator is calculated by the Fourieghe ground state eigenvalue together with the results of re-
methoc® It should be noted that these general form of thejaxation methotf for various masses.
Hamiltonian may include nonlinear terms, driving force In both methods a grid of 32 points withx=0.16 was
terms, etc. If one is interested in the ground state of theyficient to converge the results. From the table it can be
system, the variational principle may be used to search fogoncluded that it is harder to converge the cases with lighter
Eqy and¥ 4 and these quantities could be used to evaluate thgyass in particulaiM = 10 for which the tunneling is most
fithess of each candidate solution. However, if one is i”terimportant. The power of the RAGA method to obtain directly
ested in the identification of an arbitrary eigenstate of thehe relevant eigenvalues is demonstrated in Figure 1.
system which is closest to a given reference endtgy, the First the ground state was obtained by searching for the
evaluation of thef values could be done using the following ejgenvalue closest to zero. This state was found to be local-
procedure. Two quantities which are used in the search prqzed in the deeper well. Then the target enefgy was again
cess are defined set to zero and the first state orthogonal to the ground state

§1=[<‘If|(I:I—E,ef)2|\If>]1’2 2.2 was obtained which was found to localize in the shallow

which is the expectation of the energy distance from a refer- 3.0
ence energ¥,.s, and the energy dispersion:

M=100.

E=[(V|HIW)— ((¥|H|¥))?]*2 2.3

If W, represents the eigenstate whose energy is closest to 2.0 f
E.ef, &1 should converge to the energy difference between
E.ef and E;, while the dispersiorf, should vanish. Hence,
the fitness of a candidate solution was defined fs
= (&;- &)Y2 This definition of the fithess allows us to obtain
both eigenfunctions and eigenvalues closesEfg at any
desired accuracy by the specification of the required value of
fP for convergence.

The last point which should be stressed is that one can o, ] ) 20
use the orthogonality of the eigenstates of the system to en- X
hance the rate of convergence. More specifically, during the
search for the eigenstate which correspond to the energy

value E; (the closest tdE,) one can project out from the
-IG. 1. The two lowest and two highly excited eigenfunction superimposed

candidate solutions components which belong to other elgergn their double well potential. Energies are 0.136lid) , 0.190(dasheg],

sta_tes(which were already .determin:edby demanding the ;19 (dotted 2.062 (solid). Potential parameters as in Ref. 10 with
fulfillment of the orthogonality to these states. M =100.
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well. This procedure enables one to overcome also the prob- 3
lem of degenerate eigenstates. The two arbitrary chosen ex-
cited state eigenfunctions were obtained by setting
E,e= 1.0 which is the energy of the barrier akg.;=2.2.

In both cases the RAGA converged directly to the eigen-
state closest t& . after 2000 iterations.

B. Nonlinear electronic structure example

Log(Error)

The use of the Hartree—Fock and density functional ap-
proximations to solve the electronic structure problem leads
to nonlinear differential equations. The nonlinear effective
Hamiltonian for this problem becomes 2

-
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wherei is the orbital index, and
FIG. 2. Convergence of the genetic algoritiiwhere the error is defined as
~ - p(r’) , o~ the difference between the converged result and the best energy functional
Veft= Vexd(r) + m dr’+Vye(p;r); of the current generatigras a function of the generation index. Shown are
the density functional LDA resultésolid) and HF resultgdashed for the
two electron problenfRefs. 11 and 12 A grid of 64 points was used with

p(r)zz [ (r)|2. (3.2  Ar=0.15625 andN,,,=200.

verged HF result for this problem E= —2.8621° Using a
grid of 128 points and\r =0.078 125 the method converged
to E=—2.8213 for Hartree—Fock and 6= —2.8338 for
LDA after 6000 generations. These numbers are converged
in comparison to the ones obtained by the direct relaxation
method using the same grid. It should be mentioned that the
error is due to the use of an evenly spaced grid which only
partially overcomes the Coulomb singularity. This grid leads
to slow convergence and thus is not a result of the RAGA
- algorithm. This problem of grid representation can be over-

+f p(M)Vex(1)dr +Exd p]. (33 come by using mapped grifavhich can also be used in the

. . o RAGA algorithm. The extended range of energy in the
Whereq[p]_ls tge_c(c))ulor;‘;alc |n_tegrdll._lr|1_ tgebHa;]rtrI?e Fock Hamiltonian representation inherent in the Coulomb problem
approximationg,.=0 andJ{p] is multiplied by half. did not cause difficulties in the RAGA algorithm. This is

To test the RAGA method a two electron problem was . . .
. . ..~ contrary to the direct relaxation methods where the numeri-
analysed. Analytic results can be obtained for harmonic bind-

in otential between the electron and nucIeUS'Cal effort increases with the energy range.
Ny '2 15 . . ' Direct method of solution of nonlinear problems require
Vexi= /8.7 For this reason this problem has been chosen as .,

12 X ery good initial guess in order to converge at all. The fast
a standard benchmatk:* For this system the exact total initial convergence of the RAGA and the fact that it is not
energy becomeE=2.

L dependent on an initial guess suggests a combined method
The Hartree—Fock approximatith leads to I .
EHF—2 03933 and the LDA result  becomes where the RAGA prepares a good initial guess for the direct

ELDA—2 026 39. The RAGA method was tested using a gridmethod. This has been tested by using the result after 50

of 128 or 64 evenly spaced points wio,~200. Both the generations for a direct method procedure based on a relax-

. 7 . . .
Hartree-Fock and LDA cases were tested where the fitnesastlon method. This initial state then led to very fast conver

criteria was the total enerdy p] [Eq. (3.3)]. Figure 2 shows gence.
the convergence of the method for the first 2000 iterations
After 5000 iterations the results converge to the numerica[v' CONCLUSIONS
accuracy of the numbers above. Variational approaches allow one to convert differential
It seems that the fact that the problem is nonlinear has nequations into search problems. A new search method based
effect on the convergence. In Fig. 2 the very fast initial con-on genetic algorithms has been described. The floating point
vergence of the method for the first 100 iterations is clearlyrepresentation of the genotypes requires the definition of a
seen. This phenomena has been found to be general in aét of modified GA operators by which the search is ad-
applications tested. vanced from one generation to the other. Convergence can be
The method has also been tested for a Helium atonenhanced by the use of orthogonalization and symmetry op-
whereV,.,= —2/r. The converged and experimental resultserations. The probability to use the different GA rules de-
of the He ground state energy ake=—2.904. The con- fined in Il was varied during the calculation. Examining the

In the Hartree—Fock approximation in this exampgle=0
and the second Coulombic term in the RHS(8f2) is mul-
tiplied by half. When using the density functional approxi-
mationVv,. is approximated by LDA!1214The total energy
functional becomes

Elp]=2 €~ | p(r)Ten(r)dr+JLp]
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