Publications by Year: 2003

K. S. Kim, D. M. Marom, L. B. Milstein, and Y. Fainman, “Hybrid pulse position modulation/ultrashort light pulse code-division multiple-access systems-part II: time-space processor and modified schemes,” IEEE Transactions on Communications, vol. 51, no. 7, pp. 1135-1148, 2003. Publisher's VersionAbstract

In part I, we proposed and investigated a hybrid pulse position modulation/ultrashort light pulse code-division multiple-access (PPM/ULP-CDMA) system for ultrafast optical communication networks. In this scheme, the large bandwidth of a ULP is efficiently utilized by virtue of the very high time resolution of a time-space processor. More detailed analysis and discussion on the receiver scheme using the time-space processor is now presented; nonideal performance of the time-space processor, including the reference pulse realization problem, as well as amplifier and detector noise, are taken into account. Discussions on physically achievable ranges of the system parameters that determine the performance of the proposed PPM/ULP-CDMA system are also made based upon current, state of the art technology. As remedies to overcome the physical limitations on the system parameters, two modified modulation/demodulation schemes are proposed and investigated to enhance the performance of the hybrid PPM/ULP-CDMA system.

D. S. Greywall, et al., “Monolithic Fringe-Field-Activated Crystalline SiliconTilting-Mirror Devices,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 12, no. 5, pp. 702-707, 2003. Publisher's VersionAbstract

A new approach is presented for fabricating monolithic crystalline silicon tilting-mirror microoptoelectromechanical systems (MOEMS) devices. The activation electrodes, etched from a thick silicon layer deposited over insulating oxide onto the top surface of a silicon-on-insulator (SOI) wafer, are displaced from the mirrors and interact with these tilting elements via electrostatic fringing fields. In contrast to the more usual parallel-plate activation, the rotation angle saturates at high voltages. This paper discusses concept, design, and processing, and also compares modeling and measured performance of a specific 9 tilt range device array.