Publications

2018
Schnedermann C, Yang X, Liebel M, Spillane KM, Lugtenburg J, Fernández I, Valentini A, Schapiro I, Olivucci M, Kukura P, et al. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nature Chemistry [Internet]. 2018;10 (4) :449 - 455. Publisher's VersionAbstract

Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H11–C11=C12–H12 double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.

Sutar R L, Sen S, Eivgi O, Segalovich G, Schapiro I, Reany O, Lemcoff NG. Guiding a divergent reaction by photochemical control: bichromatic selective access to levulinates and butenolides. Chemical Science [Internet]. 2018;9 (5) :2041 - 6520. Publisher's VersionAbstract

Allylic and acrylic substrates may be efficiently transformed by a sequential bichromatic photochemical process into derivatives of levulinates or butenolides with high selectivity when phenanthrene is used as a regulator. Thus, UV-A photoinduced cross-metathesis (CM) couples the acrylic and allylic counterparts and subsequent UV-C irradiation initiates E–Z isomerization of the carbon–carbon double bond, followed by one of two competing processes; namely, cyclization by transesterification or a 1,5-H shift and tautomerization. Quantum chemical calculations demonstrate that intermediates are strongly blue-shifted for the cyclization while red-shifted for the 1,5-H shift reaction. Hence, delaying the double bond migration by employing UV-C absorbing phenanthrene, results in a selective novel divergent all-photochemical pathway for the synthesis of fundamental structural motifs of ubiquitous natural products.

Borin V, Wiebeler C, Schapiro I. A QM/MM study of the initial excited state dynamics of green-absorbing Proteorhodopsin. Faraday Discussions [Internet]. 2018;207 :137 - 152. Publisher's VersionAbstract

The primary photochemical reaction of the green-absorbing Proteorhodopsin is studied by means of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The simulations are based on a homology model derived from the blue-absorbing Proteorhodopsin crystal structure. The geometry of retinal and the surrounding sidechains in the protein binding pocket were optimized using the QM/MM method. Starting from this geometry the isomerization was studied with a relaxed scan along the C13=C14 dihedral. It revealed an "aborted bicycle pedal" mechanism of isomerization that was originally proposed by Warshel for bovine rhodopsin and bacteriorhodopsin. However, the isomerization involved the concerted rotation about C13=C14 and C15=N, with the latter being highly tiwsted but not isomerized. Further, the simulation showed an increased steric interaction between the hydrogen at the C14 of the isomerizing bond and the hydroxyl group at the neighbouring tyrosine 200. In addition, we have simulated a nonadiabatic trajectory which showed the timing of the isomerization. In the first 20 fs upon excitation the order of the conjugated double and single bonds is inverted, consecutively the C13=C14 rotation is activated for 200 fs until the S1-S0 transition is detected. However, the isomerization is reverted due to the specific interaction with the tyrosine as observed along the relaxed scan calculation. Our simulations indicate that the retinal - tyrosine 200 interaction plays an important role in the outcome of the photoisomerization.

2017
Schapiro I, Weingart O. Introduction – Festschrift in Honor of Prof. Volker Buβ. Photochemistry and Photobiology [Internet]. 2017;93 (6) :1335 - 1335. Publisher's VersionAbstract

We are very pleased to present this Festschrift in honor of our colleague, mentor and friend Prof. Volker Buß, which was initiated to celebrate his 75th birthday. The aim of this special issue is to recollect his substantial contributions and achievements of his career in the field of Theoretical/Computational Photochemistry. This article is protected by copyright. All rights reserved.

Gozem S, Luk HL, Schapiro I, Olivucci M. Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chemical Reviews [Internet]. 2017;117 (22) :13502 – 13565. Publisher's VersionAbstract

