Osmotic stress data

Osmotic stress data

This page includes osmotic pressure, osmolality and water activity data of aqueous solutions measured in our lab and others. 

Confused about units of osmotic pressure and their conversion? Try using our osmotic calculator-converter here.

Mono and disaccharides

Fructose

Fructose osmotic pressure vs. molality at 25 degrees Celsius
Osmolal = 0.01059*m^3 - 0.03173*m^2 + 1.02147*m

References
Unpublished data measured using a VAPRO 5520 Wescor osmometer. Please cite: https://scholars.huji.ac.il/danielharries/book/osmotic-stress-data.

MolalityOsmolality
0.087020.087
0.138460.137
0.251320.248
0.261790.254
0.480560.48
0.524410.53167
0.709220.712
0.784890.799
0.954160.95767
1.060591.06967
1.214251.209
1.325621.32
1.477861.47167
1.565311.5615
1.776911.77067
1.835931.82367
22.01933
2.034832.02933

 

Galactose

Galactose water activity and osmotic pressure

References

Please cite the following references when using this data. 

Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702

1) Galactose water activity and its temperature dependance

molality15°C20°C25°C45°C
0.302710.9950.9950.99410.995
0.603150.98910.98960.98870.9887
0.898840.98350.98430.98390.9842
1.201290.9770.97790.97780.9792
1.508260.97060.97250.97230.9736
1.806690.96490.96750.96720.9676
2.099710.95860.96070.9620.9618
2.403410.95360.955350.95620.9564

2) Galactose osmotic pressure

molalityOsmolality, Osmolal
0.3030.299
0.6030.607
0.8990.905
1.2011.213
1.5081.516
1.8071.811
2.012.146

Glucose

References

Please cite the following references when using this data. 

Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702

1) Glucose water activity and its temperature dependance

Measured using a AquaLab 4TE Dew pointWater Activity Meter. 

molal15°C25°C45°C
0.599020.990.9890.9898
1.201660.9770.97860.979
1.800890.96620.96840.967
2.398990.95270.9570.9554
2.995170.94180.94410.9425
3.57450.93020.9320.9315
4.197360.91920.920.919
4.785340.90840.90650.905

2) Glucose osmotic pressure

Measured using a VAPRO 5520 Wescor osmometer. 

molalityOsmolality, Osmolal
0.2460.243
0.4930.495
0.740.751
0.9820.987
1.2511.25
1.5021.505
1.781.789
2.0532.046

3) Glucose osmotic pressure vs. molality at 25 degrees Celsius

Osm = -0.00387*m^3 + 0.01766*m^2 + 0.99500*m

Unpublished data measured using a VAPRO 5520 Wescor osmometer.

MolalityOsmolality
0.085820.08333
0.136550.135
0.149480.146
0.191610.186
0.245680.24067
0.248080.23633
0.249280.24233
0.278790.27367
0.387850.385
0.466960.4745
0.499750.49933
0.504210.511
0.506680.51033
0.693970.7
0.756050.774
0.778740.78833
0.829510.82733
0.941890.948
1.003761.01767
1.013481.02867
1.19371.19967
1.247751.26333
1.260971.27733
1.477121.482
1.492861.51667
1.512361.534
1.761531.77
1.763951.79
1.769291.80033
22.03333
2.00072.034

 

 

 

Sorbitol

Sorbitol water activity and osmotic pressure

References

Please cite the following references when using this data. 

Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702

1) Sorbitol water activity and its temperature dependance

molal15°C25°C45°C
0.598850.9890.98920.9893
1.200870.9780.97880.9794
1.804920.9670.96850.9687
2.396940.9580.95740.9575
3.010270.9460.94620.9459
3.584690.9360.93490.9338
4.168010.92330.92370.923
4.790540.91240.91120.9101

2) Sorbitol osmotic pressure

molalityOsmolality, Osmolal
0.30.294
0.5990.593
0.9040.894
1.2011.18
1.371.338
1.8051.762
2.0942.045
1.6031.788

Sucrose

References

Please cite the following references when using this data. 

Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702

1) Sucrose water activity and its temperature dependance

molal15°C20°C25°C45°C
0.60010.98850.98870.98931.19623
1.196230.97430.97620.97780.9785
1.797310.95990.96260.96480.96455
2.393140.94510.94830.94980.95073
2.998760.92920.93230.93360.93423
3.606080.91260.91560.91730.91957
4.197940.89680.89960.90050.90352
4.797260.87780.8810.88330.8866

2) Sucrose osmotic pressure

molalityOsmolality, Osmolal
0.10.0963
0.30.305
0.4970.519
0.750.798
1.0041.073
1.2511.356
1.4991.648

 

3) Sucrose osmotic pressure vs. molality at 25 degrees Celsius

Osm = -0.016090*m^3 + 0.09970*m^2 + 0.99822*m

Unpublished data measured using a VAPRO 5520 Wescor osmometer. Cite: https://scholars.huji.ac.il/danielharries/book/osmotic-stress-data.

