Step-by-Step Instructions to Reproduce the Examples in the Tutorials

Uniform Hollow Cylinder model:

1. Go to Domain View pane on the top-left corner, choose Uniform Hollow Cylinder and press Add.
2. It is recommended to go to 3D Graph to see the structures you are going to compute.
3. Increase the Level of Detail to maximum (this option can be found at the Preferences pane).
4. In Domain View, Select the Uniform Hollow Cylinder model that you have already added.
5. Go to Parameter Editor pane, change the Height (in nm units) to 15 .
6. Go to Settings and choose Suggest Parameters.
7. In Suggest Parameters pane, write: $\mathbf{x}=2, \mathbf{y}=2$ (the cylinder diameter is 2 nm), $\mathbf{z = 1 5}$ (the Height) and $\mathbf{q} \mathbf{M a x}=10$ (in units of nm^{-1}).
8. On the left side of the Suggest Parameters pane you should get: Grid Size=110, Integration Method=Adaptive Gauss Kronrod, Integration Iterations: 1E6, Convergence: 0.001, Generated Points:1000, Update Interval: 500 ms. If not, follow the instructions again.
9. Enter the proposed parameters to the Preferences pane.
10. Go to the 2D Graph and click Generate in the Controls pane.
11. Go to File menu and choose Export 1D Graph, save the computed scattering curve as an *.out file.

Two Geometric Thingymabobs:

1. Go to Domain View pane on the top-left corner, choose Uniform Hollow Cylinder and press Add.
2. It is recommended to go to 3D Graph to see the structures you are about to compute.
3. Go to Domain View, choose Sphere, and press Add.
4. In the Preferences pane, increase the Level of Detail to maximum.
5. In Domain View, select the Sphere model that you have already added.
6. Go to Symmetry Editor and change $\mathbf{Z}=7$, go to Parameter Editor and change the Radius of Layer 2 to: 2.
7. In Domain View, select the Uniform Hollow Cylinder model you have already added.
8. In the Parameter Editor pane, press Add Layer.
9. In the Parameter Editor pane, go to the electron density, E.D., of the $3^{\text {rd }}$ layer, click on the current number and change it to 450.
10. Go to Settings and choose Suggest Parameters.
11. In Suggest Parameters, write: $\mathbf{x = 4}, \mathbf{y}=4$ (the diameter is 4), $\mathbf{z = 1 4}$ (the height) and q Max=5.
12. On the left side of the Suggest Parameters pane you should get: Grid Size $=60$, Integration Method =Monte Carlo Integration Iterations: 1E6, Convergence:0.001, Generated Points: 500, Update Interval: 500 ms . If not, repeat the instructions.
13. Enter the proposed parameters to the Preferences pane.
14. Go to the 2D Graph and click Generate in the Controls pane.
15. Go to File menu and choose Export 1D Graph, save the computed scattering curve as an *.out file.

Singel_Small_PDB_and_Fit part a:

1. Go to Domain View pane on the top-left corner, choose PDB file, also ensure that Center PDB option is ticked before pressing Add. Load the PDB file of Lysozyme.
2. It is recommended to go to 3D Graph to see the structures you are about to compute.
3. Increase the Level of Detail to maximum (this option can be found at the Preferences pane). If the 3D Graph becomes slower, reduce the Level of Detail.

Note: you may skip steps 4 and 5 and go directly to step 6, using the proposed parameters from step 5.
4. Go to Domain View, choose Uniform Hollow Cylinder, and press Add.
5. Try to change the parameters of the Uniform Hollow Cylinder so that it will envelope the Lysozyme structure. On the left side of Suggest Parameters pane you should get: $x=4, y=4, z=4, q \operatorname{Max}=10$.
6. Delete the Uniform Hollow Cylinder model.
7. On the left side of Suggest Parameters you should get: Grid Size=50, Integration Method =Monte Carlo, Integration Iterations: 1E6, Convergence: 0.001, Generated Points: 1000, Updated Interval: 500 ms .
8. Enter the proposed parameters to the Preferences pane.
9. In Domain View, select the PDB file of Lysozyme you have already added.
10. In Parameter Editor pane, change the Outer Solvent ED to 364, Solvation Thickness to 0.3 and choose the Fill Holes option.
11. Go to the 2D Graph and click Generate in the Controls pane.
12. Go to File menu and choose Export 1D Graph, save the computed scattering curve as an *.out file.