Ultrafast processes in light-absorbing proteins have been implicated in the primary step in the light-to-energy conversion and the initialization of photoresponsive biological functions. Theory and computations have played an instrumental role in understanding the molecular mechanism of such processes, as they provide a molecular-level insight of structural and electronic changes at ultrafast time scales that often are very difficult or impossible to obtain from experiments alone. Among theoretical strategies, the application of hybrid quantum mechanics and molecular mechanics (QM/MM) models is an important approach that has reached an evident degree of maturity, resulting in several important contributions to the field. This review presents an overview of state-of-the-art computational studies on subnanosecond events in rhodopsins, photoactive yellow proteins, phytochromes, and some other photoresponsive proteins where photoinduced double-bond isomerization occurs. The review also discusses current limitations that need to be solved in future developments.Ultrafast processes in light-absorbing proteins have been implicated in the primary step in the light-to-energy conversion and the initialization of photoresponsive biological functions. Theory and computations have played an instrumental role in understanding the molecular mechanism of such processes, as they provide a molecular-level insight of structural and electronic changes at ultrafast time scales that often are very difficult or impossible to obtain from experiments alone. Among theoretical strategies, the application of hybrid quantum mechanics and molecular mechanics (QM/MM) models is an important approach that has reached an evident degree of maturity, resulting in several important contributions to the field. This review presents an overview of state-of-the-art computational studies on subnanosecond events in rhodopsins, photoactive yellow proteins, phytochromes, and some other photoresponsive proteins where photoinduced double-bond isomerization occurs. The review also discusses current limitations that need to be solved in future developments.

Cohen S, Borin V, Schapiro I, Musa S, De-Botton S, Belkova NV, Gelman D. Ir(III)-PC(sp3)P Bifunctional Catalysts for Production of H2 by Dehydrogenation of Formic Acid: Experimental and Theoretical Study. ACS Catalysis [Internet]. 2017 :8139 - 8146. Publisher's VersionAbstract

Reversible storage of hydrogen in the form of stable and relatively harmless chemical substances such as formic acid (FA) is one of the cornerstones of a fossil-fuel-free economy. Recently, Ru(III)-PC(sp3)P (where PC(sp3)P = modular dibenzobarrelene-based pincer ligand possessing a pendant functional group) complex 1 has been reported as a mild and E-selective catalyst in semihydrogenation of alkynes with stoichiometric neat formic acid. Discovery of the additive-free protocol for dehydrogenation of FA launched further studies aiming at the rational design of highly efficient catalysts for this reaction operating under neutral conditions. We now report the results of our investigation on a series of bifunctionl PC(sp3)P complexes equipped with different outer-sphere auxiliaries, that allowed us to identify an amine-functionalized Ir(III)-PC(sp3)P complex 3, as a clean and efficient catalyst for the FA dehydrogenation. The catalyst is suitable for fuel-cell applications demonstrating a TON up to 5 × 105 and TOF up to 2 × 104 h–1 (3.8 × 105 and 1.2 × 104 h–1 with no additives). In addition to the practical value of the catalyst, experimental and computational mechanistic studies provide rationale for the design of improved next-generation catalysts.Reversible storage of hydrogen in the form of stable and relatively harmless chemical substances such as formic acid (FA) is one of the cornerstones of a fossil-fuel-free economy. Recently, Ru(III)-PC(sp3)P (where PC(sp3)P = modular dibenzobarrelene-based pincer ligand possessing a pendant functional group) complex 1 has been reported as a mild and E-selective catalyst in semihydrogenation of alkynes with stoichiometric neat formic acid. Discovery of the additive-free protocol for dehydrogenation of FA launched further studies aiming at the rational design of highly efficient catalysts for this reaction operating under neutral conditions. We now report the results of our investigation on a series of bifunctionl PC(sp3)P complexes equipped with different outer-sphere auxiliaries, that allowed us to identify an amine-functionalized Ir(III)-PC(sp3)P complex 3, as a clean and efficient catalyst for the FA dehydrogenation. The catalyst is suitable for fuel-cell applications demonstrating a TON up to 5 × 105 and TOF up to 2 × 104 h–1 (3.8 × 105 and 1.2 × 104 h–1 with no additives). In addition to the practical value of the catalyst, experimental and computational mechanistic studies provide rationale for the design of improved next-generation catalysts.

