Monolithic Fringe-Field-Activated Crystalline SiliconTilting-Mirror Devices

Citation:

D. S. Greywall, et al., “Monolithic Fringe-Field-Activated Crystalline SiliconTilting-Mirror Devices,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 12, no. 5, pp. 702-707, 2003.

Abstract:

A new approach is presented for fabricating monolithic crystalline silicon tilting-mirror microoptoelectromechanical systems (MOEMS) devices. The activation electrodes, etched from a thick silicon layer deposited over insulating oxide onto the top surface of a silicon-on-insulator (SOI) wafer, are displaced from the mirrors and interact with these tilting elements via electrostatic fringing fields. In contrast to the more usual parallel-plate activation, the rotation angle saturates at high voltages. This paper discusses concept, design, and processing, and also compares modeling and measured performance of a specific 9 tilt range device array.

Publisher's Version

Last updated on 07/27/2016