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A novel method, based on genetic algorithms, has been developed and applied to the solution of
differential equations. The new approach is based on the use of real numbers to form the candidate
solutions which are improved iteratively by a suitable breeding process. The algorithm was tested
in the calculation of the bound states of a double well potential and in the nonlinear density
functional calculation. Comparison of the results with those obtained using the direct relaxation
method shows excellent agreement. ©1995 American Institute of Physics.
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I. INTRODUCTION

Genetic algorithms~GA! are global optimization meth-
ods based on several metaphors from biological evoluti
The GA search for an optimal solution from a population
candidate solutions according to an objective function wh
is used to establish the fitness of each candidate as a solu
The governing process in the search is the application
appropriate breeding operators to candidate solutions i
given generation to form the candidates for the next gene
tion. These operators are designed to preserve the most
cessful aspects of candidate fitness until the best poss
solution is attained. Genetic algorithms have previously be
applied in a wide variety of fields including engineering d
sign, neural network synthesis, schedule optimization a
conformational analysis of DNA.1–3 In chemical physics
these algorithms were applied to coherent control.4,5

In a recent publication a genetic algorithm was appli
to the solution of ordinary differential equations~ODE!.6 The
measure of how well does a particular candidate satisfy
ODE and its boundary conditions, after discretization of t
differential operators, was used to define its fitness. The
of finite difference representation of the derivatives is
source of inefficiency since it involves only nearest neighb
interactions.

Recently, a new approach based on GA has been p
posed for the search of lowest energy structure of molecu
clusters.7 This GA search procedure was based on the use
the control variables to represent the candidate solutions.
use of real number representation of the genotypes requ
the formulation of an appropriate set of operators which we
used to form thep11 generation when applied to candidate
in the p’th generation.7 In the method described below thi
approach was adapted, namely, continuous real numb
were used to form grid representations of candidate soluti
to the ODEs. The second important feature of the new
proach is the use of Fourier representation of the differen
operators instead of the finite elements representation. S
the Fourier representation is a global one it inherently inc
porates the boundary conditions and constitutes a more
cient description of the differential operators.8 The GA op-
J. Chem. Phys. 102 (4), 22 January 1995 0021-9606/95/102(4)
n.
f
h
ion.
of
a
a-
uc-
ble
n
-
d

d

e
e
se
a
r

ro-
ar
of
he
ed
re
s

ers
ns
p-
al
ce
r-
ffi-

erators were used in an adaptive fashion dynamicall
changing with the evolution, therefore the algorithm is
termed real number adaptive genetic algorithm~RAGA!. In
the following, a brief outline of the new GA approach will be
given. A detailed description of the method will be presented
elsewhere.9

II. ALGORITHM DESCRIPTION

The initial set ofNpop candidate solutions where gener-
ated randomly, where a Gaussian random number generat
was used to assign the components of the solutions at th
grid points. Once the initial generation was formed, the fit-
ness, f i

p , values of the different candidate solutions were
established~see definitions below!. The next step in the al-
gorithm was to construct a new generation by the applicatio
of various RAGA operators to candidate solutions of the
present generation. This procedure was repeated until th
convergence criteria were fulfilled. The transformation of the
p’th generation to thep11 generation was accomplished by
the application of nine RAGA operators. These are listed a
follows:

~1! (Obest!: copy thekbest highest fitness candidate solu-
tions to the new generation (kbest/Npop . 0.05!. ~2!
(Orand!: formation of krand random candidates, to the new
generation (krand/Npop.0.02!. ~3! (Omute!-n-mutation: one
of the kbest genes is chosen randomly and some of its ele
ments~randomly chosen! were modified by the addition of a
random number evaluated from a normal Gaussian distribu
tion. ~4! (Oinv!: inversion of the elements in a randomly cho-
sen segment.~5! (Ocros2!: two point cross-link between two
parents to form two sons.~6! (Ocrosn)-n-point cross link: the
elements of two parent genes were copied to form two
‘‘sons.’’ The rearrangement of the parent’s elements was ac
complished by the following steps: a random number,z, was
chosen from a uniform distribution in the range 0–1. Ifz
>0.5 the element of parent 1 was copied to ‘‘son 1’’ and the
corresponding element from parent 2 to ‘‘son 2,’’ while, if
z , 0.5 the element of parent 2 was copied to ‘‘son 1’’ and
the corresponding element from parent 1 to ‘‘son 2’’.~7!
(Oav!: the arithmetic average of the elements of two parent
1859/1859/4/$6.00 © 1995 American Institute of Physics
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1860 Letters to the Editor
were used to form a son.~8! (Ogeom!: the geometric average
of the elements of two parents were used to form a son.

