Tabletop nonlinear optics in the 100-eV spectral region

Citation:

Bergues, B., et al. Tabletop nonlinear optics in the 100-eV spectral region. Optica 5, 3, 237–242 (2018).
Full_Text.pdf1.15 MB

Abstract:

Nonlinear light&\#x2013;matter interactions in the extreme ultraviolet (XUV) are a prerequisite to perform XUV-pump/XUV-probe spectroscopy of core electrons. Such interactions are now routinely investigated at free-electron laser (FEL) facilities. Yet, electron dynamics are often too fast to be captured with the femtosecond resolution of state-of-the-art FELs. Attosecond pulses from laser-driven XUV-sources offer the necessary temporal resolution. However, intense attosecond pulses supporting nonlinear processes have only been available for photon energy below 50&\#x00A0;eV, precluding XUV-pump/XUV-probe investigation of typical inner-shell processes. Here, we surpass this limitation by demonstrating two-photon absorption from inner electronic shells of xenon at photon energies around 93&\#x00A0;eV and 115&\#x00A0;eV. This advance opens the door for attosecond real-time observation of nonlinear electron dynamics deep inside atoms.

Publisher's Version

Last updated on 02/23/2018