This page includes osmotic pressure, osmolality and water activity data of aqueous solutions measured in our lab and others.
Confused about units of osmotic pressure and their conversion? Try using our osmotic calculator-converter here.
Fructose osmotic pressure vs. molality at 25 degrees Celsius
Osmolal = 0.01059*m^3 - 0.03173*m^2 + 1.02147*m
References
Unpublished data measured using a VAPRO 5520 Wescor osmometer. Please cite: https://scholars.huji.ac.il/danielharries/book/osmotic-stress-data.
Molality | Osmolality |
0.08702 | 0.087 |
0.13846 | 0.137 |
0.25132 | 0.248 |
0.26179 | 0.254 |
0.48056 | 0.48 |
0.52441 | 0.53167 |
0.70922 | 0.712 |
0.78489 | 0.799 |
0.95416 | 0.95767 |
1.06059 | 1.06967 |
1.21425 | 1.209 |
1.32562 | 1.32 |
1.47786 | 1.47167 |
1.56531 | 1.5615 |
1.77691 | 1.77067 |
1.83593 | 1.82367 |
2 | 2.01933 |
2.03483 | 2.02933 |
Galactose water activity and osmotic pressure
References
Please cite the following references when using this data.
Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702.
1) Galactose water activity and its temperature dependance
molality | 15°C | 20°C | 25°C | 45°C |
0.30271 | 0.995 | 0.995 | 0.9941 | 0.995 |
0.60315 | 0.9891 | 0.9896 | 0.9887 | 0.9887 |
0.89884 | 0.9835 | 0.9843 | 0.9839 | 0.9842 |
1.20129 | 0.977 | 0.9779 | 0.9778 | 0.9792 |
1.50826 | 0.9706 | 0.9725 | 0.9723 | 0.9736 |
1.80669 | 0.9649 | 0.9675 | 0.9672 | 0.9676 |
2.09971 | 0.9586 | 0.9607 | 0.962 | 0.9618 |
2.40341 | 0.9536 | 0.95535 | 0.9562 | 0.9564 |
2) Galactose osmotic pressure
molality | Osmolality, Osmolal |
0.303 | 0.299 |
0.603 | 0.607 |
0.899 | 0.905 |
1.201 | 1.213 |
1.508 | 1.516 |
1.807 | 1.811 |
2.01 | 2.146 |
References
Please cite the following references when using this data.
Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702.
1) Glucose water activity and its temperature dependance
Measured using a AquaLab 4TE Dew pointWater Activity Meter.
molal | 15°C | 25°C | 45°C |
0.59902 | 0.99 | 0.989 | 0.9898 |
1.20166 | 0.977 | 0.9786 | 0.979 |
1.80089 | 0.9662 | 0.9684 | 0.967 |
2.39899 | 0.9527 | 0.957 | 0.9554 |
2.99517 | 0.9418 | 0.9441 | 0.9425 |
3.5745 | 0.9302 | 0.932 | 0.9315 |
4.19736 | 0.9192 | 0.92 | 0.919 |
4.78534 | 0.9084 | 0.9065 | 0.905 |
2) Glucose osmotic pressure
Measured using a VAPRO 5520 Wescor osmometer.
molality | Osmolality, Osmolal |
0.246 | 0.243 |
0.493 | 0.495 |
0.74 | 0.751 |
0.982 | 0.987 |
1.251 | 1.25 |
1.502 | 1.505 |
1.78 | 1.789 |
2.053 | 2.046 |
3) Glucose osmotic pressure vs. molality at 25 degrees Celsius
Osm = -0.00387*m^3 + 0.01766*m^2 + 0.99500*m
Unpublished data measured using a VAPRO 5520 Wescor osmometer.
Molality | Osmolality |
0.08582 | 0.08333 |
0.13655 | 0.135 |
0.14948 | 0.146 |
0.19161 | 0.186 |
0.24568 | 0.24067 |
0.24808 | 0.23633 |
0.24928 | 0.24233 |
0.27879 | 0.27367 |
0.38785 | 0.385 |
0.46696 | 0.4745 |
0.49975 | 0.49933 |
0.50421 | 0.511 |
0.50668 | 0.51033 |
0.69397 | 0.7 |
0.75605 | 0.774 |
0.77874 | 0.78833 |
0.82951 | 0.82733 |
0.94189 | 0.948 |
1.00376 | 1.01767 |
1.01348 | 1.02867 |
1.1937 | 1.19967 |
1.24775 | 1.26333 |
1.26097 | 1.27733 |
1.47712 | 1.482 |
1.49286 | 1.51667 |
1.51236 | 1.534 |
1.76153 | 1.77 |
1.76395 | 1.79 |
1.76929 | 1.80033 |
2 | 2.03333 |
2.0007 | 2.034 |
Sorbitol water activity and osmotic pressure
References
Please cite the following references when using this data.
Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702.
1) Sorbitol water activity and its temperature dependance
molal | 15°C | 25°C | 45°C |
0.59885 | 0.989 | 0.9892 | 0.9893 |
1.20087 | 0.978 | 0.9788 | 0.9794 |
1.80492 | 0.967 | 0.9685 | 0.9687 |
2.39694 | 0.958 | 0.9574 | 0.9575 |
3.01027 | 0.946 | 0.9462 | 0.9459 |
3.58469 | 0.936 | 0.9349 | 0.9338 |
4.16801 | 0.9233 | 0.9237 | 0.923 |
4.79054 | 0.9124 | 0.9112 | 0.9101 |
2) Sorbitol osmotic pressure
molality | Osmolality, Osmolal |
0.3 | 0.294 |
0.599 | 0.593 |
0.904 | 0.894 |
1.201 | 1.18 |
1.37 | 1.338 |
1.805 | 1.762 |
2.094 | 2.045 |
1.603 | 1.788 |
References
Please cite the following references when using this data.
Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702.