MolalityOsmolality
0.150110.15133
0.248080.24833
0.249560.249
0.300460.3035
0.455880.472
0.496840.527
0.502850.53533
0.522560.54467
0.660830.7035
0.747660.80033
0.751190.80467
0.99331.07067
1.006391.08533
1.03491.112
1.100241.197
1.231141.34767
1.252961.36667
1.274471.4025
1.413151.56433
1.488681.65
1.543621.726
1.706971.933
1.92072.16267
22.26733
2.033822.28867
2.044922.3365

 

 

Trehalose

Trehalose osmotic pressure and its temperature dependance

1) Trehalose osmotic pressure vs. molality at 25 degrees Celsius

References

Please cite the following references when using this data. 

a - https://doi.org/10.1021/bi992887l Osmolality was aquired from figure 1 using the Origin Digitizer tool.
b - https://doi.org/10.1021/jp109780n Part of this data appears in figure S2 in the form of an osmotic coefficient. 
c - https://doi.org/10.1016/j.foodchem.2017.06.047 From figure 9.
d - https://doi.org/10.1021/jacs.3c08702 Osmolality was calculated from the water activity data in table S11. 

Courtenay et al.aSapir et al.bPoplinger et al.cOlgenblum et al.d
[molality], mol/kgOsmolality, Osmolal[molality], mol/kgOsmolality, Osmolal[molality], mol/kgOsmolality, Osmolal[molality], mol/kgOsmolality, Osmolal
0.0600.0460.1990.2000.0410.0410.3010.306
0.0830.0790.3950.4160.0640.0640.5990.631
0.1210.1210.5900.6330.0850.0830.8990.964
0.1500.1440.6810.7440.1090.1051.2001.315
0.1660.1640.9051.0020.1630.1631.5021.635
0.1910.1851.0661.2020.2050.2091.8012.025
0.2080.2131.1741.3070.3490.3602.0972.442
0.2560.2551.2421.3920.4010.424  
0.3200.3231.4661.6740.5220.543  
0.3450.3551.6591.8930.6080.643  
0.3660.3751.7822.0760.7480.802  
0.4070.4171.9382.2500.8490.919  
0.4380.4372.1862.5621.0111.078  
0.4380.4692.3972.8301.1101.214  
0.4860.524  1.3341.477  
0.5590.574  1.5611.771  
0.5590.619  1.6391.856  
0.6020.654  1.9102.141  
    1.9102.171  

Trehalose plot

The black dashed line corresponds to a quadratic fit to all four data sets, Osm=0.0652m^2+1.0244m. 

2) Trehalose osmotic pressure vs. molality at different temperatures

Olgenblum et al.d
[trehalose], mol/kg150C200C250C450C
0.3010.3340.3230.3060.313
0.5990.6540.6140.6310.595
0.8991.0090.9980.9640.880
1.2001.4071.2641.3151.231
1.5021.8531.7151.6351.581
1.8012.2512.1462.0251.972
2.0972.6692.5062.4422.414

fig4d_02

Fitted lines correspond to the following quadratic terms:

15 degrees: Osmolal = 1.042m + 0.113m^2
20 degrees: Osmolal = 0.974m + 0.109m^2
25 degrees: Osmolal = 0.991m + 0.079m^2
45 degrees: Osmolal = 0.879m + 0.125m^2

 

 

Organic solutes

Choline chloride

Choline chloride osmotic pressure vs. molality at 25 degrees Celsius

Reference

Please use the following references when using this data. 

Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://doi.org/10.3390/pharmaceutics15051462.

Shumilin et al
molality, mol/kgOsmolality, Osmolal
0.9921.721
1.9933.408
4.0057.596
5.99012.640
7.84317.904
9.73123.464
14.59138.099
20.18053.945
23.18261.702

This data set is adequately captured by the cubic fit:
Osmolal = -0.00291*m^3 + 0.11547*m^2 + 1.54144*m

 

 

Glycerol

Glycerol water activity and osmotic pressure

References

Please cite the following references when using this data. 

Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702

1) Glycerol water activity and its temperature dependance

Olgenblum et al
molalactivity, 15°Cactivity, 25°Cactivity, 45°C
1.221270.97780.97770.9785
1.801210.96780.96730.9679
2.419940.95660.9570.9572
2.952610.9470.94830.9488
3.544140.93630.93680.939
4.218880.92560.92580.9264
4.747220.91510.91580.9184

2) Glycerol osmotic pressure

Olgenblum et al
molalityOsmolality, Osmolal
0.280.2783
0.60.612
0.9210.924
1.2211.246
1.5161.502
1.8011.802
2.12.063

 

Glycine Betaine

Glycine Betaine  osmotic pressure vs. molality at 25 degrees Celsius

References

Please cite the following references when using this data:

Shakhman, Yuri, and Daniel Harries. "How glycine betaine modifies lipid membrane interactions." ChemSystemsChem 3, no. 5 (2021): e2100010. https://doi.org/10.1002/syst.202100010

Osmotic pressure was measured using VAPRO 5520 Wescor osmometer. 

Shakhman et al
[molality], mol/kgOsmolality, Osmolal
0.0090.001
0.0190.011
0.1000.099
0.1110.098
0.2010.199
0.2130.199
0.3010.314
0.3060.308
0.3990.426
0.4070.422
0.5040.546
0.5050.534
0.7010.782
0.7030.763
0.8440.934
0.8500.955
0.9911.115
0.9951.132
1.2081.394
1.4661.725
1.5031.785
1.7532.112
1.9662.375
1.9992.398
2.4793.359
2.4983.145

The osmolality in this concentration range fits the following quadratic polynom: Osmolality=0.117*m^2 + 1.003*m. 

The molality of betaine in water can be estimated from the refractive index at 25 degrees Celsius according to the following term:

[Betaine], mol/kg = 496.892*RI^2 - 1266.500*RI + 805.356

TMAO

Trimethylamine N-oxide (TMAO) osmotic pressure at 25 degrees Celsius

References

Please cite the following references when using this data. 

a - Sukenik, Shahar, Shaked Dunsky, Avishai Barnoy, Ilan Shumilin, and Daniel Harries. “TMAO mediates effective attraction between lipid membranes by partitioning unevenly between bulk and lipid domain.” Physical Chemistry Chemical Physics 19 (2017): 29862-29871.

b - Shakhman, Yuri, Ilan Shumilin, and Daniel Harries. "Urea counteracts trimethylamine N-oxide (TMAO) compaction of lipid membranes by modifying van der Waals interactions." Journal of Colloid and Interface Science 629 (2023): 165-172. https://doi.org/10.1016/j.jcis.2022.08.123

Sukenik et al.aShakhman et al.b
[TMAO], mol/kgOsmolality, Osmolal[TMAO], mol/kgOsmolality, Osmolal
0.20.1990.0500.051
0.50.5390.0500.049
11.1610.1500.145
1.51.8100.1500.150
  0.2500.252
  0.2500.256
  0.3010.306
  0.4000.424
  0.4000.422
  0.4020.414
  0.5500.601
  0.5500.594
  0.7000.780
  0.7000.774
  0.8500.964
  0.8500.959
  1.0001.157
  1.0001.149
  1.2001.373

In this TMAO molal (m) concentration range, the following quadratic polynom adequately reproduces the osmotic pressure:

 

Osmolality = 0.1305*m^2 + 1.0121*m

 

Urea

Urea osmotic pressure vs. molality at different temperatures

Reference: Stokes, R. H. "Thermodynamics of aqueous urea solutions." Australian Journal of Chemistry 20, no. 10 (1967): 2087-2100.https://doi.org/10.1071/CH9672087

Robert Harold Stokes
molality, mol/kg20C50C100C200C250C300C400C
0.50.4870.4870.4880.4890.4900.4910.491
10.9500.9520.9550.9600.9620.9640.968
1.51.3941.3981.4051.4161.4201.4251.432
21.8231.8301.8411.8591.8661.8731.885
2.52.2392.2502.2652.2912.3022.3122.330
32.6452.6592.6792.7142.7292.7432.766
3.53.0413.0593.0853.1293.1483.1663.197
43.4303.4513.4833.5383.5623.5833.621
54.1884.2174.2624.3394.3724.4024.455
64.9244.9635.0215.1205.1645.2045.274
75.6455.6925.7645.8885.9435.9936.081
86.3546.4106.4966.6466.7106.7706.877
9 7.1247.2237.3947.4697.5387.662
10 7.8417.9508.1398.2218.2978.431
11   8.8818.9669.0449.180
12   9.6299.7079.7789.899

