In this article, I examine several expressions of imaginative practices to unpack the umbrella term scenario. Drawing on my long-term fieldwork on Israel’s annual Turning Point exercises, I examine actual uses of scenarios and distinguish between two different logics of imaginative practices and the modalities in which the future is governed by them, which I refer to as the scenaristic and the simulative. As I demonstrate, these two modalities can be distinguished from each other in terms of their approaches to future uncertainty, their temporalities and the role of imagination within their enactment. To further conceptually develop the logics of imagination, I draw on Deleuze’s and Bergson’s discussions of the concept of fabulation, and I suggest that scenarios and simulations represent two different logics of future-governing that are based on practices of imagination.
We propose and experimentally demonstrate high-speed operation of random-channel cryptography (RCC) in multimode fibers. RCC is a key generation and distribution method based on the random channel state of a multimode fiber and multi-dimension to single-dimension projection. The reciprocal intensity transmittance of the channel shared between the two legitimate users is used to generate and distribute correlated keys. In previous work, RCC's key rate-distance product was limited by the speed of light. In this work, we show that adding a fast modulator at one end of the channel decouples the key rate and distance, resulting in a significant improvement in the key rate-distance product, limited only by the fiber's modal dispersion. Error-free transmission at a key rate-distance product of 64.7 Mbps 12 km, which is seven orders of magnitude higher than the previous demonstration, was achieved. The proposed method's security arises from a fundamental asymmetry between the eavesdroppers and legitimate users measurement complexity.
Ubiquitous in the cellular milieu, small organic compounds termed osmolytes help to regulate the response to environmental stress. Elasmobranchii, such as sharks, accumulate high concentrations of several osmolytes, most notably urea, trimethylamine N‐oxide (TMAO), and glycine betaine (GB). These three compounds are used to osmoregulate the organism's body fluids, so that they counteract seawater salinity, as well as the destabilizing effects of hydrostatic pressure on cells and their molecular components. Herein we focus on glycine betaine and show how it modifies interactions between lipid membranes. We find that the addition of GB exerts an apparent attractive force that draws neighboring membranes toward one another. We show that, at the molecular level, this apparent attraction between membranes in the presence of GB is due to its preferential exclusion from the space between adjacent membranes, which thereby exerts an osmotic pressure that brings membranes closer together. This action is similar to the one we have previously reported for TMAO. However, we find that the net effect of GB is significantly smaller than that of TMAO, because GB concomitantly significantly weakens van der Waals attractions between membranes by changing the dielectric properties of the intervening solution. Finally, we show how GB acts in combination with urea. At high total concentrations and over a wide range of GB‐to‐urea ratios, urea counteracts the effect of GB, so that the equilibrium separation between membranes is close to their values in pure water. This finding supports the prevailing idea that mixtures of several osmolytes can achieve minimal net impact on biomacromolecular stability while also counteracting osmotic stress.
Abstract When multimode optical fibers are perturbed, the data that is transmitted through them is scrambled. This presents a major difficulty for many possible applications, such as multimode fiber based telecommunication and endoscopy. To overcome this challenge, a deep learning approach that generalizes over mechanical perturbations is presented. Using this approach, successful reconstruction of the input images from intensity-only measurements of speckle patterns at the output of a 1.5 m-long randomly perturbed multimode fiber is demonstrated. The model’s success is explained by hidden correlations in the speckle of random fiber conformations.