1) Sucrose water activity and its temperature dependance
molal | 15°C | 20°C | 25°C | 45°C |
0.6001 | 0.9885 | 0.9887 | 0.9893 | 1.19623 |
1.19623 | 0.9743 | 0.9762 | 0.9778 | 0.9785 |
1.79731 | 0.9599 | 0.9626 | 0.9648 | 0.96455 |
2.39314 | 0.9451 | 0.9483 | 0.9498 | 0.95073 |
2.99876 | 0.9292 | 0.9323 | 0.9336 | 0.93423 |
3.60608 | 0.9126 | 0.9156 | 0.9173 | 0.91957 |
4.19794 | 0.8968 | 0.8996 | 0.9005 | 0.90352 |
4.79726 | 0.8778 | 0.881 | 0.8833 | 0.8866 |
2) Sucrose osmotic pressure
molality | Osmolality, Osmolal |
0.1 | 0.0963 |
0.3 | 0.305 |
0.497 | 0.519 |
0.75 | 0.798 |
1.004 | 1.073 |
1.251 | 1.356 |
1.499 | 1.648 |
3) Sucrose osmotic pressure vs. molality at 25 degrees Celsius
Osm = -0.016090*m^3 + 0.09970*m^2 + 0.99822*m
Unpublished data measured using a VAPRO 5520 Wescor osmometer. Cite: https://scholars.huji.ac.il/danielharries/book/osmotic-stress-data.
Molality | Osmolality |
0.15011 | 0.15133 |
0.24808 | 0.24833 |
0.24956 | 0.249 |
0.30046 | 0.3035 |
0.45588 | 0.472 |
0.49684 | 0.527 |
0.50285 | 0.53533 |
0.52256 | 0.54467 |
0.66083 | 0.7035 |
0.74766 | 0.80033 |
0.75119 | 0.80467 |
0.9933 | 1.07067 |
1.00639 | 1.08533 |
1.0349 | 1.112 |
1.10024 | 1.197 |
1.23114 | 1.34767 |
1.25296 | 1.36667 |
1.27447 | 1.4025 |
1.41315 | 1.56433 |
1.48868 | 1.65 |
1.54362 | 1.726 |
1.70697 | 1.933 |
1.9207 | 2.16267 |
2 | 2.26733 |
2.03382 | 2.28867 |
2.04492 | 2.3365 |
1) Trehalose osmotic pressure vs. molality at 25 degrees Celsius
References
Please cite the following references when using this data.
a - https://doi.org/10.1021/bi992887l Osmolality was aquired from figure 1 using the Origin Digitizer tool.
b - https://doi.org/10.1021/jp109780n Part of this data appears in figure S2 in the form of an osmotic coefficient.
c - https://doi.org/10.1016/j.foodchem.2017.06.047 From figure 9.
d - https://doi.org/10.1021/jacs.3c08702 Osmolality was calculated from the water activity data in table S11.
Courtenay et al.a | Sapir et al.b | Poplinger et al.c | Olgenblum et al.d | ||||
[molality], mol/kg | Osmolality, Osmolal | [molality], mol/kg | Osmolality, Osmolal | [molality], mol/kg | Osmolality, Osmolal | [molality], mol/kg | Osmolality, Osmolal |
0.060 | 0.046 | 0.199 | 0.200 | 0.041 | 0.041 | 0.301 | 0.306 |
0.083 | 0.079 | 0.395 | 0.416 | 0.064 | 0.064 | 0.599 | 0.631 |
0.121 | 0.121 | 0.590 | 0.633 | 0.085 | 0.083 | 0.899 | 0.964 |
0.150 | 0.144 | 0.681 | 0.744 | 0.109 | 0.105 | 1.200 | 1.315 |
0.166 | 0.164 | 0.905 | 1.002 | 0.163 | 0.163 | 1.502 | 1.635 |
0.191 | 0.185 | 1.066 | 1.202 | 0.205 | 0.209 | 1.801 | 2.025 |
0.208 | 0.213 | 1.174 | 1.307 | 0.349 | 0.360 | 2.097 | 2.442 |
0.256 | 0.255 | 1.242 | 1.392 | 0.401 | 0.424 | ||
0.320 | 0.323 | 1.466 | 1.674 | 0.522 | 0.543 | ||
0.345 | 0.355 | 1.659 | 1.893 | 0.608 | 0.643 | ||
0.366 | 0.375 | 1.782 | 2.076 | 0.748 | 0.802 | ||
0.407 | 0.417 | 1.938 | 2.250 | 0.849 | 0.919 | ||
0.438 | 0.437 | 2.186 | 2.562 | 1.011 | 1.078 | ||
0.438 | 0.469 | 2.397 | 2.830 | 1.110 | 1.214 | ||
0.486 | 0.524 | 1.334 | 1.477 | ||||
0.559 | 0.574 | 1.561 | 1.771 | ||||
0.559 | 0.619 | 1.639 | 1.856 | ||||
0.602 | 0.654 | 1.910 | 2.141 | ||||
1.910 | 2.171 |
The black dashed line corresponds to a quadratic fit to all four data sets, Osm=0.0652m^2+1.0244m.
2) Trehalose osmotic pressure vs. molality at different temperatures
Olgenblum et al.d | ||||
[trehalose], mol/kg | 150C | 200C | 250C | 450C |
0.301 | 0.334 | 0.323 | 0.306 | 0.313 |
0.599 | 0.654 | 0.614 | 0.631 | 0.595 |
0.899 | 1.009 | 0.998 | 0.964 | 0.880 |
1.200 | 1.407 | 1.264 | 1.315 | 1.231 |
1.502 | 1.853 | 1.715 | 1.635 | 1.581 |
1.801 | 2.251 | 2.146 | 2.025 | 1.972 |
2.097 | 2.669 | 2.506 | 2.442 | 2.414 |
Fitted lines correspond to the following quadratic terms:
15 degrees: Osmolal = 1.042m + 0.113m^2
20 degrees: Osmolal = 0.974m + 0.109m^2
25 degrees: Osmolal = 0.991m + 0.079m^2
45 degrees: Osmolal = 0.879m + 0.125m^2
Choline chloride osmotic pressure vs. molality at 25 degrees Celsius
Reference
Please use the following references when using this data.
Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://doi.org/10.3390/pharmaceutics15051462.
Shumilin et al | |
molality, mol/kg | Osmolality, Osmolal |
0.992 | 1.721 |
1.993 | 3.408 |
4.005 | 7.596 |
5.990 | 12.640 |
7.843 | 17.904 |
9.731 | 23.464 |
14.591 | 38.099 |
20.180 | 53.945 |
23.182 | 61.702 |
This data set is adequately captured by the cubic fit:
Osmolal = -0.00291*m^3 + 0.11547*m^2 + 1.54144*m
Glycerol water activity and osmotic pressure
References
Please cite the following references when using this data.
