Advanced ERC grant - TReX

imageParticipants

Postdocs:

Kenta Hotokezaka | The Princeton Gravity Initiative             Chi-Ho Edwin  Chan         Daniel   Kagan    

Kenta Hotokezaka  Chi-Ho (Edwin) Chan  Daniel Kagan

 

Tatsuya Matsumoto | Astronomy & Astrophysics       Noemie GLOBUS | PhD astrophysics | Extreme Light Infrastructure, Prague |  Research profile      

 

Tatsuya Matsumoto Noemi Globus         

Postdocs, Professional Specialists, and Associate Research Scholars |  Department of Astrophysical Sciences   HEMDA - HEMDA Staff    

Tamar Faran Gilad Svirski   Matteo Pais     Xiaping Tang

Students:

Ron Mor Barel Skuratovski Dekel Saban Odelia Teboul

Collaborators:

Home       Lyubarsky, Yuri      

Ehud Nakar Julian Krolik Yuri Lyubarski      Zhenya Derishev Taeho Rtu

Projects

GRBs image

Gamma Ray Bursts

Gamma Ray Bursts are the brightest explosions in the Universe. The  research spans numerous aspects of this events, ranging from the origin to their effects on Life on Earth. 

For more information see a popular reviews (PDF link): The Brightest Explosions in the Universe! 

 

  1. Kagan D., Nakar E., Piran T.,Physics of the saturation of particle acceleration in relativistic magnetic reconnection, 2018,MNRAS, 476,3902

  2. Granot J., Piran T., Bromberg O., Racusin J. L., Daigne F.,Gamma-Ray Bursts as Sources of Strong Magnetic Fields, 2018,smfu.book, 54,481

  3. Moharana R., Piran T.,Observational evidence for mass ejection accompanying short gamma-ray bursts, 2017,MNRAS, 472,L55

  4. Derishev E., Piran T.,The Physical Conditions of the Afterglow Implied by MAGIC’s Sub-TeV Observations of GRB 190114C, 2019,ApJL, 880,L27

  5. Derishev E., Piran T.,GRB Afterglow Parameters in the Era of TeV Observations: The Case of GRB 190114C, 2021,ApJ, 923,135

  6. Piran T.,GRBs' Rosseta stone - the sub-TeV emission observed in GRB 190114c (INVITED), 2021,heas.conf,19

  7. Piran T., Nakar E., Mazzali P., Pian E.,Relativistic Jets in Core-collapse Supernovae, 2019,ApJL, 871,L25

  8. Irwin C. M., Nakar E., Piran T.,The propagation of choked jet outflows in power-law external media, 2019,MNRAS, 489,2844

  9. Nakar E., Piran T.,The Observable Signatures of GRB Cocoons, 2017,ApJ, 834,28

  10. Irwin C. M., Linial I., Nakar E., Piran T., Sari R., Bolometric light curves of aspherical shock breakout, 2021,MNRAS, 508,5766

  11. Irwin C. M., Tang X., Piran T., Nakar E.,Jet-driven bubbles in Fanaroff-Riley type-I sources, 2019,MNRAS, 488,4926

  12. Yamasaki S., Piran T., Analytic modelling of synchrotron self-Compton spectra: Application to GRB 190114C, 2022,MNRAS, 512,2142

  13. Leiderschneider E., Piran T.,Gravitational radiation from accelerating jets, 2021,PhRvD, 104,104002

  14. Piran T.,Jet Gravitational Waves, 2022,  arXiv:2210.02740

_____________________________________________________________________________________________________________

TDE image

Tidal Disruption Events

TDEs – Tidal Disruption Events take place when a star that passes near a massive black hole at a Galactic center is thorn apart and disrupted. 

Jerusalem TDE Workshop-Link

  1. Ryu T., Krolik J., Piran T., Noble S. C.,Tidal Disruptions of Main-sequence Stars. I. Observable Quantities and Their Dependence on Stellar and Black Hole Mass, 2020,ApJ, 904,98

  2. Ryu T., Krolik J., Piran T., Noble S. C.,Tidal Disruptions of Main-sequence Stars. II. Simulation Methodology and Stellar Mass Dependence of the Character of Full Tidal Disruptions, 2020,ApJ, 904,99

  3. Ryu T., Krolik J., Piran T., Noble S. C.,Tidal Disruptions of Main-sequence Stars. III. Stellar Mass Dependence of the Character of Partial Disruptions, 2020,ApJ, 904,100

  4. Ryu T., Krolik J., Piran T., Noble S. C.,Tidal Disruptions of Main-sequence Stars. IV. Relativistic Effects and Dependence on Black Hole Mass, 2020,ApJ, 904,101

  5. Krolik J., Piran T., Ryu T.,Tidal Disruptions of Main-sequence Stars. V. The Varieties of Disruptions, 2020,ApJ, 904,68

  6. Chan C.-H., Piran T., Krolik J. H., Saban D.,Tidal Disruption Events in Active Galactic Nuclei, 2019,ApJ, 881,113

  7. Chan C.-H., Piran T., Krolik J. H.,Light Curves of Tidal Disruption Events in Active Galactic Nuclei, 2020,ApJ, 903,17

