Simultaneous quantification of the fluorescent responses of an ensemble of bacterial sensors.


Y. Kabessa, V. Korouma, H. Ilan, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Simultaneous quantification of the fluorescent responses of an ensemble of bacterial sensors.,” Biosensors & Bioelectronics, vol. 49, pp. 394 - 398, 2013.

Date Published:



Abstract: Bacterial bioreporters are genetically engineered microbial strains capable of detecting specific chemicals, groups of chemicals or global biological effects such as toxicity or genotoxicity. A scheme for simultaneous selective detection of the fluorescent signals emitted by a bacterial biosensor array, able to detect four different types of toxicants, using a single photodetector (photomultiplier) is presented. The underlying principle of the scheme is to convert the spatially distributed signals from all the elements in the array to temporally distributed frequency multiplexed signals at the output of the photodetector. Experimental proof of this concept is demonstrated in a four-channel system, in which low power (a few tens of picowatts) fluorescent signals produced by the bacterial sensors are measured, while maintaining a wide dynamic range of detection (more than 3 orders of magnitude). Simultaneous monitoring of concentrations down to a few mg/l of different chemicals in a liquid sample is demonstrated. [Copyright &y& Elsevier]Copyright of Biosensors & Bioelectronics is the property of Elsevier Science Publishing Company, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)


Accession Number: 89435767; Kabessa, Yossef 1; Email Address: Korouma, Victor 1 Ilan, Har'el 1 Yagur-Kroll, Sharon 2 Belkin, Shimshon 2 Agranat, Aharon J. 1; Affiliation: 1: Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 2: Department of Plant & Environmental Sciences, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Source Info: Nov2013, Vol. 49, p394; Subject Term: BIOSENSORS; Subject Term: RECOMBINANT microorganisms; Subject Term: GENETIC toxicology; Subject Term: PHOTODETECTORS; Subject Term: IDENTIFICATION of bacteria; Subject Term: FLUORIMETRY; Author-Supplied Keyword: Bacterial whole-cell biosensors; Author-Supplied Keyword: Fluorescence; Author-Supplied Keyword: GFP reporter gene; Author-Supplied Keyword: Simultaneous sampling; Number of Pages: 5p; Document Type: Article


Last updated on 06/09/2015