Olgenblum, Gil I., Neta Carmon, and Daniel Harries. "Not always sticky: Specificity of protein stabilization by sugars is conferred by protein–water hydrogen bonds." Journal of the American Chemical Society 145, no. 42 (2023): 23308-23320. https://doi.org/10.1021/jacs.3c08702.
1) Glycerol water activity and its temperature dependance
Olgenblum et al. | |||
molal | activity, 15°C | activity, 25°C | activity, 45°C |
1.22127 | 0.9778 | 0.9777 | 0.9785 |
1.80121 | 0.9678 | 0.9673 | 0.9679 |
2.41994 | 0.9566 | 0.957 | 0.9572 |
2.95261 | 0.947 | 0.9483 | 0.9488 |
3.54414 | 0.9363 | 0.9368 | 0.939 |
4.21888 | 0.9256 | 0.9258 | 0.9264 |
4.74722 | 0.9151 | 0.9158 | 0.9184 |
2) Glycerol osmotic pressure
Olgenblum et al. | |
molality | Osmolality, Osmolal |
0.28 | 0.2783 |
0.6 | 0.612 |
0.921 | 0.924 |
1.221 | 1.246 |
1.516 | 1.502 |
1.801 | 1.802 |
2.1 | 2.063 |
Glycine Betaine osmotic pressure vs. molality at 25 degrees Celsius
References
Please cite the following references when using this data:
Shakhman, Yuri, and Daniel Harries. "How glycine betaine modifies lipid membrane interactions." ChemSystemsChem 3, no. 5 (2021): e2100010. https://doi.org/10.1002/syst.202100010.
Osmotic pressure was measured using VAPRO 5520 Wescor osmometer.
Shakhman et al | |
[molality], mol/kg | Osmolality, Osmolal |
0.009 | 0.001 |
0.019 | 0.011 |
0.100 | 0.099 |
0.111 | 0.098 |
0.201 | 0.199 |
0.213 | 0.199 |
0.301 | 0.314 |
0.306 | 0.308 |
0.399 | 0.426 |
0.407 | 0.422 |
0.504 | 0.546 |
0.505 | 0.534 |
0.701 | 0.782 |
0.703 | 0.763 |
0.844 | 0.934 |
0.850 | 0.955 |
0.991 | 1.115 |
0.995 | 1.132 |
1.208 | 1.394 |
1.466 | 1.725 |
1.503 | 1.785 |
1.753 | 2.112 |
1.966 | 2.375 |
1.999 | 2.398 |
2.479 | 3.359 |
2.498 | 3.145 |
The osmolality in this concentration range fits the following quadratic polynom: Osmolality=0.117*m^2 + 1.003*m.
The molality of betaine in water can be estimated from the refractive index at 25 degrees Celsius according to the following term:
[Betaine], mol/kg = 496.892*RI^2 - 1266.500*RI + 805.356
Trimethylamine N-oxide (TMAO) osmotic pressure at 25 degrees Celsius
References
Please cite the following references when using this data.
a - Sukenik, Shahar, Shaked Dunsky, Avishai Barnoy, Ilan Shumilin, and Daniel Harries. “TMAO mediates effective attraction between lipid membranes by partitioning unevenly between bulk and lipid domain.” Physical Chemistry Chemical Physics 19 (2017): 29862-29871.
b - Shakhman, Yuri, Ilan Shumilin, and Daniel Harries. "Urea counteracts trimethylamine N-oxide (TMAO) compaction of lipid membranes by modifying van der Waals interactions." Journal of Colloid and Interface Science 629 (2023): 165-172. https://doi.org/10.1016/j.jcis.2022.08.123.
Sukenik et al.a | Shakhman et al.b | ||
[TMAO], mol/kg | Osmolality, Osmolal | [TMAO], mol/kg | Osmolality, Osmolal |
0.2 | 0.199 | 0.050 | 0.051 |
0.5 | 0.539 | 0.050 | 0.049 |
1 | 1.161 | 0.150 | 0.145 |
1.5 | 1.810 | 0.150 | 0.150 |
0.250 | 0.252 | ||
0.250 | 0.256 | ||
0.301 | 0.306 | ||
0.400 | 0.424 | ||
0.400 | 0.422 | ||
0.402 | 0.414 | ||
0.550 | 0.601 | ||
0.550 | 0.594 | ||
0.700 | 0.780 | ||
0.700 | 0.774 | ||
0.850 | 0.964 | ||
0.850 | 0.959 | ||
1.000 | 1.157 | ||
1.000 | 1.149 | ||
1.200 | 1.373 |
In this TMAO molal (m) concentration range, the following quadratic polynom adequately reproduces the osmotic pressure:
Osmolality = 0.1305*m^2 + 1.0121*m
Urea osmotic pressure vs. molality at different temperatures
Reference: Stokes, R. H. "Thermodynamics of aqueous urea solutions." Australian Journal of Chemistry 20, no. 10 (1967): 2087-2100.https://doi.org/10.1071/CH9672087.
Robert Harold Stokes | |||||||
molality, mol/kg | 20C | 50C | 100C | 200C | 250C | 300C | 400C |
0.5 | 0.487 | 0.487 | 0.488 | 0.489 | 0.490 | 0.491 | 0.491 |
1 | 0.950 | 0.952 | 0.955 | 0.960 | 0.962 | 0.964 | 0.968 |
1.5 | 1.394 | 1.398 | 1.405 | 1.416 | 1.420 | 1.425 | 1.432 |
2 | 1.823 | 1.830 | 1.841 | 1.859 | 1.866 | 1.873 | 1.885 |
2.5 | 2.239 | 2.250 | 2.265 | 2.291 | 2.302 | 2.312 | 2.330 |
3 | 2.645 | 2.659 | 2.679 | 2.714 | 2.729 | 2.743 | 2.766 |
3.5 | 3.041 | 3.059 | 3.085 | 3.129 | 3.148 | 3.166 | 3.197 |
4 | 3.430 | 3.451 | 3.483 | 3.538 | 3.562 | 3.583 | 3.621 |
5 | 4.188 | 4.217 | 4.262 | 4.339 | 4.372 | 4.402 | 4.455 |
6 | 4.924 | 4.963 | 5.021 | 5.120 | 5.164 | 5.204 | 5.274 |
7 | 5.645 | 5.692 | 5.764 | 5.888 | 5.943 | 5.993 | 6.081 |
8 | 6.354 | 6.410 | 6.496 | 6.646 | 6.710 | 6.770 | 6.877 |
9 | 7.124 | 7.223 | 7.394 | 7.469 | 7.538 | 7.662 | |
10 | 7.841 | 7.950 | 8.139 | 8.221 | 8.297 | 8.431 | |
11 | 8.881 | 8.966 | 9.044 | 9.180 | |||
12 | 9.629 | 9.707 | 9.778 | 9.899 |
Urea osmotic pressure vs. molality at 25 degrees Celsius
Reference: Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://10.3390/pharmaceutics15051462.
