Publications by Year: 2022

2022
Church JR, Olsen JMH, Schapiro I. The impact of retinal configuration on the protein–chromophore interactions in bistable jumping spider rhodopsin-1. Molecules [Internet]. 2022;27 (1). Publisher's VersionAbstract
Bistable rhodopsins have two stable forms that can be interconverted by light. Due to their ability to act as photoswitches, these proteins are considered as ideal candidates for applications such as optogenetics. In this work, we analyze a recently crystalized bistable rhodopsin, namely the jumping spider rhodopsin-1 (JSR1). This rhodopsin exhibits identical absorption maxima for the parent and the photoproduct form, which impedes its broad application. We performed hybrid QM/MM simulations to study three isomers of the retinal chromophore: the 9-cis, 11-cis and all-trans configurations. The main aim was to gain insight into the specific interactions of each isomer and their impact on the absorption maximum in JSR1. The absorption spectra were computed using sampled snapshots from QM/MM molecular dynamics trajectories and compared to their experimental counterparts. The chromophore–protein interactions were analyzed by visualizing the electrostatic potential of the protein and projecting it onto the chromophore. It was found that the distance between a nearby tyrosine (Y126) residue plays a larger role in the predicted absorption maximum than the primary counterion (E194). Geometric differences between the isomers were also noted, including a structural change in the polyene chain of the chromophore, as well as changes in the nearby hydrogen bonding network. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Malakar P, Borin V, Bedi A, Schapiro I, Gidron O, Ruhman S. The impact of twisting on the intersystem crossing in acenes: An experimental and computational study. Physical Chemistry Chemical Physics [Internet]. 2022;24 (4) :2357 - 2362. Publisher's VersionAbstract
Due to their unique excited state dynamics, acenes play a dominant role in optoelectronic and light-harvesting applications. Their optical and electronic properties are typically tailored by side-group engineering, which often result in distortion of the acene core from planarity. However, the effect of such distortion on their excited state dynamics is not clear. In this work, we investigate the effect of twisting on the photophysics of acenes, which are helically locked to a defined twist angle by tethers of different lengths. Ultrafast transient absorption and time resolved fluorescence show a clear dependence of the rate of intersystem crossing with twisting. This trend is explained using quantum chemical calculations, showing an increase of spin-orbit coupling (SOC). At much earlier times, structural reorganization in S1, including coherent vibrational wave packet motions, is reflected in transient spectral changes. As predicted by theory, decreasing the length of diagonal tether induces enhanced activity and frequency blue-shifting of a normal vibration consisting of anthracene twisting against restraint of the tethering chain. Overall, these results serve as design principles for tuning photophysical properties of acenes via controlled twisting of their aromatic core. © 2022 the Owner Societies.
Dietler J, Gelfert R, Kaiser J, Borin V, Renzl C, Pilsl S, Ranzani AT, García de Fuentes A, Gleichmann T, Diensthuber RP, et al. Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine. Nature Communications [Internet]. 2022;13 (1). Publisher's VersionAbstract
In nature as in biotechnology, light-oxygen-voltage photoreceptors perceive blue light to elicit spatiotemporally defined cellular responses. Photon absorption drives thioadduct formation between a conserved cysteine and the flavin chromophore. An equally conserved, proximal glutamine processes the resultant flavin protonation into downstream hydrogen-bond rearrangements. Here, we report that this glutamine, long deemed essential, is generally dispensable. In its absence, several light-oxygen-voltage receptors invariably retained productive, if often attenuated, signaling responses. Structures of a light-oxygen-voltage paradigm at around 1 Å resolution revealed highly similar light-induced conformational changes, irrespective of whether the glutamine is present. Naturally occurring, glutamine-deficient light-oxygen-voltage receptors likely serve as bona fide photoreceptors, as we showcase for a diguanylate cyclase. We propose that without the glutamine, water molecules transiently approach the chromophore and thus propagate flavin protonation downstream. Signaling without glutamine appears intrinsic to light-oxygen-voltage receptors, which pertains to biotechnological applications and suggests evolutionary descendance from redox-active flavoproteins. © 2022, The Author(s).
Hou Y-N, Höppner A, Rao AG, Lahav Y, Kumar Das P, Ding W-L, Jiang X-X, Hu J-L, Schapiro I, Noy D, et al. Control of a far-red/near-infrared spectral switch in an artificial fluorescent biliprotein derived from allophycocyanin. Protein Science [Internet]. 2022;31 (9). Publisher's VersionAbstract
The molecular structure of mBDFP, a far-red fluorescent protein (FPs) derived from an allophycocyanin homolog was resolved to 2.52 Å. Its biliverdin chromophore was found to be attached to the protein in an unusual way that was never observed in natural phycobiliproteins, and only once in a sub-population of artificial bacteriophytochrome-derived FPs. One of the biliverdin's vinyl groups had two cysteine residues covalently bound to its two carbon atoms. This reduces the conjugation length of the biliverdin π-electron system, which shifts the absorption and emission spectra by about 40 nm, from the near-infrared to the far-red region of the spectrum. By spectrally characterizing a set of mBDFP mutants, we show that such spectral shifts can be induced by modifying a single residue in either one of two critical positions in the vicinity of the binding cysteines. This changes the reactivity of biliverdin and the cysteine's thiols towards forming one, or two thioether bonds to the vinyl group. The ability to control the spectral properties of BDFP by specific point mutations opens many possibilities for rational design of far-red and near-infrared FPs that are of great interest to the development of fluorescence markers for bioimaging since most biological tissues are transparent in this spectral window. © 2022 The Protein Society.