In all cases, the probability to chose thei th individual as
a parent was proportional to its fitness,f i

p . It should be noted
that all operations, except 2-point andn-point cross link,
were performed in coordinate space, whileOcros2andOcrosn

were performed in coordinate or momentum space with
probability for each. An additional RAGA operator used w
an inversion of the momentum space representation of c
didate solution around its center,Oinvk .

Fixed probabilities for the application of operations 1,
and 9 were used throughout the calculation, while the pr
abilities to use operators 3–8 were changed during the
culation according to their success to form high fitne
candidates.7 These probabilities were updated everyNp gen-
erations (Np.50!.

To complete the description of the new method the p
cedure of assigning the fitness functionalf i

p to the candidate
solutions is described. The general form of the different
equations considered here is

ĤC5~ T̂1V̂…–C5EC, ~2.1!

where Ĥ is the Hamiltonian,T̂52\2¹2/2M is the kinetic
energy operator andV̂ represents the potential energy oper
tor. The kinetic energy operator is calculated by the Four
method.8 It should be noted that these general form of t
Hamiltonian may include nonlinear terms, driving forc
terms, etc. If one is interested in the ground state of
system, the variational principle may be used to search
Eg andCg and these quantities could be used to evaluate
fitness of each candidate solution. However, if one is int
ested in the identification of an arbitrary eigenstate of t
system which is closest to a given reference energy,Eref , the
evaluation of thef i

p values could be done using the followin
procedure. Two quantities which are used in the search p
cess are defined

j15@^Cu~Ĥ2Eref!
2uC&#1/2 ~2.2!

which is the expectation of the energy distance from a ref
ence energyEref , and the energy dispersion:

j25@^CuĤ2uC&2~^CuĤuC&!2#1/2. ~2.3!

If C i represents the eigenstate whose energy is closes
Eref , j1 should converge to the energy difference betwe
Eref andEi , while the dispersionj2 should vanish. Hence,
the fitness of a candidate solution was defined asf i

p

5 (j1•j2)
1/2. This definition of the fitness allows us to obtai

both eigenfunctions and eigenvalues closest toEref at any
desired accuracy by the specification of the required value
f i
p for convergence.

The last point which should be stressed is that one c
use the orthogonality of the eigenstates of the system to
hance the rate of convergence. More specifically, during
search for the eigenstate which correspond to the ene
valueEi ~the closest toEref) one can project out from the
candidate solutions components which belong to other eig
states~which were already determined! by demanding the
fulfillment of the orthogonality to these states.
J. Chem. Phys., Vol. 102,
.5
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III. APPLICATIONS

The examples chosen to demonstrate the RAGA algo
rithm are typical applications which have been explored b
other methods such as quantum Monte Carlo10,11 and direct
methods.12 The first example the double well potential is
difficult to converge due to the tunneling splitting of the
levels. The second example explores the electronic structu
problem solved by the Hartree–Fock~HF! or the local den-
sity functional methods~LDA ! which is difficult due to the
nonlinear character of the equations.

A. Double well potential

The method was applied to the calculation of the eigen
functions of an asymmetric double well potential recently
used by Dollet al.10 in the study of diffusional Monte Carlo
algorithms. Table I shows the convergence of the method fo
the ground state eigenvalue together with the results of r
laxation method13 for various masses.

In both methods a grid of 32 points withDx50.16 was
sufficient to converge the results. From the table it can b
concluded that it is harder to converge the cases with lighte
mass in particularM510 for which the tunneling is most
important. The power of the RAGAmethod to obtain directly
the relevant eigenvalues is demonstrated in Figure 1.

First the ground state was obtained by searching for th
eigenvalue closest to zero. This state was found to be loca
ized in the deeper well. Then the target energyEref was again
set to zero and the first state orthogonal to the ground sta
was obtained which was found to localize in the shallow

TABLE I. Ground state eigenvalues for the double well system.

Mass Iterations Relaxation GA

1 10000 0.886 0.887
10 10000 0.417 0.449
100 2000 0.139 0.139
1000 3000 0.0443 0.0443

FIG. 1. The two lowest and two highly excited eigenfunction superimpose
on their double well potential. Energies are 0.139~solid! , 0.190~dashed!,
1.010 ~dotted! 2.062 ~solid!. Potential parameters as in Ref. 10 with
M5100.
No. 4, 22 January 1995
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well. This procedure enables one to overcome also the pr
lem of degenerate eigenstates. The two arbitrary chosen
cited state eigenfunctions were obtained by setti
Eref51.0 which is the energy of the barrier andEref52.2.

In both cases the RAGA converged directly to the eige
state closest toEref after 2000 iterations.