Shumilin et al. | |
molality, mol/kg | Osmolality, Osmolal |
0.101 | 0.091 |
0.177 | 0.151 |
0.253 | 0.227 |
0.506 | 0.479 |
0.763 | 0.717 |
0.998 | 0.924 |
1.012 | 0.939 |
1.200 | 1.094 |
1.271 | 1.166 |
1.400 | 1.258 |
1.520 | 1.370 |
1.601 | 1.423 |
1.765 | 1.574 |
1.803 | 1.584 |
1.997 | 1.745 |
2.000 | 1.821 |
2.017 | 1.783 |
2.123 | 1.900 |
2.513 | 2.148 |
2.993 | 2.616 |
2.996 | 2.481 |
4.013 | 3.479 |
4.992 | 4.277 |
6.032 | 5.139 |
7.000 | 5.838 |
7.986 | 6.665 |
8.996 | 7.422 |
9.973 | 8.144 |
11.005 | 8.902 |
11.970 | 9.739 |
The data set is adequately captured by the quadratic fit:
Osmolal = -0.00711m^2 + 0.89132m.
Wt% | Log P (dynes/cm2) |
2.5 | 6.53 |
5.0 | 6.55 |
7.5 | 6.67 |
10.0 | 6.73 |
12.5 | 6.79 |
15.0 | 6.85 |
17.5 | 6.92 |
20.0 | 6.97 |
22.5 | 7.02 |
25.0 | 7.09 |
27.5 | 7.13 |
30.0 | 7.22 |
The equation that fits the data is the following:
log P = 0.025 (wt%) + 6.468
Note: This equation should only be applied over the range of pressures measured.
PVP Osmotic pressure data, (dynes/cm2) for POLYVINYLALCHOL (PVA) polymer solution (MW 10000).
Wt% | Log P (dynes/cm2) |
2.0 | 6.39 |
4.0 | 6.42 |
6.0 | 6.45 |
8.0 | 6.47 |
10.0 | 6.49 |
12.0 | 6.51 |
The equation that fits the data is the following:
log P = -0.001 (wt%)2 + 0.025 (wt%) + 6.327
Note: This equation should be applied only over the range of pressures measured.
polyethylene glycol MW 300 wt% log P (dynes/cm^2) 2.6 6.36 5.0 6.73 10.0 7.00 15.0 7.23 20.0 7.41 25.0 7.57 30.0 7.71 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 4.79, b = 1.28 and c = 0.24 Note that it should be applied only over the range of pressures measured.
1) PEG400 osmotic pressure vs. molality at different temperatures
Please use the following reference when using this data.
Reference - https://doi.org/10.1002/pro.4573. Osmotic pressure was calculated from the water activity data in table S4.
Wt% | 15 degrees C | 20 degrees C | 25 degrees C | 35 degrees C | 45 degrees C |
5 | 3.69 | 3.74 | 3.65 | 3.70 | 3.71 |
10 | 8.55 | 8.52 | 8.17 | 8.24 | 8.23 |
15 | 14.9 | 14.7 | 13.8 | 13.9 | 13.8 |
20 | 23.2 | 22.6 | 21.0 | 21.0 | 21.0 |
25 | 34.0 | 32.8 | 30.2 | 30.0 | 30.0 |
30 | 48.1 | 45.9 | 42.0 | 41.5 | 41.2 |
35 | 66.7 | 63.1 | 57.3 | 56.4 | 55.6 |
40 | 91.9 | 86.3 | 77.7 | 76.2 | 74.8 |
45 | 125 | 117 | 104 | 102 | 99.6 |
50 | 172 | 159 | 141 | 137 | 133 |
2) PEG400 Osmotic pressure data (atm)
Reference - see Peter Rand.
wt% log P (dynes/cm^2)
2.5 6.3
5 6.55
10 6.93
15 7.14
20 7.33
25 7.5
30 7.65
An equation that fits this data is the following.
log P = a + b * (wt%) ^ c where a = 5.29, b = 0.73 and c = 0.34
Note that it should be applied only over the range of pressures measured.
polyethylene glycol MW 600 wt% log P (dynes/cm^2) 2.5 6.22 5.0 6.43 10.0 6.80 15.0 7.01 20.0 7.20 25.0 7.38 30.0 7.53 35.0 7.68 5.0 6.15 10.0 6.72 15.0 6.96 20.0 7.13 25.0 7.30 30.4 7.42 35.2 7.57 40.5 7.64 45.0 7.92 61.5 8.35 67.5 8.49 45.0 7.92 40.0 7.80 5.0 6.34 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 5.63, b = 0.33 and c = 0.51 Note that it should be applied only over the range of pressures measured.
polyethylene glycol MW 1000 wt% log P (dynes/cm^2) 5.0 6.07 10.0 6.61 15.0 6.82 20.0 7.08 25.0 7.34 30.0 7.46 35.0 7.55 40.0 7.65 45.0 7.79 50.0 7.89 55.0 7.93 60.0 7.95 2.5 6.11 5.0 6.27 10.0 6.54 15.0 6.86 20.0 7.05 25.0 7.26 30.0 7.43 35.0 7.58 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 4.87, b = 0.80 and c = 0.34 Note that it should be applied only over the range of pressures measured.