Urea osmotic pressure vs. molality at 25 degrees Celsius

Reference: Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://10.3390/pharmaceutics15051462

Shumilin et al.
molality, mol/kgOsmolality, Osmolal
0.1010.091
0.1770.151
0.2530.227
0.5060.479
0.7630.717
0.9980.924
1.0120.939
1.2001.094
1.2711.166
1.4001.258
1.5201.370
1.6011.423
1.7651.574
1.8031.584
1.9971.745
2.0001.821
2.0171.783
2.1231.900
2.5132.148
2.9932.616
2.9962.481
4.0133.479
4.9924.277
6.0325.139
7.0005.838
7.9866.665
8.9967.422
9.9738.144
11.0058.902
11.9709.739

The data set is adequately captured by the quadratic fit:
Osmolal = -0.00711m^2 + 0.89132m. 

Polymers

Others

PVP 10K

PVP Osmotic pressure data, (dynes/cm2) for PVP polymer solution (MW 10000).

Wt%Log P (dynes/cm2)
2.56.53
5.06.55
7.56.67
10.06.73
12.56.79
15.06.85
17.56.92
20.06.97
22.57.02
25.07.09
27.57.13
30.07.22

The equation that fits the data is the following:
log P = 0.025 (wt%) + 6.468
Note: This equation should only be applied over the range of pressures measured.

PVA 20K

PVP Osmotic pressure data, (dynes/cm2) for POLYVINYLALCHOL (PVA) polymer solution (MW 10000).

Wt%Log P (dynes/cm2)
2.06.39
4.06.42
6.06.45
8.06.47
10.06.49
12.06.51

The equation that fits the data is the following:
log P = -0.001 (wt%)2 + 0.025 (wt%) + 6.327
Note: This equation should be applied only over the range of pressures measured.

Polyethylene glycols

PEG300

polyethylene glycol MW 300

wt%     	log P (dynes/cm^2)

2.6		6.36
5.0		6.73
10.0		7.00
15.0		7.23
20.0		7.41
25.0		7.57
30.0		7.71

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 4.79, b = 1.28 and c = 0.24

Note that it should be applied only over the range of pressures measured.

PEG400

PEG400 osmotic pressure and its temperature dependance

1) PEG400 osmotic pressure vs. molality at different temperatures

Please use the following reference when using this data. 

Reference - https://doi.org/10.1002/pro.4573. Osmotic pressure was calculated from the water activity data in table S4. 

Wt%15 degrees C20 degrees C25 degrees C35 degrees C45 degrees C
53.693.743.653.703.71
108.558.528.178.248.23
1514.914.713.813.913.8
2023.222.621.021.021.0
2534.032.830.230.030.0
3048.145.942.041.541.2
3566.763.157.356.455.6
4091.986.377.776.274.8
4512511710410299.6
50172159141137133

 

2) PEG400 Osmotic pressure data (atm)

Reference - see Peter Rand.

PEG400 Osmotic pressure data (dyn/cm^2)

wt%     log P (dynes/cm^2)

2.5      6.3
5         6.55
10       6.93
15       7.14
20       7.33
25       7.5
30       7.65

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c where a = 5.29, b = 0.73 and c = 0.34

Note that it should be applied only over the range of pressures measured.

 

PEG600

polyethylene glycol MW 600

wt%		log P (dynes/cm^2)

2.5		6.22
5.0		6.43
10.0		6.80
15.0		7.01
20.0		7.20
25.0		7.38
30.0		7.53
35.0		7.68	
5.0		6.15
10.0		6.72
15.0		6.96
20.0		7.13
25.0		7.30
30.4		7.42
35.2		7.57
40.5		7.64
45.0		7.92
61.5		8.35
67.5		8.49
45.0		7.92
40.0		7.80
5.0		6.34

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 5.63, b = 0.33 and c = 0.51

Note that it should be applied only over the range of pressures measured.

	

PEG1000

polyethylene glycol MW 1000

wt%		log P (dynes/cm^2)

5.0		6.07
10.0		6.61
15.0		6.82
20.0		7.08
25.0		7.34
30.0		7.46
35.0		7.55
40.0		7.65
45.0		7.79
50.0		7.89
55.0		7.93
60.0		7.95	
2.5		6.11
5.0		6.27
10.0		6.54
15.0		6.86
20.0		7.05
25.0		7.26
30.0		7.43
35.0		7.58

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 4.87, b = 0.80 and c = 0.34

Note that it should be applied only over the range of pressures measured.

