Prof. Shahar Arzy

Prof. Shahar  Arzy

Prof. Shahar Arzy

Dept. Medical Neurobiology, Institute for Medical Research, IMRIC, Hebrew University School of Medicine, Jerusalem
p: 02-6776941

 

Dr. Shahar Arzy got his MD and MSc in neuroscience at the Hebrew University and PhD in neuroscience from the Swiss institute of Technology at the University of Geneva. He specialized in Neurology at Hadassah with subspecialty in cognitive neurology and epilepsy at Geneva University Hospital.

He now directs the Neuropsychiatry Lab at the Hebrew University and runs the neuropsychiatry clinic (with Dr. R. Eitan) and the epilepsy center (with Dr. D. Ekstein) in Hadassah Medical Center.

Dr. Arzy is a senior lecturer at the faculty of medicine, The Edmond And Lily Safra Brain Center and the Cognitive Science Program at the Hebrew University of Jerusalem.

Research Interests: Computational Neuropsychiatry Lab: Our lab of Computational Neuropsychiatry aims to bridge the gap between clinical practice and research, neurology, psychiatry, physics and psychology in order to re-formulate our understanding of the human self and its pathologies. To this aim we use newly developed computational methods (machine-learning algorithms, classifiers, network-approach and spectral analysis) applied directly on patients’ data (3T/7T fMRI, intracranial brain recordings, EEG, ECT), particularly tailored to improve clinical management and scientific understanding of neuropsychiatric disorders. The Neuropsychiatry Lab is located within the Department of Neurology and has a close collaboration with the Departments of Psychiatry, Neuroradiology and Neurosurgery, in order to develop approaches to address specific medical needs of neuropsychiatric patients and clinicians. Our main interests involve cortex-related functional conditions including epilepsy, neurodegenerative diseases, conversive and dissociative disorders, amnesias, disorientation states and different cognitive disturbances and misperceptions. By combining direct clinical involvement and cutting-edge computational methods we are able to challenge the customary context of the human “self” and to reframe neuropsychiatry, and at the same time to develop effective patient-tailored clinical tools to diagnose, monitor and treat these disorders.