polyethylene glycol MW 1500 wt% log P (dynes/cm^2) 5.0 5.92 10.0 6.49 15.0 6.78 20.0 6.89 25.0 7.27 30.0 7.41 35.0 7.38 40.0 7.60 45.0 7.63 50.0 7.83 60.0 8.03 5.0 6.18 10.0 6.52 15.0 6.76 20.0 6.97 25.0 7.18 30.0 7.36 35.0 7.53 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 3.72, b = 1.57 and c = 0.24 Note that it should be applied only over the range of pressures measured.
polyethylene glycol MW 2000 wt% log P (dynes/cm^2) 5.0 6.20 10.0 6.39 15.0 6.70 20.0 6.91 25.0 7.13 30.0 7.32 35.0 7.49 40.0 7.66 9.9 6.32 15.0 6.60 20.0 6.95 25.0 7.09 30.0 7.28 34.7 7.40 5.0 6.04 10.0 6.37 15.0 6.79 20.0 6.94 10.0 6.38 20.0 6.90 30.0 7.32 40.0 7.66 5.0 6.15 5.0 6.14 15.0 6.66 15.0 6.65 15.0 6.63 15.0 6.68 25.0 7.1 25.0 7.11 35.0 7.50 35.0 7.51 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 5.60, b = 0.18 and c = 0.67 Note that it should be applied only over the range of pressures measured.
polyethylene glycol MW 3000 wt% log P (dynes/cm^2) 10.0 6.26 15.0 6.61 20.0 6.84 25.0 7.07 30.0 7.28 35.0 7.46 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 4.42, b = 0.74 and c = 0.40 Note that it should be applied only over the range of pressures measured.
polyethylene glycol MW 4000 wt% log P (dynes/cm^2) 5.0 5.98 10.0 6.29 15.0 6.64 20.0 6.86 25.0 7.11 30.0 7.23 35.0 7.40 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 4.93, b = 0.50 and c = 0.45 Note that it should be applied only over the range of pressures measured.
polyethylene glycol MW 6000 wt% log P (dynes/cm^2) 10.0 6.23 15.0 6.51 20.0 6.79 25.0 7.02 30.0 7.23 35.0 7.43 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 5.12, b = 0.28 and c = 0.59 Note that it should be applied only over the range of pressures measured.
PEG 8000 Osmotic Pressure Data at various temperatures
Wt% | 10 degrees C | 20 degrees C | 30 degrees C | 35 degrees C | 40 degrees C |
5 | .445 | .407 | .385 | .373 | .367 |
10 | 1.63 | 1.44 | 1.31 | 1.25 | 1.19 |
15 | 3.95 | 3.43 | 3.08 | 2.89 | 2.74 |
20 | 7.91 | 6.78 | 6.04 | 5.66 | 5.33 |
25 | 14.1 | 12.0 | 10.7 | 10.0 | 9.43 |
30 | 23.3 | 19.9 | 17.6 | 16.6 | 15.6 |
35 | 36.7 | 31.3 | 27.8 | 26.1 | 24.7 |
40 | 56.7 | 48.2 | 42.9 | 40.4 | 38.3 |
45 | 85.8 | 72.5 | 64.5 | 60.8 | 57.8 |
50 | 126 | 106 | 94.3 | 89.2 | 84.8 |
54 | 173 | 144 | 127 | 121 | 115 |
peg8000.pdf | 28 KB |
polyethylene glycol MW 10,000 wt% log P (dynes/cm^2) 10.0 6.16 15.0 6.45 20.0 6.75 25.0 7.00 30.0 7.24 35.0 7.43 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 4.99, b = 0.29 and c = 0.60 Note that it should be applied only over the range of pressures measured.
polyethylene glycol MW 20,000 wt% log P (dynes/cm^2) 1.5 4.59 2.9 4.98 3.6 5.15 4.7 5.34 5.8 5.55 6.3 5.63 7.1 5.76 9.0 5.89 12.1 6.08 13.1 6.18 14.2 6.29 16.0 6.47 18.3 6.70 18.8 6.68 20.8 6.77 21.6 6.83 22.2 6.83 22.8 6.94 19.0 6.68 22.1 6.83 23.7 6.93 25.0 6.94 26.2 7.03 28.8 7.11 32.7 7.26 34.8 7.34 35.6 7.32 38.0 7.45 39.5 7.48 41.7 7.54 43.2 7.59 45.5 7.67 47.5 7.73 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 1.57, b = 2.75 and c = 0.21 Note that it should be applied only over the range of pressures measured.
polyethylene glycol MW 20,000 At a Temperature of 7-8 degrees C wt% log P (dynes/cm^2) 15.3 6.56 17.8 6.75 18.3 6.79 19.5 6.82 20.8 6.91 21.3 6.92 22.9 6.99 23.2 7.00 24.3 7.04
METHYLATED polyethylene glycol MW 2000 wt% log P (dynes/cm^2) 10.3 6.48 15.1 6.72 24.8 7.20 35.5 7.45 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 1.34, b = 3.66 and c = 0.14 Note that it should be applied only over the range of pressures measured.
dextran 10,000 MW wt% log P (dynes/cm^2) 14.7 5.92 20.8 6.18 23.4 6.38 30.2 6.59 34.2 6.85 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 4.52, b = 0.28 and c = 0.60 Note that it should be applied only over the range of pressures measured.
dextran 275,000 to 2,000,000 MW wt% log P (dynes/cm^2) 2.0 4.03 3.0 4.20 5.0 4.68 6.0 4.85 8.0 5.08 12.0 5.42 17.0 5.77 20.0 5.94 25.0 6.27 28.5 6.51 32.5 6.67 39.3 6.99 14.8 5.65 17.5 5.87 19.8 5.98 20.8 6.00 25.0 6.27 28.6 6.41 30.5 6.54 32.2 6.62 35.7 6.77 5.6 4.71 9.0 5.07 16.5 5.73 An equation that fits this data is the following. log P = a + b * (wt%) ^ c where a = 2.48, b = 1.22 and c = 0.35 Note that it should be applied only over the range of pressures measured.