	

PEG1500

polyethylene glycol MW 1500

wt%		log P (dynes/cm^2)

5.0		5.92
10.0		6.49
15.0		6.78
20.0		6.89
25.0		7.27
30.0		7.41
35.0		7.38
40.0		7.60
45.0		7.63
50.0		7.83
60.0		8.03
5.0		6.18
10.0		6.52
15.0		6.76
20.0		6.97
25.0		7.18
30.0		7.36
35.0		7.53

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 3.72, b = 1.57 and c = 0.24

Note that it should be applied only over the range of pressures measured.

PEG2000

polyethylene glycol MW 2000

wt%		log P (dynes/cm^2)

5.0		6.20
10.0		6.39
15.0		6.70
20.0		6.91
25.0		7.13
30.0		7.32
35.0		7.49
40.0		7.66	
9.9		6.32
15.0		6.60
20.0		6.95
25.0		7.09
30.0		7.28
34.7		7.40	
5.0		6.04
10.0		6.37
15.0		6.79
20.0		6.94	
10.0		6.38
20.0		6.90
30.0		7.32
40.0		7.66
5.0		6.15
5.0		6.14
15.0		6.66
15.0		6.65
15.0		6.63
15.0		6.68
25.0		7.1
25.0		7.11	
35.0		7.50	
35.0		7.51

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 5.60, b = 0.18 and c = 0.67

Note that it should be applied only over the range of pressures measured.

PEG3000

polyethylene glycol MW 3000

wt%		log P (dynes/cm^2)

10.0		6.26
15.0		6.61
20.0		6.84
25.0		7.07
30.0		7.28
35.0		7.46

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 4.42, b = 0.74 and c = 0.40

Note that it should be applied only over the range of pressures measured.

PEG4000

polyethylene glycol MW 4000

wt%		log P (dynes/cm^2)

5.0		5.98
10.0		6.29
15.0		6.64
20.0		6.86
25.0		7.11
30.0		7.23
35.0		7.40

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 4.93, b = 0.50 and c = 0.45

Note that it should be applied only over the range of pressures measured.

PEG6000

polyethylene glycol MW 6000

wt%		log P (dynes/cm^2)

10.0		6.23
15.0		6.51
20.0		6.79
25.0		7.02
30.0		7.23
35.0		7.43

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 5.12, b = 0.28 and c = 0.59

Note that it should be applied only over the range of pressures measured.

	

PEG8000 vs T

PEG 8000 Osmotic Pressure Data at various temperatures

PEG8000 Osmotic pressure data, (atm)

Wt%10 degrees C20 degrees C30 degrees C35 degrees C40 degrees C
5.445.407.385.373.367
101.631.441.311.251.19
153.953.433.082.892.74
207.916.786.045.665.33
2514.112.010.710.09.43
3023.319.917.616.615.6
3536.731.327.826.124.7
4056.748.242.940.438.3
4585.872.564.560.857.8
5012610694.389.284.8
54173144127121115
peg8000.pdf28 KB

PEG 10k

polyethylene glycol MW 10,000

wt%		log P (dynes/cm^2)

10.0		6.16
15.0		6.45
20.0		6.75
25.0		7.00
30.0		7.24
35.0		7.43

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 4.99, b = 0.29 and c = 0.60

Note that it should be applied only over the range of pressures measured.

PEG 20K

polyethylene glycol MW 20,000

wt%		log P (dynes/cm^2)

1.5		4.59
2.9		4.98
3.6		5.15
4.7		5.34
5.8		5.55
6.3		5.63
7.1		5.76
9.0		5.89
12.1		6.08
13.1		6.18
14.2		6.29
16.0		6.47
18.3		6.70
18.8		6.68
20.8		6.77
21.6		6.83
22.2		6.83
22.8		6.94
19.0		6.68
22.1		6.83
23.7		6.93
25.0		6.94
26.2		7.03
28.8		7.11
32.7		7.26
34.8		7.34
35.6		7.32
38.0		7.45
39.5		7.48
41.7		7.54
43.2		7.59
45.5		7.67
47.5		7.73

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 1.57, b = 2.75 and c = 0.21

Note that it should be applied only over the range of pressures measured.


polyethylene glycol MW 20,000
	At a Temperature of 7-8 degrees C

wt%		log P (dynes/cm^2)

15.3		6.56
17.8		6.75
18.3		6.79
19.5		6.82
20.8		6.91
21.3		6.92
22.9		6.99
23.2		7.00
24.3		7.04

Me-PEG2000

METHYLATED polyethylene glycol MW 2000

wt%		log P (dynes/cm^2)

10.3		6.48
15.1		6.72
24.8		7.20
35.5		7.45

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 1.34, b = 3.66 and c = 0.14

Note that it should be applied only over the range of pressures measured.