Braslavsky SE, Matysik J, Schapiro I. Introduction, Festschrift in honor of Wolfgang Gärtner. Photochem Photobiol [Internet]. 2017;93 (3) :640 - 641. Publisher's Version
Wiebeler C, Borin V, Sanchez de Araújo AV, Schapiro I, Borin AC. Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories. Photochem Photobiol [Internet]. 2017;93 (3) :888 - 902. Publisher's VersionAbstract
In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single-state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI-CC2, RI-ADC2 and EOM-CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2-IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations.
2016
Estrada LA, Frances-Monerris A, Schapiro I, Olivucci M, Roca-Sanjuan D. Mechanism of excited state deactivation of indan-1-ylidene and fluoren-9-ylidene malononitriles. Phys. Chem. Chem. Phys. [Internet]. 2016;18 :32786-32795. Publisher's VersionAbstract

Herein, we report complementary computational and experimental evidence supporting the existence, for indan-1-ylidene malononitrile and fluoren-9-ylidene malononitrile, of a non-radiative decay channel involving double bond isomerisation motion. The results of UV-Vis transient absorption spectroscopy highlight that the decay takes place within hundreds of picoseconds. In order to understand the related molecular mechanism, photochemical reaction paths were computed by employing multiconfigurational quantum chemistry. The results indicate that the excited state deactivation occurs via concerted double bond twisting of the dicyanovinyl (DCV) unit coupled with a pyramidalisation of its substituted carbon. It is also shown that the observed differences in the excited state lifetimes when passing from indan-1-ylidene malononitrile to fluoren-9-ylidene are associated with the change in the topography of the conical intersection driving the decay from intermediate to sloped, respectively.

Melaccio F, Calimet N, Schapiro I, Valentini A, Cecchini M, Olivucci M. Space and Time Evolution of the Electrostatic Potential during the Activation of a Visual Pigment. Journal of Physical Chemistry Letters [Internet]. 2016;7 (13) :2563 - 2567. Publisher's VersionAbstract
Animal and microbial retinal proteins employ the Schiff base of retinal as their chromophore. Here, the possible consequences of the charge translocation associated with the light-induced dynamics of the chromophore of a visual opsin are investigated along a representative semiclassical trajectory. We show that the evolution of the electrostatic potential projected by the chromophore onto the surrounding protein displays intense but topographically localized sudden variations in proximity of the decay region. pKa calculations carried out on selected snapshots used as probes, indicate that the only residue which may be sensitive to the electrostatic potential shift is Glu181. Accordingly, our results suggest that the frail Tyr191/268-Glu181-Wat2-Ser186 hydrogen bond network may be perturbed by the transient variations of the electrostatic potential. © 2016 American Chemical Society.
Schapiro I. The Origin of Bond Selectivity and Excited-State Reactivity in Retinal Analogues. Journal of Physical Chemistry A [Internet]. 2016;120 (19) :3353 - 3365. Publisher's VersionAbstract

The effect of different conformations and substitutions on the photoisomerization of a retinal protonated Schiff base model is investigated by nonadiabatic molecular dynamics simulations. Three groups of retinal analogues are studied: (i) conformational isomers, (ii) methyl-substituted retinals, and (iii) C11-C12 bond locked retinals. In total 259 trajectories are calculated in the gas phase starting from different initial conditions. The effect on bond selectivity, the directionality of the isomerization, excited-state lifetime, and product distribution is derived from the ensemble of trajectories. Among the group of four isomers (9-, 11-, 13-cis, and all-trans) the 11-cis analogue is the most selective in terms of isomerizing double bond, while the other three produce a mixture of isomers. However, there is no preference for isomerization directionality and the product formation for the 11-cis isomer. In the group of analogues with different methylation patterns, it is found that a methyl group at position C10 can introduce unidirectionality. This methyl group also speeds the photoisomerization. In case of the analogue that is demethylated at the positions C10 and C13, all trajectories isomerize successfully from cis to trans conformation. The three C11-C12 bond locked retinals are found to have very different properties, which depend on the number of methylene units bridging this bond. The five-membered ring imposes a too-large restriction; hence, all trajectories remain on the excited state in the simulation time of 300 fs. The seven-membered ring is more flexible with preference for isomerization of the C9-C10 bond. Interestingly, the eight-membered ring leads to the fastest isomerization time and full directionality of C11-C12 bond isomerization. The trends observed in these simulations can help to understand whether the effects are intrinsic to the chromophore or are induced by the protein environment, by comparing to the trends from experiment. Furthermore, the derived understanding can support design of molecular motors to achieve high product yield and unidirectionality. © 2016 American Chemical Society.

Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table
Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez. Galván I, Ferré N, Frutos LM, Gagliardi L, et al. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry [Internet]. 2016;37 (5) :506 - 541. Publisher's VersionAbstract

In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas–Kroll–Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.

Ockenfels A, Schapiro I, Gartner W. Rhodopsins carrying modified chromophores - the 'making of', structural modelling and their light-induced reactivity. Photochemical & Photobiological Sciences [Internet]. 2016;15 (2) :297 - 308. Publisher's VersionAbstract

A series of vitamin-A aldehydes (retinals) with modified alkyl group substituents (9-demethyl-, 9-ethyl-, 9-isopropyl-, 10-methyl, 10-methyl-13-demethyl-, and 13-demethyl retinal) was synthesized and their 11-cis isomers were used as chromophores to reconstitute the visual pigment rhodopsin. Structural changes were selectively introduced around the photoisomerizing C11[double bond, length as m-dash]C12 bond. The effect of these structural changes on rhodopsin formation and bleaching was determined. Global fit of assembly kinetics yielded lifetimes and spectral features of the assembly intermediates. Rhodopsin formation proceeds stepwise with prolonged lifetimes especially for 9-demethyl retinal (longest lifetime τ3 = 7500 s, cf., 3500 s for retinal), and for 10-methyl retinal (τ3 = 7850 s). These slowed-down processes are interpreted as either a loss of fixation (9dm) or an increased steric hindrance (10me) during the conformational adjustment within the protein. Combined quantum mechanics and molecular mechanics (QM/MM) simulations provided structural insight into the retinal analogues-assembled, full-length rhodopsins. Extinction coefficients, quantum yields and kinetics of the bleaching process (μs-to-ms time range) were determined. Global fit analysis yielded lifetimes and spectral features of bleaching intermediates, revealing remarkably altered kinetics: whereas the slowest process of wild-type rhodopsin and of bleached and 11-cis retinal assembled rhodopsin takes place with lifetimes of 7 and 3.8 s, respectively, this process for 10-methyl-13-demethyl retinal was nearly 10 h (34670 s), coming to completion only after ca. 50 h. The structural changes in retinal derivatives clearly identify the precise interactions between chromophore and protein during the light-induced changes that yield the outstanding efficiency of rhodopsin.

2015
Marchand G, Eng J, Schapiro I, Valentini A, Frutos LM, Pieri E, Olivucci M, Léonard J, Gindensperger E. Directionality of double-bond photoisomerization dynamics induced by a single stereogenic center. Journal of Physical Chemistry Letters [Internet]. 2015;6 (4) :599 - 604. Publisher's Version
Schapiro I, Roca-Sanjuán D, Lindh R, Olivucci M. A surface hopping algorithm for nonadiabatic minimum energy path calculations. Journal of Computational Chemistry [Internet]. 2015;36 (5) :312 - 320. Publisher's Version
Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model
Tuna D, Lefrancois D, Wolański L, Gozem S, Schapiro I, Andruniów T, Dreuw A, Olivucci M. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. Journal of Chemical Theory and Computation [Internet]. 2015;11 (12) :5758 - 5781. Publisher's Version
2014
Romero E. Quantum coherence in photosynthesis for efficient solar-energy conversion. [Internet]. 2014;10. Publisher's Version
Gozem S, Mirzakulova E, Schapiro I, Melaccio F, Glusac KD, Olivucci M. A conical intersection controls the deactivation of the bacterial luciferase fluorophore. Angewandte Chemie - International Edition [Internet]. 2014;53 (37) :9870 - 9875. Publisher's Version
Schapiro I, Fusi S, Olivucci M, Andruniów T, Sasidharanpillai S, Loppnow GR. Initial excited-state dynamics of an N -alkylated indanylidene-pyrroline (NAIP) rhodopsin analog. Journal of Physical Chemistry B [Internet]. 2014;118 (42) :12243 - 12250. Publisher's Version
Schapiro I, Neese F. SORCI for photochemical and thermal reaction paths: A benchmark study. Computational and Theoretical Chemistry [Internet]. 2014;1040-1041 :84 - 98. Publisher's Version

Pages