CaCl2 osmotic pressure vs. molality at 25 degrees Celsius
References
Please cite the following references when using this data:
a - Robinson, Robert Anthony, and Robert Harold Stokes. Electrolyte solutions. Courier Corporation, 2002.
b - Unpublished data measured using a VAPRO 5520 Wescor osmometer. Cite: https://scholars.huji.ac.il/danielharries/book/osmotic-stress-data.
Robinson & Stokesa | this groupb | ||
Molality | Osmotic Co | molal, mol/kg | osmolality |
0.100 | 0.256 | 0.050 | 0.131 |
0.200 | 0.517 | 0.100 | 0.251 |
0.300 | 0.788 | 0.150 | 0.386 |
0.400 | 1.073 | 0.200 | 0.509 |
0.500 | 1.376 | 0.249 | 0.652 |
0.600 | 1.692 | 0.299 | 0.780 |
0.700 | 2.022 | 0.348 | 0.907 |
0.800 | 2.371 | 0.399 | 1.046 |
0.900 | 2.746 | 0.447 | 1.172 |
1.000 | 3.138 | 0.500 | 1.327 |
1.200 | 3.985 | ||
1.400 | 4.918 | ||
1.600 | 5.938 | ||
1.800 | 7.047 | ||
2.000 | 8.256 | ||
2.500 | 11.760 | ||
3.000 | 16.011 | ||
3.500 | 20.801 | ||
4.000 | 26.184 | ||
4.500 | 32.171 | ||
5.000 | 38.610 | ||
5.500 | 45.260 | ||
6.000 | 52.038 |
Sodium perchlorate osmotic pressure vs. molality at 25 degrees Celsius
Reference: Shumilin, Ilan, and Daniel Harries. "Enhanced solubilization in multi-component mixtures: Mechanism of synergistic amplification of cyclodextrin solubility by urea and inorganic salts." Journal of Molecular Liquids 380 (2023): 121760. https://doi.org/10.1071/CH9672087.
Shumilin et al. | |
molality, mol/kg | Osmolality, Osmolal |
0.100 | 0.212 |
0.200 | 0.377 |
0.251 | 0.456 |
0.251 | 0.449 |
0.299 | 0.526 |
0.400 | 0.650 |
0.497 | 0.851 |
0.498 | 0.898 |
0.498 | 0.890 |
0.597 | 1.032 |
0.699 | 1.243 |
0.751 | 1.354 |
0.751 | 1.318 |
0.800 | 1.488 |
0.900 | 1.585 |
0.992 | 1.818 |
1.003 | 1.749 |
1.003 | 1.775 |
1.248 | 2.144 |
1.248 | 2.181 |
1.468 | 2.467 |
1.468 | 2.625 |
1.493 | 2.705 |
1.667 | 2.791 |
1.667 | 2.976 |
1.999 | 3.698 |
2.001 | 3.522 |
2.001 | 3.645 |
2.498 | 4.641 |
2.983 | 5.665 |
Trimethylamine N-oxide (TMAO) + 20K Polyethylene Glycole (PEG) osmotic pressure at 25 degrees Celsius
References
Please cite the following references when using this data.
Sukenik, Shahar, Shaked Dunsky, Avishai Barnoy, Ilan Shumilin, and Daniel Harries. “TMAO mediates effective attraction between lipid membranes by partitioning unevenly between bulk and lipid domain.” Physical Chemistry Chemical Physics 19 (2017): 29862-29871.
[TMAO] (m) => | 0.2 | 0.5 | 1 | 1.5 | |
[PEG, 20K] (wt%) | P(mOsm) | ||||
0 | 198.5 | 538.16667 | 1160.6 | 1809.4 | |
0.5 | -- | -- | -- | -- | |
1.5 | -- | -- | -- | -- | |
3 | 214.75 | 592.25 | 1185 | 1965.75 | |
6 | 253.75 | 657.5 | 1351.25 | 2163.25 | |
10 | 328.5 | 810.75 | 1530.25 | 2345 | |
16 | -- | -- | -- | -- | |
25 | 949 | 1752.66667 | 2756.5 | -- | |
fitting parameters for the functional form P=B0 + B1*(Wt%)+ B2*(Wt%)^2 | |||||
B0 | Value | 199.19281 | 538.29764 | 1143.35194 | 1803.48611 |
Standard Error | 2.13191 | 5.52393 | 27.7354 | 22.77159 | |
B1 | Value | 1.89199 | 12.38134 | 21.0872 | 61.94396 |
Standard Error | 0.50745 | 1.31484 | 6.60178 | 11.01607 | |
B2 | Value | 1.12375 | 1.44814 | 1.73897 | -0.74124 |
Standard Error | 0.01865 | 0.04832 | 0.24262 | 1.04188 | |
Statistics | Adj. R-Square | 0.99994 | 0.99984 | 0.99769 | 0.98982 |
1) Urea + choline chloride osmotic pressure at 2:1 (Reline) mole ratio and 25 degrees Celsius
We define Reline as two urea and one choline chloride molecules. When mixed together at this 2:1 (urea:cholinechloride mole ratio) ratio, they form a deep eutectic solvent, termed Reline. A 1mol/kg Reline solution contains 2 mol/kg urea and 1mol/kg choline chloride.
References
Please use the following reference when using this data.
Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://10.3390/pharmaceutics15051462.
Shumilin et al | |
molality, mol/kg | Osmolality, Osmolal |
0.203 | 0.544 |
0.422 | 1.287 |
0.428 | 1.374 |
0.428 | 1.334 |
0.953 | 3.059 |
0.960 | 2.952 |
0.962 | 2.927 |
1.647 | 5.040 |
1.649 | 5.247 |
1.650 | 5.182 |
2.555 | 8.171 |
2.559 | 7.980 |
2.568 | 8.086 |
3.821 | 12.324 |
3.847 | 12.603 |
3.873 | 12.682 |
5.757 | 19.158 |
5.781 | 19.388 |
5.783 | 19.485 |
8.787 | 29.954 |
9.011 | 30.589 |
9.012 | 30.488 |
11.572 | 38.143 |
15.304 | 49.673 |
15.332 | 49.499 |
15.368 | 47.205 |
16.377 | 50.126 |
17.499 | 53.130 |
18.751 | 56.666 |
20.160 | 59.050 |
21.757 | 62.801 |
23.579 | 66.106 |
25.683 | 70.069 |
28.135 | 74.475 |
31.032 | 77.851 |
34.506 | 81.680 |
34.624 | 86.986 |
34.651 | 87.101 |
38.747 | 88.430 |
44.047 | 94.288 |
50.848 | 102.674 |
59.902 | 110.068 |
72.544 | 117.885 |
The data set is adequately captured by the following cubic term:
Osmolal = 0.00023*m^3 - 0.04598*m^2 + 3.75984*m
2) Urea + choline chloride osmotic pressure at all ratios
References
Please use the following reference when using this data:
Shumilin, Ilan, Ahmad Tanbuz, and Daniel Harries. "Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin." Pharmaceutics 15, no. 5 (2023): 1462. https://10.3390/pharmaceutics15051462.
