Scale-free optics and diffractionless waves in nanodisordered ferroelectrics.

Citation:

E DelRe, E Spinozzi, AJ Agranat, and C Conti. 2011. “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics..” Nature Photonics, 5, 1, Pp. 39. Publisher's Version

Abstract:

Wavelength rigidly fixes the diffraction that distorts waves during propagation, and poses fundamental limits to imaging, microscopy and communication. This distortion can be avoided by using waveguides or nonlinearity to produce solitons. In both cases, however, diffraction is only compensated, so the wavelength still imposes rigid laws on wave shape, size and soliton intensity. Nonlinearity, in turn, can introduce new spatial scales. In principle, if one is able to identify a nonlinearity that introduces an intensity-independent scale that cancels the wavelength, 'scale-free' propagation can occur. In this regime, diffraction ceases, and waveforms will naturally propagate without distortion, forming solitons of any size and intensity, even arbitrarily low. Here we provide the first experimental evidence of scale-free optical propagation in supercooled copper-doped KTN:Li, a recently developed out-of-equilibrium ferroelectric. This demonstrates that diffraction can be cancelled, and not merely compensated, thus leading to a completely new paradigm for ultraresolved imaging and microscopy. [ABSTRACT FROM AUTHOR]Copyright of Nature Photonics is the property of Nature Publishing Group and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Notes:

56512313

Last updated on 06/28/2015