Church JR, Amoyal GS, Borin VA, Adam S, Olsen JMH, Schapiro I. Deciphering the Spectral Tuning Mechanism in Proteorhodopsin: The Dominant Role of Electrostatics Instead of Chromophore Geometry. Chemistry - A European Journal [Internet]. 2022;28 (28). Publisher's VersionAbstract
Proteorhodopsin (PR) is a photoactive proton pump found in marine bacteria. There are two phenotypes of PR exhibiting an environmental adaptation to the ocean's depth which tunes their maximum absorption: blue-absorbing proteorhodopsin (BPR) and green-absorbing proteorhodopsin (GPR). This blue/green color-shift is controlled by a glutamine to leucine substitution at position 105 which accounts for a 20 nm shift. Typically, spectral tuning in rhodopsins is rationalized by the external point charge model but the Q105L mutation is charge neutral. To study this tuning mechanism, we employed the hybrid QM/MM method with sampling from molecular dynamics. Our results reveal that the positive partial charge of glutamine near the C14−C15 bond of retinal shortens the effective conjugation length of the chromophore compared to the leucine residue. The derived mechanism can be applied to explain the color regulation in other retinal proteins and can serve as a guideline for rational design of spectral shifts. © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Mous S, Gotthard G, Ehrenberg D, Sen S, Weinert T, Johnson PJM, James D, Nass K, Furrer A, Kekilli D, et al. Dynamics and mechanism of a light-driven chloride pump. Science [Internet]. 2022;375 (6583) :845 - 851. Publisher's VersionAbstract
Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the p-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump. © 2022 American Association for the Advancement of Science. All rights reserved.
Sen S, Kar RK, Borin VA, Schapiro I. Insight into the isomerization mechanism of retinal proteins from hybrid quantum mechanics/molecular mechanics simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science [Internet]. 2022;12 (1). Publisher's VersionAbstract
The photoisomerization of retinal is a unifying primary event in the rhodopsin protein family. In vertebrate rhodopsins it is the first step in the vision process, while in the microbial rhodopsins it activates the transport of ions across the cell-membrane. This reaction is highly optimized in the protein, which is ultrafast, selective, and efficient. A great effort was directed to elucidate the mechanism due to the overall complexity of the process inside the protein. The classical one-bond-flip is too demanding in space for the confined protein cavity. Therefore, various space saving mechanisms based on the rotation of multiple double bonds have been proposed. The hybrid quantum mechanics/molecular mechanics (QM/MM) method played an important role in the elucidation of the mechanism inside the tight protein environment. It allows to take the entire protein into account while describing the ground and excited states of retinal. The predicted mechanisms include full isomerization of two or three double bonds, a simultaneous isomerization of a single and a double bond as well as the partial rotation of bonds adjacent to the central isomerization. This review summarizes mechanistic studies in the literature and compares them. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Electronic Structure Theory > Combined QM/MM Methods Software > Molecular Modeling. © 2021 Wiley Periodicals LLC.
Filiba O, Borin VA, Schapiro I. The involvement of triplet states in the isomerization of retinaloids. Physical Chemistry Chemical Physics [Internet]. 2022;114 (1). Publisher's VersionAbstract
Rhodopsins form a family of photoreceptor proteins which utilize the retinal chromophore for light energy conversion. Upon light absorption the retinal chromophore undergoes a photoisomerization. This reaction involves a non-radiative relaxation through a conical intersection between the singlet excited state and the ground state. In this work we studied the possible involvement of triplet states in the photoisomerization of retinaloids using the extended multistate (XMS) version of CASPT2. To this end, truncated models of three retinaloids were considered: protonated Schiff base, deprotonated Schiff base and the aldehyde form. The optimized geometries of the reactant, the product and the conical intersection were connected by a linear interpolation of internal coordinates to describe the isomerization. The energetic position of the low-lying singlet and triplet states as well as their spin-orbit coupling matrix elements (SOCME) were calculated along the isomerization profile. The SOCME values peaked in vicinity of the conical intersection for all the retinaloids. Furthermore, the magnitude of SOCME is invariant to the number of double bonds in the model. The SOCME for the protonated Schiff base is negligible (1.5 cm−1) which renders the involvement of the triplet state as improbable. However, the largest SOCME value of 30 cm−1 was found for the aldehyde form, followed by 15 cm−1 for the deprotonated Schiff base. © 2022 The Royal Society of Chemistry.