Shumilin et al. | ||
[urea], mol/kg | [choline chloride], mol/kg | Osmolality, Osmolal |
0.257 | 15.928 | 41.008 |
0.406 | 0.203 | 0.558 |
0.844 | 0.422 | 1.293 |
0.855 | 0.428 | 1.350 |
0.998 | 4.999 | 10.687 |
1.000 | 2.000 | 4.271 |
1.009 | 10.450 | 25.581 |
1.700 | 15.757 | 41.241 |
1.906 | 0.953 | 3.084 |
1.920 | 0.960 | 2.967 |
1.925 | 0.962 | 2.908 |
1.999 | 9.925 | 24.881 |
2.301 | 15.684 | 41.241 |
2.788 | 15.626 | 41.241 |
2.998 | 4.999 | 12.120 |
3.022 | 10.450 | 27.007 |
3.295 | 1.647 | 5.057 |
3.297 | 1.649 | 5.239 |
3.300 | 1.650 | 5.178 |
3.972 | 15.486 | 41.124 |
4.002 | 2.000 | 6.537 |
4.875 | 10.450 | 28.010 |
4.987 | 4.999 | 13.448 |
5.005 | 19.787 | 54.343 |
5.012 | 9.925 | 26.558 |
5.109 | 2.555 | 8.186 |
5.118 | 2.559 | 7.993 |
5.136 | 2.568 | 8.057 |
5.466 | 18.138 | 47.668 |
5.652 | 18.705 | 48.194 |
6.844 | 24.235 | 67.259 |
6.980 | 4.999 | 14.737 |
6.984 | 15.125 | 41.241 |
7.022 | 2.000 | 8.768 |
7.346 | 25.854 | 67.633 |
7.643 | 3.821 | 12.327 |
7.694 | 3.847 | 12.606 |
7.747 | 3.873 | 12.675 |
7.837 | 9.925 | 28.010 |
7.963 | 10.450 | 29.502 |
9.025 | 1.999 | 10.151 |
9.924 | 10.450 | 30.647 |
9.935 | 4.999 | 16.728 |
10.142 | 19.978 | 53.318 |
10.987 | 14.648 | 41.828 |
11.000 | 2.000 | 11.570 |
11.018 | 9.925 | 29.691 |
11.514 | 5.757 | 19.184 |
11.561 | 5.781 | 19.420 |
11.566 | 5.783 | 19.499 |
11.823 | 21.670 | 57.223 |
11.953 | 19.787 | 55.840 |
12.623 | 10.450 | 31.915 |
12.989 | 1.999 | 13.096 |
13.003 | 5.000 | 18.637 |
13.508 | 28.061 | 71.721 |
13.987 | 9.925 | 31.131 |
14.792 | 2.000 | 14.304 |
14.901 | 5.000 | 19.815 |
14.949 | 10.450 | 33.112 |
15.426 | 14.118 | 42.183 |
15.468 | 28.332 | 75.052 |
16.934 | 1.233 | 15.028 |
16.970 | 9.925 | 32.511 |
17.398 | 4.999 | 21.426 |
17.573 | 8.787 | 29.976 |
17.884 | 2.486 | 17.332 |
18.021 | 9.011 | 30.551 |
18.024 | 1.999 | 16.653 |
18.025 | 9.012 | 30.455 |
18.064 | 10.450 | 34.439 |
18.348 | 2.000 | 16.878 |
18.400 | 19.786 | 57.379 |
18.534 | 1.662 | 16.578 |
18.699 | 5.000 | 22.249 |
18.851 | 3.762 | 19.974 |
19.199 | 1.791 | 17.105 |
19.257 | 4.300 | 21.263 |
19.299 | 13.655 | 42.540 |
19.724 | 1.898 | 17.408 |
19.935 | 9.925 | 33.925 |
20.150 | 10.450 | 35.376 |
20.217 | 23.941 | 62.612 |
20.630 | 6.113 | 25.581 |
20.679 | 25.927 | 66.518 |
20.765 | 3.094 | 20.214 |
21.000 | 13.453 | 42.779 |
21.441 | 3.045 | 20.534 |
21.607 | 7.401 | 28.844 |
21.844 | 9.925 | 34.853 |
21.908 | 1.920 | 18.949 |
21.976 | 13.336 | 42.659 |
22.297 | 8.312 | 31.326 |
22.920 | 3.528 | 22.083 |
23.145 | 11.572 | 38.176 |
23.334 | 9.682 | 34.957 |
23.894 | 10.420 | 36.758 |
24.980 | 5.798 | 27.643 |
25.153 | 12.956 | 42.899 |
25.339 | 3.859 | 23.677 |
25.526 | 32.369 | 79.284 |
25.740 | 19.787 | 59.123 |
25.755 | 12.878 | 43.020 |
25.762 | 12.883 | 43.140 |
26.790 | 9.925 | 36.974 |
27.578 | 6.481 | 29.881 |
28.880 | 6.567 | 30.551 |
30.066 | 27.814 | 71.119 |
30.595 | 35.517 | 85.654 |
30.608 | 15.304 | 49.669 |
30.665 | 15.332 | 49.533 |
30.736 | 15.368 | 47.146 |
31.033 | 9.682 | 38.286 |
31.137 | 7.136 | 31.326 |
31.341 | 31.050 | 76.135 |
32.754 | 16.377 | 50.078 |
32.964 | 19.786 | 60.757 |
34.996 | 17.499 | 53.173 |
35.115 | 9.746 | 38.731 |
36.316 | 13.071 | 47.276 |
36.318 | 19.787 | 61.257 |
36.673 | 11.573 | 43.748 |
37.501 | 18.751 | 56.604 |
39.843 | 37.498 | 86.439 |
40.320 | 20.160 | 59.123 |
40.384 | 12.362 | 45.107 |
40.395 | 31.876 | 76.135 |
43.001 | 17.360 | 57.379 |
43.513 | 21.757 | 62.783 |
44.314 | 19.787 | 63.129 |