  8. Chan C.-H., Piran T., Krolik J. H., High-energy Emission from Tidal Disruption Events in Active Galactic Nuclei, 2021,ApJ, 914,107

  9. Matsumoto T., Piran T.,Generalized equipartition method from an arbitrary viewing angle, 2022, ,arXiv:2211.10051

  10. Ryu T., Krolik J., Piran T., Extremely Relativistic Tidal Disruption Events, 2022,arXiv,arXiv:2211.00059

  11. Matsumoto T., Piran T., Krolik J. H.,What powers the radio emission in TDE AT2019dsg: A long-lived jet or the disruption itself?, 2022,MNRAS, 511,5085

  12. Matsumoto T., Piran T.,Radio constraint on outflows from tidal disruption events, 2021,MNRAS, 507,4196

  13. Ryu T., Krolik J., Piran T.,Measuring Stellar and Black Hole Masses of Tidal Disruption Events, 2020,ApJ, 904,73

  14. Matsumoto T., Piran T., Limits on mass outflow from optical tidal disruption events, 2021,MNRAS, 502,3385

  15. Roth N., Rossi E. M., Krolik J., Piran T., Mockler B., Kasen D.,Radiative Emission Mechanisms, 2020,SSRv, 216,114

  16. Yalinewich A., Steinberg E., Piran T., Krolik J. H.,Radio emission from the unbound debris of tidal disruption events, 2019,MNRAS, 487,4083

  17. Svirski G., Piran T., Krolik J.,Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events, 2017,MNRAS, 467,1426

  18. Chan C.-H., Krolik J. H., Piran T.,Magnetorotational Instability in Eccentric Disks, 2018,ApJ, 856,12

  19. Ryu T., Krolik J., Piran T., The Impact of Shocks on the Vertical Structure of Eccentric Disks, 2021,ApJ, 920,130

  20. Chan C.-H., Piran T., Krolik J. H.,Nonlinear Evolution of the Magnetorotational Instability in Eccentric Disks, 2022,ApJ, 933,81

_____________________________________________________________________________________________________________

NASA/ Dana Berry

Binary Neutron Star Mergers

Mergers between binary neutron stars are prime candidates sources for gravitational wave that is searched for by advanced detectors like LIGO and Virgo. They are also, as I have predicted in 1989 the sources of short Gamma-Ray Bursts and the sites where heavy elements are synthesized. 

Colliding Neutron Stars as the Source of Heavy Elements-LinkPDF

  1. Abbott B. P., Abbott R., Abbott T. D., et al.,Multi-messenger Observations of a Binary Neutron Star Merger, 2017,ApJL, 848,L12

  2. Arcavi I., Howell D. A., McCully C., et al., LIGO/Virgo G298048: Las Cumbres Observatory Detection of The Possible Optical Counterpart in NGC 4993, 2017,GCN, 21538,1

  3. Arcavi I., McCully C., Hosseinzadeh G., et al.,Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory, 2017,ApJL, 848,L33

  4. Hallinan G., Corsi A., Mooley K. P., et al.,A radio counterpart to a neutron star merger, 2017,Sci, 358,1579

  5. Kasliwal M. M., Nakar E., Singer L. P., et al.,Illuminating gravitational waves: A concordant picture of photons from a neutron star merger, 2017,Sci, 358,1559

  6. Pian E., D'Avanzo P., Benetti S., et al.,Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger, 2017,Natur, 551,67

  7. Mooley K. P., Nakar E., Hotokezaka K., et al.,A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817, 2018,Natur, 554,207

  8. Nakar E., Piran T.,Implications of the radio and X-ray emission that followed GW170817, 2018,MNRAS, 478,407

  9. Gottlieb O., Nakar E., Piran T., Hotokezaka K.,A cocoon shock breakout as the origin of the γ-ray emission in GW170817, 2018,MNRAS, 479,588

  10. Nakar E., Piran T.,Implications of the radio and X-ray emission that followed GW170817, 2018,MNRAS, 478,407

  11. Hotokezaka K., Kiuchi K., Shibata M., Nakar E., Piran T.,Synchrotron Radiation from the Fast Tail of Dynamical Ejecta of Neutron Star Mergers, 2018,ApJ, 867,95

  12. Nakar E., Gottlieb O., Piran T., Kasliwal M. M., Hallinan G.,From γ to Radio: The Electromagnetic Counterpart of GW170817, 2018,ApJ, 867,18

  13. Gottlieb O., Nakar E., Piran T., Hotokezaka K.,A cocoon shock breakout as the origin of the γ-ray emission in GW170817, 2018,MNRAS, 479,588

  14. Bromberg O., Tchekhovskoy A., Gottlieb O., Nakar E., Piran T.,The γ-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta, 2018,MNRAS, 475,2971

  15. Gottlieb O., Nakar E., Piran T.,The cocoon emission - an electromagnetic counterpart to gravitational waves from neutron star mergers, 2018,MNRAS, 473,576