Rao AG, Schapiro I. Photoisomerization of phytochrome chromophore models: an XMS-CASPT2 study. Physical Chemistry Chemical Physics [Internet]. 2022;24 (48) :29393 - 29405. Publisher's VersionAbstract
Phytochromes are a superfamily of photoreceptors that harbor linear tetrapyrroles as chromophores. Upon light illumination, the linear tetrapyrrole chromophore undergoes a double bond isomerization which starts a photocycle. In this work, we studied the photoisomerization of chromophore models designed based on the C- and D-rings of the phycocyanobilin (PCB) chromophore. In total, five different models with varying substitutions were investigated. Firstly, the vertical excitation energies were benchmarked using different computational methods to establish the relative order of the excited states. Based on these calculations, we computed the photoisomerization profiles using the extended multi-state (XMS) version of the CASPT2 method. The profiles were obtained for both the clockwise and counterclockwise rotations of the C15 = C16 bond in the Z and E isomers using a linear interpolation of internal coordinates between the Franck-Condon and MECI geometries. In the minimal chromophore model that lacks the substitutions at the pyrrole rings, the isomerization involves both C14-C15 and C15 C16 bonds of the methine bridge between the C- and D-rings, resembling the hula-twist motion. The MECIs are characterized by a partial charge transfer between the two pyrrole rings pointing towards a twisted intramolecular charge transfer. Systematic introduction of substituents leads to an increase in the steric repulsion between the two pyrrole rings causing a pretwist of the dihedral around the C15 C16 bond, which creates a preference for the counterclockwise isomerization. An introduction of the carbonyl group at the D-ring increases the extent of charge transfer which changes the isomerization mechanism from hula-twist to one-bond flip. © 2022 The Royal Society of Chemistry.
Palombo R, Barneschi L, Pedraza-González L, Padula D, Schapiro I, Olivucci M. Retinal chromophore charge delocalization and confinement explain the extreme photophysics of Neorhodopsin. Nature Communications [Internet]. 2022;13 (1). Publisher's VersionAbstract
The understanding of how the rhodopsin sequence can be modified to exactly modulate the spectroscopic properties of its retinal chromophore, is a prerequisite for the rational design of more effective optogenetic tools. One key problem is that of establishing the rules to be satisfied for achieving highly fluorescent rhodopsins with a near infrared absorption. In the present paper we use multi-configurational quantum chemistry to construct a computer model of a recently discovered natural rhodopsin, Neorhodopsin, displaying exactly such properties. We show that the model, that successfully replicates the relevant experimental observables, unveils a geometrical and electronic structure of the chromophore featuring a highly diffuse charge distribution along its conjugated chain. The same model reveals that a charge confinement process occurring along the chromophore excited state isomerization coordinate, is the primary cause of the observed fluorescence enhancement. © 2022, The Author(s).
Rozenberg A, Kaczmarczyk I, Matzov D, Vierock J, Nagata T, Sugiura M, Katayama K, Kawasaki Y, Konno M, Nagasaka Y, et al. Rhodopsin-bestrophin fusion proteins from unicellular algae form gigantic pentameric ion channels. Nature Structural and Molecular Biology [Internet]. 2022;29 (6) :592 - 603. Publisher's VersionAbstract
Many organisms sense light using rhodopsins, photoreceptive proteins containing a retinal chromophore. Here we report the discovery, structure and biophysical characterization of bestrhodopsins, a microbial rhodopsin subfamily from marine unicellular algae, in which one rhodopsin domain of eight transmembrane helices or, more often, two such domains in tandem, are C-terminally fused to a bestrophin channel. Cryo-EM analysis of a rhodopsin-rhodopsin-bestrophin fusion revealed that it forms a pentameric megacomplex (~700 kDa) with five rhodopsin pseudodimers surrounding the channel in the center. Bestrhodopsins are metastable and undergo photoconversion between red- and green-absorbing or green- and UVA-absorbing forms in the different variants. The retinal chromophore, in a unique binding pocket, photoisomerizes from all-trans to 11-cis form. Heterologously expressed bestrhodopsin behaves as a light-modulated anion channel. © 2022, The Author(s), under exclusive licence to Springer Nature America, Inc.
Maestre-Reyna M, Yang C-H, Nango E, Huang W-C, Ngurah Putu EPG, Wu W-J, Wang P-H, Franz-Badur S, Saft M, Emmerich H-J, et al. Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme. Nature Chemistry [Internet]. 2022;14 (6) :677 - 685. Publisher's VersionAbstract
Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•− isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine–aspartate salt bridge allows proton transfer from arginine to FAD•−. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis. [Figure not available: see fulltext.] © 2022, The Author(s), under exclusive licence to Springer Nature Limited.
Yang Y, Stensitzki T, Sauthof L, Schmidt A, Piwowarski P, Velazquez Escobar F, Michael N, Nguyen AD, Szczepek M, Brünig FN, et al. Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nature Chemistry [Internet]. 2022;14 (7) :823 - 830. Publisher's VersionAbstract
The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore’s pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes. [Figure not available: see fulltext.]. © 2022, The Author(s).