Polysaccharides

Dextran 10K

dextran 10,000 MW

wt%		log P (dynes/cm^2)

14.7		5.92
20.8		6.18
23.4		6.38
30.2		6.59
34.2		6.85

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 4.52, b = 0.28 and c = 0.60

Note that it should be applied only over the range of pressures measured.

Dextrans 275-2000K

dextran 275,000 to 2,000,000 MW

wt%		log P (dynes/cm^2)

2.0		4.03
3.0		4.20
5.0		4.68
6.0		4.85
8.0		5.08
12.0		5.42
17.0		5.77
20.0		5.94
25.0		6.27
28.5		6.51
32.5		6.67
39.3		6.99
14.8		5.65
17.5		5.87
19.8		5.98
20.8		6.00
25.0		6.27	
28.6		6.41
30.5		6.54
32.2		6.62
35.7		6.77
5.6		4.71
9.0		5.07
16.5		5.73

An equation that fits this data is the following.

log P = a + b * (wt%) ^ c

where a = 2.48, b = 1.22 and c = 0.35

Note that it should be applied only over the range of pressures measured.

	

Salts

Calcium Chloride

 

CaCl2 osmotic pressure vs. molality at 25 degrees Celsius

References

Please cite the following references when using this data:

- Robinson, Robert Anthony, and Robert Harold Stokes. Electrolyte solutions. Courier Corporation, 2002.

b - Unpublished data measured using a VAPRO 5520 Wescor osmometer. Cite: https://scholars.huji.ac.il/danielharries/book/osmotic-stress-data.

Robinson & Stokesathis groupb
MolalityOsmotic Comolal, mol/kgosmolality
0.1000.2560.0500.131
0.2000.5170.1000.251
0.3000.7880.1500.386
0.4001.0730.2000.509
0.5001.3760.2490.652
0.6001.6920.2990.780
0.7002.0220.3480.907
0.8002.3710.3991.046
0.9002.7460.4471.172
1.0003.1380.5001.327
1.2003.985  
1.4004.918  
1.6005.938  
1.8007.047  
2.0008.256  
2.50011.760  
3.00016.011  
3.50020.801  
4.00026.184  
4.50032.171  
5.00038.610  
5.50045.260  
6.00052.038  

 

Sodium perchlorate

Sodium perchlorate osmotic pressure vs. molality at 25 degrees Celsius

Reference: Shumilin, Ilan, and Daniel Harries. "Enhanced solubilization in multi-component mixtures: Mechanism of synergistic amplification of cyclodextrin solubility by urea and inorganic salts." Journal of Molecular Liquids 380 (2023): 121760. https://doi.org/10.1071/CH9672087

Shumilin et al.
molality, mol/kgOsmolality, Osmolal
0.1000.212
0.2000.377
0.2510.456
0.2510.449
0.2990.526
0.4000.650
0.4970.851
0.4980.898
0.4980.890
0.5971.032
0.6991.243
0.7511.354
0.7511.318
0.8001.488
0.9001.585
0.9921.818
1.0031.749
1.0031.775
1.2482.144
1.2482.181
1.4682.467
1.4682.625
1.4932.705
1.6672.791
1.6672.976
1.9993.698
2.0013.522
2.0013.645
2.4984.641
2.9835.665

 

 

Ternary solutions

TMAO + PEG 20K

 

Trimethylamine N-oxide (TMAO) + 20K Polyethylene Glycole (PEG) osmotic pressure at 25 degrees Celsius

References

Please cite the following references when using this data. 

Sukenik, Shahar, Shaked Dunsky, Avishai Barnoy, Ilan Shumilin, and Daniel Harries. “TMAO mediates effective attraction between lipid membranes by partitioning unevenly between bulk and lipid domain.” Physical Chemistry Chemical Physics 19 (2017): 29862-29871.