PDB file part b:

1. Go to Domain View pane on the top-left corner, choose PDB file. Make sure that Center PDB option is ticked before pressing Add. Insert the PDB file of Lysozyme twice.
2. It is recommended to go to 3D Graph to see the structures you are about to compute.
3. Increase the Level of Detail to maximum (this option can be found at the Preferences pane). If the 3D Graph becomes slow, reduce the Level of Detail.
4. Go to Domain View, choose Manual Symmetry, and press Add. The program allows you to import locations from file, choose No.
5. To add a layer, go to Domain View, choose Manual Symmetry, and press Add Layer.
6. Go to Entities pane in Domain View, and drag one of the PDB File of Lysozyme into Manual Symmetry.
7. In Manual Symmetry, choose the PDB File of Lysozyme, which will be later used as the outer solvent.
8. In Parameter Editor, change the Solvent ED to 0 , Outer Solvent ED to 1 , Solvation Thickness to 0.3 , and tick the Fill Holes and Solvent Only options.
9. Go to Domain View, choose Manual Symmetry.
10. In Parameter Editor, change the Scale to 4 and choose the Mutable options.
11. Right click Scale and choose Edit Constrains, change the Absolute minimum to 3 and the Absolute maximum to 5.
12. In Controls pane, choose the Mutable option for Domain Scale and Domain Constant.
13. go to the 2D Graph and click Generate in the Controls pane.
14. When the calculation is done click Fit in the Controls pane.
15. Go to File menu and choose Export 1D Graph, save the computed scattering curve as an *.out file.

Symmetry Files part a:

1. Go to Domain View pane on the top-left corner, choose Sphere and press Add.
2. It is recommended to go to 3D Graph to see the structures you are about to compute.
3. Increase the Level of Detail to maximum (this option can be found in the Preferences pane). If the 3D Graph becomes slow, reduce the Level of Detail.
4. In Domain View, Choose sphere.
5. Go to Parameter Editor and change the Radius of layer 2 to 0.5 and the E.D. to 900.
6. Go to Domain View, choose Manual Symmetry, and press Add. The program allows you to import locations from file, choose No.

Note: It is possible to skip steps 7-10 by importing locations file called *.dol file, which is located in the fourth example folder, when the Manual Symmetry allows you to import locations from file.
7. Go to Entities pane in Domain View and drag the Sphere into Manual Symmetry.
8. Go to Domain View, choose Manual Symmetry.
9. Go to Parameter Editor, add 7 layers with the parameters:
alpha=0, beta=0, gamma=0 and $\mathbf{z = 0}$.
Specific parameters for each layer are:
Layer 1: $\mathrm{x}=0, \mathrm{y}=0$; Layer 2: $\mathrm{x}=1, \mathrm{y}=0$; Layer 3: $\mathrm{x}=-1, \mathrm{y}=0$;
Layer 4: $\mathbf{x}=0.5, \mathrm{y}=0.866025404$; Layer 5: $\mathrm{x}=0.5, \mathrm{y}=-0.866025404$;
Layer 6: $x=-0.5, y=0.866025404$; Layer 7: $x=-0.5, y=-0.866025404$.
10. Go to Domain View, choose Symmetric Layered Slabs and press Add.
11. Try to change your Symmetric Layered Slabs model parameters so that it will envelope the Manual Symmetry. On the left side of Suggest Parameters pane you should get: $x=2.5, y=2.5, z=1, q \operatorname{Max}=10$.
12. Delete the Symmetric Layered Slabs model.
13. On the left side of Suggest Parameters pane you should get: Grid Size=30, Integration Method=Monte Carlo, Integration Iterations: 1E6, Convergence: 0.001, Generated Points: 1000, Updated Interval: 500 ms . If not repeat the instructions.
14. Enter the proposed parameters to the Preferences pane.
15. Go to the 2D Graph and click Generate in the Controls pane.
16. Go to File menu and choose Export 1D Graph, save the computed scattering curve as an *.out file.

Symmetry_Files Part b:

Note: this is another way to compute the same model as in Symmetry_Files part a.

1. Go to Domain View pane on the top-left corner, choose Sphere, and press Add.
2. It is recommended to go to 3D Graph to see the structures you are about to compute.
3. Increase the Level of Detail to maximum (this option can be found at the Preferences pane). If the 3D Graph become slower, reduce the Level of Detail.
4. In Domain View, Choose sphere.
5. Go to Parameter Editor and change the Radius of layer 2 to 0.4 and the E.D. to 400
6. Go to Domain View, choose Space-Filling Symmetry, and press Add.
7. Go to Entities pane in Domain View, and drag the Sphere to Manual Symmetry.
8. Go to Domain View, choose Space-Filling Symmetry.
9. Go to Parameter Editor, change:

Vector 1 to: Distance=1, Angle=90, Repetitions=9;
Vector 2 to: Distance=1, Angle=90, Repetitions=9;
Vector 3 to: Distance=1, Angle=120, Repetitions=1;
10. Go to Symmetry Editor and change Gamma to 120 and \mathbf{x} to 4 .
11. Go to Domain View, choose Symmetric Layered Slabs, and press Add.
12. Try to change your Symmetric Layered Slabs model parameters so that it will envelope the Manual Symmetry. On the left side of Suggest Parameters pane you should get: $\mathbf{x = 8 ,} \mathbf{y = 1 2}, \mathbf{z = 1}, \mathbf{q} \mathbf{M a x = 1 0}$.
13. Delete the Symmetric Layered Slabs model.
14. On the left side of Suggest Parameters pane, you should get: Grid Size=100, Integration Method= Adaptive Gauss Kronrod, Integration Iterations:1E6, Convergence: 0.001, Generated Points: 1000, Updated Interval: 500 ms . If not repeat the instructions.
15. Enter the suggested parameters to the Preferences pane.
16. Go to the 2D Graph and click Generate in the Controls pane.
17. Go to File menu and choose Export 1D Graph, save the computed scattering curve as an *.out file.

PDB_Symmetry Files Part a:

1. Go to Domain View pane on the top-left corner, choose the PDB file: 3j6f_Dimer_2_2_Added_H_GCentered.pdb. Make sure Center PDB option is ticked before pressing Add.
2. It is recommended to go to 3D Graph to see the structures you are about to compute.
3. Reduce the Level of Detail to minimum (this option can be found at the Preferences pane).
4. Go to Domain View, choose Scripted Symmetry, and press Add.
5. Choose the Left_Hand_Helix model, located in the relevant tutorial folder.
6. Go to Domain View, choose the Left Hand Helix model.
7. Go to Parameter Editor, change the parameters:

Radius=11.9, Pitch=12.2, Units per Pitch=14, Units in Pitch=14, Units to Skip in Pitch=0, Discrete Height=3, \# Helix Starts=3.
8. Go to the Entities pane in Domain View, and drag the PDB file: 3j6f into Scripted Symmetry.
9. Choose the PDB file: $\mathbf{3 j 6 f}$ in Domain View, go to Symmetry Editor and change gamma to 270 .
10. On the left side of Suggest Parameters pane you should get: Grid Size =180, Integration Method=Monte Carlo, Integration Iterations: 1E6, Convergence: 0.001 Generated Points: 500, Updated Interval: 500 ms . If not repeat the instructions.
11. Enter the proposed parameters to the Preferences pane.
12. Go to the 2D Graph and click Generate in the Controls pane.
13. Go to File menu and choose Export 1D Graph, save the computed scattering curve as an *.out file.

PDB file with symmetry Part b:

Note: Run this example only on GPU or Remote D+. This is another way to compute the same model as PDB_Symmetry_Files Part a.

1. Go to Domain View pane on the top-left corner, choose PDB file: 3j6f_Dimer_2_2_Added_H_GCentered.pdb. Make sure to select the Center PDB option before pressing Add.
2. It is recommended to go to 3D Graph to see the structures you are about to compute.
3. Reduce the Level of Detail to minimum (this option can be found at the Preferences pane).
4. Choose PDB file: 3j6f in Domain View.
5. Go to Domain View, choose Uniform Hollow Cylinder, and press Add.
6. Try to change the Cylinder parameters so that it will envelope the PDB file $\mathbf{3 j 6 f}$. Make sure you insert the following parameters into Suggest parameters: $\mathbf{x}=6$, $\mathbf{y}=6, \mathbf{z = 8}, \mathbf{q}=5$.
7. Delete the Uniform Hollow Cylinder model.
8. On the left side of the Suggest Parameters pane you should get: Grid Size $=50$, Integration Method= Adaptive (VEGAS) Monte Carlo, Integration Iterations: 1E6, Convergence: 0.001, Generated Points: 500, Updated Interval: 500 ms . If not repeat the instructions.
9. Enter the proposed parameters to the Preferences pane.
10. Go to Domain View, choose Scripted Symmetry, and press Add. Choose the Left_Hand_Helix model, located in the relevant tutorial folder.
11. Go to Domain View, choose the Left Hand Helix model.
12. Go to Parameter Editor, insert the following parameters: Radius=11.9, Pitch=12.2, Units per Pitch=14, Units in Pitch=14, Units to Skip in Pitch=0, Discrete Height=3, \# Helix Starts=3.
13. Go to the Entities pane inside Domain View and drag the PDB file 3j6f into Scripted Symmetry.
14. Choose PDB file 3j6f in Domain View, go to Symmetry Editor, and change gamma to 270 .
15. In Symmetry Editor, make sure the option Use Grid From Here is ticked only next to the PDB file of and not next to the Left Hand Helix model.
16. Go to the 2D Graph and click Generate in the Controls pane.
17. Go to File menu and choose Export 1D Graph, save the computed scattering curve as an *.out file.