B. Nonlinear electronic structure example

The use of the Hartree–Fock and density functional a
proximations to solve the electronic structure problem lea
to nonlinear differential equations. The nonlinear effecti
Hamiltonian for this problem becomes

Ĥeffc i5F2
1

2
¹21V̂effGc i5e ic i , ~3.1!

wherei is the orbital index, and

V̂eff5 v̂ext~r !1E r~r 8!

ur2r 8u
dr 81 v̂xc~r;r !;

r~r !5(
i

uc i~r !u2. ~3.2!

In the Hartree–Fock approximation in this examplev̂xc50
and the second Coulombic term in the RHS of~3.2! is mul-
tiplied by half. When using the density functional approx
mation v̂xc is approximated by LDA.11,12,14The total energy
functional becomes

E@r#5(
i

e i2E r~r !v̂eff~r !dr1J@r#

1E r~r !v̂ext~r !dr1Exc@r#. ~3.3!

WhereJ@r# is the Coulombic integral.12 In the Hartree Fock
approximationExc50 andJ@r# is multiplied by half.

To test the RAGA method a two electron problem w
analysed. Analytic results can be obtained for harmonic bi
ing potential between the electron and nucleu
v̂ext5r 2/8.15 For this reason this problem has been chosen
a standard benchmark.11,12 For this system the exact tota
energy becomesE52.

The Hartree–Fock approximation12 leads to
EHF52.039 33 and the LDA result become
ELDA52.026 39. The RAGA method was tested using a g
of 128 or 64 evenly spaced points withNpop5200. Both the
Hartree-Fock and LDA cases were tested where the fitn
criteria was the total energyE@r# @Eq. ~3.3!#. Figure 2 shows
the convergence of the method for the first 2000 iteratio
After 5000 iterations the results converge to the numeri
accuracy of the numbers above.

It seems that the fact that the problem is nonlinear has
effect on the convergence. In Fig. 2 the very fast initial co
vergence of the method for the first 100 iterations is clea
seen. This phenomena has been found to be general in
applications tested.

The method has also been tested for a Helium at
where v̂ext522/r . The converged and experimental resu
of the He ground state energy areE522.904. The con-
J. Chem. Phys., Vol. 102,
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verged HF result for this problem isE522.862.16 Using a
grid of 128 points andDr50.078 125 the method converged
to E522.8213 for Hartree–Fock and toE522.8338 for
LDA after 6000 generations. These numbers are converg
in comparison to the ones obtained by the direct relaxatio
method using the same grid. It should be mentioned that th
error is due to the use of an evenly spaced grid which onl
partially overcomes the Coulomb singularity. This grid lead
to slow convergence and thus is not a result of the RAGA
algorithm. This problem of grid representation can be over
come by using mapped grids17 which can also be used in the
RAGA algorithm. The extended range of energy in the
Hamiltonian representation inherent in the Coulomb problem
did not cause difficulties in the RAGA algorithm. This is
contrary to the direct relaxation methods where the numer
cal effort increases with the energy range.

Direct method of solution of nonlinear problems require
a very good initial guess in order to converge at all. The fas
initial convergence of the RAGA and the fact that it is not
dependent on an initial guess suggests a combined meth
where the RAGA prepares a good initial guess for the direc
method. This has been tested by using the result after 5
generations for a direct method procedure based on a rela
ation method.17 This initial state then led to very fast conver-
gence.

IV. CONCLUSIONS

Variational approaches allow one to convert differentia
equations into search problems. A new search method bas
on genetic algorithms has been described. The floating poi
representation of the genotypes requires the definition of
set of modified GA operators by which the search is ad
vanced from one generation to the other. Convergence can
enhanced by the use of orthogonalization and symmetry o
erations. The probability to use the different GA rules de
fined in II was varied during the calculation. Examining the

FIG. 2. Convergence of the genetic algorithm~where the error is defined as
the difference between the converged result and the best energy functio
of the current generation! as a function of the generation index. Shown are
the density functional LDA results~solid! and HF results~dashed! for the
two electron problem~Refs. 11 and 12!. A grid of 64 points was used with
Dr50.15625 andNpop5200.
No. 4, 22 January 1995
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importance of the these rules in the present examples sh
that the cross link and averaging operators are the domin
ones during most of the calculation. These rules are expe
to influence the rate of convergence more than the the o
that were used less frequently. This feature is currently un
study. The direct search for an excited eigenfunction dem
strates the ability of the method to converge to the glob
minimum since each of the eigenvalues of the Hamiltoni
constitutes a local minimum. The desired eigenvalue h
only a larger cone of attraction. The RAGA is able to co
with solutions to nonlinear differential equations with stron
singularities showing no sensitivity to large energy rang
Other methods to solve these examples could be used suc
Monte Carlo, and simulated annealing. However comparis
with the GA approach showed that the later converged s
nificantly faster.

To summarize the new search procedure has been sh
to be an effective tool for a variety of quantum mechanic
problems.
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