 [TMAO] (m) =>0.20.511.5
 [PEG, 20K] (wt%)P(mOsm)
 0198.5538.166671160.61809.4
 0.5--------
 1.5--------
 3214.75592.2511851965.75
 6253.75657.51351.252163.25
 10328.5810.751530.252345
 16--------
 259491752.666672756.5--
fitting parameters for the functional form P=B0 + B1*(Wt%)+ B2*(Wt%)^2
B0Value199.19281538.297641143.351941803.48611
Standard Error2.131915.5239327.735422.77159
B1Value1.8919912.3813421.087261.94396
Standard Error0.507451.314846.6017811.01607
B2Value1.123751.448141.73897-0.74124
Standard Error0.018650.048320.242621.04188
StatisticsAdj. R-Square0.999940.999840.997690.98982

 

Urea + choline chloride (Reline)

 

Urea + choline chloride osmotic pressure at 2:1 mole ratio and other ratios 

 

1) Urea + choline chloride osmotic pressure at 2:1 (Reline) mole ratio and 25 degrees Celsius

We define Reline as two urea and one choline chloride molecules. When mixed together at this 2:1 (urea:cholinechloride mole ratio) ratio, they form a deep eutectic solvent, termed Reline. A 1mol/kg Reline solution contains 2 mol/kg urea and 1mol/kg choline chloride. 

References

Please use the following reference when using this data. 

Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://10.3390/pharmaceutics15051462

Shumilin et al
molality, mol/kgOsmolality, Osmolal
0.2030.544
0.4221.287
0.4281.374
0.4281.334
0.9533.059
0.9602.952
0.9622.927
1.6475.040
1.6495.247
1.6505.182
2.5558.171
2.5597.980
2.5688.086
3.82112.324
3.84712.603
3.87312.682
5.75719.158
5.78119.388
5.78319.485
8.78729.954
9.01130.589
9.01230.488
11.57238.143
15.30449.673
15.33249.499
15.36847.205
16.37750.126
17.49953.130
18.75156.666
20.16059.050
21.75762.801
23.57966.106
25.68370.069
28.13574.475
31.03277.851
34.50681.680
34.62486.986
34.65187.101
38.74788.430
44.04794.288
50.848102.674
59.902110.068
72.544117.885

The data set is adequately captured by the following cubic term:
Osmolal = 0.00023*m^3 - 0.04598*m^2 + 3.75984*m

2) Urea + choline chloride osmotic pressure at all ratios

References

Please use the following reference when using this data:

Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://10.3390/pharmaceutics15051462