  16. Gottlieb O., Nakar E., Piran T.,Detectability of neutron star merger afterglows, 2019,MNRAS, 488,2405

  17. Matsumoto T., Nakar E., Piran T., Generalized compactness limit from an arbitrary viewing angle, 2019,MNRAS, 486,1563

  18. Matsumoto T., Nakar E., Piran T., Constraints on the emitting region of the gamma-rays observed in GW170817, 2019,MNRAS, 483,1247

  19. Pais M., Piran T., Lyubarsky Y., Kiuchi K., Shibata M.,The collimation of relativistic jets in post-neutron star binary merger simulations, 2022,arXiv,arXiv:2211.09135

  20. Ricci R., Troja E., Bruni G., et al.,Searching for the radio remnants of short-duration gamma-ray bursts, 2021,MNRAS, 500,1708

  21. Bruni G., O'Connor B., Matsumoto T., Troja E., Piran T., Piro L., Ricci R.,Late-time radio observations of the short GRB 200522A: constraints on the magnetar model, 2021,MNRAS, 505,L41

  22. Troja E., O'Connor B., Ryan G., et al., Accurate flux calibration of GW170817: is the X-ray counterpart on the rise?, 2022,MNRAS, 510,1902 

  23. Nakar E., Piran T., Afterglow Constraints on the Viewing Angle of Binary Neutron Star Mergers and Determination of the Hubble Constant, 2021,ApJ, 909,114

  24. Margalit B., Piran T.,Shock within a shock: revisiting the radio flares of NS merger ejecta and gamma-ray burst-supernovae, 2020,MNRAS, 495,4981

  25. Matsumoto T., Piran T.,On short GRBs similar to GRB 170817A detected by Fermi-GBM, 2020,MNRAS, 492,4283

 

_____________________________________________________________________________________________________________

Gold image

Nucleosynthesis and the origin of heavy (r-process) elements in the Universe

I have proposed that these elements (like gold) have been produced in collisions between neutron stars.  Recent observations of macronova that followed GW 170817 support these ideas 

  1. Hotokezaka K., Sari R., Piran T.,Analytic heating rate of neutron star merger ejecta derived from Fermi's theory of beta decay, 2017,MNRAS, 468,91

  2. Beniamini P., Piran T.,The Gravitational waves merger time distribution of binary neutron star systems, 2019,MNRAS, 487,4847

  3. Hotokezaka K., Beniamini P., Piran T.,Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts, 2018,IJMPD, 27,1842005

_____________________________________________________________________________________________________________

Black Hole image

 Black Holes

Link: 
The inner Structure of Black Holes - Can Black Holes be Portals to Other Universes?

  1. Hotokezaka K., Piran T.,Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO, 2017,ApJ, 842,111

  2. Piran Z., Piran T.,The Origin of Binary Black Hole Mergers, 2020,ApJ, 892,64

  3. Piran T., Hotokezaka K.,Who Ordered That? On The Origin of LIGO's Merging Binary Black Holes, 2018,arXiv,arXiv:1807.01336

  4. Yamaguchi M. S., Kawanaka N., Bulik T., Piran T.,Detecting Black Hole Binaries by Gaia, 2018,ApJ, 861,21

__________________________________________________________

Ultra High Energy Cosmic Rays

Ultra High Energy Cosmic Rays image

 

Ultra High Energy Cosmic Rays (UHECRs) and the most energetic particles that reach Earth from outer space. My research involves models for their origin and their composition.  Read moreabout Ultra High Energy Cosmic Rays

 

  1. Globus N., Piran T., Hoffman Y., Carlesi E., Pomarède D.,Cosmic ray anisotropy from large-scale structure and the effect of magnetic horizons, 2019,MNRAS, 484,4167

  2. Tang X., Piran T.,Positron flux and γ-ray emission from Geminga pulsar and pulsar wind nebula, 2019,MNRAS, 484,3491

  3. Globus N., Piran T.,The Extragalactic Ultra-high-energy Cosmic-Ray Dipole, 2017,ApJL, 850,L25

  4. Globus N., Allard D., Parizot E., Piran T.,Probing the Extragalactic Cosmic Rays Origin with Gamma-Ray and Neutrino Backgrounds, 2017,ICRC, 301,516

  5. Globus N., Allard D., Parizot E., Lachaud C., Piran T.,Can we reconcile the TA excess and hotspot with Auger observations?, 2017,ICRC, 301,493

  6. Globus N., Allard D., Parizot E., Piran T.,Probing the Extragalactic Cosmic-Ray Origin with Gamma-Ray and Neutrino Backgrounds, 2017,ApJL, 839,L22

  7. Benyamin D., Shaviv N. J., Piran T.,Electron-capture Isotopes Could Constrain Cosmic-Ray Propagation Models, 2017,ApJ, 851,109

  8. Nava L., Benyamin D., Piran T., Shaviv N. J.,Reconciling the diffuse Galactic γ-ray and the cosmic ray spectra, 2017,MNRAS, 466,3674
     

Other Relativistic Transients

 

  1. Matsumoto T., Chan C.-H., Piran T.,The origin of hotspots around Sgr A*: orbital or pattern motion?, 2020,MNRAS, 497,2385