46.046 | 15.320 | 52.884 |
47.160 | 23.579 | 66.152 |
48.561 | 16.982 | 54.343 |
50.574 | 40.293 | 89.136 |
51.366 | 25.683 | 70.128 |
51.929 | 23.087 | 69.155 |
54.455 | 46.849 | 97.792 |
56.271 | 28.135 | 74.412 |
56.400 | 25.956 | 74.624 |
57.027 | 38.418 | 86.968 |
57.419 | 43.796 | 94.046 |
58.616 | 23.857 | 70.325 |
62.065 | 31.032 | 77.912 |
62.948 | 30.157 | 81.408 |
66.897 | 32.689 | 85.138 |
69.013 | 34.506 | 81.649 |
69.250 | 34.624 | 86.968 |
69.268 | 27.160 | 69.737 |
69.302 | 34.651 | 86.968 |
72.094 | 36.024 | 89.972 |
72.738 | 49.284 | 93.744 |
73.996 | 31.357 | 77.687 |
74.840 | 32.940 | 85.138 |
77.496 | 38.747 | 88.313 |
79.324 | 58.664 | 105.767 |
81.111 | 36.450 | 90.253 |
86.635 | 39.542 | 94.653 |
87.735 | 50.496 | 98.770 |
88.094 | 44.047 | 94.348 |
95.256 | 61.765 | 107.663 |
101.696 | 50.848 | 102.509 |
103.314 | 44.520 | 95.267 |
106.437 | 44.929 | 89.136 |
109.144 | 52.144 | 108.051 |
109.832 | 51.608 | 98.442 |
111.961 | 60.024 | 106.518 |
119.805 | 59.902 | 110.028 |
125.936 | 61.544 | 115.525 |
132.936 | 70.856 | 114.207 |
143.846 | 65.185 | 112.078 |
145.092 | 72.544 | 117.792 |
149.912 | 74.967 | 126.279 |
150.701 | 75.259 | 116.874 |
160.672 | 80.339 | 115.525 |
163.930 | 81.959 | 122.124 |
169.496 | 101.496 | 128.480 |
212.445 | 118.085 | 135.658 |
241.004 | 114.722 | 140.318 |
365.581 | 195.946 | 147.737 |
394.787 | 193.131 | 162.154 |
416.403 | 216.096 | 154.479 |
827.672 | 413.745 | 167.552 |
831.636 | 415.870 | 166.430 |
847.309 | 423.549 | 162.154 |
862.053 | 431.040 | 159.150 |
Urea + NaClO4 osmotic pressure at 25 degrees Celsius
References
Please use the following reference when using this data.
Shumilin, Ilan, and Daniel Harries. "Enhanced solubilization in multi-component mixtures: Mechanism of synergistic amplification of cyclodextrin solubility by urea and inorganic salts." Journal of Molecular Liquids 380 (2023): 121760. https://doi.org/10.1016/j.molliq.2023.121760.
Shumilin et al. | ||
[urea], mol/kg | [NaClO4], mol/kg | Osmolality, Osmolal |
0.244 | 0.251 | 0.671 |
0.244 | 0.502 | 1.122 |
0.244 | 0.754 | 1.521 |
0.244 | 1.000 | 1.979 |
0.492 | 1.513 | 3.143 |
0.497 | 1.999 | 4.032 |
0.497 | 0.990 | 2.210 |
0.500 | 2.494 | 5.057 |
0.998 | 1.999 | 4.451 |
1.000 | 2.494 | 5.362 |
1.000 | 0.250 | 1.464 |
1.000 | 0.400 | 1.635 |
1.000 | 0.549 | 1.864 |
1.000 | 0.699 | 2.210 |
1.009 | 1.513 | 3.556 |
1.095 | 0.990 | 2.733 |
1.988 | 1.513 | 4.331 |
1.998 | 1.999 | 5.178 |
2.000 | 0.499 | 2.674 |
2.005 | 0.990 | 3.438 |
2.006 | 2.494 | 6.101 |
2.982 | 0.499 | 3.438 |
2.983 | 2.494 | 6.850 |
2.990 | 1.999 | 5.977 |
2.999 | 1.513 | 5.118 |
3.006 | 0.990 | 4.271 |
3.971 | 1.513 | 5.853 |
3.982 | 2.494 | 7.609 |
3.995 | 0.990 | 4.996 |
4.000 | 1.999 | 6.724 |
4.017 | 0.499 | 4.271 |
4.905 | 2.531 | 8.250 |
5.103 | 0.596 | 5.178 |
5.103 | 0.989 | 5.792 |
5.103 | 1.495 | 6.599 |
5.103 | 1.992 | 7.418 |
5.845 | 1.512 | 7.228 |
5.845 | 1.992 | 7.993 |
5.845 | 2.523 | 8.898 |
5.968 | 0.251 | 5.423 |
6.948 | 1.000 | 7.292 |
6.966 | 0.500 | 6.537 |
6.966 | 0.752 | 6.913 |
6.966 | 1.002 | 7.292 |
6.966 | 1.252 | 7.673 |
6.966 | 1.501 | 8.057 |
7.180 | 2.048 | 9.094 |
7.180 | 2.633 | 10.085 |
7.217 | 0.262 | 6.412 |
7.952 | 0.251 | 6.913 |
8.036 | 0.613 | 7.482 |
8.036 | 1.070 | 8.186 |
8.036 | 1.526 | 8.833 |
8.036 | 2.127 | 9.752 |
8.036 | 2.655 | 10.553 |
8.826 | 0.251 | 7.609 |
8.826 | 0.615 | 8.121 |
8.826 | 1.001 | 8.638 |
8.826 | 1.519 | 9.357 |
8.826 | 2.023 | 10.151 |
9.399 | 2.496 | 11.297 |