Shumilin et al.
[urea], mol/kg[choline chloride], mol/kgOsmolality, Osmolal
0.25715.92841.008
0.4060.2030.558
0.8440.4221.293
0.8550.4281.350
0.9984.99910.687
1.0002.0004.271
1.00910.45025.581
1.70015.75741.241
1.9060.9533.084
1.9200.9602.967
1.9250.9622.908
1.9999.92524.881
2.30115.68441.241
2.78815.62641.241
2.9984.99912.120
3.02210.45027.007
3.2951.6475.057
3.2971.6495.239
3.3001.6505.178
3.97215.48641.124
4.0022.0006.537
4.87510.45028.010
4.9874.99913.448
5.00519.78754.343
5.0129.92526.558
5.1092.5558.186
5.1182.5597.993
5.1362.5688.057
5.46618.13847.668
5.65218.70548.194
6.84424.23567.259
6.9804.99914.737
6.98415.12541.241
7.0222.0008.768
7.34625.85467.633
7.6433.82112.327
7.6943.84712.606
7.7473.87312.675
7.8379.92528.010
7.96310.45029.502
9.0251.99910.151
9.92410.45030.647
9.9354.99916.728
10.14219.97853.318
10.98714.64841.828
11.0002.00011.570
11.0189.92529.691
11.5145.75719.184
11.5615.78119.420
11.5665.78319.499
11.82321.67057.223
11.95319.78755.840
12.62310.45031.915
12.9891.99913.096
13.0035.00018.637
13.50828.06171.721
13.9879.92531.131
14.7922.00014.304
14.9015.00019.815
14.94910.45033.112
15.42614.11842.183
15.46828.33275.052
16.9341.23315.028
16.9709.92532.511
17.3984.99921.426
17.5738.78729.976
17.8842.48617.332
18.0219.01130.551
18.0241.99916.653
18.0259.01230.455
18.06410.45034.439
18.3482.00016.878
18.40019.78657.379
18.5341.66216.578
18.6995.00022.249
18.8513.76219.974
19.1991.79117.105
19.2574.30021.263
19.29913.65542.540
19.7241.89817.408
19.9359.92533.925
20.15010.45035.376
20.21723.94162.612
20.6306.11325.581
20.67925.92766.518
20.7653.09420.214
21.00013.45342.779
21.4413.04520.534
21.6077.40128.844
21.8449.92534.853
21.9081.92018.949
21.97613.33642.659
22.2978.31231.326
22.9203.52822.083
23.14511.57238.176
23.3349.68234.957
23.89410.42036.758
24.9805.79827.643
25.15312.95642.899
25.3393.85923.677
25.52632.36979.284
25.74019.78759.123
25.75512.87843.020
25.76212.88343.140
26.7909.92536.974
27.5786.48129.881
28.8806.56730.551
30.06627.81471.119
30.59535.51785.654
30.60815.30449.669
30.66515.33249.533
30.73615.36847.146
31.0339.68238.286
31.1377.13631.326
31.34131.05076.135
32.75416.37750.078
32.96419.78660.757
34.99617.49953.173
35.1159.74638.731
36.31613.07147.276
36.31819.78761.257
36.67311.57343.748
37.50118.75156.604
39.84337.49886.439
40.32020.16059.123
40.38412.36245.107
40.39531.87676.135
43.00117.36057.379
43.51321.75762.783
44.31419.78763.129
46.04615.32052.884
47.16023.57966.152
48.56116.98254.343
50.57440.29389.136
51.36625.68370.128
51.92923.08769.155
54.45546.84997.792
56.27128.13574.412
56.40025.95674.624
57.02738.41886.968
57.41943.79694.046
58.61623.85770.325
62.06531.03277.912
62.94830.15781.408
66.89732.68985.138
69.01334.50681.649
69.25034.62486.968
69.26827.16069.737
69.30234.65186.968
72.09436.02489.972
72.73849.28493.744
73.99631.35777.687
74.84032.94085.138
77.49638.74788.313
79.32458.664105.767
81.11136.45090.253
86.63539.54294.653
87.73550.49698.770
88.09444.04794.348
95.25661.765107.663
101.69650.848102.509
103.31444.52095.267
106.43744.92989.136
109.14452.144108.051
109.83251.60898.442
111.96160.024106.518
119.80559.902110.028
125.93661.544115.525
132.93670.856114.207
143.84665.185112.078
145.09272.544117.792
149.91274.967126.279
150.70175.259116.874
160.67280.339115.525
163.93081.959122.124
169.496101.496128.480
212.445118.085135.658
241.004114.722140.318
365.581195.946147.737
394.787193.131162.154
416.403216.096154.479
827.672413.745167.552
831.636415.870166.430
847.309423.549162.154
862.053431.040159.150

Urea + sodium perchlorate

Urea + NaClOosmotic pressure at 25 degrees Celsius

References

Please use the following reference when using this data. 

Shumilin, Ilan, and Daniel Harries. "Enhanced solubilization in multi-component mixtures: Mechanism of synergistic amplification of cyclodextrin solubility by urea and inorganic salts." Journal of Molecular Liquids 380 (2023): 121760. https://doi.org/10.1016/j.molliq.2023.121760

Shumilin et al.
[urea], mol/kg[NaClO4], mol/kgOsmolality, Osmolal
0.2440.2510.671
0.2440.5021.122
0.2440.7541.521
0.2441.0001.979
0.4921.5133.143
0.4971.9994.032
0.4970.9902.210
0.5002.4945.057
0.9981.9994.451
1.0002.4945.362
1.0000.2501.464
1.0000.4001.635
1.0000.5491.864
1.0000.6992.210
1.0091.5133.556
1.0950.9902.733
1.9881.5134.331
1.9981.9995.178
2.0000.4992.674
2.0050.9903.438
2.0062.4946.101
2.9820.4993.438
2.9832.4946.850
2.9901.9995.977
2.9991.5135.118
3.0060.9904.271
3.9711.5135.853
3.9822.4947.609
3.9950.9904.996
4.0001.9996.724
4.0170.4994.271
4.9052.5318.250
5.1030.5965.178
5.1030.9895.792
5.1031.4956.599
5.1031.9927.418
5.8451.5127.228
5.8451.9927.993
5.8452.5238.898
5.9680.2515.423
6.9481.0007.292
6.9660.5006.537
6.9660.7526.913
6.9661.0027.292
6.9661.2527.673
6.9661.5018.057
7.1802.0489.094
7.1802.63310.085
7.2170.2626.412
7.9520.2516.913
8.0360.6137.482
8.0361.0708.186
8.0361.5268.833
8.0362.1279.752
8.0362.65510.553
8.8260.2517.609
8.8260.6158.121
8.8261.0018.638
8.8261.5199.357
8.8262.02310.151
9.3992.49611.297