Publications by Author:

2007
Alexander Gumennik, Har'el Ilan, Roei Fathei, Abraham Israel, Aharon J Agranat, Igal Shachar, and Michael Hass. 2007. “Design methodology of refractive index engineering by implantation of high-energy particles in electro-optic materials.” Applied Optics , 46, 19, Pp. 4132-7. Publisher's Version Abstract
Slab waveguides were constructed in [K.sub.1-x]-[Li.sub.x][Ta.sub.1-y] [Nb.sub.y][O.sub.3] crystals by the implantation of [sup.12][C.sup.+4] ions at 30 MeV and [sup.16][O.sup.+5] ions at 30 and 40 MeV. The waveguides were characterized by a prism coupler setup. A refractive index drop of 10.9% was observed in a layer formed by the implantation of [sup.16][O.sup.+5] ions at 30 MeV. The carbon-implanted waveguides were found to be thermally stable after annealing at 450 [degrees]C. A semiempirical formula for predicting the change in the refractive index given the parameters of the implantation process was developed. It is argued that the combination of the basic implantation process with the semiempirical formula can be developed to become a generic method for constructing complex electro-optic circuits with a wave-guided architecture. OCIS codes: 160.2260, 230.7400, 220.4000, 130.3120, 350.4600.
Item Citation: Applied Optics. July 1, 2007, Vol. 46 Issue 19, p4132, 6 p.Accession Number: edsgcl.165971006; Publication Type: Academic Journal; Source: Applied Optics; Language: English; Publication Date: 20070701; Rights: Copyright 2007 Gale, Cengage Learning. All rights reserved., COPYRIGHT 2007 Optical Society of America; Imprint: Optical Society of America
2006
H Ilan, A Gumennik, R Fathei, AJ Agranat, I Shachar, and M Hass. 2006. “Submerged waveguide constructed by implantation of 12C ions in electrooptic crystals.” Applied Physics Letters, 89, 24. Abstract
Waveguide structures were fabricated in potassium lithium tantalate niobate crystals by the implantation of high energy C12 ions. The implantation forms an amorphous layer with a lowered index of refraction within the depth of the crystal, which serves as the cladding of the waveguides. Two amorphous layers were fabricated at 18.8 and 25.6 μm below the surface of the crystal by implantation at 30 and 40 MeV, respectively. This formed a submerged slab waveguide sandwiched between the two amorphous layers and two slab waveguides that were formed between the surface of the crystal and each of the amorphous layers. Coupling between those waveguides was observed and investigated, and confinement of the light in the sandwiched waveguide was demonstrated. © 2006 American Institute of Physics.
2005
Alexander Gumennik, Aharon J Agranat, Igal Shachar, and Michael Hass. 2005. “Thermal stability of a slab waveguide implemented by α particles implantation in potassium lithium tantalate niobate..” Applied Physics Letters, 87, 25, Pp. 251917. Publisher's Version Abstract
A slab waveguide was fabricated in a potassium lithium tantalate niobate crystal by the implantation of He2+ ions at 2.26 MeV. The waveguide profile and loss were evaluated by measuring the dark mode TE spectrum using the prism coupling method at λ=1.3 μm. The implantation generated amorphous cladding layer 5 μm below the surface of the crystal with a refractive index lower by 3.9% then that of the substrate. The propagation loss of the waveguided modes was found to be 0.1–0.2 dB/cm. Thermal stability of the waveguide was obtained by isothermal annealing at 351 and 446 °C. Following the annealing the waveguide index profile remained unchanged when subjected to annealing at 150 °C for one week. [ABSTRACT FROM AUTHOR]Copyright of Applied Physics Letters is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
19316636